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ABSTRACT
The complexity of the tasks autonomous robots can tackle is con-
stantly increasing, yet we seldom see robots interacting with hu-
mans to perform tasks. Indeed, humans are either requested for 
punctual help or given the lead on the whole task. We propose a 
human-aware task planning approach allowing the robot to plan 
for a task while also considering and emulating the human deci-
sion, action, and reaction processes. Our approach is based on the 
exploration of multiple hierarchical tasks networks albeit differ-
ently whether the agent is considered to be controllable (the robot) 
or uncontrollable (the human(s)). We present the rationale of our 
approach along with a formalization and show its potential on an 
illustrative example involving the assembly of a table by a robot 
and a human.
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1 INTRODUCTION
As technology progresses, humans are more and more assisted in 
their everyday tasks. Moreover, these autonomous assistants are 
becoming more and more complex and able to handle harder tasks. 
However, humans and robotic assistants are seldom working on a 
task at the same time and at the same place. Indeed, robots rarely 
include human action and even less the human decision process in 
their own decision process.

In this work we aim at proposing a robot task planning scheme 
for human robot collaboration. The goal of our approach is to 
integrate, during the robot task planning process, mechanisms 
allowing it to anticipate the human decision, action or reaction 
leading to plans where the robot may create situations calling, 
when needed or preferred, for human action.

To do so, we took inspiration from previous work on human-
aware task modelling and planning to build a task planner focusing

on human robot collaboration. Our planner is able to explore in a
distinct manner the deliberation and plan elaboration processes of
the robot and the human in order to build robot plans and anticipate
the decisions and actions of the human. Moreover, it maintains one
belief base per agent (human or robot), and actions preconditions
and effects can be expressed in any of these belief bases, allow-
ing to represent situational or inherently non observable actions
from agents, knowledge transfer actions, and to detect beliefs diver-
gences and plan accordingly. Our scheme is designed to provide a
suitable framework allowing to anticipate the beliefs and potential
decision, reaction or contribution to a shared goal or to an inter-
action situation of both agents. This overall anticipation process
takes place within the robot decisional activity.

In this paper, we first discuss briefly related work and present
our approach and its intents and rationale. Then, we provide a
formalization of our planner scheme. Finally, a proof of concept
example will be presented before concluding.

2 BACKGROUND
When a robot has to carry a complex task, it probably needs to
plan before executing any action, otherwise risking to follow a
sub-optimal path of actions or even engage itself in a non recover-
able situation. Task planning aims at finding a feasible sequence of
actions leading to the completion of a goal or to the fulfilment of a
high level task [10]. Now, when acting in the presence of humans,
the robot has not only to consider constraints such as pertinence
and acceptation by the humans of its activity but also their course
of actions. Most approaches to the so-called human-aware task
planning problem assume a fully controllable and cooperative hu-
man, willing to participate in the accomplishment of a common
goal [5, 17, 20]. Then, information and plan sharing are done in a
post-processing step or at execution time [8, 16].

Other approaches are explicitly considering an external human
model, which can be used to predict future human actions, and
plan accordingly. Cirillo et al. present an approach where the robot
considers an external human model allowing it to adapt its plan
to multiple possible predicted human plans to avoid undesired
situations [6]. However, the tasks considered are not shared, and
the robot has no influence on the human actions. Talamadupula
et al. propose to consider the human as a planning agent with a
distinct goal and use plan recognition techniques to generate a
robot plan coordinated with the human one [18]. Buckingham et
al. integrate a separate human model taking into account a mental
model of the human to generate plan for collaborative, competitive,
and non-involved humans indifferently [4]. Finally, Unhelkar et
al. propose a scheme integrating the human action model as an
agent Markov model to predict the human action into a POMDP,
allowing the robot to follow policies influencing the human actions
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through communication [21]. However, these approaches consider
the humanmodel as an oracle on which reasoning is hardly possible
during the planning process.

Planning problems for Human-Robot collaboration can also be
seen as an instance of the general problem ofmulti-robot distributed
task allocation [9] andmulti-robot collaborative task achievement [3].
Indeed, there are similarities in terms of the identification of the
situations which call for decision and the associated models for task
representation [2, 7].

We propose an approach in which the human action models
and beliefs can explicitly be reasoned on and managed during the
task planning process, while also explored in order to elaborate
robot plans taking into account human capabilities of planning,
decision and reaction. We took inspiration for our human model
from human task modeling described in [13]. In this work, the
human task is modeled in order to evaluate an interactive system,
ensuring that at any state, any possible human action is supported
by the system. We want to enhance this approach by adding the
ability to project agents actions into the future and find multi-agent
plans by reasoning on both controllable and uncontrollable agent
action model.

Since we would like a scheme allowing to anticipate goal-based
as well situation-based decisions of each agent, we have naturally
chosen to adopt HTN based planning and refinement mechanisms.
Our planning scheme is inspired from HATP [1, 14, 17] where
a single HTN is explored to produce a human robot joint plan.
However, in our approach, we consider distinct action models for
the humans and the robot resulting not in one but in several HTNs
to be explored (one per considered agent).

3 DESCRIPTION AND NOTATION
We separate agents involved in a given task into two categories:
the controllable agents (i.e. the robots) for which the planner needs
to select the best course of actions to generate a policy; and the
uncontrollable agents (i.e. the humans) on whom the planner has
no direct control but, still, has a representation of their decision
and action models. The two agent types are fundamentally differ-
ent: (1) the robot is controllable since the process is run by the
robot, (2) the human agent is not controllable since the process
can only "speculate" on her/his decisions and actions, but can still
influence them, (3) the two agents are not equivalent, the robot
agent role is to help, assist and facilitate human and to synthesize
pertinent, legible and acceptable behaviour. We want to devise a
planner allowing controllable agents to plan for their actions while
anticipating the decisions, actions and reactions of uncontrollable
agents. Moreover, we want the planner to be able to generate plans
where robots actions elicit situations calling for humans decision,
action and reaction, thus creating and anticipating collaboration
and interaction.

This problem may be seen as a classical non deterministic plan-
ning problem, but enriched with the ability of the robot to model the
actions, beliefs and decision process of the human. Thus, we have
to consider distinct action models, beliefs and execution streams for
each of the agents involved. Doing so with classical STRIPS-style
planning approaches would lead to an intractable search space.
Therefore, we chose to use HTN planning for both the controllable

and uncontrollable agents. HTN planning aims at decomposing
abstract tasks into atomic primitive tasks by choosing from a list
of available context-dependent refinements for each abstract task,
ensuring that preconditions and effects of refined primitives tasks
are respected throughout the created plan. Similarly to HATP [17],
our planner elaborates a plan with several streams of actions each
associated to an agent involved in the task. But while in HATP,
all the streams are built starting from on initial root node corre-
sponding to a shared goal of all agents, our planner starts from
multiple initial root nodes corresponding to the decision process of
the different agents.

Beliefs: Let 𝑆 be the set of all possible world states, we call
beliefs of an agent 𝑎 the state 𝑠𝑎 ∈ 𝑆 in which this agent thinks the
world is in. It is important to note that the state of the controllable
agent is assumed to be the world state estimation for the planner,
as we consider the planner as being part of the controllable agent.

Action models: We represent the action model of an agent 𝑎
as Λ𝑎 = ⟨𝑂𝑝𝑎, 𝐴𝑎, 𝑀𝑒𝑎⟩ where 𝑂𝑝𝑎 are the primitive tasks (i.e. op-
erators, actions) that the agent 𝑎 can perform,𝐴𝑎 the set of abstract
tasks and 𝑀𝑒𝑎 are the methods (i.e. decompositions) describing
how an agent 𝑎 can perform an abstract task though a refinement
process.

Agents agendas and plans: An agenda 𝑑𝑎 and a plan 𝜋𝑎 (this
agent only stream of actions) are defined for each agent 𝑎. The
agenda 𝑑𝑎 is a list of tasks (abstract or primitive) having to be per-
formed by the agent. The plan 𝜋𝑎 is a list of primitive tasks, built
from the agenda, which the agent has to perform. Coordination be-
tween agent plans are represented by causal links between streams
which correspond to effects of agents actions on the beliefs states
of the other agents.

Agent triggers: We then define for each agent 𝑎 a set of so-
called trigger functions 𝑇𝑎 . These trigger functions aim at repre-
senting reactions of agents to certain situations (subsets of worlds
states).

Agents: Finally, we define an agent state as a tuple𝜎𝑎 = ⟨𝑑𝑎, 𝜋𝑎, 𝑠𝑎⟩,
and an agent as being 𝑎 = ⟨name𝑎, 𝜎𝑎,Λ𝑎,𝑇𝑎⟩. Then we represent
the set of controllable agents as 𝐴𝑔 and the set of the uncontrollable
agents as 𝐴𝑔. The set of all the agents considered by the planner is
then represented as 𝐴𝑔 = 𝐴𝑔 ∪𝐴𝑔. Likewise, the set of controllable,
uncontrollable and full agents states are represented as, respec-
tively, 𝜎 =

⋃
𝑎∈𝐴𝑔 𝜎𝑎 , 𝜎 =

⋃
𝑎∈𝐴𝑔 𝜎𝑎 and 𝜎 =

⋃
𝑎∈𝐴𝑔 𝜎𝑎 . Let Σ be

the set of all the possible agents states. For simplicity purposes, in
the following, we will only consider one controllable agent, named
robot, and one uncontrollable agent, named human.

4 PLANNING PROCESS
The cooperative agents planning problem consists in a set of agents
𝐴𝑔𝑠𝑡𝑎𝑟𝑡 with their respective agenda filled with tasks to achieve
and their beliefs about the current world. It is important to note
that if for the controllable agent, the beliefs correspond to the
planner ground truth, for the uncontrollable agent, their beliefs
need to be estimated, through, for example, situation assessment
component [12, 15].



Agent type Readable Writable

Controllable
𝑠𝑠𝑒𝑙 𝑓 , 𝑠𝑜𝑡ℎ𝑒𝑟 ,

𝜋𝑠𝑒𝑙 𝑓 , 𝜋𝑜𝑡ℎ𝑒𝑟 (1)
𝑠𝑠𝑒𝑙 𝑓 , 𝑠𝑜𝑡ℎ𝑒𝑟 ,(2)
𝑑𝑠𝑒𝑙 𝑓 , 𝑑𝑜𝑡ℎ𝑒𝑟 (3)

Uncontrollable 𝑠𝑠𝑒𝑙 𝑓 , 𝜋𝑠𝑒𝑙 𝑓 (4) 𝑠𝑠𝑒𝑙 𝑓 , 𝑠𝑜𝑡ℎ𝑒𝑟 , 𝑑𝑠𝑒𝑙 𝑓 (5)
Table 1: Readable and writable elements (belief states,
agenda, plan) of the agents state by method, primitive task
and trigger functions.

The result is a robot policy Π being a tree of alternating robot
and human primitive tasks. Any path from the root to the leaves
is a feasible sequence of primitive tasks (i.e. each primitive task
application leads to a state where the following one is applicable)
leading to a state where all the controllable agents agenda are
empty.

To solve such a problem we need to augment the search space
from world states 𝑆 only to all the agents states considered by the
planner 𝜎 , with their agenda, plan and beliefs. The exploration
starts with 𝜎𝑠𝑡𝑎𝑟𝑡 and consecutively applies operators associated to
the robot and to the human, leading to new agents states 𝜎𝑖 until
all the controllable agents have an empty agenda: ∀𝑎 ∈ 𝐴𝑔,𝑑𝑎 = ().

4.1 Action models restriction
Considering the definitions above, for any agent 𝑎 the operators
are defined as functions: 𝑂𝑝 ∋ 𝑜 : Σ → Σ ∪ ⊥ which produce new
agents state, being the effect of the application of the primitive
task, or false if the task is not applicable. Methods are defined as
tuple, containing an abstract task and a decomposition function:
𝑀𝑒 ∋𝑚 = ⟨𝛼, 𝛿⟩ with 𝛼 ∈ 𝐴 and 𝛿 : Σ → (𝑂𝑝 ∪𝐴)𝑛 ∪ () ∪ ⊥ with
𝑛 ∈ N∗, which, depending on agents states, decompose the abstract
task returning a list of tasks (primitive or abstract), an empty list if
the abstract task does not need to be decomposed, or false if the task
cannot be decomposed in the current state. Multiple methods can
address the same abstract task, the goal of the HTN planner is then
to choose the right one to create a plan. Finally triggers function
are defined as: 𝑇 ∋ 𝑡 : Σ → (𝑂𝑝 ∪𝐴)𝑛 ∪ () with 𝑛 ∈ N∗, returning
a list of tasks to be inserted in an agent agenda as a reaction to
specific agent states.

However, some constraints on these functions must be respected.
Indeed, depending on whether the agent is controllable or not,
their planning process will not take decisions based on the same
information, and their action will not impact the world state in
the same manner. We thus impose restrictions on what a function
can read and write (writing means here having effects on agents
states and is only in the case of primitive task functions) in the
agents state. Then, the function constraints also depend on which
agent is performing the action or making the decision (in method
and trigger functions). When a function is applied we note self the
agent which executes it and other the other agent. The rules for
read and write access are given in Table 1.

(1). During robot planning, the decision and the action can de-
pend on the beliefs of the robot and on the planned estimated
beliefs of the human. Moreover, the current partial plan of the robot
and the anticipated plan of human one can also be used to make
decisions.

(2). The effects of robot actions obviously impact its own belief
state (considered as the real world state by the planner), but also
the beliefs of the human, for example, through their observation
process and first order logic reasoning. More elaborate schemes
to compute the effects can also be devised such as those described
in [11].

(3). Besides, a robot action can add a new task to the agenda of
the human. This is to account for communication actions requesting
the human to do something.

(4). The human decisions and actions can only be done according
to her own beliefs and partial plan. Indeed, we cannot add the robot
ones as it is, or we would consider that the human estimation of
the robot knowledge and past actions is always perfect. This would
require a third type of agents, being the robot model as estimated
by our estimation of the human. Here, we make the assumption
that the human is a naive user, and thus, will not take their decision
based on the estimated robot beliefs and past plan.

(5). The effects of the human actions obviously impact their
beliefs and the robot (planner) ones. Moreover, the human agenda
could also be updated through, for example, a positive answer of a
task request.

4.2 Exploration algorithm
Our planner operates in a turn-taking scheme, based on the update
of the agents beliefs states, the HTNs of the robot and the human
are explored successively.

4.2.1 Controllable agent HTN exploration. The robot HTN explo-
ration is a pretty standard depth first algorithm. The first task _ from
its agenda 𝑑𝑟𝑜𝑏𝑜𝑡 its popped, then if it is an abstract task _ ∈ 𝐴, all
the applicable methods are applied, and their result are prepended
to the agenda, thus giving new agents states (with the same be-
liefs as the previous ones but with the robot agenda updated) and
branching our search space. We iterate with the new task popped
from the new robot agenda. Eventually, the popped task will be
a primitive one _ ∈ 𝑂𝑝 , its function will then be applied to the
currently explored agent states. If it returns false, the action is not
applicable, and the exploration backtracks to another decomposi-
tion of an abstract task. However, if the action is applicable (returns
a new agents state), the triggers are run for each agent, updating
their agenda if necessary. Then, we question the human HTN to get
their possible next actions from this new agents state, and, for each
possible new agents state, we apply the triggers of each agent then
we continue the robot HTN exploration. This exploration continues
until the robot agenda is empty, or all the branches return false.

4.2.2 Uncontrollable agent HTN exploration. The human HTN ex-
ploration differs from classical HTN planner as the goal is not to
produce a complete plan, but rather to list all the actions the human
is likely to perform in a given agents state. To do so, we recursively
decompose the first task of the human agenda 𝑑ℎ𝑢𝑚𝑎𝑛 with every
applicable methods, until we reach an applicable operator. All the
agents states resulting from the application of the operators from
all the applicable decompositions are then returned to the robot
HTN exploration (containing both agents beliefs and human agenda
updated, as stated in Table 1).



4.2.3 Default actions. Two special cases are handled during the
exploration. If the human agenda is empty whereas the robot one
is not, the exploration returns a default action IDLE — which does
not modify agents beliefs nor agendas — for the human. This action
represents the non-involvement of the human in a task. Besides,
if for the human no applicable action is found a default action
WAIT — which does not modify agents nor agendas — is returned.
This action represents the impossibility of the human to act in the
current situation, making them wait for the robot to proceed.

Once the robot agenda is emptied, the agents state is set as a
success, the plan is added to the policy tree and the search can be
continued until no decomposition is left for any task.

5 AN ILLUSTRATIVE EXAMPLE
We use here the same example as the one depicted in [19]: a ro-
bot needs to assemble a table, by mounting the four legs on the
table upside down top, while a human is in its vicinity. The robot
generates a plan where it assembles the table alone, but, during
the execution, finds out that it cannot pick a table leg as it is not
reachable to it. As a repair action, it asks the human to hand-over
the table leg and then proceeds to complete the assembly.

We argue that if, during planning time, the robot was aware of
the fact that the leg is not reachable to it, it could have planned to
ask the human for it. Our planner can deal with such a reasoning
ability.

The robot has to assemble four legs on a table top. Moreover, it is
aware of a human presence in the same room who is doing nothing.
Two table legs are not reachable by the robot, but the four legs are
reachable by the human. Our planner is thus instantiated with one
controllable agent (the robot) and one uncontrollable agent (the
human). We did not set any belief differences between the robot
and the human in this example. The two agents only differ by their
name, action model and starting agenda. Indeed, the agenda of the
robot is initiated with a high level task assemble_table, while the
human agenda is empty. In a real scenario, the human agenda could
be filled with their estimated current task via situation assessment
and plan recognition components.

In the robot model the assemble_table abstract task has two
decompositions. The first method tells how the robot can recur-
sively assemble a leg until no leg is available, with the task as-
semble_leg. In the other method the robot asks the human to help
it assemble the table with the two legs it cannot reach (operator
ask_help_for_assembly), and then recursively adds the assemble_leg
with the remaining legs, to its agenda. The operator ask_help_for-
_assembly fills the human agenda with a high level task to decom-
pose. Then, the task assemble_leg has two decompositions, one
where the robot picks and assembles the leg itself, and the other
where the robot asks the human to give it the leg, waits until re-
ceiving it and assembles it. When the robot asks the human to give
it the leg, operators are added to the human agenda: pick, handover
and wait_for_the_robot_to_take.

The policy returned by the planner contains two main branches,
splitting from the root node. Either the robot first action is asking
the human for help, thus relying on planning capability of the
human, as they have to decompose an abstract task; or the robot
asks only the human to handle it one table leg, thus not making

them take any decision, and involving them only minimally in the
task. Then, in each branch, when the robot needs to pick a leg, it can
either ask the human for it, or take it itself (if it is reachable). In the
policy, this is seen as two distinct branches when the robot retrieves
a leg. However, in the branch where the robot asked the human for
higher level help, the robot has to wait until the human completed
the assembly of their two assigned table legs before giving a third
to the robot.

With our approach wewere able to successfully generate a policy
allowing the robot to either elicit human planning capability by
assigning them a high level task, allowing concurrent assembly, or
to handle most of the assembly by itself, asking for simple help at
the beginning of the task to avoid disturbing the human sparsely.
Returning a policy and not only a selected plan allows a more
robust execution, as the robot may switch between plan branches
depending on the human action, and even change its course of
actions if the human does not act as expected (e.g. is not willing to
take part in the assembly).

6 CONCLUSION AND FUTUREWORK
We presented a novel approach for human-aware task planning al-
lowing to explicitly include human decisions, actions and reactions.
Our approach relies on a representation of each agent considered by
the planner, with their own beliefs, agenda, stream of execution and
action model. The action models are represented as HTNs which
are explored consecutively yet differently if the agent is controllable
(robots) or uncontrollable but rational (humans). This scheme aims
at anticipating situations where the human may decide to act or
wait for the robot to act, but also explicitly representing robot to
human communication needs for beliefs alignment, goal sharing or
action requests.

The policy returned is a tree containing human and robot streams
of actions leading to a completion of the goal. However, how to
choose a plan between the branches is an open problem. With the
information retrieved during the exploration process, we want to
allow for multiple plan selection criteria depending on a settable
human hyper parameter. If a human is considered as busy, we could
prefer plans which minimally involve them and avoid interrupted
long sequences of IDLE actions. If a human is considered as in a
hurry, we could choose shorter plans, whatever the human contri-
bution may be. Moreover, this hyper parameter can bias the HTNs
exploration to avoid plans which will not be selected in the policy.

Finally, as the exploration of all the human possible actions may
lead to a large branching factor, we want to bias the exploration by
stopping it at a certain level of depth, balancing between more or
less probable courses of actions, and adding robot actions guiding
the human to more probable actions.
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