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Energy-based design of dynamic allocation in the presence of

saturating actuators∗

Thiago A. Lima? Sophie Tarbouriech Bismark C. Torrico Fabŕıcio G. Nogueira

April 8, 2021

Abstract

This paper addresses the design of dynamic allocation functions for systems with saturating actuators.
The novelty of the proposal relies on the use of an anti-windup loop to drive the state of the allocator,
which in some sense dynamically compensates the difference between the computed control signal and
the plant input. Furthermore, the co-design of the allocator and anti-windup loop is presented, allowing
to deal with the multiple objective of reducing the allocator error and increasing the closed-loop region
of stability. Theoretical conditions are derived in terms of linear matrix inequalities (LMIs) and an
optimization scheme consisting in the minimization of the energy of the allocator error is proposed. Two
examples borrowed from the literature illustrate the proposed technique and show its effectiveness.

1 Introduction

Control allocation is widely used in over-actuated systems where the controlled plant is, in general, modeled
using torques and forces as inputs, and these forces and torques are generated by the set of actuators (for
example microthrusters in space applications) that together produce the desired control effort. As pointed
out in [13], the advantages with the use of the control allocation approach is, in general, modularity and
ability to handle contraints.

The control allocation problem is treated in several papers dealing with specific applications, in particular
in the aeronautical or spatial contexts: see, for example, the works of [5], [8], [1], [3]. Technical solutions are
also proposed in the literature from a theoretical point of view. Both the works in [4] and [10] consider the
output regulation problem of over-actuated systems in the presence of full-information regarding the system
states and exogenous inputs. More specifically, [4] proposes allocation mechanism that takes the form of a
hybrid system and accounts for input constraints. In [9], optimization-based algorithms, as interior point
method, are detailed in order to compute the optimal static allocation.

[6] note that control allocation functions have the primary objective of ensuring that the controller output
(noted yc in the paper) is produced jointly by the multiple effectors. Thus, given the influence matrix (noted
M in the paper), we want to make sure that the input signal (noted up in the paper) is equal to the computed
control signal (yc) or that at least the error between them is very small.

The objective pursued in the current paper can be viewed as in the same vein. Indeed, the paper proposes
the co-design of a dynamic allocation function and anti-windup loop with the focus of minimizing the
allocation error and maximizing the estimation of the region of stability of the closed loop. Although dynamic
allocation function has been proposed in [14], there are some fundamental differences with the strategy in
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this paper that can be shortly listed: i) [14] does not consider the co-design problem of the anti-windup loop
and allocation. ii) The parameters of the allocator in [14] are manually selected. iii) The formulation in [14]
is focused in the specific case where the size of the plant input (noted mc in the paper) is equal to the size of
allocator output (noted ma in the paper) and the influence matrix is the identity matrix (i.e., M = I). In the
current work, we can deal with broader range of systems since we consider the case of ma ≥ mc.

By considering a Lyapunov-based approach, theoretical conditions are derived in terms of linear matrix
inequalities (LMIs) in order to solve the co-design of the allocator and anti-windup loop. Furthermore, an
optimization scheme consisting in the minimization of the energy of the allocator error is proposed. Its use in
two examples borrowed from the literature shows its effectiveness.

The paper is organized as follows. Section 2 is dedicated to present the general view of the control
allocation, and to specify the class of the plant, controller and allocation function under consideration. Section
3 presents the main theoretical conditions, together with the associated optimization scheme. In Section
4, two examples borrowed from the literature emphasize the interest of the proposed approach. Finally, in
Section 5, concluding remarks and forthcoming issues end the paper.

Notation. For a matrix Y ∈ Rn×m, Y> ∈ Rm×n means its transpose, Y(i) denotes its ith row, while for

v ∈ Rm, v(i) denotes its ith component. For matrices W = W> ∈ Rn×n and Z = Z> ∈ Rn×n, W > Z means
that W − Z is positive definite. Likewise, W ≥ Z means that W − Z is positive semi-definite. I and 0 denote
identity and null matrices of appropriate dimensions, although their dimensions can be explicitly presented
whenever relevant. In this case, 0n×m represents the n×m null matrix, while In represents n× n identity

matrix. The ? in

[
A B
? C

]
denotes symmetric blocks in the expression of a matrix, that is ? = B>. Finally,

for matrices W and Z, diag(W,Z) =

[
W 0
0 Z

]
where the null matrices 0 are of appropriate dimensions.

2 Problem formulation

2.1 General view

Consider the general view of the control allocation problem shown in Fig. 1.

C F M P •
r yc yf up yp

+
+

Figure 1: General view of control allocation problem.

Subsystems C, F , M, and P are the controller, the control allocator, the influence matrix and the plant,
respectively. The plant is driven by up ∈ Rmc inputs. The controller computes a set of desired yc ∈ Rmc

efforts that must be injected in the plant in ideal conditions. The plant input is generated by a set of ma ≥ mc

actuators, represented by the signal yf ∈ Rma . In the absence of nonlinearities, up = Myf , and the so-called
influence matrix M ∈ Rma×mc maps how each individual effort of the ma actuators combines to generate the
inputs acting on the plant. The simplest allocation function is given by the right pseudo-inverse of M, that is,
F = M†, with MM† = I.

In case the actuators are subject to amplitude limits, the process input, up, is given by up = Msat(yf ),
where the standard decentralized saturation function is defined as

sat(yf(i)) = sign(yf(i)) min{|yf(i)|,u(i)},u(i) > 0, (1)

for i = 1, . . . ,ma, where u(i) denotes the amplitude bound in each actuator.
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In this case, two main problems arise: i) Guarantees of stability of the closed-loop in the presence of
saturation need to be ensured. ii) The application of the pseudo-inverse of M no longer produces null error
between the plant input and the controller output. In this context, more complex allocation functions with
the ability to handle redundancy and constraints should be applied.

2.2 Plant and controller description

Consider the plant P described by the following equations

P ∼

{
ẋp = Apxp + Bpup,

yp = Cpxp,
(2)

where xp ∈ Rnp is the plant state vector, up ∈ Rmc is the plant input, yp ∈ Rq is the measured output. Ap,
Bp, and Cp are all constant and known matrices of appropriate dimensions. Furthermore, the pairs (Ap,Bp)
and (Cp,Ap) are supposed to be controllable and observable.

Let us assume that the plant (2) is stabilized by a dynamic output controller C linearly designed via the
connection up = yc, that is without taking into account the saturation. The controller C is defined by the
following equations

C ∼

{
ẋc = Acxc + Bcyp + vaw,

yc = Ccxc + Dcyp,
(3)

where xc ∈ Rnc is the controller state vector and yc ∈ Rmc is the controller output. Ac, Bc, Cc, and Dc are
supposed known. The anti-windup compensation signal vaw is added in order to mitigate the undesired effects
of saturation (see, for example, [12], [15]). In this paper, we consider the anti-windup signal vaw = Ecϕ(yf ),
Ec ∈ Rnc×ma , with the deadzone ϕ(yf ) defined as

ϕ(yf ) = sat(yf )− yf (4)

where the saturation map is defined from (1) and yf is the output of the allocation function.

Remark 1. By construction, the linear connection plant-controller is supposed to be stable. In other words,
the controller (3) (with vaw = 0) stabilizes the plant (2) through the linear interconnection up = yc and
therefore the following matrix is Hurwitz

A0 =

[
Ap + BpDcCp BpCc

BcCp Ac

]
(5)

2.3 Dynamic allocation function description

Consider the influence matrix M ∈ Rmc×ma , with ma ≥ mc. Let η = {η1, η2, . . . , ηnf
}, with nf = ma −

rank(M), be a basis for the Kernel of M. We then propose the following dynamic allocation function

F ∼

{
ẋf = Afxf + Efϕ(yf ),

yf = Nxf + M†yc,
(6)

where N =
[
η1 η2 . . . ηnf

]
∈ Rma×nf , M† ∈ Rma×mc is such that MM† = I, xf ∈ Rnf is the allocator

state vector, and yf ∈ Rma is the allocator output. Matrices Af and Ef must be designed to achieve desired
behavior of the allocator by taking into account the presence of saturation.

Remark 2. This allocation format is particularly interesting since it has potential to couple with the main
requirement of allocation functions, which is to reduce the error between the required plant input signal
computed by the controller and the plant actual input. When the system is not saturated, up = Myf = yc
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since MM† = I and MN = 0. During saturation occurrence, up = Msat(Nxf + M†yc) and the state xf is
used to improve system behavior and somehow redistribute the control effort between the actuators. The term
Efϕ(yf ) plays an important role since it uses the difference between the saturated actuator output and the
required signal.

Let us define the allocator error as e = up− yc, then e = Msat(yf )− yc. Using identity (4), the expression
e = M (Nxf + ϕ(yf )) is easily obtained. Thus, the mapping yc → e can be defined

yc → e ,


ẋf = Afxf + Efϕ(yf ),

yf = Nxf + M†yc,

e = M (Nxf + ϕ(yf ))

(7)

F M•
yc yf up e

+
−

Figure 2: Diagram illustrating mapping from yc to allocator error e.

Note that due to MN = 0, in the absence of saturation one gets e = 0.

Remark 3. In the rest of the paper, we kept the product MN in the expression of e in order to preserve the
general format of the allocator and then to be able to deal with the case studied in [14]. See also Section 3.2.

2.4 Closed-loop system and problem formulation

By taking into account the definitions of P , C and F , identity (4) and the connection up = Msat(yf ), the

complete closed-loop system with x =
[
x>p x>c x>f

]> ∈ Rn, n = np + nc + nf , can be written as
ẋ = Ax+ Bϕϕ(yf )

yf = Cx

e = Hx+ Mϕ(yf ),

(8)

where A = A+ LfAfL>f , Bϕ = B1 + LE, with

A =

Ap + BpDcCp BpCc 0
BcCp Ac 0

0 0 0

 ,B1 =

 BpM
0nc×ma

0nf×ma

 ,E =

[
Ec

Ef

]

L =

0np×nc

Lf︷ ︸︸ ︷
0np×nf

Inc 0nc×nf

0nf×nc
Inf

 , [C
H

]
=

[
M†DcCp M†Cc N

0 0 MN

]
.

The presence of the dead-zone in the closed-loop dynamics (8) implies to characterize a suitable region of the
state space in which the stability is ensured (see, for example, [12], [15]). In general the global asymptotic
stability of the origin (that is for any initial condition x(0) ∈ Rn) does not hold except if the open loop
has suitable properties of stability [11]. Hence, the regional stability (that is, only for initial conditions in
a neighborhood of the origin) has to be studied. Since exact characterization of the basin of attraction of
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the origin remains an open problem, a challenging problem consists in providing an estimate of the basin of
attraction as accurate as possible.

Furthermore, we want to ensure some level of performance to the allocator in terms of the error e, which
can be done by imposing conditions that limit the energy of this signal. With respect to (3) and (6), the
main objective of this paper is to propose the co-design of the dynamic allocation function, that is Af , and
Ef , along with the controller anti-windup gain Ec. Then the problem we intend to solve can be summarized
as follows.

Problem 1. Design matrices Af , Ef and Ec, such that

1. the regional asymptotically stability of the closed-loop system (8) is ensured and the estimate of the
region of attraction is maximized.

2. the energy of the allocator error is minimized.

3 Main results

3.1 Theoretical conditions

For vectors yf ∈ Rma and θ ∈ Rma , consider the set

S = {yf ; θ;−u(i) ≤ yf(i) − θ(i) ≤ u(i), i = 1, ...,ma}, (9)

and recall the following Lemma from p.43 in [12].

Lemma 1. If yf and θ belong to set S, then the deadzone nonlinearity ϕ(yf ) satisfies the following inequality,
which is true for any diagonal positive definite matrix T ∈ Rma×ma

ϕ>(yf )T[ϕ(yf ) + θ] ≤ 0. (10)

The following theorem provides a solution to Problem 1.

Theorem 1. Assume there exist positive definite matrices P = P
> ∈ Rn×n, R = R

> ∈ Rmc×mc , positive definite
diagonal matrix S = S> ∈ Rma×ma , matrices G ∈ Rma×n, X11 ∈ Rnp×np , X12 ∈ Rnp×nc , X21 ∈ Rnc×np ,
X22 ∈ Rnc×nc , X31 ∈ Rnf×np , X32 ∈ Rnf×nc , X33 ∈ Rnf×nf , Kf ∈ Rnf×nf , Ke ∈ R(nc+nf )×ma such that

Ψ =


−X−X

>
Ψ12 Ψ13 0

? Ψ22 Ψ23 −XH>

? ? −2S −SM>

? ? ? −R

 < 0, (11)

[
P G

>
(i)

? u2(i)

]
≥ 0, (12)

hold with Ψ12 = P+ J +AX
> −X, Ψ13 = B1S + LKe, Ψ22 = J + J> +AX

>
+XA

>
, Ψ23 = Ψ13 +G

> −XC>,

X =

X11 X12 0
X21 X22 0
X31 X32 X33

 , J =

0 0 0
0 0 0
0 0 Kf

 .
Then, matrices E =

[
E>c E>f

]>
= KeS

−1, Af = KfX−1
>

33 are solution to Problem 1. In other words:

1. the closed-loop system (8) is asymptotically stable in the ellipsoid ε(P, 1) = {x ∈ Rn;x>Px ≤ 1}, with

P = XPX> and X = X
−1

;
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2. the energy of the error signal is limited and given by
∫∞
0

e(τ)>Re(τ)dτ < 1, with R = R
−1

.

Proof. Consider a quadratic Lyapunov function V(x) = x>Px, with symmetric P > 0 ∈ Rn×n.
Note first that the satisfaction of inequality (11) means that matrix X is non-singular. The satisfaction of

relation (12) ensures the inclusion of the ellipsoid ε(P, 1) in the set given by S = {x ∈ Rn;−u(i) ≤ G(i)x ≤ u(i)},
where G = GX

>
, P = XPX> and X = X

−1
.

Next we want to verify that V̇(x) < 0. By choosing θ = Cx − Gx, Lemma 1 applies and one gets
−2ϕ>(yf )T[ϕ(yf ) + θ] ≥ 0, for any x ∈ S. Hence, if we verify that

L = V̇(x)− 2ϕ>(yf )T[ϕ(yf ) + θ] + e>Re < 0, (13)

with R > 0, T > 0, then V̇(x) < 0, and stability of (8) is assured. Consequently, V̇(x) + e>Re < 0 is also
satisfied, which can be integrated leading to∫ ∞

0

e(τ)>Re(τ)dτ < V(x(0)) ≤ 1, (14)

which shows the bound on the energy of the signal e(t). By defining the augmented vector ζ =
[
ẋ> x> ϕ(yf )>

]>
,

we can rewrite inequality L < 0 as L = ζ>Qζ < 0, with

Q =

0 P 0

? H>RH G>T> − C>T> + H>RM

? ? − 2T + M>RM

 . (15)

We also have that the relation Bζ = 0 holds for B =
[
−I A Bϕ

]
. From the Finsler Lemma, we have that

the following facts are equivalent (see, for example, [2]):

• ζ>Qζ < 0, ∀ζ such that Bζ = 0, ζ 6= 0.

• ∃W such that Q + WB+B
>

W> < 0.

By considering W =
[
X> X> 0

]>
, we obtain the new condition Ψ = Q + WB+B

>
W> < 0. By applying a

Schur complement to Ψ, followed by pre- and post-multiplying by diag(X−1,X−1,T−1, I) and its transpose,

respectively, and making changes of variable R = R−1, X = X−1, P = XPX
>

, S = T−1, G = GX
>

, Kf = AfX>33,
Ke = ES we obtain condition Ψ< 0. Hence, it follows that if relations (11) and (12) are satisfied then one
gets L < 0, or equivalently V̇(x) < 0, for any x ∈ ε(P, 1). Then the two items of Theorem 1 are proven and
the proof is completed. �

Remark 4. In case the plant state matrix Ap is Hurwitz stable, global stability of the closed loop can be
achieved and the design of Af , Ef , Ec can also be realized by solving LMI (11) with G = 0. Indeed, this case
is straightforward by noticing that making G = 0 imposes that G = 0 and therefore corresponds to making
θ = yf , thus turning set S into the whole state-space.

3.2 Case when M enters the plant

In some papers, as the one in [14], the influence matrix M enters the plant model. In this case, ma = mc, the
system has more inputs than states (mc > np) and the input-redundancy nature of the plant is explicit. All
the results in this paper can straightforwardly be applied in this case by making M = I and choosing N as a
base for the null space of Bp, that is, BpN = 0. Although in this case MN 6= 0, convergence of the allocator
error to zero takes place due to the fact that the allocator states xf converges to zero at steady-state, thus
the term Nxf also tends to zero and the allocator recovers the property up = yc after some time.
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3.3 Optimization issues

From (14), it becomes clear that maximization of the trace of R leads to minimization, in some sense, of the
allocator error e(t). Therefore, while solving the LMIs in Theorem 1 (or in Remark 4), we can accomplish
better results for the allocator by minimizing the trace of R. In case of Theorem 1, the maximization of
the ellipsoid ε(P, 1) is also of interest. Therefore, a multi-objective convex optimization procedure applies.
Consider a positive definite matrix P0 and the following matrix inequality[

P0 I

? X+X
> −P

]
≥ 0. (16)

Then, minimization of the trace of P0 indirectly leads to minimization of the trace of P and, therefore, to
maximization of the ellipsoid ε(P, 1). Consider weighting parameters ρ1, ρ2. Then the following convex
optimization procedure takes place in case of Theorem 1

min ρ1λ1 + ρ2λ2

subject to (11), (12), (16),P0 ≤ λ1I,R≤ λ2I
(17)

In case global asymptotic is sought (Remark 4), the following convex optimization procedure applies

min λ

subject to (11) with G = 0 and R≤ λ
(18)

Since optimization problems (17) and (18) are convex, they can be easily solved with the help from standard
LMI solvers and parsers (for example the YALMIP toolbox from [7]).

4 Simulation results

4.1 Example 1

Consider the satellite formation flying control problem from [1], where the controlled output yp represents the
relative position between two satellites in a vertical axis. Given two satellites, the objective is to cancel the
lateral position error between them in the z − axis. The process can be represented by the following model

[
Ap Bp

Cp Dp

]
=

 0 1 0 0
0 0 m−11 −m−12

1 0 0 0

 ,
where m−11 and m−12 are the masses of the two satellites. The plant input is given by up=

[
u>p1

u>p2

]>
,

where up1 and up2 are forces that act individually in each satellite. Each satellite possesses 4 thrusters that
jointly produce the force applied in each of them. The influence matrix is given by M = diag(M1,M2), with
M1 = M2 =

[
1 −1 −1 1

]
. We assume that each thruster can produce a a force between 0 mN and

100 mN , therefore the saturation limits are not symmetric. In order to apply the developed conditions, the
same symmetrizing technique of [1] takes place, consisting of substituting the asymmetric saturation by a
symmetric one with limits ui = 50 mN, i = 1 . . . 8, followed by addition of the kernel symmetrizing vector
ξ = u. After choosing m1 = m2 = 1000 kg, a stabilizing LQG controller is designed using identity matrices
for all the weights. The resulting controller is given by

[
Ac Bc

Cc Dc

]
=


−1.7321 1 1.7321
−1.0014 −0.0532 1
−0.7071 −26.6009 0

0.7071 26.6009 0

 ,
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We then compute M†=0.25diag(M>1 ,M
>
2 ), N = diag(N1,N2), with N1=N2=

[
1 1 −1

I3

]
. We use optimization

procedure (17) with weights ρ1 = 1, ρ2 = 0.15, so that regional asymptotic stability can be guaranteed by
means of Theorem 1. The obtained anti-windup and allocator matrices for this example are given by

[
Ec

Ef

]
=



−0.0360 −0.0380 0.0978 −0.0979 0.0918 −0.0921 −0.0921 0.0921
−0.0379 0.0057 0.0664 −0.0664 0.0636 −0.0639 −0.0639 0.0639

0.0991 0.0676 −0.0051 −0.0037 −0.0050 −0.0127 −0.0126 0.0127
−0.0991 −0.0676 −0.0037 0.0983 0.1000 0.0100 0.0099 −0.0099

0.0929 0.0647 −0.0050 0.0999 0.0859 −0.0158 −0.0158 0.0158
−0.0933 −0.0649 −0.0127 0.0100 −0.0158 0.2498 −0.1298 0.1298
−0.0933 −0.0649 −0.0126 0.0099 −0.0158 −0.1298 0.2498 0.1298

0.0933 0.0649 0.0127 −0.0099 0.0158 0.1298 0.1298 0.2498


,

Af =


−1.7554 −2.3389 2.3338 −0.0027 −0.0027 0.0027
−0.3432 −2.9489 0.1056 0.0452 0.0452 −0.0452

0.4526 −0.0022 −2.8405 0.0488 0.0488 −0.0488
−0.6866 0.7027 −0.7039 −2.7942 −0.0915 0.0915
−0.6866 0.7027 −0.7039 −0.0916 −2.7943 0.0916

0.6866 −0.7027 0.7039 0.0916 0.0916 −2.7942

 .

We simulate the system response for an initial condition of xp(0) =
[
−0.25 0.001

]>
, with xc(0) = 0 and

xf (0) = 0. Figure 3 shows the obtained results. It can be observed that the allocation error is indeed reduced
by application of the proposed technique.

0 40 80

-0.25

0

0 40 80

0

1.5

3

0 40 80

0

1.5

3

Figure 3: Example 1: Output and allocation errors.
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4.2 Example 2

Consider the exponentially stable plant from [14]. The plant is defined by the following data:

[
Ap Bp

Cp Dp

]
=

 −0.157 −0.094 0.87 0.253 0.743
−0.416 −0.45 0.39 0.354 0.65

0 1 0 0 0

 .
There is no loss of generality in considering this example since Dp = 0. This process is input redundant,

as noted in [14]. The saturation limits are given by u =
[

1 0.01 0.02
]>

. To control the system and
guarantee asymptotic tracking of constant references in the absence of saturation, [14] inserts an integrator
and designs a stabilizing LQG controller which only uses the first two input channels. The resulting controller
is given by

[
Ac Bc

Cc Dc

]
=



−1.57 0.5767 0.822 −0.65 0
−0.9 −0.501 −0.94 0.802 0

0 1 −1.61 1.614 0
0 0 0 0 −1

1.81 −1.2 −0.46 0 0
−0.62 1.47 0.89 0 0

0 0 0 0 0


.

For this example, ma = mc and M = I. We select then N as the Kernel of Bp, resulting in N =[
−0.4726 −1.3143 1

]>
. In this case, we utilize optimization procedure (18) which allows to estab-

lish global asymptotic stability results (Remark 4). We obtain, thus

[
Ec

Ef

]
=


0.0805 0.1071 −0.5001
0.6952 −0.3965 −0.4768
−5.1823 2.5204 −0.3478
−4.0392 2.7077 −0.0247
−1.3366 −0.2536 0.1016

 ,Af = −72.8135.

The parameters of the allocator and the anti-windup of [14] can be found therein. Since we are dealing with
the stabilization case, we consider null reference and simulate the system response for an initial condition

xp(0) =
[

0.4 0.4
]>

, with xc(0) = 0 and xf (0) = 0. Figure 4 shows the output response and the allocator
errors for both strategies. The computed control signal and the plant input for the proposed strategy and the
one from [14] are shown in Figures 5 and 6, respectively. The fundamental difference in the results relies in
the fact that for the proposed strategy, the allocator error is kept very small during the whole simulation and
converges to zero after the system is out of saturation. It should be reminded, however, that minimizing the
allocator error was not a priority in [14].

5 Conclusion

In this paper, we proposed the co-design of dynamic allocation function and anti-windup loop in the presence
of saturation of actuators. The allocation function has a general format, which allows to include multiple
objective criteria into the design conditions. The developed equations can be used in both the cases when the
controller is designed by taking into account the process model from forces and torques and the case when
the process model explicitly exhibits the over-actuation phenomenon, that is, when the influence matrix M
enters the process model. Simulation case studies were used to illustrate both cases. The results open the
door for several future work as in particular to consider other nonlinearities affecting the actuator and the
fact to deal with event-triggered control.
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Figure 4: Example 2: Output and allocation errors for both the proposed strategy and [14].
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Figure 5: Example 2: Controller output and plant input signals for the proposed strategy.
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Figure 6: Example 2: Controller output and plant input signals for the strategy from [14].
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[7] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004.

11



[8] M. W. Oppenheimer, D. B. Doman, and M. A. Bolender. Control allocation for over-actuated systems.
In 2006 14th Mediterranean Conference on Control and Automation, pages 1–6, June 2006.

[9] J. A. M. Petersen and M. Bodson. Constrained quadratic programming techniques for control allocation.
IEEE Transactions on Control Systems Technology, 14(1):91–98, Jan 2006.

[10] A. Serrani. Output regulation for over-actuated linear systems via inverse model allocation. In 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), pages 4871–4876, Dec 2012.

[11] E. D. Sontag. An algebraic approach to bounded controllability of linear systems. Int. J. Control,
39(1):181–188, 1984.
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