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5 Pierre Mendès France, 69596 Bron Cedex, France

April 2021

Abstract

Classical approval voting processes suffer from well-known impossibility theorems. We
consider grading-based voting, where voters give a grade rather than a preference to each
candidate. Numerous voting processes have been proposed in this framework, such as majority
judgment or range voting, showing interesting properties. This article aims to present a unified
framework for grading-based voting processes. Our statement is that a voting process can be
seen as the finding of the innermost point of a multivariate scatterplot. Introducing depth
functions in voting theory enables to associate each voting process to a depth notion, and
enlarges the scope of procedures. We focus on a given family of depth functions, the wLp

depths, to highlight the behavior of the depth-based approach.

Keywords. voting process, grade modeling, depth functions

1 Introduction

Social choice theory aims at determining which decision or candidate, from a set of possibilities, is
chosen by a set of voters. There exists a lot of election mechanisms trying to aggregate individual
preferences of voters into a collective preference. Finding a method (usually called social decision
function or voting process) that makes the choice satisfying for most of the voters is a challenging
issue.
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In classical voting processes each voter’s input message is a rank-ordering of the candidates. A
social decision function gives an output (a rank-ordering) for any inputs that have been proposed.
However, social decision functions have theoretical weakness. They can’t satisfy simultaneously
a small set of desirable properties, which is known since [1] as “impossibility theorem”. There
is no satisfactory method for electing or ranking candidates in such a framework. The model
introduced in [2] is an interesting framework which is not based on rank-ordering of the candidates
but on a grading of the candidates by the voters. It gives more nuanced information and thus
escapes important drawbacks of the classical model involving only rankings. Approval voting [5],
majority judgment [2] and range voting [16] are well-known examples of methods based on the
grading model.

This article aims to present a unified framework for grading-based voting processes, and to extend
the scope of voting processes. This family of social decision functions is based on the statistical
notions of depth functions and their related deepest points. Let us consider in the following that
we have n voters and d candidates. Each voter gives a grade to each candidate. Each voter can
then be assimilated to a point in Rd, whose coordinates are the grades for each candidate. The set
of all voters’ grades can hence be seen as a scatterplot. The key idea is to consider the most central
voter in this scatterplot. This innermost (possibly imaginary) voter according to his grades can
be seen as the most representative of all voters, and his preferences should meet a large consensus
among the others voters. Therefore, the presented social decision function returns simply the
candidate which has the maximum grade of this innermost voter. We refer to any voting process
based on the use of such notion of most central voter as a “deepest voting” process.

The paper is organized as follows. Section 2 recalls the definition of Balinski and Laraki’s grading
model [2]. In Section 3, we recall the statistical notion of depth function which will help us to
determine the innermost voter, knowing that there is an infinity of ways of choosing the center
of a scatterplot. Each way of choosing it corresponds to a new member of the family of social
decision functions. We next give the definition of the deepest voting process. We study some of its
interesting properties for a given family of depth functions in Section 4. All the proofs are given
in the Appendix.

2 Voting framework

2.1 Voting process

Voting is a common way to choose an alternative or a candidate from a set of different alternatives
or candidates. It is for example widely used in political affairs to choose a president, a major or a
deputy, at least in democratic countries. A voting process can be seen as a mathematical function
and therefore voting processes have been widely studied in a mathematical point of view since the
early works of Borda and Condorcet at the end of the XVIIIth century (see [8] for a review). This
research field is known as “social choice theory”. Theoretical voting processes are generally based
on the assumption that each voter is able to rank the candidates in a strict order from the best
one, or the preferred one, to the worst one. Several properties have been proposed to characterize
a good voting process. These properties often refer to unwanted situations that might appear, and
are then generally known as “paradoxes”. Any voting process can be theoretically analyzed in
terms of satisfied and non-satisfied properties. Then, an axiomatic approach of social choice aims
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at determining which voting process satisfies a set of desirable properties. But the well-known
impossibility theorems due to Arrow [1] or Gibbart [9] and Satterthwaite [15] demonstrate that
no voting process can satisfy simultaneously a minimal set of desirable properties. Therefore the
choice of a voting process appears as a matter of compromise between pro and cons arguments.
One can refer to [8] for a complete review of the properties/paradoxes satisfied by the most popular
voting processes.

Another way is to change the paradigm of the voting situation, so that voters do to not only rank
the candidates but also rate them.

2.2 Grade modeling

Grading candidates better than ranking them allows to use specific voting process out of the
framework of Arrow’s theorem. If voters are supposed to grade the candidates, then the voting
process consists in finding the best candidate considering all grades. Approval voting [5] is the
most simple example of such a grading-based voting process, where grades are 0 or 1 and the
chosen candidate is the one with the greatest number of 1. The majority judgment [2] is another
example of grading-based voting process, using discrete or continuous grades. We propose in the
following to formalize the use of grades in voting process as in [2].

Consider that we have n voters and d candidates. Suppose that each voter vj , j = 1, . . . , n
grades each candidate ci, i = 1, . . . , d. We denote Φ(i, j) the corresponding grade. Let Λ
be the set of possible grades Φ(i, j). As pointed out by [2], the set of grades Λ needs to be
strictly ordered but may be finite or an interval of the real numbers. We suppose without
loss of generality that Λ ⊆ [0, 1]. The grading is summarized in a d × n grading matrix
Φ = {Φ(i, j), i = 1, . . . , d, j = 1, . . . , n} ∈ Λd×n. Any collection of d grades is called a profile
and, in particular, every column Φ(., j) is a profile.

We distinguish three cases depending on the nature of the set Λ:

Binary set Λ = {0, 1}. Approval voting is a voting process based on a binary set of grades.
Classical model may correspond to the case where Φ(i, j) = 1 for one and only one candidate
ci for each voter vj , whereas approval voting gives no constraint on the number of 0 or 1 by
voter.

Discrete set Λ = {0, 1/N, 2/N . . . , 1}, with N > 1. This case includes e.g. grading with finite
words from bad to excellent, letters from E to A, etc, where a numerical ranking is applied.
A usual example in everyday life is the evaluation process of a product or of a service, where
each consumer is asked to put a mark between 0 and 5.

Continuous set. The set Λ is a real interval. Let Λ = [0, 1] without loss of generality. In practice,
this kind of generalization can be proceed by putting an horizontal segment in front of each
candidate’s name:

Photo and Name of Candidate 1: To Reject Excellent
Photo and Name of Candidate 2: To Reject Excellent

...
Photo and Name of Candidate d: To Reject Excellent
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A voter is asked to put a vertical line according to his grade for each candidate. This
generalization gives a more nuanced information with respect to a finite set of grades.
Moreover, this intuitive procedure should allow to open the mechanism to illiterate people
by adding a photo of the candidate and a smiling face (respectively a sad face) instead of
the comment “Excellent” (respectively to the comment“To Reject”).

Example Table 1 illustrates on an example the different types of grading. Consider 15 voters
and 2 candidates. The continuous grading allows each voter to give any grade between 0 and 1 to
any candidate. The discrete grading (here on 6 levels, i.e. N = 5) can be seen as a rounding of
continuous grading. Binary grading just corresponds to a rounding of continuous grading or to set
the maximal grade to 1 and others to 0 for majority voting.

voter continuous discrete binary voter continuous discrete binary
c1 c2 c1 c2 c1 c2 c1 c2 c1 c2 c1 c2

v1 0.59 0.67 0.4 0.6 0 1 v9 0.43 0.78 0.4 0.6 0 1
v2 0.49 0.79 0.4 0.6 0 1 v10 0.48 0.63 0.4 0.6 0 1
v3 0.45 0.73 0.4 0.6 0 1 v11 0.95 0.13 0.8 0.0 1 0
v4 0.43 0.66 0.4 0.6 0 1 v12 0.95 0.17 0.8 0.0 1 0
v5 0.46 0.79 0.4 0.6 0 1 v13 0.92 0.14 0.8 0.0 1 0
v6 0.44 0.71 0.4 0.6 0 1 v14 0.91 0.15 0.8 0.0 1 0
v7 0.54 0.79 0.4 0.6 0 1 v15 0.95 0.10 0.8 0.0 1 0
v8 0.59 0.67 0.4 0.6 0 1

Table 1: Example of grades given by 15 voters on 2 candidates with continuous, discrete or binary
scales

2.3 Grading-based voting process

A grading-based voting process can then be seen as a function G, called method of grading in
[2], that assigns a profile to any matrix Φ. The function G is defined from Λd×n with values in
the subsets of [0, 1]d. Remark that the set of possible grades of the profiles given by function G
may differs from Λ since one may associate for example the mean of initial grades and obtain a
continuous set from a discrete set Λ.

Balinski and Laraki [2] propose some conditions (which they call axioms) that a method of grading
should satisfy:

Condition 1 G is neutral : G gives the same result by permuting the rows of Φ (i.e. by permuting
the candidates).

Condition 2 G is anonymous: G gives the same result by permuting the columns of Φ (i.e. by
permuting the voters).

Condition 3 G is unanimous: if a candidate is given an identical grade α by every voter, then
G assigns him the grade α.

Condition 4 G is monotonic: if Φ = Φ′ except that one or more voters give higher grades to
candidate ci in Φ than in Φ′, then G(Φ)(ci) is higher than G(Φ′)(ci)
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Condition 4 bis G is strictly monotonic: if Φ = Φ′ except that one or more voters give strictly
higher grades to candidate ci in Φ than in Φ′, then G(Φ)(ci) is strictly higher than G(Φ′)(ci)

Condition 5 G is independent of irrelevant alternatives (IIA): if the grades assigned by the voters

to a candidate ci in two profiles Φ and Φ̃ are the same, then G(Φ)(ci) = G(Φ̃)(ci).

Note that in [2], Conditions 4 and 4 bis are embedded in a unique condition. Jennings [11] shows
that a strictly monotonic method of grading can’t avoid rewarding voter dishonesty.

These conditions are similar to the ones used in Arrow’s theorem [1]. Therefore, in the classical
framework of preference orders, it is impossible to find a voting process that satisfies all these
conditions. This have lead to the proposal of grading-based voting process by [2] to overcome
these impossibility.

The simplest way to compute a grading-based voting process is to aggregate the grades given by
the voters on each candidate independently. Note that such a process supposes that condition 5
(IIA) is satisfied. In such a case, we introduce the aggregation function g : Λn 7→ [0, 1]. The
function g summarizes the n grades received by a candidate (a row of Φ) in one grade. One has
G(Φ)(ci) = g(Φ(i, ·)). Many aggregation functions are available to sum up n grades into an unique
one – see [4] or [10] for a review of aggregation functions. Some of them have been studied in the
specific framework of grading-based voting process, taking into account the fact that votes often
take place in a political background.

Balinski and Laraki [2] propose the majority-grade voting as aggregation function. For a given
candidate ci, let rank the n grades {Φ(i, j), j = 1, . . . , n} as r1 ≤ r2 ≤ . . . ≤ rn. The majority-grade
voting, denoted gmaj is defined as follows:

gmaj(r1, . . . , rn) =

{
r(n+1)/2 if n odd,

r(n+2)/2 if n even.

gmaj(r1, . . . , rn) can be interpreted as a median of (r1, . . . , rn) (note that tie-breaking rules have
been proposed for example in [3] or [6]). A majority-ranking can be deduced from the majority
grade, obviously noting that a candidate receiving a higher majority grade than another will be
ranked higher.

Smith [16] proposes another example of aggregation function. Smith introduces the Range Voting
grv as follows:

∀(r1, . . . , rn) ∈ Λn, grv(r1, . . . , rn) =
1

n

n∑
j=1

rj ,

with similar notations than above. grv(r1, . . . , rn) is the mean of the grades r1, . . . , rn.

Grading-based voting processes use more information than just a preference order on the candidates
since they are based on quantitative grades on the candidates. This supplementary piece of
information permits to overcome classical impossibility theorems. We propose in the following a
unified framework for grading-based voting process that enlighten the specificity of both Majority
Voting and Range Voting within a wide range of new voting processes.
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3 Deepest voting

Our statement is that depth functions enable to consider classical grading models and continuous
grading models in a uniform way. It expands to numerous voting processes. We first recall what
is a depth function and we present on a second hand how it applies in voting processes.

3.1 What is a depth function?

Quoting R. Serfling: “Associated with a given distribution F on Rd , a depth function is designed
to provide a F -based center-outward ordering (and thus a ranking) of points x in Rd. High depth
corresponds to centrality, low depth to outlyingness” [19].

In other words, a depth function takes high (positive) values at the middle of a scatterplot and
vanishes out of it.

Zuo and Serfling [19] give a rigorous definition of a depth function. Denote by F the class of
distributions on the Borel sets of Rd and FX the distribution of a given random vector X:

Definition 1. Let the mapping D : Rd ×F 7→ R be bounded, nonnegative and satisfying:

(P1) D(Ax+ b;FAX+b) = D(x;FX) for any random vector X ∈ Rd, any d×d nonsingular matrix
A and any d−vector b.

(P2) D(θ;F ) = supx∈Rd D(x, F ) ( i.e. θ is the deepest point with respect to D and F ) for any
F ∈ F having a center θ.

(P3) for any F ∈ F having deepest point θ, D(x;F ) ≤ D(θ + α(x− θ);F ) for any 0 ≤ α ≤ 1.

(P4) D(x;F )→ 0 as ‖x‖ → ∞ for each F ∈ F .

Then D(.;F ) is called a statistical depth function.

Applications of depth techniques include for example robust estimation, center-outward ordering of
multivariate observations, data exploration and multivariate confidence regions. Several measures
of data depth have been proposed in nonparametric statistics as multidimensional generalizations
of the ranks and of the median, each attempts to maintain certain robustness properties.

In this work, the deepest point is a location estimator of the preferences of the voters. The
coordinates of the deepest point are the grades the innermost (possibly imaginary) voter would
give.

Let give some examples of depth functions.

The weighted Lp depths [18] of a point x ∈ Rd, wLpD(x), given a set of n points
Φ(., 1), . . . ,Φ(., n) in Rd is defined by

wLpD(x, Fn) =
1

1 + 1
n

∑n
j=1 ω(‖Φ(., j)− x‖p)
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where p > 0, ω is a non-decreasing and continuous function on [0,∞) with ω(∞) = ∞ and

‖x− x′‖p =
(∑d

j=1 |xj − x′j |p
)1/p

.

If ω : x 7→ xp, then

wLpD(x, Fn) =
1

1 + 1
n

∑n
j=1

∑d
i=1 |Φ(i, j)− xi|p

. (1)

For p =∞, let define similarly

wL∞D(x, Fn) =
1

1 + 1
n

∑n
j=1 maxi=1,...d |Φ(i, j)− xi|

. (2)

The simplicial depth [13] of a point x ∈ Rd, SDn(x), given a set of n points Φ =
{Φ(., 1), . . . ,Φ(., n)} ⊂ Rd is defined by

Dn(x) = P (x ∈ S[x1, ..., xd+1]).

It associates to a point x the probability that x is inside a random simplex whose vertices
are given by d+ 1 independent random observations x1, . . . , xd+1 ∈ Φ.

The halfspace depth [17] of a point x ∈ Rd, HD(x), given a set of n points Φ(., 1), . . . ,Φ(., n)
in Rd is defined by

HDn(x) := minimum proportion of voters in a halfspace H including x.

Many others depth functions (Mahalanobis depth, projection depth, zonöıd depth... see e.g. [14])
exist, leading to as many corresponding social decision functions. Let’s explicit now the link
between a depth function and its associated social decision function.

3.2 Deepest Voting

In the following, the distribution of the grades Φ of the n voters will be defined as Φn, giving
a weight 1

n at the independent profiles Φ(., j) = (Φ(1, j), . . . ,Φ(d, j)) ∈ Rd, j = 1, . . . , n.
Each profile can be seen as a point of Rd and hence depth functions can be applied to points
{Φ(., j), j = 1, . . . , n}.

Figure 1 illustrates the behavior of four classical depth functions on the example of Section 2.2.
Namely it displays the values of the Tukey’s Halfspace depth [17], the Liu’s Simplicial depth [13],
the weighted L1, L2, L3, and L∞ depths [18]. It highlights the diversity of depth measures.

Definition 2 (Deepest Voting). Consider a grading matrix Φ, the associated empirical distribution
Φn and a given depth function D. Denote

X ∗D := argsup
x∈[0,1]d

D(x,Φn)

the set of deepest points of Φn with respect to D. Let GD : Φn 7→ X ∗D be the method of grading
with respect to the depth D.
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Figure 1: Examples of classical depth functions on the example of Section 2.2. Horizontal axes
gives the grade for candidate c1 and vertical axes for candidate c2. Each cross corresponds to a
voter.

Let
iD := argmax

1≤i≤d
{x∗D,i ∈ X ∗D}, with x∗D = (x∗D,1, . . . , x

∗
D,d).

The deepest voting process with respect to the depth D is defined as the function vD which maps
{Φ(i, j), i = 1, . . . , d, j = 1, . . . , n} to iD ⊆ {1, . . . , d}.

If iD is unique, then the winner of the election is the candidate ciD . If iD is not unique, there is
no unique winner of the election.

It is worth noticing that even if X ∗D does not contain a unique element, the deepest voting iD may
contain only one element. If iD contains several elements a tie-breaking rule should therefore be
proposed. Such a rule can refer to the deepest space, e.g. by reducing X ∗D to its unique center of
gravity, or refer directly to the candidates, e.g. by electing the oldest candidate. Note that such
tie-breaking rules are necessary in any voting process.

Figure 2 displays some deepest voting results obtained on the grades given in the example of Section
2.2 for some depth functions. The transposed grades matrix Φ is represented as a scatterplot and
deepest points are given on the figure. Note that deepest point is not unique for Tukey’s depth,
it was obtained by taking the center of gravity of the deepest set with respect to the Euclidean
distance.

It can be seen in Figure 2 that deepest points do not have the same coordinates and that they
depend of the depth. Table 2 gives the coordinates of the deepest points. Note that the deepest
points of wL1 and Liu’s depths give the second candidate winner while the other deepest points
choose the first candidate.
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Figure 2: Examples of deepest points on the example of Section 2.2. Horizontal axes gives the grade
for candidate c1 and vertical axes for candidate c2. Each cross corresponds to a voter. Triangles
give the deepest points. Deepest points for the weighted Lp depths, for p ∈ {1, 2, 3, 4,∞}, are
displayed with labels p. Deepest points for Tukey’s halfspace depth and Liu’s simplicial depth are
displayed with respective labels T and L.

Candidate c1 Candidate c2
wL1 depth 0.54 0.67
wL2 depth 0.64 0.53
wL3 depth 0.67 0.48
wL4 depth 0.68 0.47
wL∞ depth 0.69 0.45
Tukey’s halfspace depth 0.65 0.51
Liu’s simplicial depth 0.59 0.67

Table 2: Coordinates of the deepest points of Figure 2.

4 Properties of weighted Lp deepest voting family

In the following, we focus on the family of weighted Lp depths. This choice is motivated by the
fact that some classical social decision functions are members of this family. We suppose that
ω : R → R, x 7→ w(x) = xp for a given p > 1. We assume that we dispose of a set of n points
Φ(., 1), . . . ,Φ(., n) in Rd. As described above, the weighted Lp depth [18] of a point x, wLpD(x,Φn),
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is defined by (1) and (2). The wLp deepest voting is the function taking in argument the grading
matrix Φ and returning the coordinates of the point maximizing the weighted Lp depth function
applied to Φ.

We can first check that wLp deepest voting indeed defines a decision function in the sense of [2].

Proposition 3. For a p ≥ 1, let’s consider the associated wLp deepest voting and denote by D
the depth function. Then the method of grading GD satisfies the Conditions 1-5 exposed in the
subsection 2.3.

Next propositions deal with the characterization of the weighted Lp deepest voting for different
choices of p.

Proposition 4. For all p > 1, the set of wLp depth has a unique element.

The case p < 1 should be avoided because the uniqueness of the deepest point is not ensured. It
can also be shown that if p tends to 0, each voter is a deepest point!

The class of wLp deepest voting includes three usual voting processes, which are Majority Judgment
[2], approval voting [5] and range voting [16].

Proposition 5. Not considering the tie-breaking procedure, the Majority Judgment is one point of
the wL1 deepest voting set. Analogously, the Range Voting and the approval Voting are elements
of the wL2 deepest voting.

wL1 deepest voting leads to the Majority Judgment. This method has many advantages (see [2]
for example). Nevertheless, this method presents several drawbacks too (see [12] or [7]). A weird
property of the wL1 deepest voting is that the value of the decision function may not be included
in the convex hull of the n voters’ grades, i.e., X ∗D is not included in the convex hull of Φ. Let
consider e.g. the situation with 3 candidates and 3 voters and the associated matrix Φ:

Φ(1, .) = (a, 0, 0)

Φ(2, .) = (0, b, 0)

Φ(3, .) = (0, 0, c)

with 0 < a < b < c ≤ 1. The wL1 deepest point is x∗ = (0, 0, 0), which is not included in the
convex hull of the points (a, 0, 0), (0, b, 0) and (0, 0, c).

Another case where we can explicit the deepest point is wL∞ deepest voting.

Proposition 6. wL∞ deepest voting maps to the point whose coordinates are the middle of the
most extreme coordinates component-wise, that is, it attributes to each candidate the mean of his
best and worst grades.

The choice of p in wLp deepest voting is of course critical. Roughly speaking, the greater p
is, the more importance is given to immoderate grades. For p large enough, the deepest point
only depends component-wise on most immoderate grades. So the wLp Deepest Voting is very
vulnerable to strategic voting for large p. These considerations meet the intuition of Balinski and
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Laraki arguing that Majority Judgment (wL1 Deepest Voting) is more resistant to strategic voting
than Range Voting (wL2 Deepest Voting).

As pointed out above, any voting process suffers from unwanted properties generally named
paradoxes (see [8] for a more detailed description of voting paradoxes). As other voting processes,
weighted Lp deepest voting seems to suffer from paradoxes. We propose in the following to focus
specifically on four classical properties, and to show how the paradigm changes due to the use of
a grading model. The four studied properties are:

• the Condorcet winner paradox : a candidate c is not elected despite the fact that c is preferred
by a majority of the voters over each of the remaining candidates;

• the Condorcet loser paradox : a candidate c is elected despite the fact that a majority of
voters prefer each of the remaining candidates to c;

• the reinforcement paradox : if c is elected in each of several disjoint electorates, it is possible
that c is not elected if all electorates are combined into a single electorate;

• the no-show paradox : a voter may obtain a more preferable outcome if he decides not to
participate in an election than if he decides to participate in the election and vote sincerely
for his preferences.

Proposition 7. For all p ≥ 1, the wLp deepest voting suffers from the Condorcet winner and the
Condorcet loser paradoxes.

Proposition 8. wLp deepest voting suffers from reinforcement and no-show properties, for
p ∈ [1,∞] \ {2}. These properties do not hold for wL2 deepest voting.

Many properties which appear as paradoxes in classical voting processes, with binary Λ, may not
be seen as drawbacks under a more complex grading-based model, that is, for discrete or continuous
sets Λ. The four properties studied above well illustrate our statement.

Consider for example the Condorcet winner paradox. Suppose that a candidate c1 obtains a score
0.80 for 51% of voters and 0.01 for 49% of voters and a candidate c2 obtains a score 0.79 for 51%
of voters and 0.90 for 49% of voters. In this configuration, the Condorcet winner is c1. Yet, as we
have a quantification of the preference of voters, we can see that candidate c2 is less divisive in
the sense that no voters reject this candidate with very low grades. The fact that a voting process
elects c2 is acceptable in this configuration.

Now consider the no-show paradox. Suppose that two candidates c1 and c2 obtained the following
grades for 3 voters:

Candidate c1 Candidate c2
voter v1 0.5 1
voter v2 0.5 ε
voter v3 0 ε

Then candidate c2 is elected with voters {v1, v2}. But for some ε > 0 sufficiently small, the
candidate c2 is not elected with voters {v1, v2, v3}, considering wLp-deepest voting with p < 2 (see
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the proof of Proposition 8). In this configuration, the fact that voter v3 votes will make c2 loose.
wLp depth functions with p < 2 favor candidates with less dispersion, which are more consensual.
The no-show property results from the fact that v3 does not approve candidate c2 and that his
preference with respect to candidate c1 is not significant.

When p > 2, a configuration where no-show property holds is the following:

Candidate c1 Candidate c2
voter v1 0 0.5+ε
voter v2 1 0.5+ε
voter v3 0 ε

with ε > 0 sufficiently small (see the proof of Proposition 8). It is due to the low grade given by v3
to c2 and the fact that the difference with the grade for c1 is not significant. wLp depth functions
with p > 2 here favor candidates with highest grades. In both situations, the fact that no-show
property occurs is acceptable since even if voter v3 prefers candidate c2, the grades show that he
does not support him yet.

These examples illustrate that the amount of quantity available through grading is likely to change
the result of a voting process. It enables to explain some results which may be seen as paradoxes
with preferential grades. A drawback is that it may gives more weight to extremes opinions for
determining the final winner of elections.

5 Conclusion

Grading-based voting offers a richer information than classical model. It is based on a discrete or
continuous evaluation of candidates rather than a single preference. Grading widens the scope of
decision processes available.

In this paper, we introduce a new viewpoint on voting procedures, introducing a parallelism with
the statistical notion of depth. Depth functions give a unified way to define voting processes, with
finite or continuous grading. We define the notion of deepest voting, which includes classical voting
procedures such as majority judgment, approval voting and range voting.

Deepest voting related to the family of wLp depths satisfies Balinski and Laraki’s axioms. We
studied some basic paradoxes, namely Condorcet’s, no-show and reinforcement paradoxes.

A large area of new voting procedures is opened with deepest voting, for example considering
Tukey’s halfspace depth or Liu’s simplicial depth. Depth functions have encountered much interest
in statistical literature and their attractive properties (in particular robustness) may be useful in
social decision theory. It will be the object of future research.
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Appendix. Proofs

Proof of Proposition 3

Denote x∗ := (x∗1, . . . , x
∗
d) a deepest point for wLp depth. Maximizing the weighted wLp depth

function is equivalent to minimizing the quantity
∑n

j=1(
∑d

i=1 |Φ(i, j) − xi|p). Since all the

quantities
∑d

i=1 |Φ(i, j)− xi|p are positive, it follows that

∀i ∈ 1, . . . , d, x∗i = argmin
x∈R

n∑
j=1

|Φ(i, j)− x|p.

The optimization is made component-wise so Conditions 1 and 5 are satisfied. Condition 2 is
also true since the sum is order free. If for a given i0, ∀j ∈ 1, . . . , n, Φ(i0, j) = α, then
x 7→

∑n
j=1 |Φ(i0, j) − x|p =

∑n
j=1 |α − x|p is minimal for x = α (as a sum of positive terms

which is equal to zero if and only if x = α) so Condition 3 holds. For Condition 4 and Condition
4 bis, see the proof in [11], p.44.

Proof of Proposition 4

As stated above, each coordinate of a deepest point x∗ := (x∗1, . . . , x
∗
d) is given by the optimization

problem:

∀i ∈ 1, . . . , d, x∗i = argmin
x∈R

n∑
j=1

|Φ(i, j)− x|p.

Since the function x 7→ xp is strictly convex for all p > 1, it results that x∗i exists and is unique
for all i = 1, . . . , d.

Proof of Proposition 5

The proof is trivial since it is well-known that the quantity x minimizing
∑n

j=1 |Φ(i0, j)−x|2 (resp.∑n
j=1 |Φ(i0, j)− x|) is the quadratic mean (resp. the median) of (Φ(i0, 1), . . . ,Φ(i0, n)). The same

result holds for approval Voting, since it corresponds to Range Voting when the possible grades
are restricted to 0 and 1.

Proof of Proposition 6

Consider the ordered grades r1 ≤ r2 ≤ . . . ≤ rn of a given candidate ci, i = 1, . . . , d. We want to
prove that the point x0 = r1+rn

2 minimizes the function g : x 7→ maxj=1,...,n |rj − x|. Remark that
as we ordered the values, g(x) = max{|r1 − x|, |rn − x|}, and thus

g(x) =


rn − x > rn − x0 if x < x0

x0 − r1 = rn − x0 if x = x0

x− r1 > x0 − r1 if x > x0 .

13



Proof of Proposition 7

We present configurations such that

• a Condorcet winner can be not elected by wLp Deepest Voting,

• a Condorcet loser can be elected by wLp Deepest Voting.

We distinguish the two cases p = 1 and p > 1.

• Case p=1.

Let consider the following configuration with 9 voters and 3 candidates:

Number of voters Grade for c1 Grade for c2 Grade for c3
4 0.5 0.1 0.4
1 0.5 0.6 0.4
4 1 0.6 0.7

The corresponding scatterplot is given in Figure 3 taking p0 = 1/9. As the median of grades
for candidate c2 is higher than the median for the other candidates, candidate c2 is elected
by wL1 Deepest voting. However, c1 is the Condorcet winner since an absolute majority of
voters prefer c1 to c2 and c3. In the same time, c2 is elected even if he is the Condorcet loser,
as c1 and c3 are preferred to c2 by a majority of voters.

Gradings for
Candidate C1

Gradings for
Candidate C2

Majority Judgement elects Condorcet Loser
if a<b<c<d

0 1

1

c

b

p0

p0

a

d

(1-p0)/2

(1-p0)/2

=Proportion p0 of judges at this point

and p0<0.5

voters

Figure 3: Configuration of grades considered in the proof of Proposition 7 in the case p = 1.

• Case p > 1.

Let consider the following profiles for 3 candidates and n voters:
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Number of voters Grade for c1 Grade for c2 Grade for c3
n− 1 0.5 + εn,p 0.5 0.5 + εn,p/2

1 0 1 0

with 0 < εn,p ≤ min(0.5; (n − 1)
−1
p−1 ). The corresponding scatterplot is given in Figure 4,

taking p0 = 1/n.

Gradings for
Candidate C1

Gradings for
Candidate C2

 wLp Deepest Voting (p>1) elects Condorcet Loser 
(Range Voting included) if ε and p0<1/2 small enough

0 1

1

0.5

p0

= proportion p0 of judges at this point

(1-p0)

p0

0.5+ε

Most of 
the judges

Few judges

voters

voters

voters

Figure 4: Configuration of grades considered in the proof of Proposition 7 in the case p > 1.

The coordinates of the deepest point x∗p = (x∗p,1, x
∗
p,2, x

∗
p,3) are solutions of the following

optimization problems:

x∗p,1 = arg min
x∈[0,1]

(n− 1)|x− (0.5 + εn,p)|p + xp

x∗p,2 = arg min
x∈[0,1]

(n− 1)|x− 0.5|p + |1− x|p

x∗p,3 = arg min
x∈[0,1]

(n− 1)|x− (0.5 + εn,p/2)|p + xp.

Using the first order conditions of the optimization problems, we get:

x∗p,1 =
(0.5 + εn,p)(n− 1)

1
p−1

(n− 1)
1

p−1 + 1

x∗p,2 =
1 + 0.5(n− 1)

1
p−1

1 + (n− 1)
1

p−1

x∗p,3 =
(0.5 + εn,p/2)(n− 1)

1
p−1

(n− 1)
1

p−1 + 1
.

When 0 < εn,p ≤ (n − 1)
−1
p−1 ,it follows that x∗p,3 < x∗p,1 < x∗p,2. Consequently, candidate c2

(who is the Condorcet loser) is elected by wLp-deepest voting even if the Condorcet winner
is c1.
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Proof of Proposition 8

• Case p = 1

For an example proving the vulnerability of the Majority Judgment to reinforcement (resp.
no-show) paradox, see Felsenthal and Machover, 2008, p. 327 (resp. p. 329) [8].

• Case 1 < p < 2

Consider the following configuration of grades:

Candidate c1 Candidate c2
Voter v1 0.5 1
Voter v2 0.5 ε
Voter v3 0 ε

with 0 < ε < 1. If only voters v1 and v2 are voting, then candidate c2 wins, whatever ε > 0.
Moreover, voter v3 prefers candidate c2. Hence, to prove that no-show and reinforcement
paradoxes hold, we may establish that considering voters {v1, v2, v3}, candidate c2 may loose.

Denote x∗ := (x∗1, x
∗
2) the deepest point obtained for the wLp depth with voters (v1, v2, v3).

We aim at proving that x∗2 < x∗1 for some 0 < ε < 0.5.

For j = 1, 2, components of the deepest point x∗ are obtained by

x∗j = argmin
x∈R

n∑
i=1

|Φ(i, j)− x|p.

First order conditions for j = 1 lead to

2|x∗1 − 0.5|p−1 sign(x∗1 − 0.5) + |x∗1|p−1 sign(x∗1) = 0

Consequently, 0 < x∗1 < 0.5 and we deduce that x∗1 = 0.5 21/(p−1)

1+21/(p−1) .

For j = 2 we get

2|ε− x∗2|p−1 sign(ε− x∗2) + |1− x∗2|p−1 sign(1− x∗2) = 0

Similarly, we deduce that x∗2 = 1+21/(p−1)ε
1+21/(p−1) .

Thus
x∗2 < x∗1 ⇐⇒ ε < 0.5− 2−1/(p−1)

Since the right-hand side is positive for p < 2, we deduce that there exists ε > 0 such that
x∗2 < x∗1. This concludes the proof.

• Case p = 2

wL2-depth deepest point is the point with coordinates equal to the mean of votes. Let x1
and y1 be the mean score obtained respectively by two candidate c1 and c2 on a population
of voters of size n1 and let x2 and y2 be the mean score obtained respectively by the
two candidates c1 and c2 on a population of size n2. If x1 < y1 and x2 < y2, then
n1x1 + n2x2 < n1y1 + n2y2. Hence, if candidate c2 wins in the two sub-populations, he
also wins on the total population. We can deduce that reinforcement paradox does not hold.
Next, taking n2 = 1, it implies that no-show paradox does not hold either.
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• Case 2 < p

For 0 < ε < 0.5, consider the following grades:

Candidate c1 Candidate c2
voter v1 0 0.5+ε
voter v2 1 0.5+ε
voter v3 0 ε

Then if only voters v1 and v2 are voting, candidate c2 wins because 0.5 + ε > 0.5. Since
v3 prefers c2, to prove that no-show and reinforcement paradoxes hold, let’s establish that
considering voters {v1, v2, v3}, candidate c2 may loose.

Denote x∗ := (x∗1, x
∗
2) the deepest point obtained for the wLp depth with voters (v1, v2, v3).

We aim at proving that x∗2 < x∗1 for some 0 < ε < 0.5.

For j = 1, 2, components of the deepest point x∗ are obtained by

x∗j = argmin
x

n∑
i=1

|Φ(i, j)− x|p.

Differentiating the criterion with respect to x leads to

n∑
i=1

|Φ(i, j)− x|p−1sign(Φ(i, j)− x).

First order conditions for j = 1 imply

2 |x∗1|p−1 sign(x∗1) + |1− x∗1|p−1 sign(1− x∗1) = 0.

Hence 0 < x∗1 < 1 and we obtain that x∗1 = 1
1+21/(p−1) .

First order conditions for j = 2 lead to

2 |0.5 + ε− x∗2|p−1 sign(0.5 + ε− x∗2) + |ε− x∗2|p−1 sign(ε− x∗2) = 0.

We deduce analogously that x∗2 = 0.5 21/(p−1)

1+21/(p−1) + ε.

Thus

x∗2 < x∗1 ⇐⇒ ε <
1

1 + 21/(p−1)
− 1

2

21/(p−1)

1 + 21/(p−1)

⇐⇒ ε <
2− 21/(p−1)

2 (1 + 21/(p−1))
.

Since the right-hand side is positive for p > 2, we deduce that there exists ε > 0 such that
x∗2 < x∗1. This concludes the proof.
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