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Abstract

This article aims to present a unified framework for grading-based voting

processes. The idea is to represent the grades of each voter on d candidates

as a point in Rd and to define the winner of the vote using the deepest point

of the scatter plot. The deepest point is obtained by the maximization of a

depth function. Universality, unanimity, and neutrality properties are proved

to be satisfied. Monotonicity and Independence to Irrelevant Alternatives are

also studied. It is shown that usual voting processes correspond to specific

choices of depth functions. Finally, some basic paradoxes are explored for

these voting processes.
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1 Introduction

Balinski and Laraki [Balinski and Laraki, 2007, 2014, 2020] have developed

the “theory of measuring, electing and ranking”. The authors show that

voting procedures, based on evaluations rather than on rankings, satisfy valuable

properties. They propose a voting rule, the majority judgment, based on the

medians of the evaluations and prove that it does not fall in the scope of Arrow’s

impossibility theorem [Balinski and Laraki, 2007]. This property emerges from the

information contained in each vote. This framework, based on the grading of the

candidates by the voters, gives more nuanced information than a ranking-based

setting. The grading model has encountered much interest in the last decades, and

alternatives to majority judgment are, for example, approval voting [Brams and

Fishburn, 2007] and range voting [Smith, 2000].

This article aims to present a unified framework for grading-based voting processes,

study some of their properties, and extend the scope of voting processes. This family

of social decision functions is based on the statistical notions of depth functions and

their related deepest points. Let us consider in the following that we have n voters

and d candidates. Each voter gives a grade to each candidate. Each voter can then

be assimilated to a point in Rd, whose coordinates are the grades for each candidate.

The set of all voters’ grades can, hence, be seen as a scatter plot. The key idea is

to consider the most central voter in this scatter plot. According to their grades,

this innermost (possibly imaginary) voter can be seen as the most representative

of all voters. Hence, their preferences should meet a large consensus among the

others voters. Therefore, the presented social decision function returns simply the

candidate who has the maximum grade of this innermost voter. We refer to any

voting process based on the use of such notion of the most central voter as a “deepest

voting” process.

The definition of the deepest point of a scatter plot is a well-known research topic

in statistics. It was initiated in 1975 by Tukey, who defined a multivariate median

of a given multivariate data cloud [Tukey, 1975]. The idea is to introduce a

depth function, which associates to each point a value, so that the depth function
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is maximal at the innermost point of the scatter plot and minimal for outliers.

Many notions of data depth have been introduced since then, proposing alternative

definitions of the deepest point. See e.g. the monographs of Zuo and Serfling

[2000a] and Mosler [2013]. Depth functions vary regarding their computability and

robustness and their sensitivity to reflect the shapes of the data. Our claim is that

it can bring an interesting viewpoint for voting processes. The properties of the

depths functions are linked with the properties of the associated voting process and

some new voting procedures can be proposed, based on different notions of depth

functions.

The paper is organized as follows. Section 2 recalls the definition of Balinski and

Laraki [2007]’s grading model. In Section 3, we recall the statistical notion of depth

function which will help us to determine the innermost voter, knowing that there

are many ways of choosing the “center” of a scatter plot. Each way of choosing it

corresponds to a new member of the family of social decision functions. We next

give the definition of the deepest voting process. We show in Section 4 that main

usual conditions on voting processes –non-dictatorship, universality, unanimity–

are satisfied by classical depth functions. We also characterize monotonicity

and independence to irrelevant alternatives with respect to the behavior of the

depth functions. We establish that some usual depth functions such as halfspace

or projection, do not lead to monotone voting procedures, which seems a main

drawback. Finally, we study some interesting properties for a given family of depth

functions in Section 5. This family includes, to our knowledge, all grading-based

voting processes, namely, majority judgment, range voting and approval voting.

We show that voting processes of this family may suffer from Condorcet winner,

Condorcet looser, reinforcement and no-show paradoxes. We provide a discussion

about the pertinence of viewing these properties as paradoxes in the grading-based

context. All the proofs are given in the Appendix.

2 Voting framework
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2.1 Voting process

A voting process can be seen as a mathematical function and subsequently voting

processes have been widely studied from a mathematical point of view since the early

works of Borda and Condorcet at the end of the XVIIIth century (see Felsenthal

and Machover [2012] for a review). This research field is known as “social choice

theory”. The well-known impossibility theorems of Arrow [2012] or Gibbard [1973]

and Satterthwaite [1975] demonstrate that no voting process can simultaneously

satisfy a minimal set of desirable properties. Therefore the choice of a voting process

appears as a matter of compromise between pro and cons arguments. One can refer

to Felsenthal and Machover [2012] for a complete review of the properties/paradoxes

satisfied by the most popular voting processes.

Another way is to change the paradigm of the voting situation so that voters do not

only rank the candidates but also rate them.

2.2 Grade modeling

Grading candidates rather than ranking them allows using a specific voting process

out of the framework of Arrow’s theorem. If voters are supposed to grade the

candidates, then the voting process consists of finding the best candidate considering

all grades. Approval voting [Brams and Fishburn, 2007] is the simplest example

of such a grading-based voting process, where grades are 0 or 1 and the chosen

candidate is the one with the greatest number of 1. The majority judgment [Balinski

and Laraki, 2007] is another example of a grading-based voting process, using

discrete or continuous grades. We propose in the following to formalize the use

of grades in the voting process as in Balinski and Laraki [2007].

Consider that we have n voters and d candidates. Suppose that each voter vj,

j = 1, . . . , n grades each candidate ci, i = 1, . . . , d. We denote Φ(i, j) the

corresponding grade. Let Λ be the set of possible grades Φ(i, j). As pointed out

by Balinski and Laraki [2007], the set of grades Λ needs to be strictly ordered but
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might be finite or an interval of the real numbers. We suppose without loss of

generality that Λ ⊆ [0, 1]. The grading is summarized in a d × n grading matrix

Φ = {Φ(i, j), i = 1, . . . , d, j = 1, . . . , n} ∈ Λd×n. Any collection of d grades is called

a profile and, in particular, every column Φ(., j) constitutes a profile.

We distinguish three cases depending on the nature of the set Λ:

Binary set Λ = {0, 1}. Approval voting is a voting process based on a binary

set of grades. First-past-the-post system may correspond to the case where

Φ(i, j) = 1 for one and only one candidate ci for each voter vj, whereas

approval voting gives no constraint on the number of 0 or 1 by a voter.

Discrete set (e.g. Λ = {0, 1/N, 2/N . . . , 1}, with N > 1). This case includes

e.g. grading with finite words from bad to excellent, letters from E to A, etc,

where a numerical ranking is applied. A usual example in everyday life is the

evaluation process of a product or of a service, where each consumer is asked

to put a mark between 1 and 5.

Continuous set. The set Λ is a real interval. Let Λ = [0, 1] without loss

of generality. In practice, generalization of classical voting procedure to

continuous sets Λ can be processed by putting an horizontal segment in front

of each candidate’s name and asking a voter to put a mark on this segment

indicating their level of accordance with the candidate.

If formally a procedure is proposed with a continuous set Λ, in practice, a

discretization is necessary and the number of observations is always finite. Hence,

Λ can always be treated as a discrete set. An advantage of our framework is that

the fact that Λ is discrete or continuous does not have any impact on the decision

procedure.

Example Table 1 illustrates with an example the different types of grading.

Consider 9 voters and 2 candidates. The continuous grading allows each voter

to give any grade between 0 and 1 to any candidate. The discrete grading (here on
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11 levels, i.e. N = 10) can be seen as a rounding of continuous grading. Binary

grading corresponds to a rounding of continuous grading or setting the maximal

grade to 1 and others to 0 for majority voting.

voter v1 v2 v3 v4 v5 v6 v7 v8 v9

continuous c1 0.14 0.38 0.34 0.43 0.45 0.61 0.84 0.69 0.95
grading c2 0.43 0.14 0.68 0.80 0.64 0.75 0.66 0.48 0.16
discrete c1 0.1 0.5 0.3 0.4 0.4 0.6 0.8 0.7 0.9
grading c2 0.4 0.1 0.7 0.8 0.6 0.7 0.7 0.5 0.2
binary c1 0 0 0 0 0 1 1 1 1
grading c2 0 0 1 1 1 1 1 0 0

Table 1: Example of grades given by 9 voters on 2 candidates with continuous,
discrete or binary scales.

2.3 Grading-based voting process

A grading-based voting process can then be seen as a function G, called method

of grading in Balinski and Laraki [2007], assigning a profile to any matrix Φ. The

function G is defined from Λd×n with values in the subsets of [0, 1]d. Note that the

set of possible grades of the profiles given by function G may differs from Λ since

one may associate for example the mean of initial grades and obtain a value which

possibly does not belong to Λ.

Balinski and Laraki [2007] propose some conditions (which they call axioms) that

a method of grading should satisfy:

Neutrality G gives the same result by permuting the rows of Φ (i.e. by permuting

the candidates).

Universality G gives the same result by permuting the columns of Φ (i.e. by

permuting the voters).

Unanimity if a candidate is given an identical grade α by every voter, then G

assigns him the grade α.
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Monotonicity if Φ = Φ̃ except that one or more voters give higher grades to

candidate ci in Φ than in Φ̃, then G(Φ)(ci) is higher than G(Φ̃)(ci).

IIA (Independence of Irrelevant Alternatives) if the grades assigned by the voters to

a candidate ci in two profiles Φ and Φ̃ are the same, then G(Φ)(ci) = G(Φ̃)(ci).

These conditions are similar to the ones used in Arrow’s theorem [Arrow, 2012].

Therefore, in the ranking-based model, it is impossible to find a voting process that

satisfies all these conditions. This has lead to the proposal of a grading-based voting

process by Balinski and Laraki [2007] to overcome this drawback.

The simplest way to compute a grading-based voting process is to aggregate the

grades given by the voters on each candidate independently. Note that such a process

satisfies IIA. In such a case, we introduce the aggregation function g : Λn → [0, 1].

The function g summarizes the n grades received by a candidate ci (the row i of

Φ) in a unique grade. One has G(Φ)(ci) = g(Φ(i, ·)). Many aggregation functions

are available to sum up n grades into a unique one (see Beliakov et al. [2008] or

Grabisch et al. [2009] for a review of aggregation functions). Some of them have

been studied within a specific framework of grading-based voting process, taking

into account the fact that votes often take place in a political context.

Balinski and Laraki [2007] propose the majority-grade voting as an aggregation

function. For a given candidate ci, let rank the n grades {Φ(i, j), j = 1, . . . , n} as

r1 ≤ r2 ≤ . . . ≤ rn. The majority-grade voting, denoted gmaj, is defined as follows:

gmaj(r1, . . . , rn) =

r(n+1)/2 if n is odd,

r(n+2)/2 if n is even.
(1)

gmaj(r1, . . . , rn) can be interpreted as a median of (r1, . . . , rn) A majority-ranking

can be deduced from the majority-grade, evidently noting that a candidate receiving

a higher majority-grade than another will be ranked higher. Note that tie-breaking

rules have been proposed for example in Balinski and Laraki [2020] or Fabre [2021].

Smith [2000] studies another example of aggregation function: the range voting grv,
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defined by

∀(r1, . . . , rn) ∈ Λn, grv(r1, . . . , rn) =
1

n

n∑
j=1

rj,

with similar notations with the above. grv(r1, . . . , rn) is the mean of the grades

r1, . . . , rn. Observe that approval voting uses the same function on a binary set

Λ = {0; 1}.

Grading-based voting processes take advantage of more information than a mere

preference order on the candidates than ranking-based voting processes since they

introduce the intensity of the relative preferences. This supplementary amount of

information permits overcoming classical impossibility theorems. We propose in the

following a unified framework for a grading-based voting process that enlightens the

specificity of both majority judgment and range voting within a wide range of new

voting processes.

3 Deepest voting

Our statement is that depth functions facilitate the consideration of classical grading

models and continuous grading models in a uniform way. It expands to numerous

voting processes. We first recall what a depth function is, and we present, on a

second hand, how it applies in voting processes.

3.1 What is a depth function?

Quoting Zuo and Serfling [2000a]: “Associated with a given distribution F on Rd,

a depth function is designed to provide a F -based center-outward ordering [...] of

points x in Rd. High depth corresponds to centrality, low depth to outlyingness”.

In other words, a depth function takes high (positive) values at the “middle” of a

scatter plot and vanishes out of it.
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Denote by F the class of distributions on the Borel sets of Rd and FX the distribution

of a given random vector X. We define a depth function as follows.

Definition 1. Let the mapping D : Rd × F → R be bounded, nonnegative and

satisfying:

(P1) Let X = (X1, . . . , Xd) be a random vector in Rd, x ∈ Rd, and σ a permutation

on {1, . . . , d}. Let Xσ = (Xσ(1), . . . , Xσ(d)) and xσ = (xσ(1), . . . , xσ(d)). Then

D(xσ, FXσ) = D(x;FX).

(P2) For all a ∈ R, b ∈ Rd, for any random vector X ∈ Rd, argmaxx∈Rd D(a x +

b;FaX+b) = argmaxx∈Rd D(x;FX).

(P3) For a distribution F ∈ F having a uniquely defined “center” θ ( e.g. the point

of “symmetry”), D(θ;F ) = supx∈Rd D(x;F ).

(P4) For any F ∈ F , D(·;F ) is quasi-concave. That is, if θ ∈ argmaxx∈Rd D(x;F ),

then D(x;F ) ≤ D(θ + λ(x− θ);F ) for any 0 ≤ λ ≤ 1.

(P5) D(x;F )→ 0 as ‖x‖ → ∞ for each F ∈ F .

(P6) Let F ∈ F be a distribution on Rd with marginal distributions F1, . . . , Fd.

Suppose that for i ∈ {1, . . . , d}, Fi has support containing a unique point {α}.
Then for all x∗ ∈ argsupx∈Rd D(x;F ), the ith coordinate of x∗ is x∗i = α.

Then D(·; ·) is called a statistical depth function.

Assumptions (P1) and (P2) are often replaced by a stronger assumption, which is:

(P1’) D(Ax + b;FAX+b) = D(x;FX) for any random vector X ∈ Rd, any d × d

nonsingular matrix A and any d−vector b.

This is the case, for example, in the definition of Zuo and Serfling [2000a]. We refer

to Mosler [2013] for a discussion on this assumption. Applying depth functions to
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the voting framework, assumption (P1) means that a permutation of candidates’

indexes does not influence the final result. Assumption (P2) indicates that grading

on the scale [−1, 1] should lead to the same result as grading on [0, 20], for example.

Assumption (P1’), on the contrary, imposes stability when a plan transform is

applied to the scatter plot. That is, if scatter plot 2 is obtained from scatter plot

1 applying a given plan transform, the deepest point 2 is obtained by applying the

same plan transform to the deepest point 1. When considering grading matrices, it

does not make sense to apply any plan transform. This justifies that we can use a

weaker assumption to define depth functions.

In (P3) various notions of symmetry are possible (namely, from the most

constraining to the weakest, central symmetry, angular symmetry and halfspace

symmetry); we refer to Zuo and Serfling [2000a] for a discussion on this topic. This

assumption ensures that the depth function is intuitive since it is maximal at the

innermost point of the scatter plot, where the term innermost corresponds to a

more or less constraining notion of symmetry. It goes together with assumption

(P4), which imposes that as a point moves away from the innermost point, the

depth function should decrease monotonically.

Next, assumption (P5) imposes that the depth function decreases to zero by

convention. That is, the depth at a point infinitely far from the distribution must

be equal to zero.

Assumption (P6) is rarely discussed in depth-functions literature. It claims that

the deepest points must belong to the hyperplane containing the points. This

assumption is very weak. To our knowledge, it is satisfied by all depth functions

proposed in the literature. Note that (P6) can be satisfied even if the points with

maximal depth are not in the convex hull of the distribution support.

Applications of depth techniques include, for example, robust estimation, center-

outward ordering of multivariate observations, data exploration and multivariate

confidence regions. Several measures of data depth have been proposed in

nonparametric statistics as multidimensional generalizations of the ranks and

median, each attempts to maintain certain robustness properties.
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In this work, the deepest point is a location estimator of the preferences of the

voters. The coordinates of the deepest point are the grades the innermost (possibly

imaginary) voter would give.

A matrix of gradings Φ is a n-sample of a distribution Φ∗n in Rd, each profile Φ(·, j),
j = 1, . . . , n being a realization of Φ∗n. A sample version of depths can be defined

using the empirical distribution.

For any grading matrix Φ, denote by Φn the associated empirical distribution on

[0, 1]d. That is, for x = (x1, . . . , xd) ∈ Rd, Φn(x) =
(

1
n

∑n
j=1 11{Φ(i, j) = xi}

)
i=1,...,d

,

where 11{A} is equal to 1 if condition A is satisfied and 0 else. The depth function

is then applied on the empirical distribution Φn. By abuse of notation, we will

denote indifferently D(·; Φn) or D(·; Φ) the sample depths. Observe that, replacing

F by its empirical version, properties (P3), (P4) and (P5) may not be satisfied by

the resulting sample depth. Nevertheless, the theoretical definition of the depth

function ensures that it makes sense to consider the sample depth as an objective

function.

Let us give some examples of depth functions, which all satisfy Definition 1. The

following descriptions deal with the empirical version of depth functions.

The weighted Lp depths [Zuo, 2004] of a point x ∈ Rd, wLpD(x; Φn), given a set

of n points Φ(., 1), . . . ,Φ(., n) in Rd is defined by

wLpD(x; Φn) =
1

1 + 1
n

∑n
j=1 ω(‖Φ(., j)− x‖p)

,

where p > 0, ω is a non-decreasing and continuous function on [0,∞) with

ω(∞) = ∞ and ‖x − x′‖p =
(∑d

i=1 |xi − x′i|p
)1/p

. As noted in Zuo [2004],

the weighted Lp depth is indeed a depth, as specified in Definition 1, for a

distribution set F if for all F ∈ F , for all X ∼ F , Ew(‖x−X‖p) <∞ for any

x ∈ Rd. In particular, this inequality holds when w(x) =
∑K

k=0 akx
bk , K ≥ 0,
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aK , bK > 0, and ∀k = 0, . . . , K − 1, ak, bk ≥ 0. If ω : x 7→ xp, then

LpD(x; Φn) :=
1

1 + 1
n

∑n
j=1

∑d
i=1 |Φ(i, j)− xi|p

(2)

will be called a Lp depth.

For p =∞, let us define also

L∞D(x; Φn) :=
1

1 + 1
n

∑n
j=1 maxi=1,...d |Φ(i, j)− xi|

. (3)

Observe that Lp depths do not satisfy assumption (P1’) [Mosler, 2013].

The halfspace depth [Tukey, 1975] of a point x ∈ Rd, HD(x; Φn), given a set of

n points Φ(., 1), . . . ,Φ(., n) in Rd is defined by

HD(x; Φn) := minimum proportion of voters

in a halfspace H including x.

The projection depth [Zuo, 2003] of a point x ∈ Rd, PD(x; Φn), given a set of n

points Φ(., 1), . . . ,Φ(., n) in Rd, is defined by

PD(x; Φn) := inf
u∈Rd, ‖u‖=1

1

1 + |uTx− µ(Fu)|/σ(Fu)
,

where ‖·‖ denotes the euclidean norm, exponent T denotes the transpose

operator, µ(F ) denotes a central statistic of a distribution F and σ(F ) a

dispersion statistic. Fu is the empirical distribution of uTΦ. In the following

we will consider that µ(·) is the median and σ(·) is the median absolute

deviation. Other choices are possible, such as the mean for µ(·) and the

standard deviation for σ(·). Here, the deepest point minimizes the maximal

outlyingness in any given direction with respect to the scatter plot.

Oja’s depth [Oja, 1983] of a point x ∈ Rd, OD(x; Φn), given a set of n points
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Φ(., 1), . . . ,Φ(., n) in Rd is defined in Rousseeuw and Struyf [2017] by

OD(x; Φn) =
1

1 +
∑

(i1,...,id) V olume S[x,Φ(·, i1), . . . ,Φ(·, id)]
,

where S[xi1 , . . . , xid+1
] is the closed simplex with vertices xi1 , . . . , xid+1

.

Weighted mean depths [Dyckerhoff and Mosler, 2011] are defined as follows. For

all Φ ∈ Rd×n, for all α ∈ (0; 1], there exist positive weights {wj,α, j = 1, . . . , n},
increasing in j and with a sum equal to 1, such that the depth D satisfies

{x ∈ Rd, D(x; Φ) ≥ α} =

conv

{
n∑
j=1

wj,αΦ(·, π(j)), with π permutation of {1, . . . , n}

}
.

This family includes include zonöıd depth, geometrical depth and expected

convex hull1. The deepest point is obtained by letting α tend toward 1. As

stated by [Dyckerhoff and Mosler, 2011, Proposition 5] the deepest point

of a weighted mean depth is always the component-wise mean, that is,
1
n

∑n
j=1 Φ(·, j), which is also the deepest point for the L2 depth.

Depths functions described above satisfy the assumptions (P1)–(P6).

We refer e.g. to Mosler [2013] or Zuo and Serfling [2000a] for an overview on depth

functions. Note that Liu’s simplicial depth [Liu, 1990], even if well-known, does not

1Geometrical depth and expected convex hull correspond respectively to weights equal to

wgeometrical
j,α =

1− α
1− αn

αn−j11{0 < α < 1}+
1

n
11{α = 1},

wECH
j,α =

j1/α − (j − 1)1/α

n1/α
.

Zonöıd depth is obtained with weights wj,α such that 0 ≤ wj,α ≤ (nα)−1 and
∑n
j=1 wj,α = 1. For

instance, one can consider

wzonöıd
j,α =

1

nα
11{j > nα− bnαc}+

1

nα
(nα− bnαc)11{j = nα− bnαc}. (4)
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satisfy Definition 1 since property (P4) does not hold in general (see Counterexample

1 of Zuo and Serfling [2000a]). Let us now explain the link between a depth function

and its associated social decision function.

3.2 Deepest Voting

In the following, the distribution of the grades Φ of the n voters will be defined as Φn,

giving a weight 1
n

at the independent profiles Φ(., j) = (Φ(1, j), . . . ,Φ(d, j)) ∈ Rd,

j = 1, . . . , n. Each profile can be seen as a point of Rd and, hence, depth functions

can be applied to points Φ(., j), j = 1, . . . , n.

Figure 1 illustrates the behavior of six usual depth functions on the example of

Section 2.2. Namely it displays the values of the L1, L2, L3, and L∞ depths [Zuo,

2004], the halfspace depth [Tukey, 1975], and the projection depth [Zuo, 2003]. It

highlights the diversity of depth measures.

Figure 1: Examples of depth functions relying on the example of Section 2.2.
Horizontal axes give the grade for candidate c1 and vertical axes for candidate c2.
Each cross corresponds to a voter.
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Definition 2 (Deepest Voting). Consider a grading matrix Φ, and a given depth

function D. Denote

X ∗D := {x ∈ Rd : D(x,Φ) = sup(D(.,Φ))}

the set of deepest points of D with respect to Φ. Let GD : Φ→ X ∗D be the method of

grading with respect to the depth D.

Let

iD := argmax
1≤i≤d

{x∗D,i, x∗D = (x∗D,1, . . . , x
∗
D,d) ∈ X ∗D}.

The deepest voting process with respect to the depth D is defined as the function

which maps {Φ(i, j), i = 1, . . . , d, j = 1, . . . , n} to iD ⊆ {1, . . . , d}.

If iD is unique, then the winner of the election is the candidate ciD . If iD is not

unique, there is no unique winner of the election.

As denoted by Zuo [2013] the uniqueness of the deepest point may be acquired

theoretically under symmetry assumptions on the distribution set F for many

depths. Yet, in the sample case, the ideal symmetry situation seldom occurs, so

uniqueness may often not be acquired. Some depths functions such as weighted Lp

depths with a strictly convex weight function or projection depths always admit a

unique deepest point, that is X ∗D = {x∗D}, but, for example, it is not necessarily the

case for halfspace depth or Oja’s depth [Zuo, 2013]. Table 3 recalls if the uniqueness

of the deepest point is satisfied or not for several depth functions.

It is worth noticing that even if X ∗D does not contain a unique element, the deepest

voting iD may contain only one element. If iD contains several elements a tie-

breaking rule should therefore be proposed. Such a rule can refer to the deepest

space, e.g., by reducing X ∗D to its unique center of gravity or refer directly to the

candidates, e.g., by electing the oldest candidate. Note that such tie-breaking rules

are necessary for any voting process. See for instance Fabre [2021] and references

therein.
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Figure 2 displays some deepest voting results obtained on the grades given in the

example of Section 2.2 for some depth functions. The transposed grading matrix Φ

is represented as a scatter plot and deepest points are given in the figure. Note that

the deepest point is not unique for halfspace depth; it was obtained by taking the

center of gravity of the deepest set with respect to the Euclidean distance.

Figure 2: Examples of deepest points based on the example of Section 2.2.
Horizontal axes give the grade for candidate c1 and vertical axes for candidate
c2. Each cross corresponds to a voter. Triangles give the deepest points. Deepest
points for the Lp depths, for p ∈ {1, 2, 3, 4,∞}, are displayed with labels p. Deepest
points for halfspace depth and projection depth are displayed with respective labels
H and P .

As seen in Figure 2, the deepest points do not have the same coordinates and they

depend on the depth. Table 2 gives the coordinates of the deepest points. Note
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that the deepest points of L1, projection and halfspace depths designate the second

candidate as the winner while the other deepest voting processes choose the first

candidate.

Candidate c1 Candidate c2

L1 depth 0.45 0.64
L2 depth 0.54 0.52
L3 depth 0.55 0.50
L4 depth 0.56 0.48
L∞ depth 0.54 0.47
Halfspace depth 0.51 0.60
Projection depth 0.51 0.62

Table 2: Coordinates of the deepest points of Figure 2.

4 Main properties of deepest voting

The objective of this section is to study if deepest voting processes satisfy Neutrality ,

Universality , Unanimity , Monotonicity , and IIA as defined in Section 2.3.

4.1 Satisfaction of Neutrality , Universality and Unanimity

properties

First, Neutrality , Universality , Unanimity are satisfied by any depth function as

defined in Definition 1, as stated by the following proposition.

Proposition 1. Let D be a depth function satisfying (P1) and (P6). The deepest

voting procedure GD associated to D satisfies the properties Neutrality, Universality,

and Unanimity.
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4.2 Satisfaction of Monotonicity property

Monotonicity indicates that if a point of the scatter plot moves in a direction, the

deepest point will not move in the opposite direction. We can establish that it is

fulfilled by Lp depth functions, and weighted mean depths family, which includes

zonöıd depth, geometrical depth and expected convex hull depth.

Proposition 2. Let D be either one of the following depths,

• a Lp depth function with 1 ≤ p <∞,

• L∞ depth defined in (3),

• a depth in the weighted mean depths family.

Then the associated deepest voting procedure satisfies Monotonicity.

For the family of weighted mean depths, Monotonicity follows from a property

called monotonicity in the data (e.g. property T7 in Dyckerhoff and Mosler [2011]).

Monotonicity , as formulated for a voting process, does not make sense when there

is not a unique deepest point. In that case, a generalization can be expressed as

follows. Suppose Φ = Φ̃ except that one or more voters give higher grades to a

candidate in Φ than in Φ̃, then

argsup
x∈Rd

D(x; Φ) ⊆ {argsup
x∈Rd

D(x; Φ̃)} ⊕ Rd
+ (5)

where ⊕ denotes the Minkowski sum of sets. The latter equation is satisfied by L1

depth.

Deepest voting procedures based on halfspace depth, projection depth, and Oja’s

depth seem less convenient since they do not satisfy Monotonicity .

Proposition 3. The deepest voting procedures associated to halfspace depth,

projection depth, and Oja’s depth do not satisfy Monotonicity.
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4.3 Satisfaction of IIA property

Next, there is no guarantee that a depth function D satisfying assumptions (P1)–

(P6) also fulfills IIA. For example, consider 7 voters and 3 candidates with the

following grading matrices Φ and Φ̃:

Φ =

0.3 0.4 0.4 0.6 0.8 0.9 1

0.7 0.6 0.6 0.4 0.2 0.1 0

1 0.1 0.2 0.4 0 0 0

 ,

Φ̃ =

0.3 0.4 0.4 0.6 0.8 0.9 1

0.7 0.6 0.6 0.4 0.2 0.1 0

0 0 0 0.4 0.2 0.1 1

 .

Consider halfspace depth. It gives unique deepest points, which are respectively

x∗ = (0.6, 0.4, 0.0) for Φ and x̃∗ = (0.43, 0.57, 0.05) for Φ̃. It shows that IIA is not

satisfied, since the deepest points differ, giving as well different winners.

Depth functions with a component-wise definition lead to voting processes satisfying

IIA. Let us introduce the following definition.

Definition 3. A depth function is said to have a component-wise deepest set

if for all Φ ∈ Λd×n, for all i ∈ {1, . . . , d}, there exists Di such that for all

x∗ ∈ argmaxx∈Rd D(x; Φ), we have x∗i ∈ argmaxx∈RDi(x; Φ(i, ·)).

We are now in a position to characterize the IIA behavior.

Proposition 4. Let D : Rd × F 7→ R be a depth function as in Definition 1. The

Deepest Voting procedure GD satisfies IIA if and only if it has a component-wise

deepest set.

In particular, weighted mean depths and Lp depths satisfy the conditions

of Proposition 4 and thus provide a voting procedure that meets Neutrality ,

Universality , Unanimity , Monotonicity , and IIA.
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As stated in Proposition 4, IIA corresponds to decision functions that associate a

score to each candidate independently to the grades obtained by others candidates.

It thus imposes the subclass of depth functions with coordinates of deepest points

obtained component-wise.

Remark 1. We do not have equivalence between the IIA condition and the use of a

component-wise depth function since IIA deals only with the deepest points. There

exist counterexamples where the deepest point is obtained component-wise while the

depth is not component-wise, such as for example the zonöıd depth. In this case,

conditions of Proposition 4 are satisfied, but the depth function is not component-

wise.

Satisfying the IIA hypothesis is an old widely discussed polemical issue when dealing

with a voting process. One can refer to Osborne [1976] and Benson et al. [2016]

for past and recent arguments about the importance of satisfying or not the IIA.

The main pro IIA argument is that a voting process satisfying IIA minimizes the

risk of manipulations and strategic voting. The main cons arguments are that the

choice of an election winner depends on the entire context, and that the presence

(or absence) of a candidate in the ballot is an information that has to be taken into

account. It is interesting to notice deepest voting can satisfy or not IIA depending

on the chosen depth function.

We did not found any depth function in literature which leads to a deepest voting

procedure which does not satisfy IIA and which satisfies Monotonicity . Nevertheless,

we can establish that the two properties are not equivalent.

Proposition 5. Let D be the depth function built as follows:

D :Rd ×F → R (6)

(x, F ) 7→



DZ(x, F ) if DZ(x;F ) < 0.8

1 for x such that ∀j = 1, . . . , d

xj = mean{yj, DZ(y;F ) ≥ 0.8}

0.8 elsewhere.
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where DZ denotes the zonöıd depth described in (4). Then D is a depth function

satisfying (P1) to (P6). The associated deepest voting procedure satisfies Neutrality,

Universality, Unanimity, Monotonicity but does not satisfy IIA.

4.4 Synthesis

Proposition 4 highlights the link between depth function properties and the

associated decision function. Considering a component-wise depth function ensures

the IIA property. All the same, the choice of the depth function may be linked

with the desired properties of the decision function. In particular, the more robust

a depth function is, the less sensitive to extreme votes a decision function becomes.

This is illustrated with the behavior of Lp deepest points in Figure 2, where L1

depth is more robust to extreme votes than L∞ depth. Applying the propositions

of this section to usual depth functions, we are able to characterize the behavior of

several depth voting procedures. Table 3 displays whether the unicity of the deepest

point and the IIA are satisfied. Recall that Neutrality , Universality and Unanimity

hold whatever the depth function. For usual depth functions in literature, either

both Monotonicity and IIA are satisfied, either none of them. Hence, Proposition

5 shows that those properties are not equivalent and that it is possible to build

deepest voting procedures satisfying Monotonicity but not IIA. Others factors are

to be considered, such as computational complexity (see [Mosler and Mozharovskyi,

2020, Section 5] or Aloupis [2006]) and robustness (see [Mosler and Mozharovskyi,

2020, Section 4.2] and references therein).

Note that the deepest points obtained by weighted mean depths and L2 depth

coincide. Hence, they are equivalent for the construction of a voting process. The

use of one of the depth rather than another would only be useful if one wants to do

another analysis, such as a profiling of the votes.

Most of depth functions in literature were built to take into account the whole

structure of the scatter plot and, hence, do not satisfy the IIA property. To obtain

IIA, we can consider depth functions of the form D(x;F ) =
∑d

i=1 D
(1)(xi, Fi) with
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Depth Unicity Neutrality Universality Unanimity Monotonicity IIA

L1 N � � � � �
Lp with 1 < p ≤ ∞ � � � � � �
Halfspace depth N � � � N N
Oja depth N � � � N N
Projection depth � � � � N N
Weighted mean depths � � � � � �

Table 3: The table analyzes if the deepest voting procedure associated to several
depth functions satisfies the uniqueness of the deepest vote and conditions defined
in Section 2.3, with d > 1 candidates. � corresponds to the verified properties, N
to non verified ones. Recall that weighted mean depths and L2 depth lead to the
same voting process.

Fi marginal distribution of the multivariate distribution F , D(1) : R × F (1) → R a

univariate depth function, and F (1) the class of distributions on the Borel sets of

R. The sample version is D(x; Φ) =
∑d

i=1D
(1)(xi,Φ(i, ·)). A specific case is given

by D(1)(xi,Φ(i, ·)) = 1/(1 +
∑n

j=1 ρ(|xi −Φ(i, j)|) with u 7→ ρ(|u|) a non decreasing

function. For instance, we can take ρ equal to the truncated mean, Huber’s, or

Tukey’s biweight loss functions. They are given respectively by

ρtruncated(u) =

u2 if |u| ≤ λ

λ2 else,
ρHuber(u) =

u2/2 if |u| ≤ λ

λu− λ2/2 else
,

ρTukey(u) =

λ2(1− (1− (u/λ)2)3)/6 if |u| ≤ λ

λ2/6 else,

with λ > 0. For λ sufficiently large, these latter choices leads to depth functions

with a unique deepest point, and satisfying Neutrality , Universality , Unanimity ,

Monotonicity , and IIA. This is a generalization of Lp depths.

Remark 2. A paradox which may appear in vote processes is the election of a

candidate with stochastically dominated grades2. Zuo and Serfling [2000b] observes

that this paradox is linked with the symmetry property in condition (P3). For

example, it occurs with halfspace depth, projection depth and Oja’s depth, but not

2A candidate c1 dominates stochastically a candidate c2 if for all v ∈ (0, 1), there are more
grades higher than v for candidate c1 than for candidate c2.
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with range voting and majority judgment.

Remark 3. Seeing a voting procedure as an optimization problem, deepest voting

can also be interesting in some contexts. Consider, for example, a vote on a budget

plan. The candidates are, here, sectors in which the budget must be distributed.

Voters associate with the sectors the portion of the budget that they wish to allocate,

so that the sum of the allocations is equal to 100%. Deepest voting approach makes it

possible to find the budget by maximizing an objective function under the constraint

that the sum of the portions must be equal to 100%.

Remark 4. Component-wise depth functions may be able to consider partial

abstention, evaluating each coordinate of the deepest point by only considering non-

missing grades. Yet, a non component-wise depth function will have to remove

all voters with partial abstention from the procedure. All the same, it does not

make sense to consider a vote procedure which is not IIA on partial votes. Another

possibility is to do imputation of missing values [Pazhoohesh et al., 2021]. Yet, from

a political point of view, not considering missing grades may be more appropriate.

Remark 5. Taking into account grading information in a voting process leads to

the notion of sensibility to extreme evaluations. With deepest voting procedures, this

sensibility can be measured by the breakdown point of the associated depth function.

As defined by Zuo [2004], “Roughly speaking, the finite sample breakdown point of an

estimator is the minimum fraction of ‘bad’ points in a data set that can render the

estimator useless. In the location setting, if the estimator becomes unbounded under

some contamination, then we say the estimator becomes useless”. The maximal

value of a breakdown point is 1/2. In the voting context, a deepest point cannot

be unbounded, but the breakdown point highlights the robustness of a procedure to

extreme values. We recall below the breakdown points of deepest points for some

classical depths.
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depth breakdown point

L1 depth 1/2

Lp depth with p > 1 1/n

Halfspace depth 1/(d+ 1)

Projection depth 1/2

Oja’s depth 2/n

Weighted mean depths 1/n

For more details, we refer the reader to Rousseeuw and Struyf [2017], Zuo [2004] and

Zuo and Serfling [2000a]. The higher the breakdown point is, the less the procedure

is sensitive to extreme grades, which means that the procedure is less manipulable.

5 Properties of Lp deepest voting family

In the following, we focus on the family of Lp depths. This choice is stimulated by

the fact that usual social decision functions are members of this family. We assume

that we dispose of a set of n points Φ(., 1), . . . ,Φ(., n) in Rd. As described above,

the Lp depth [Zuo, 2004] of a point x, LpD(x,Φ), is defined by (2) and (3). The Lp

deepest voting takes the grading matrix Φ as argument and returns the coordinates

of the point maximizing the Lp depth function applied to Φ.

We can first check that Lp deepest voting defines, indeed, a decision function in the

sense of Balinski and Laraki [2007].

Proposition 6. For p > 1, let us consider the associated Lp deepest voting

and denote by D the depth function. Then the method of grading GD satisfies

Neutrality, Universality, Unanimity, Monotonicity, and IIA, which are exposed in

Subsection 2.3.

For p = 1, the method of grading GD, associated to L1 deepest voting, satisfies

Neutrality, Universality, Unanimity, and IIA exposed in Subsection 2.3. The

generalization (5) of Monotonicity is also verified.
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This proposition is a corollary of Proposition 1, Proposition 2 and Proposition 4.

The next propositions deal with the characterization of the weighted Lp deepest

voting for different choices of p.

Proposition 7. For all p > 1, the set of Lp deepest points has a unique element.

For all 0 < p ≤ 1, the cardinal of the set of Lp deepest points may be greater than 2.

The case p < 1 should be avoided, as the uniqueness of the deepest point is not

ensured. It can also be shown that if p tends to 0, each voter is a deepest point!

In the case p = 1 :

• if n is odd, then the deepest point is unique.

• if n is even, the set of the deepest points is composed by the points x∗ =

(x∗1, . . . , x
∗
d) such that for all i = 1, . . . , d,

x∗i ∈ [Φ(i, ·)(n/2); Φ(i, ·)(n/2+1)]

where the Φ(i, ·)(k) is the kth observation of the set of the ordered voters’

preferences for candidate ci.

The class of Lp deepest voting includes three usual voting processes, which

are majority judgment [Balinski and Laraki, 2007], approval voting [Brams and

Fishburn, 2007] and range voting [Smith, 2000].

Proposition 8. Without considering the tie-breaking procedure, the majority

judgment belongs to the L1 deepest voting set. Analogously, the range voting and the

approval voting are obtained by the L2 deepest voting.

L1 deepest voting leads to the majority judgment. This method has many

advantages (see Balinski and Laraki [2007] for example). Nevertheless, it presents

also several drawbacks (see Laslier [2019] or Felsenthal and Machover [2008]). A
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peculiar property of the L1 deepest voting is that the value of the decision function

may not be included in the convex hull of the n voters’ grades, i.e., X ∗D is not

included in the convex hull of Φ. Consider e.g. the situation with 3 candidates and

3 voters and the associated matrix Φ:

Φ(1, .) = (a, 0, 0)

Φ(2, .) = (0, b, 0)

Φ(3, .) = (0, 0, c)

with 0 < a < b < c ≤ 1. The wL1 deepest point is x∗ = (0, 0, 0), which is not

included in the convex hull of the points (a, 0, 0), (0, b, 0) and (0, 0, c).

Another case where we can explicit the deepest point is the L∞ deepest voting.

Proposition 9. L∞ deepest voting maps to the point whose coordinates are in the

middle of the most extreme coordinates component-wise, that is, it attributes to each

candidate the mean of their best and worst grades.

Remark 6. For p > 1, the unicity of the deepest point implies that the probability of

having tied-winners is low. When p = 1, based on Lp depths, a natural tie-breaking

rule for majority judgment can be proposed. Suppose that two candidates have the

same result for the majority judgment (obtained with a L1 deepest voting), then one

could elect the winner (if it exists) of the Lp deepest voting when p is strictly greater

than 1 but tends to 1.

This rule is different from the tie-breaking rule proposed by Balinski and Laraki

[2020]. For a counterexample, consider five voters and two candidates c1 and c2

with respective grades in [0;1] (0.45, 0.45, 0.5, 1, 1) and (0.5, 0.5, 0.5, 0.5, 0.5).

Majority judgment (see (1)) leads to the same final grade 0.5 for both of them.

According to the Balinski-Laraki’s tie-breaking procedure, one should remove a grade

equal to the final result (here, 0.5) for both candidates, and apply majority judgment

on the remaining grades. In this setting, it consists in applying majority judgment

to (0.45, 0.45, 1, 1) and (0.5, 0.5, 0.5, 0.5). With this procedure, candidate c2 should

be elected since lowest-middlemost grade of c1 is equal to 0.45. Now, it can be
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shown that the derivative of Lp relative to the first candidate at point 0.5 has the

same sign as 0.05p−1 − 0.5p−1. For every p > 1, this quantity is clearly negative so,

by convexity, the point maximizing the Lp depth for c1 is greater than 0.5. Since

candidate c2 has a constant grade 0.5, it is straightforward that the coordinate of

the deepest point is also 0.5. Hence candidate c1 is elected here. So, the tie-breaking

rule of Balinski-Laraki method can’t be seen as a natural limit of the criterion when

p→1.

The choice of p in Lp deepest voting is of course critical. Roughly speaking, the

greater p is, the more importance is given to immoderate grades. For a large enough

p, the deepest point component-wise depends only on most immoderate grades. So,

the Lp Deepest Voting is very vulnerable to strategic voting for a large p. These

considerations meet the work of Balinski and Laraki [2007] arguing that majority

judgment (L1 Deepest Voting) is more resistant to strategic voting than range voting

(L2 Deepest Voting).

As pointed out above, any voting process suffers from unwanted properties generally

named paradoxes (see Felsenthal and Machover [2012] for a more detailed description

of voting paradoxes). As other voting processes, Lp deepest voting seems to be

affected by paradoxes. We propose, in the following, to focus specifically on four

classical properties and show how the paradigm changes due to the use of a grading

model. The four studied properties are:

• the Condorcet winner paradox : a candidate c is not elected despite the fact

that c is preferred by the majority of the voters over each of the remaining

candidates;

• the Condorcet loser paradox : a candidate c is elected despite the fact that the

majority of voters prefer each of the remaining candidates to c;

• the reinforcement paradox : if c is elected in each of several disjoint electorates,

it is possible that c is not elected if all electorates are combined into a single

electorate;
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• the no-show paradox : a voter may obtain a more preferable outcome if he

decides not to participate in an election than if he decides to participate in

the election and vote sincerely for their preferences.

Proposition 10. For all p ≥ 1, the Lp deepest voting suffers from the Condorcet

winner and the Condorcet loser paradoxes.

Proposition 11. Lp deepest voting suffers from reinforcement and no-show

paradoxes, for p ∈ [1,∞] \ {2}. These properties do not hold for L2 deepest voting.

Many properties which appear as paradoxes in ranking-based voting processes, with

binary Λ, may not be seen as drawbacks under a more complex grading-based model,

that is, for discrete or continuous sets Λ. The four properties studied above justify

our statement.

Consider for example the Condorcet winner paradox. Suppose that 3 voters v1, v2, v3

have to choose between two candidates c1 and c2 with the following grades:

Candidate c1 Candidate c2

voter v1 0.8 0.7

voter v2 0.8 0.7

voter v3 0.1 0.9

In this configuration, the Condorcet winner is c1. Yet, as we have a quantification

of the preference of voters, we can see that candidate c2 is less divisive in the sense

that no voters reject this candidate with very low grades. The fact that a voting

process elects c2 is acceptable in this configuration.

Now consider the no-show paradox. Suppose that two candidates c1 and c2 obtained

the following grades for 3 voters:

Candidate c1 Candidate c2

voter v1 0.5 1

voter v2 0.5 ε

voter v3 0 ε
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Then, candidate c2 is elected with voters {v1, v2}. But for some ε > 0 sufficiently

small, the candidate c2 is not elected with voters {v1, v2, v3}, considering Lp-deepest

voting with p < 2 (see the proof of Proposition 11). In this configuration, voter

v3’s votes will make c2 lose. Lp depth functions with p < 2 favor candidates with

less dispersion, which are more consensual. The no-show paradox results from the

fact that v3 does not approve candidate c2 while their preference with respect to

candidate c1 is not significant.

When p > 2, a configuration where no-show paradox holds is the following:

Candidate c1 Candidate c2

voter v1 0 0.5+ε

voter v2 1 0.5+ε

voter v3 0 ε

with ε > 0 sufficiently small (see the proof of Proposition 11). It is due to the low

grade given by v3 to c2 and the fact that the difference with the grade for c1 is

not significant. Lp depth functions with p > 2 here favor candidates with highest

grades. In both situations, the fact that no-show paradox occurs is acceptable since

even if voter v3 prefers candidate c2, the grades show that the latter has not gained

yet the support of voter v3.

These examples illustrate that the amount of information available through grading

is likely to change the result of a voting process. It also helps to explain some results

which may be seen as paradoxes with preferential grades.

6 Conclusion

Grading-based voting offers a richer information than ranking-based model. It relies

on discrete or continuous evaluations of candidates by voters rather than a single

preference. Grading widens the scope of decision processes available.
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In this paper, we introduce a new viewpoint on voting procedures, by integrating a

parallelism with the statistical notion of depth. Depth functions give a unified way

to define voting processes, with finite or continuous grading. We define the notion

of deepest voting including classical voting procedures such as majority judgment,

approval voting and range voting.

We study the relation between the properties of the depth functions and that of

the voting processes. We show that main usual properties of voting processes are

satisfied, namely non-dictatorship, universality and unanimity for deepest voting

associated to all classical depths. The monotonicity of the voting processes is

proved for several functions, such as Lp depths. Yet, we show that voting processes

based on some usual depth functions, such as halfspace, projection or Oja’s depths,

do not satisfy monotonicity. The non-satisfaction of this property seems a main

drawback for these deepest voting processes. We finally establish that independence

to irrelevant alternatives is related with a component-wise behavior of the deepest

point.

Deepest voting related to the family of Lp depths satisfies Balinski and Laraki’s

axioms. Range voting and approval voting are associated to L2 depth and Majority

judgment to L1 depth. We studied some basic paradoxes, namely Condorcet’s, no-

show and reinforcement paradoxes. We show that these paradoxes occur with this

family of decision processes. We provide a discussion on these paradoxes, where we

highlight the changes generated by the use of a grading model.

Deepest voting has paved the way for new voting procedures, by varying the depth

function used in the voting process. Even if some classical depth functions seem

inappropriate due to lack of monotonicity for example, deepest voting deserves much

attention. Depth functions have encountered much interest in statistical literature

and their attractive properties (in particular robustness) may be useful in social

decision theory.
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A Proofs

A.1 Proof of Proposition 1

Neutrality directly follows from assumption (P1).

Permuting the columns of Φ does not change the empirical distribution Φn. Thus

Universality is straightforward.

Unanimity directly follows from assumption (P6).

A.2 Proof of Proposition 2

Let Φ and Φ̃ be two grading matrices in Rd×n. Suppose that Φ = Φ̃ except that

voter 1 gives an higher grade to candidate c1 in Φ than in Φ̃, that is,

∀i = 1, . . . , d, ∀j = 1, . . . , n, (i, j) 6= (1, 1), Φ(i, j) = Φ̃(i, j)

and Φ(1, 1) ≥ Φ̃(1, 1). We want to prove that if there exist unique deepest points θ

and θ̃, associated respectively to Φ and Φ̃, then θ1 ≥ θ̃1.

Without loss of generality we consider the case where only one vote is different

between Φ and Φ̃. The reasoning can be done iteratively if more than one vote

change for a candidate.
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Lp depths with 1 ≤ p <∞

Consider the Lp depths, 1 < p <∞, defined for x ∈ Rd by

LpD(x; Φ) =
1

1 + 1
n

∑n
j=1 ‖x− Φ(·, j)‖pp

.

Let θ ∈ argmaxx∈Rd L
pD(x; Φ) and θ̃ ∈ argmaxx∈Rd L

pD(x; Φ̃).

It is easily seen that

θ = argmin
x∈Rd

d∑
i=1

n∑
j=1

|Φ(i, j)− xi|p,

θ̃ = argmin
x∈Rd

n∑
j=1

|Φ̃(1, j)− x1|p +
d∑
i=2

n∑
j=1

|Φ(i, j)− xi|p.

It follows that θ1 ∈ argminx1∈R L(x1,Φ), and θ̃1 ∈ argminx1∈R L(x1, Φ̃), with

L(x1,Φ) =
∑n

j=1 |Φ(1, j)− x1|p and

L(x1, Φ̃) =
n∑
j=1

|Φ̃(1, j)− x1|p = L(x1,Φ) + |Φ̃(1, 1)− x1|p − |Φ(1, 1)− x1|p.

The functions x 7→ L(·; Φ) and x 7→ L(·; Φ̃) are convex and almost surely

differentiable.

We distinguish with respect to the values of p.

• If p > 1,

The functions L(·; Φ) and L(·; Φ̃) are strictly convex. Hence, θ1 and θ̃1 are

uniquely defined. It suffices to show that L′(θ1; Φ̃) ≥ 0 to deduce θ1 ≥ θ̃1.

• If p = 1,

The functions L(·; Φ) and L(·; Φ̃) are convex, but not strictly convex, and

the points attaining the minimum are possibly not unique (when n is even).
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Showing that L′(θ1; Φ̃) ≥ 0 implies that either θ1 ∈ argminx1∈R L(x1; Φ̃)

or θ1 ≥ x̃∗1 for all x̃∗1 ∈ argminx1∈R L(x1; Φ̃). In that case, we obtain the

generalization (5) of Monotonicity .

Consequently, it suffices for our purposes to prove that L′(θ1; Φ̃) ≥ 0.

First observe that since θ1 minimizes L(·; Φ), L′(θ1,Φ) = 0. Hence, we have

L′(θ1, Φ̃) = p|x1 − Φ̃(1, 1)|p−1 sgn(θ1 − Φ̃(1, 1))

− p|θ1 − Φ(1, 1)|p−1 sgn(θ1 − Φ(1, 1)).

We distinguish three cases.

• If θ1 − Φ̃(1, 1) ≤ 0,

then, θ1 − Φ(1, 1) ≤ θ1 − Φ̃(1, 1) ≤ 0. It results that L′(θ1, Φ̃) ≥ 0.

• If θ1 − Φ̃(1, 1) > 0 and θ1 − Φ(1, 1) < 0,

then, L′(θ1, Φ̃) ≥ 0.

• If θ1 − Φ(1, 1) ≥ 0,

then, θ1 − Φ̃(1, 1) ≥ θ1 − Φ(1, 1) ≥ 0. It results that L′(θ1, Φ̃) ≥ 0.

This concludes the proof.

L∞ depth

Consider the L∞ depth, which is defined for x ∈ Rd by

L∞D(x; Φ) =
1

1 + 1
n

∑n
j=1 ‖Φ(·, j)− x‖∞

.
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Let θ = argmaxx∈Rd L
∞D(x; Φ) and θ̃ = argmaxx∈Rd L

∞D(x; Φ̃). Then,

Proposition 9 establishes that, for all i = 1, . . . , d,

θi =
minj=1,...,n Φ(i, j) + maxj=1,...,n Φ(i, j)

2
,

θ̃i =
minj=1,...,n Φ̃(i, j) + maxj=1,...,n Φ̃(i, j)

2
.

Hence, for all i = 2, . . . , d, θi = θ̃i. Since Φ̃(1, 1) ≤ Φ(1, 1), we have

maxj=1,...,n Φ̃(1, j) ≤ maxj=1,...,n Φ(1, j). We next distinguish two cases.

• If minj=1,...,n Φ(1, j) ≤ Φ̃(1, 1), we get minj=1,...,n Φ(1, j) = minj=1,...,n Φ̃(1, j)

and, hence, θ̃1 ≤ θ1.

• If minj=1,...,n Φ(1, j) > Φ̃(1, 1), we get θ̃1 =
Φ̃(1,1)+maxj=1,...,n Φ̃(1,j)

2
≤ θ1.

The proof is complete.

Weighted mean depths

Recall a result stated in [Mosler, 2013, page 26] for weighted mean depths family.

Let D be a depth function in the weighted mean depths family. Denote Dα(Φ) =

{z ∈ Rd, D(z; Φ) ≥ α}. If Φ(i, j) ≥ Φ̃(i, j) holds for all i = 1, . . . , d, j = 1, . . . , n

then

Dα(Φ) ⊆ Dα(Φ̃)⊕ Rd
+,

where ⊕ denotes the Minskowski sum of sets. Moreover we have unicity of the

deepest point. Consequently, Monotonicity is satisfied.
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A.3 Proof of Proposition 3

It is sufficient to exhibit two grading matrices Φ and Φ̃ with equal grades except

that Φ̃ has a higher entry for candidaiate c1, such that the first coordinate of the

deepest point for Φ is lower than the first coordinate of the deepest point for Φ̃. Let

us distinguish with respect to the depth functions.

A.3.1 Halfspace depth

Consider 8 voters and 2 candidates with the following grading matrices Φ and Φ̃:

Φ =

(
0 0.0 0.0 0.2 0.6 0.8 1.0 0.3

0 0.2 0.4 1.0 0.0 1.0 0.6 0.4

)
, (7)

Φ̃ =

(
0 0.0 0.0 0.2 0.6 0.8 1.0 0.4

0 0.2 0.4 1.0 0.0 1.0 0.6 0.4

)
.

The corresponding deepest points obtained by the halfspace depth are equal

respectively to x∗ = (0.3, 0.4) and x̃∗ = (0.28, 0.38). This is illustrated in Figure 3

below.

Figure 3: Deepest points based on the halfspace depth for grading matrices defined
in (7). Horizontal axes give the grade for candidate c1 and vertical axes for candidate
c2. Each cross corresponds to a voter.
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A.3.2 Projection depth

Consider 8 voters and 2 candidates with the following grading matrices Φ and Φ̃:

Φ =

(
0.0 0.1 0.4 0.5 0.5 0.5 0.5 0.5

0.1 0.2 0.5 0.6 0.1 0.2 0.4 0.8

)
, (8)

Φ̃ =

(
0.0 0.1 0.4 0.5 0.5 0.5 0.5 0.7

0.1 0.2 0.5 0.6 0.1 0.2 0.4 0.8

)
.

The corresponding deepest points obtained by the projection depth are equal

respectively to x∗ = (0.5, 0.5) and x̃∗ = (0.44, 0.54). This is illustrated in Figure 4

below.

Figure 4: Deepest points based on the projection depth for grading matrices defined
in (8). Horizontal axes give the grade for candidate c1 and vertical axes for candidate
c2. Each cross corresponds to a voter.

A.3.3 Oja’s depth

Consider 8 voters and 2 candidates with grading matrices Φ and Φ̃ given by (8).

The corresponding deepest points obtained by Oja’s depth are equal respectively to

x∗ = (0.5, 0.4) and x̃∗ = (0.5, 0.5). This is illustrated in Figure 5 below.
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Figure 5: Deepest points based on Oja’s depth for grading matrices defined in (8).
Horizontal axes give the grade for candidate c1 and vertical axes for candidate c2.
Each cross corresponds to a voter.

A.4 Proof of Proposition 4

Suppose first that there exists D1 such that for all x∗ ∈ argmaxx∈Rd D(x;F ),

x∗1 ∈ argmaxx∈RD1(x;F1) with F1 denotes the first marginal distribution of F . Let

Φ and Φ̃ be two grading matrices such that Φ(1, ·) = Φ̃(1, ·). Then the empirical

distribution associated respectively to Φ and Φ̃ have the same first marginal FΦ1 .

Denote respectively x∗ and x̃∗ two deepest points for Φ and Φ̃. Then both x∗1 and

x̃∗1 belong to argmaxx∈RD1(x; Φ(1, ·)). IIA is hence satisfied.

Now, consider the converse implication. Let

G1 : Rd×n → B(R)

Φ 7→ X ∗1 = {x∗1, x∗ ∈ argsup
x∈Rd

D(x; Φ)}.

If GD satisfies IIA, then for all Φ = (Φ(·, j))j=1,...,n ∈ Rd×n, G1(Φ(1, ·), . . . ,Φ(d, ·))
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is a constant set G1(Φ(1, ·)). Define D1 as

D1 : R× Rn → R

(x,Φ(1, ·)) 7→

1 if x ∈ G1(Φ(1, ·))

0 else
.

Then for all Φ ∈ Rd×n, for all x∗ ∈ argsupx∈Rd D(x; Φ), the first component satisfies

x∗1 ∈ argsupx∈RD1(x,Φ(1, ·)).

A.5 Proof of Proposition 5

Let D be the depth function defined in (6). For any grading matrix Φ, for any

level a ∈ (0, 1), define the contour sets of the zonöıd depth, DZa(Φ) = {x ∈
Rd, DZ(x; Φ) ≥ a}. The deepest point of the depth function defined in (6) is the

coordinate-wise mean of the points in the set DZ0.8.

Let us first prove that properties (P1) to (P6) hold. (P1), (P5) and (P6) are

straightforward, since they are satisfied by the zonöıd depth function. (P2) follows

from the fact that it is satisfied by both the zonöıd depth function and the mean

operator.

Let us study (P4). Let θ be the deepest point for a distribution F .

• Let x ∈ DZ0.8(F ) \ {θ}. By construction, D(x) = 0.8. For all 0 < λ ≤ 1,

θ+λ(x− θ) ∈ DZ0.8(F ), since the contour sets of the zonöıd depth are convex

(see [Dyckerhoff and Mosler, 2011, page 412]). Hence D(x) = D(θ+λ(x−θ)) =

0.8.

• Now consider x /∈ DZ0.8(F ). The contour sets of the zonöıd depth are nested

(see [Dyckerhoff and Mosler, 2011, Proposition 3]). Hence, for all 0 ≤ λ ≤ 1,

θ + λ(x− θ) ∈ DZa(F ), with a = DZ(x).
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Hence, (P4) holds.

Let us study (P3). Weighted mean depths satisfy property (P3) with respect to

central symmetry. A set S ⊂ Rd is centrally symmetric with center c ∈ Rd, if for

every point c + d ∈ S the point c − d is also in S. Let F be a distribution which

is centrally symmetric about some c ∈ Rd. As stated by [Dyckerhoff and Mosler,

2011, Corollary 1], then c ∈ DZ0.8. And for every point c+d ∈ DZ0.8 the point c−d
is also in DZ0.8. Hence, the mean of DZ0.8 coincides with c. It concludes the proof.

Since (P1) to (P6) hold, the deepest voting procedure satisfies Neutrality ,

Universality , Unanimity by Proposition 1.

Now consider Monotonicity . Since the zonöıd depth belongs to the family of

weighted mean depths, it is monotone in the data [Dyckerhoff and Mosler, 2011].

Let us explicit this property. Let Φ and Φ̃ be two grading matrices such that Φ = Φ̃

except that one or more voters give higher grades to a candidate in Φ than in Φ̃.

Then, for all a ∈ (0, 1),

DZa(x; Φ) ⊆ DZa(x; Φ̃)} ⊕ Rd
+

where ⊕ denotes the Minkowski sum of sets. See [Dyckerhoff and Mosler, 2011,

Proposition 8]. Consequently, taking a = 0.8, DZ0.8(x; Φ) ⊆ DZ0.8(x; Φ̃)} ⊕ Rd
+. It

is easily seen that the deepest point for Φ̃ has higher coordinates than the deepest

point for Φ. This proves Monotonicity .

What is left is to show that IIA does not hold. It is sufficient to provide a

counterexample. Let

Φ =

(
1.0 0.2 0.2 0.7 0.3

0.3 0.5 0.3 0.8 0.7

)
, (9)

Φ̃ =

(
1.0 0.2 0.2 0.7 0.3

1.0 0.5 0.3 0.8 0.7

)
.

The numerical application gives that the deepest point for Φ is x∗ = (0.46, 0.52)
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when the deepest point for Φ̃ is x̃∗ = (0.48, 0.66). See Figure 6. The first coordinate

of the deepest point has changed, while only the votes for the second candidate have

changed. Hence IIA is not satisfied.

Figure 6: Deepest points based on the depth function defined in (6) for grading
matrices defined in (9). Horizontal axes give the grade for candidate c1 and vertical
axes for candidate c2. Each cross corresponds to a voter.

Proof of Table 3

The unicity of the deepest point for Lp depths is proved in Proposition 8 when

1 < p < ∞ and in Proposition 9 when p = ∞. IIA assumption is straightforward

with Proposition 4, since maximizing the Lp depth is equivalent to minimizing

x 7→
∑d

i=1

∑n
j=1(x− Φ(i, j))p.

To establish that IIA is not satisfied, let us provide a counter-example. Observe

that a counter-example has already been given in page 19 for the halfspace depth.

We provide another counter-example to prove the result for the Oja depth and the

projection depth.
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Let

Φ =

(
0.4 0.6 0 0.4 0.6 0 0.3

0.7 0 0.6 0.4 0.4 0.8 0

)
,

Φ̃ =

(
0.4 0.6 0 0.4 0.6 0 0.3

0.7 0 0.6 0.4 0.4 0.8 1

)
.

The numerical application gives the following deepest points for Φ,

Φ

Depths deepest grade for c1 deepest grade for c2

Halfspace depth 0.38 0.40

Projection depth 0.37 0.43

Oja depth 0.40 0.40

and the following deepest points for Φ̃,

Φ̃

Depths deepest grade for c1 deepest grade for c2

Halfspace depth 0.34 0.59

Projection depth 0.32 0.57

Oja depth 0.34 0.59

It can be seen that the change of one vote for candidate c2 influences the result for

candidate c1. Hence, by Proposition 4, we conclude that IIA is not satisfied.

[Dyckerhoff and Mosler, 2011, Proposition 5] establish that the deepest point of

weighted mean depths is the component-wise mean of the observations. It is, hence,

unique and satisfies the IIA property.
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A.6 Proof of Proposition 7

As stated above, each coordinate of a deepest point x∗ := (x∗1, . . . , x
∗
d) is given by

the optimization problem:

∀i = 1, . . . , d, x∗i = argmin
x∈R

n∑
j=1

|Φ(i, j)− x|p.

Since the function x 7→ xp is strictly convex for all p > 1, it results that x∗i exists

and is unique for all i = 1, . . . , d.

A.7 Proof of Proposition 8

The proof is trivial since it is well-known that the quantity x minimizing∑n
j=1 |Φ(i0, j) − x|2 (resp.

∑n
j=1 |Φ(i0, j) − x|) is the sample mean (resp. the

median) of (Φ(i0, 1), . . . ,Φ(i0, n)). The same result holds for approval voting, since

it corresponds to range voting when the possible grades are restricted to 0 and 1.

A.8 Proof of Proposition 9

Consider the ordered grades r1 ≤ r2 ≤ . . . ≤ rn of a given candidate ci,

i = 1, . . . , d. We want to prove that the point x0 = r1+rn
2

minimizes the

function g : x 7→ maxj=1,...,n |rj − x|. Remark that as we ordered the values,

g(x) = max{|r1 − x|, |rn − x|}, and thus

g(x) =


rn − x > rn − x0 if x < x0

x0 − r1 = rn − x0 if x = x0

x− r1 > x0 − r1 if x > x0 .
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A.9 Proof of Proposition 10

We present configurations such that

• a Condorcet winner is not elected by Lp Deepest Voting,

• a Condorcet loser is elected by Lp Deepest Voting.

We distinguish the two cases p = 1 and p > 1.

• Case p=1.

Consider the following configuration with 9 voters and 3 candidates:

Number of voters Grade for c1 Grade for c2 Grade for c3

4 0.5 0.1 0.4

1 0.5 0.6 0.4

4 1 0.6 0.7

The representation of the votes in the space of candidate c1 and candidate c2

is given in Figure 7 taking (a, b, c, d, p0) = (0.1, 0.5, 0.6, 1, 1/9). As the median

of grades for candidate c2 is higher than the median for the other candidates,

candidate c2 is elected by L1 deepest voting. However, c1 is the Condorcet

winner since an absolute majority of voters prefer c1 to c2 and c3. In the same

time, c2 is elected even if he is the Condorcet loser, as c1 and c3 are preferred

to c2 by a majority of voters.

• Case p > 1.

Consider the following profiles for 3 candidates and n voters:

Number of voters Grade for c1 Grade for c2 Grade for c3

n− 1 0.5 + εn,p 0.5 0.5 + εn,p/2

1 0 1 0
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Gradings for
Candidate C1

Gradings for
Candidate C2

Majority Judgement elects Condorcet Loser
if a<b<c<d

0 1

1

c

b

p0

p0

a

d

(1-p0)/2

(1-p0)/2

=Proportion p0 of judges at this point

and p0<0.5

voters

Grades

Grades

Figure 7: Configuration of grades considered in the proof of Proposition 10 in the
case p = 1.

Gradings for
Candidate C1

Gradings for
Candidate C2

 wLp Deepest Voting (p>1) elects Condorcet Loser 
(Range Voting included) if ε and p0<1/2 small enough

0 1

1

0.5

p0

= proportion p0 of judges at this point

(1-p0)

p0

0.5+ε

Most of 
the judges

Few judges

voters

voters

voters

Grades

Grades

n,p

n,p

and p are small enough. 

Figure 8: Configuration of grades considered in the proof of Proposition 10 in the
case p > 1.

with 0 < εn,p ≤ min(0.5; (n − 1)
−1
p−1 ). The representation of the votes in the
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space of candidate c1 and candidate c2 is given in Figure 8, taking p0 = 1/n.

The coordinates of the deepest point x∗p = (x∗p,1, x
∗
p,2, x

∗
p,3) are solutions of the

following optimization problems:

x∗p,1 = arg min
x∈[0,1]

(n− 1)|x− (0.5 + εn,p)|p + xp

x∗p,2 = arg min
x∈[0,1]

(n− 1)|x− 0.5|p + |1− x|p

x∗p,3 = arg min
x∈[0,1]

(n− 1)|x− (0.5 + εn,p/2)|p + xp.

Using the first order conditions of the optimization problems, we get:

x∗p,1 =
(0.5 + εn,p)(n− 1)

1
p−1

(n− 1)
1
p−1 + 1

x∗p,2 =
1 + 0.5(n− 1)

1
p−1

1 + (n− 1)
1
p−1

x∗p,3 =
(0.5 + εn,p/2)(n− 1)

1
p−1

(n− 1)
1
p−1 + 1

.

When 0 < εn,p ≤ (n − 1)
−1
p−1 ,it follows that x∗p,3 < x∗p,1 < x∗p,2. Consequently,

candidate c2 (who is the Condorcet loser) is elected by Lp-deepest voting even

if the Condorcet winner is c1.

A.10 Proof of Proposition 11

We distinguish according to the values of p.

• Case p = 1

For an example proving the vulnerability of the majority judgment to

reinforcement (resp. no-show) paradox, see [Felsenthal and Machover, 2012,

p. 327 (resp. p. 329)].

• Case 1 < p < 2
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Consider the following configuration of grades:

Grade for c1 Grade for c2

Voter v1 0.5 1

Voter v2 0.5 ε

Voter v3 0 ε

with 0 < ε < 1. If only voters v1 and v2 are voting, then candidate c2 wins,

whatever ε > 0. Moreover, voter v3 prefers candidate c2. Hence, to prove that

no-show and reinforcement paradoxes hold, we may establish that considering

voters {v1, v2, v3}, candidate c2 may loose.

Denote x∗ := (x∗1, x
∗
2) the deepest point obtained for the Lp depth with voters

(v1, v2, v3).

We aim at proving that x∗2 < x∗1 for some 0 < ε < 0.5.

For i = 1, 2, components of the deepest point x∗ are obtained by

x∗i = argmin
x∈R

n∑
j=1

|Φ(i, j)− x|p.

Differentiating the objective function with respect to x leads to

n∑
j=1

|Φ(i, j)− x|p−1sgn(Φ(i, j)− x).

First order conditions for i = 1 lead to

2|x∗1 − 0.5|p−1 sgn(x∗1 − 0.5) + |x∗1|p−1 sgn(x∗1) = 0

Consequently, 0 < x∗1 < 0.5 and we deduce that x∗1 = 0.5 21/(p−1)

1+21/(p−1) .

For i = 2 we get

2|ε− x∗2|p−1 sgn(ε− x∗2) + |1− x∗2|p−1 sgn(1− x∗2) = 0

Similarly, we deduce that x∗2 = 1+21/(p−1)ε
1+21/(p−1) .
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Thus

x∗2 < x∗1 ⇐⇒ ε < 0.5− 2−1/(p−1)

Since the right-hand side is positive for p < 2, we deduce that there exists

ε > 0 such that x∗2 < x∗1. This concludes the proof.

• Case p = 2

L2 deepest point is the point with coordinates equal to the mean of votes. Let

x1 and y1 be the mean score obtained respectively by two candidate c1 and

c2 on a population of voters of size n1 and let x2 and y2 be the mean score

obtained respectively by the two candidates c1 and c2 on a population of size

n2. If x1 < y1 and x2 < y2, then n1x1+n2x2 < n1y1+n2y2. Hence, if candidate

c2 wins in the two sub-populations, he also wins on the total population. We

can deduce that reinforcement paradox does not hold. Next, taking n2 = 1, it

implies that no-show paradox does not hold either.

• Case 2 < p

For 0 < ε < 0.5, consider the following grades:

Grade for c1 Grade for c2

voter v1 0 0.5+ε

voter v2 1 0.5+ε

voter v3 0 ε

Then if only voters v1 and v2 are voting, candidate c2 wins because 0.5 + ε >

0.5. Since v3 prefers c2, to prove that no-show and reinforcement paradoxes

hold, let’s establish that considering voters {v1, v2, v3}, candidate c2 may loose.

Denote x∗ := (x∗1, x
∗
2) the deepest point obtained for the Lp depth with voters

(v1, v2, v3).

We aim at proving that x∗2 < x∗1 for some 0 < ε < 0.5.

For i = 1, 2, components of the deepest point x∗ are obtained by

x∗i = argmin
x∈R

n∑
j=1

|Φ(i, j)− x|p.
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First order conditions for i = 1 imply

2 |x∗1|p−1 sgn(x∗1) + |1− x∗1|p−1 sgn(1− x∗1) = 0.

Hence 0 < x∗1 < 1 and we obtain that x∗1 = 1
1+21/(p−1) .

First order conditions for i = 2 lead to

2 |0.5 + ε− x∗2|p−1 sgn(0.5 + ε− x∗2) + |ε− x∗2|p−1 sgn(ε− x∗2) = 0.

We deduce analogously that x∗2 = 0.5 21/(p−1)

1+21/(p−1) + ε.

Thus

x∗2 < x∗1 ⇐⇒ ε <
1

1 + 21/(p−1)
− 1

2

21/(p−1)

1 + 21/(p−1)

⇐⇒ ε <
2− 21/(p−1)

2 (1 + 21/(p−1))
.

Since the right-hand side is positive for p > 2, we deduce that there exists

ε > 0 such that x∗2 < x∗1. This concludes the proof.
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