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Tissue Attenuation Estimation by Mean Frequency
Downshift and Bandwidth Limitation

Ziemowit Klimonda, Michiel Postema, Senior Member, IEEE, Andrzej Nowicki, and Jerzy Litniewski,

Abstract—Attenuation of ultrasound in tissue can be estimated
from the propagating pulse center frequency downshift. This
method assumes that the envelope of the emitted pulse can be
approximated by a Gaussian function and that the attenuation
depends linearly on frequency. The resulting downshift of the
mean frequency depends not only on attenuation, but also on
pulse bandwidth and propagation distance. This kind of approach
is valid for narrowband pulses and shallow penetration depth.
However, for short pulses and deep penetration, the frequency
downshift is rather large and the received spectra are modified by
the limited bandwidth of the receiving system. In the paper the
modified formula modelling the mean frequency of backscattered
echoes is presented. The equation takes into account the limita-
tion of the bandwidth due to band-pass filtration of the received
echoes. This approach was applied to simulate the variation of the
mean frequency of the pulse propagating for both: weakly and
strongly attenuating media and for narrowband and wideband
pulses. The behavior of both the standard and modified estimates
of attenuation has been validated using RF data from a tissue-
mimicking phantom. The ultrasound attenuation of the phantom,
determined with a corrected equation, was close to its true value,
while the result obtained using the original formula was lower
by as much as 50% at a depth of 8 cm.

Index Terms—Tissue attenuation, frequency downshift, band-
width limitation

I. INTRODUCTION

T ISSUE attenuation can characterize soft tissue, although
natural biological variability limits its effectiveness.

Proper knowledge of tissue attenuation is required to reduce
shadowing artefacts [1] or determination of scatterer con-
centration and statistical parameters of the backscatter [2].
Numerous reports suggest the relationship between attenuation
and the pathological state of tissue. It has been shown, that
the slope of the attenuation coefficient, combined with the
statistical parameters of the image texture, can be used to
diagnose diffuse liver disease [3]. Attenuation values can
characterize cirrhotic and fatty human liver [4] and breast
tumors [5], but also help to discriminate between cancerous
and healthy tissue [6]. Changes of attenuation in the cervix
have been helpful in prediction of premature delivery in rats
[7] and in humans [8]–[11]. Potentially it can be used for skin
lesion classification [12]. It has been shown that attenuation
changes are related to the degeneration of bovine articular
cartilage [13], thermal coagulation [14] and HIFU treatment
[15], [16].

Several approaches to attenuation estimation have been
described, such as spectral shift [17]–[19], spectral difference
[20]–[22], a reference phantom method [23], and a hybrid
spectral domain method [24]. An extensive overview of spec-
tral methods is presented in [25] and [26].

The spectral shift method exploits the downshift of the
center frequency of the ultrasound pulse propagating in an at-
tenuating medium. This downshift is caused by the frequency-
dependence of attenuation and can be used to determine the
attenuation coefficient.

With the spectral difference method, the attenuation is found
using the logarithmic spectral difference of power spectra.
These spectra are calculated from different segments of re-
ceived ultrasound signals corresponding to different depths of
the medium.

With the reference phantom method, a well-specified, refer-
ence phantom is used to correct the ultrasound system and
diffraction effects. The power spectra of signals acquired
from the examined area of the tissue sample are divided by
corresponding spectra acquired from the reference phantom.
The local attenuation is estimated from the changes of such
normalized spectra with depth.

The hybrid spectral domain method combines the spectral
difference and spectral shift methods. The spectra from sam-
ples are divided by corresponding reference spectra, corrected
for the attenuation in a reference phantom and multiplied by
a Gaussian function. The attenuation is estimated from the
downshift of such corrected spectra.

In this study we concentrate on the spectral shift method.
Generally with frequency downshift, the linear dependence
between attenuation and frequency is assumed. A further
assumption is a Gaussian spectrum of the interrogating pulse.
With these conditions a linear equation can be derived linking
the shift of the center frequency with an attenuation coefficient,
the trasmited pulse bandwidth, and the propagation distance.
However, there are many other factors which might cause
a frequency shift of the received signals and render the
above assumptions inappropriate. The variations in frequency-
dependence of backscatter is one of those factors [1], but
considered negligible in the present work.

Furthermore, differences between real and reference values
of sound speed in a medium may introduce a bias in the
attenuation estimate [27]. Other factors include windowing and
electronic noise affecting the attenuation estimate [28], [29],
and beam diffraction causing the amplitudes of low frequency
components to decrease as the depth of pulse propagation
increases [30]. Furthermore, the received signals always have
a limited frequency bandwidth due to band-pass filtration of
the ultrasonic system itself, or of the subsequent processing
system, deforming the frequency spectra of received signals.
The more of the received pulse is out-of-band, the greater is
the deformation of the spectrum and the greater is the error in
the attenuation estimate.
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In this paper we propose a novel algorithm for attenuation
estimation from the mean frequency downshift. This modified
algorithm inteds to reduce the estimation errors resulting from
the noise component and the beam diffraction. Our approach
helps to reduce the impact of these factors by proper band-
pass filtration. In other words, the mean frequency is estimated
only from the part of the spectrum where the distortions are
relatively small. Thus, the linear model of mean frequency
downshift is modified by taking into account the changes of
the signal spectrum due to band-pass filtration. In 2012, we
reported the qualitative validation of the method originally
proposed [31]. The following work presents the theoretical
background of the method and the results of its experimental
validation. In Section II, the impact of the noise and of the
beam diffraction on the signal mean frequency estimate are
discussed. The equation describing the mean frequency of
the filtered Gaussian spectrum is derived in Section III. The
verification of the equation using simulated data is presented in
Section IV. In Section V, experimental data is subjected to the
new algorithm. The results are compared with non-modified
attenuation estimates.

II. NOISE AND BEAM DIFFRACTION EFFECTS ON SPECTRAL
MEAN FREQUENCY

A. Effect of noise

When the amplitude of a propagating pulse decreases due to
attenuation, the signal-to-noise ratio (SNR) also drops. For a
low SNR, the noise frequency component is relatively high
and the combined spectrum of the received signal (signal
and noise) is shifted towards the noise mean frequency [29].
This is also the case with signals from large depth. The
signal spectrum is downshifted due to attenuation but the
noise component increases the received signal mean frequency.
Accordingly, the mean frequency estimate is overestimated and
the overestimation increases with SNR decrease.

Figure 1 demonstrates an ilustrative example of normal-
ized spectra from signals backscattered in a tissue-mimicking
phantom at a 1- cm (black line) and 8- cm depth (gray line).
The spectral noise level is indicated by arrow. In the case
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Fig. 1. Normalized spectra of the signal acquired from A tissue-mimicking
phantom at 1- cm and 8- cm depths.

of 8- cm penetration depth, the mean frequency calculated
in the 0 − 25 MHz frequency range equals 5.0 MHz, while

after low-pass filtering with a cut-off frequency of 8 MHz,
the mean frequency dropped to 2.9 MHz, corresponding to
the peak frequency of the spectrum (gray line). Figure 1 also
shows some distortions for frequency between 0 and 0.6 MHz.
The source of these distortions is attributed to the receiving
system. Thus, there is a part of the signal spectrum which
clearly does not fit into the Gaussian pulse model. Therefore,
bandpass filtration should be used to isolate signal from noise.
Bandpass filtration is a standard method used in medical
ultrasound techniques to increase the SNR or to isolate the
desired frequency range of a received signal [32].

B. The effect of beam diffraction

Beam diffraction is an important factor affecting the ultra-
sonic wave propagation. The diffraction correction DL for a
piston source is given by [33]

DL = 1− e−i(2π/s) [J0(2π/s) + iJ1(2π/s)] (1)

where J0 and J1 are the zeroth and first order Bessel functions
of the first kind, s = ∆xc/(fa2), in which c is a speed of
sound and a is transducer radius. The diffraction correction
is defined as a normalized integral of the acoustic field over
the circle with the surface equal to the surface of the piston
source and located coaxially at a distance ∆x. The integral is
normalized by a similar integral of the plane wave acoustic
field [33]. It describes how the beam diffraction affects the
received signal comparing to the plane wave. Figure 2 shows
the absolute value of the DL as a function of the frequency,
at a depth of 1 cm and 8 cm. Both plots were calculated
for a transducer radius equal to 7.5 mm used in experiments
and described further in Section V. Figure 2 shows, that the
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Fig. 2. The absolute values of diffraction correction |DL| for a piston source
with radius 7.5mm, calculated for depths of 1 cm and 8 cm.

diffraction mostly distorts the lower part of the spectrum. In
our case, the part of the spectrum below 2 MHz is strongly
affected by the beam diffraction, while for the higher frequen-
cies, the distortion is substantially smaller. The pulse spectrum
is moved to the low frequency range where the correction for
diffraction effects are especially significant, particularly in the
case of deep penetration, due to the pulse mean frequency
downshift caused by attenuation.

In short, noise and beam diffraction affects the mean fre-
quency estimate. This impact could be limited by considering
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only that part of the received signal spectrum, where the
distortions are small. It can be done by band-pass filtering
prior to the mean frequency estimation. However, such filtering
modifies the signal spectrum whilst the Gaussian pulse model
is no longer valid. Thus, the model should be modified to
take into account the band-pass filtration of the received signal
and the resulted distortion of its spectrum. The new equation
allows for the recovery of the Gaussian pulse mean frequency
when the ultrasonic backscatter is band-pass filtered, which is
described in the next section.

III. SUMMARY OF ALGORITHM

Let us assume a Gaussian pulse with carrier frequency f0

propagating through the attenuating medium and described by
the following equation

p(t) = sin (2πf0t)e

(
− t2

2σ2
t

)
, (2)

where t is time and σ2
t is variance of the Gaussian envelope.

The Fourier amplitude spectrum is

P (f) =
σt

2
√

2π

∣∣∣∣∣∣∣e
[
− (f−f0)2

2( 1
2πσt

)
2

]
− e

[
− (f+f0)2

2( 1
2πσt

)
2

]∣∣∣∣∣∣∣ . (3)

Thus, the amplitude spectrum of p(t) is even and has the
form of absolute value of the difference of two Gaussian
functions with peaks at f0 and −f0, respectively. For f0 � 0,
the one sided spectrum can be approximated by a single
Gaussian function with a peak at f0. Assuming that the
attenuation varies linearly with frequency f , the spectrum of
the propagating pulse is a product of the Gaussian function and
the exponential function representing the attenuation. Thus, the
one sided power spectrum S(f) of p(t) can be approximated
as follows

S(f) = Ae

[
− (f−f0)2

σ2

]
e(−2αf∆x) , (4)

where f0 corresponds to the spectral peak of the transmitted
pulse, σ2 = 1/(2πσt)

2 is the variance of the amplitude
spectrum, α is the attenuation coefficient, ∆x is the distance
traveled by scanning pulse and A = σ2

t /8π
2 is a scaling factor.

Expression (4) can be transformed as follows:

S(f) = Ae

[
−
f2+(2σ2α∆x−2f0)f+f2

0
σ2

]
=

= Ae(σ2α2∆x2−2α∆xf0)e

[
−
(
f−fp
σ

)2
]
. (5)

Expression (5) shows that the power spectrum of the scanning
pulse traveling in linear attenuating medium is given by a
Gaussian function, but with a new peak frequency fp instead
of f0. Peak frequency fp is given by expression (6)

fp = f0 − σ2α∆x . (6)

This common expression is often used in the spectral shift
method [26]. In this case, the local attenuation coefficient α
is equal to [34]:

α = − 1

σ2

∆fp

∆x
→

∆x→0
− 1

σ2

dfp

dx
. (7)

For a Gaussian pulse, the frequency of the spectral peak fp is
close to the pulse mean frequency fm. Thus, in this case fm

can be used as an estimate of fp and replace it in (7) in order
to estimate the attenuation coefficient which is convenient as
the mean frequency fm can be readily estimated from the
ultrasound data.

fm ≈ fp (8)

However, approximation (8) is not always appropriate. The
basic idea is graphically explained in Figure 3 for arbitrary
Gaussian spectra and two filter bandwidths, one wide and the
other narrow.
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Fig. 3. The difference between the peak and mean frequencies of a virtual
Gaussian spectrum computed assuming (a) a wide and (b) a narrow filter
bandwidth.

Assuming that the received signal is band-pass filtered
with the cut-off frequencies f1 and f2, approximation (8) is
appropriate only if the received pulse spectrum is inside the
filter bandwidth (Fig. 3). It is not valid if a significant amount
of spectral energy is outside of the filter bandwidth (Fig. 3b)
yielding an incorrect attenuation estimation.

Assuming that the pulse is perfectly reflected and subse-
quently detected by the receiving system which introduces
band-pass filtration, the mean frequency can be determined
using [32]

fm =

∫∞
0
fS(f)∫∞

0
S(f)

. (9)

Assuming that the band-pass filtration can be described by
ideal filter with a rectangular transfer function with cut-off
frequencies f1 and f2, the mean frequency fm is given by
(10)

fm =

∫ f2

f1
fS(f)∫ f2

f1
S(f)

, (10)

where the denominator can be expressed by∫ f2

f1

S(f)df = B

∫ f2

f1

e

[
−
(
f−fp
σ

)2
]
df

= B

√
π

2
σ

[
erf

(
f2 − fp

σ

)
− erf

(
f1 − fp

σ

)]
, (11)

where erf() is the error function and B is given by (12)

B = Aeσ
2α2∆x2−2α∆xf0 . (12)
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The numerator of (10) can be transformed as follows∫ f2

f1
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Finally, the fm is given by

fm = fp −
σ√
π

e

[
−
(
f2−fp
σ

)2
]
− e

[
−
(
f1−fp
σ

)2
]

erf
(
f2−fp

σ

)
− erf

(
f1−fp

σ

) (14)

where the fp is given by equation (6). It is clear that the pulse
mean frequency differs from the frequency of the spectral
peak frequency. The expression describing the measured mean
frequency fm is the sum of the frequency fp and the bias
component which is a function of fp. If f1 approaches −∞
and f2 approaches ∞, the bias component disappears and
fm = fp. Nevertheless, the frequency f1 is always greater
than or equal to zero and f2 is finite for pulses received
by real system. Therefore the mean frequency is only an
approximation of the peak frequency.

Figure 4 shows the function fm(fp) calculated for three
different σ parameters. We have empirically verified that
equation (14) gives unique and stable solutions for the values
of fp corresponding with the attenuation values occurring in
soft tissue, frequencies up to 15 MHz and pulse bandwidth up
to 90%.
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Fig. 4. The function fm(fp) calculated for three different σ parameters of
the Gaussian pulse. The cut-off frequencies f1 and f2 were 2 and 8MHz,
respectively.

To determine the attenuation coefficient from band-pass
filtrated data using the estimated fm and equation (7), the true
peak frequency fp should first be calculated. Peak frequency
fp is an implicit function of fm. Therefore it can be calculated
by numerically solving equation (14). Then, the attenuation
can be estimated from fp using (7). In the following section
the results of simulations of (14) are presented.

IV. COMPUTER SIMULATIONS

A. Simulation procedure

Equation (14) describes the mean frequency changes for
band-pass filtrated backscattered signals. It was validated using
simulated RF data. For simulations of the signal received
at the transducer a simple, 1-dimensional (1D) geometry
model of tissue and incidence of plane wave was assumed.
The 1D model was applied as a direct consequence of the
180◦ backscattering assumption. It was also assumed that the
attenuation is the only factor influencing the mean frequency
shift. It is important to emphasize here that the only reason
for the development of a simulation model was to test whether
(14) correctly predicts the mean frequency down shift calcu-
lated from the band-filtered backscatter. The final validation
of the method proposed including filtering of the noise and
diffraction distortions was performed in phantom experiments.
The backscattered signal from tissue was simulated as follows.
A set of point scatterers was uniformly distributed along the
Z axis up to a depth of 10 cm in a medium attenuating
linearly with frequency. The average number of scatterers
per wavelength equaled 53 as discussed in [35], [37]. The
speed of sound in the simulated medium was 1540 m/s. The
scatterers reflectivity was also uniformly randomly distributed.
Each scatterer was considered a secondary sound source. The
transmit pulse had a Gaussian envelope and 5.6 MHz carrier
frequency and a 50% or a 76% bandwidth (−6 dB). The
transducer transfer function was identical to the transmit pulse
amplitude spectrum. The backscattered echoes were simulated
by superposition of all of the elementary, individually scattered
wavelets, taking into account the transducer transfer function,
phase differences caused by spatial location of individual
scatterer and attenuation. The tissue attenuation coefficients
α = 0.5 and 1.5 dB/(cm ·MHz)) were chosen in subsequent
simulations. 33 RF lines were simulated for each value of
attenuation coefficient. The band-pass filtering was performed
using the fourth order Butterworth filters with passband 1-
− 12 MHz and 3 − 7 MHz. The variation of mean frequency
fm along the penetration path was estimated from filtrated RF
lines by means of I/Q algorithm [36], [37] taking 10mm long
sample window. Next, the average from 33 mean frequency fm

lines was calculated and compared with the mean frequency
predicted from (8) and (14).

B. Simulation results and discussion

The results of the simulations are presented in Figures 5 -
7. The fm lines (gray) were estimated from simulated echoes
while the predictions of the linear (8) and the new equation
(14) are represented by black dashed line and solid lines,
respectively.

The results for the medium attenuation of
0.5 dB/(cm ·MHz)) and a 50% pulse bandwidth are
presented in Figure 5. For wideband filtration (Fig. 5a),
there are no visible differences between predictions of both
equations. For narrowband filtration (Fig. 5b), some small
differences are visible and the corrected equation fits a
slightly better to the estimate.
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Fig. 5. Mean frequency estimate and predictions of both equations - linear and corrected. The RF data were simulated. Medium with attenuation coefficient
equal 0.5 dB/(cm ·MHz) and 5.6MHz pulse with 50% bandwidth was assumed. The filter passband was equal to (a) 1− 12MHz and (b) 3− 7MHz.
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Fig. 6. Mean frequency estimate and predictions of both equations - linear and corrected. The RF data were simulated. Medium with attenuation coefficient
equal 0.5 dB/(cm ·MHz) and 5.6MHz pulse with 76% bandwidth was assumed. The filter passband was equal to (a) 1− 12MHz and (b) 3− 7MHz.
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Fig. 7. Mean frequency estimate and predictions of both equations - linear and corrected. The RF data were simulated. Medium with attenuation coefficient
equal 1.5 dB/(cm ·MHz) and 5.6MHz pulse with 76% bandwidth was assumed. The filter passband was equal to (a) 1− 12MHz and (b) 3− 7MHz.

The estimates of mean frequencies for the medium atten-
uation of 0.5 dB/(cm ·MHz) and pulses of 76% bandwidth
are presented in Figure 6. Here, the use of wideband filtration
(Fig. 6a) results in very small differences between predictions
of both equations, as previously (Fig. 5a). However, the differ-
ence between the old and the new approach is clearly visible
for narrowband filtration (Fig. 6b), where at the distance of
8 cm the difference exceeds 1.2 MHz and modified equation

predicts correctly mean frequency of simulated echoes.

The downshifts of mean frequency in highly attenuating
medium (1.5 dB/(cm ·MHz)) for pulses of 76% bandwidth
are shown in Figures 7a and 7b. In this case the differences
between old and new equations are clearly visible even for
wideband filtration. The corrected equation fits the estimated
mean frequency well along the whole penetration depth, while
the linear equation fits the fm line only for wideband filtration
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and a depth of less than 2 cm (Fig. 7a).
Presented results indicate that equation (14) correctly de-

scribes the fm shift caused by attenuation even for the narrow
band filtering of the simulated echoes.

V. PHANTOM EXPERIMENT

A. Measurement setup

The experimental setup consisted of a flat 15 mm di-
ameter transducer, 5.6 MHz center frequency, (IMASONIC
ME5−1/2′′, France), a pulser-receiver (Panametric 5900 PR)
and a sampling oscilloscope (Agilent Infinium 54810A). First,
the pulse spectrum in water was examined to measure the
transmitted pulse bandwidth and then calculate an estimate of
standard variation σ in (8) and (14). The transducer was driven
by short pulse and the ultrasound pulse reflected from acoustic
reflector placed in water at 60 mm depth was recorded. The
amplitude spectrum of the pulse was calculated and Full
Width at Half Maximum (FWHM) was determined. Then
the standard deviation σ was calculated using the relation
FWHM ≈ 2.35σ. The standard deviation was equal 1.68 MHz
and was used as an estimate of σ in equations (8) and
(14). 33 RF backscattered echoes from the tissue mimicking
phantom (Dansk Phantom Service, model 1054, attenuation
coefficient equal 0.7 dB/(cm ·MHz)) were recorded. Each
echo was acquired in different phantom location assuring
statistical independence of ultrasonic data. The measured RF
data were band-pass (2− 8 MHz) filtered, to limit the impact
of the beam diffraction and presence of noise on the final
attenuation estimate. The cut-off frequencies were chosen
basing on the plots of the backscattered spectra (Fig. 1) and
diffraction correction DL (Fig. 2). The lower cut-off frequency
was chosen to remove the part of the signal spectrum which
is the most distorted by beam diffraction. The higher cut-
off frequency was chosen to increase the SNR especially in
signals from greater depths. As a reference, the measured
RF data without initial band-pass filtering were processed in
the same way. The mean frequency variation with the depth
was estimated using exactly the same procedures as in the
case of simulated echoes i.e. using the I/Q algorithm with a
window length corresponding to a 1 cm depth. Data from a
depth of up to 0.5 cm were not taken into account because
of the strong and multiple reflections from the surface of the
phantom. The resulting 33 mean frequency lines were averaged
and compared with the models given by (8) and (14). The
attenuation distribution was estimated as follows. Each mean
frequency line was smoothed using the Singular Spectrum
Analysis (SSA) algorithm [40]. Next, the attenuation was
estimated using equations (7), (8) (linear equation) and (14)
(corrected equation). Equation (14) was numerically solved
for fp using Matlab R© (The MathWorks, Ltd., Natick, MA)
function fzero(). Finally, the attenuation lines were averaged
and the standard error of the mean was calculated for each
point of the averaged attenuation line.

B. Measurement results and discussion

The reference plot of the mean frequency changes estimated
without the initial band-pass filtration of RF data are shown in

Figure 8 (gray line). The predictions from both equations for
fm (linear 8 and corrected 14) are plotted by dashed and solid
black lines respectively. For this plot the cut-off frequencies
f1 and f2 in 14 equaled 0 and 25 MHz respectively, where
the upper band corresponds to sampling frequency (50 MHz).
For low penetration depth both models predict similar drop
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Fig. 8. Mean frequency estimate and predictions of both equations - linear
and corrected. The RF data were acquired from tissue-mimicking phantom
and were processed without initial filtration.

of the mean frequency that agrees well with the estimated
mean frequency line. For larger depths the estimated values are
clearly higher and the difference between the estimated and
both predicted lines increases with penetration depth. The
frequency range of filtration band is (0 − 25 MHz) which
can be considered large, thus both approaches operate very
similarly. The corrected method does not cut out the low
frequency components of the signal spectrum responsible
for the diffraction distortion. The upper limit of filtration is
too high to limit the influence of noise. Consequently, the
frequency line calculated using the corrected equation is not
consistent with the mean frequency estimate.

The mean frequency curves estimated from the band-pass
filtered (2−8 MHz) echoes together with the frequency values
predicted by (14) are presented in Figure 9. The comparison
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Fig. 9. Mean frequency estimate and prediction of the corrected equation.
The RF data were initially processed using band-pass (2− 8MHz) filter.

of the Figures 8 and 9 indicates, that band-pass filtration have
clearly limited the difference between the mean frequency
estimate and the prediction of the new model.

The plots of attenuation distribution corresponding to mea-
sured mean frequency data are shown in Figure 10. The attenu-
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ation values from non-filtered data were estimated using linear
equation (8), while the (14) was used together with band-
pass filtered data. The results obtained by the new method
are close to the nominal phantom attenuation. At the same
time the use of the equation (8) on the non-filtered signals
leads to underestimation of the attenuation values on large
depths. Although the standard error of the new estimate (gray
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Fig. 10. Average attenuation distribution estimated using linear and non-linear
equation. Dotted lines indicate the standard error of the mean. The RF data
processed using the corrected equation were initially filtered using band-pass
(2− 8MHz) filter.

dotted lines) increases at larger depths compared to the error
of the non-modified estimate (black dotted lines), it is still
more accurate than the estimate obtained using non-modified
method. The presented plots indicate that the estimate errors
caused by the beam diffraction and the noise component can
be reduced by proper band-bass filtration and use of the non-
linear model (eq. (14)) of the mean frequency drop.

However, the presented method have some limitations.
The method assumes the propagation of a Gaussian pulse.
Therefore, it will be not appropriate, when the shape of the
interrogating pulse is far from Gaussian. For example, such
situation occures in coded transmission technique. Moreover,
the assymptotic behavior of the function fm(fp) (Fig. 4)
indicates, that for large frequency shift the small inaccuracy
in fm estimation results in large error in fp. This is the
probable reason of the increase of the standard error in the
new estimate (Fig. 10, gray dotted lines). Finally, this method
require more calculations compared to non-modified frequency
shift method, thus it is computationally more expensive.

Additionally, we used the I/Q algorithm in order to estimate
the mean frequency of the signal. The I/Q algorithm is known
and used mostly in Doppler techniques. The algorithm was
selected due to its simplicity and ease of implementation.
However, it should be noted here, that the frequency shift
can be also estimated by other techniques which often per-
form better and characterize by higher accuracy, for example
energy-balanced [38] or correlation based [19], [24], [39].

VI. CONCLUSIONS

A new method for determination of ultrasound attenuation
coefficient has been presented. The method is a modification
of the common attenuation estimation from the downshift of
the mean frequency of the propagating pulse. The assumptions

are the same: a Gaussian spectrum of the scanning pulse
and medium attenuation varying linearly with frequency. In
practice, the diffraction phenomenon and noise significantly
affect the frequency estimate and consequently the value of
the determined attenuation. However, these errors can be
reduced by band-pass filtering with properly selected cut-
off frequencies. The proposed method removes the disrupted
portion of the spectrum of the received signal and uses the
filtered data for the calculation of the mean frequency of the
spectrum. To this end a new equation was derived, describing
the relation between the pulse spectrum shift and pulse spectral
width, tissue attenuation and frequency limits.

The method has been examined using simulated and ex-
perimental data. Simulation results revealed the usefulness of
the new equation for the mean frequency calculation from the
limited Gaussian spectrum. In some cases, this mean frequency
differed significantly from the frequency determined from non-
filtered data. The measurements were performed using a single
circular transducer and a tissue phantom. Phantom experiments
indicated that the estimate errors caused by the beam diffrac-
tion and noise could be reduced by proper band-pass filtering.
The improved accuracy of the attenuation estimate was shown.
The proposed method is especially useful for processing data
from echoes returned from a large depth, where the SNR is
low and distortion of the spectrum due to beam diffraction is
relatively large.
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