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Summary 20 

Stinging nettle (Urtica dioica L.) raises growing interest in phytomanagement because 21 

it commonly grows under poplar Short Rotation Coppices (SRC) set up at trace-metal (TM) 22 

contaminated sites and provides high-quality herbaceous fibres. The mycobiome of this non-23 

mycorhizal plant and its capacity to adapt to TM-contaminated environments remains 24 

unknown. This study aimed at characterizing the mycobiome associated with nettle and poplar 25 

roots co-occurring at a TM-contaminated site. Plant root barcoding using the fungi-specific 26 

ITS1F-ITS2 primers and Illumina MiSeq technology revealed that nettle and poplar had distinct 27 

root fungal communities. The nettle mycobiome was dominated by Pezizomycetes from known 28 

endophytic taxa and from the supposedly saprotrophic genus Kotlabaea (which was the most 29 

abundant). Several ectomycorrhizal fungi such as Inocybe (Agaricomycetes) and Tuber 30 

(Pezizomycetes) species were associated with the poplar roots. Most of the Pezizomycetes taxa 31 

were present in the highly TM-contaminated area whereas Agaricomycetes tended to be 32 

reduced. Despite being a known non-mycorrhizal plant, nettle was associated with a significant 33 

proportion of ectomycorrhizal OTU (9.7%), suggesting some connexions between the poplar 34 

and the nettle root mycobiomes. Finally, our study raised the interest in reconsidering the fungal 35 

networking beyond  known mycorrhizal interactions. 36 

 37 
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1. Introduction  42 

Phytomanagement is a remediation technique based on plant species to restore and 43 

revalorize polluted sites while producing biomass (Cundy et al., 2016; Evangelou et al., 2015). 44 

Fast-growing trees such as poplars (Populus sp.) allow the production of a high amount of 45 

valuable plant biomass for renewable energy (Kidd et al., 2015; Pandey et al., 2016). At the 46 

same time, trees limit the dispersal and risks of soil contaminants, while promoting the 47 

spontaneous biodiversity (Parraga-Aguado et al., 2014). Recent approaches on the optimisation 48 

of phytomanagement systems pointed out the importance of assemblages between crops and 49 

spontaneous species (Parraga-Aguado et al., 2013) to ensure a more efficient and gentle 50 

remediation (Boisson et al., 2016). The spontaneous vegetation biodiversity is generally 51 

restricted by the soil physico-chemical properties, limiting the panel of species able to develop 52 

and compete with the tolerant species (Macnair, 1987). Much less is known on how this plant 53 

biodiversity is shaping its root microbiota in this context. 54 

The stinging nettle (Urtica dioica L.) colonizes a vast diversity of nitrophilic 55 

environments and particularly anthropogenic areas (Balabanova et al., 2015; Shams et al., 2010; 56 

Viktorova et al., 2016). It has thus been frequently observed as a companion species in a wide 57 

range of nitrogen-rich environments such as Salicaceous plantations at both natural (Cronk et 58 

al., 2016) and anthropized sites (Yung et al., 2019). Nettle has recently raised growing interest 59 

in the domain of phytomanagement because it (i) constitutes a new resource of high-quality 60 

herbaceous fibres for the manufacture of biomaterials (Bacci et al., 2009; Di Virgilio et al., 61 

2015; Jeannin et al., 2019, 2020), (ii) promotes the biodiversity of local entomofauna (James et 62 

al., 2015; Perrin, 1975; Yung et al., 2019) and (iii) spontaneously grows in contaminated sites 63 

(Murtic et al., 2019; Paukszto and Mirosławski, 2019; Viktorova et al., 2016).  64 

The success of phytomanagement depends on the capacity of plants to colonize harsh 65 

environments, which is partly related to their ability to interact with soil microorganisms, and 66 
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especially to establish symbiotic relationships with some of them. Among these 67 

microorganisms, arbuscular mycorrhizal (AM) (Miransari, 2017), ectomycorrhizal (EM) (Gil-68 

Martínez et al., 2018) fungi and Dark Septate Endophytes (DSE) (Deng and Cao, 2017) are 69 

major drivers of plant growth and response to abiotic stress and phytopathogens (Otero-Blanca 70 

et al., 2018; Selosse et al., 2004). The use of fungal inoculum has been described as a 71 

phytoremediation enhancer by improving uptake and accumulation of trace metals (TM) by 72 

plants in phytoextraction application or by limiting the translocation of TM from roots to shoots 73 

during phytostabilisation (Berthelot et al., 2016a; Khan, 2005; Ma et al., 2019; Pepper et al., 74 

2015). While the success of field inoculation is rather unpredictable (Gerhardt et al., 2017; 75 

Selosse et al., 1998, 1999) due to various abiotic (e.g., sensitivity to TM) and biotic parameters 76 

(e.g., competition with the local microbiome), the risks of failure may be mitigated by 77 

considering indigenous strains, which may have developed a tolerance for TM (Wubs et al., 78 

2016). Characterisation of in-situ plant-associated microbiome appears as an essential 79 

preliminary step for identifying rhizospheric microorganisms that may actively participate to 80 

phytomanagement processes.  81 

In the temperate climate zone, poplars are among the few cultivated trees that form 82 

tripartite symbiotic associations with EM and AM fungi (Gehring et al., 2006; Teste et al., 83 

2020). As symbiotic fungi play crucial roles in soil fertility, colonisation, plant nutrition, metal 84 

uptake, accumulation or restriction in plants (Smith and Read, 2010; van der Heijden et al., 85 

2015), poplar microbiome have been well studied in phytomanagement contexts (Durand et al., 86 

2017; Foulon et al., 2016b; Schmidt et al., 2018; Vitali et al., 2019; Zappelini et al., 2015). 87 

Recent studies highlighted the positive effects of EM and AM inoculation on poplar cultivars 88 

growing at a multi-contaminated site (Ciadamidaro et al., 2017; Phanthavongsa et al., 2017). 89 

However, mycobiome associated with nettle have been barely studied in natural or 90 

anthropogenic biota. A study combining in-situ and mesocosm approaches concluded that the 91 
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nettle rhizosphere was devoid of any mycorrhizal structures and revealed that the AM fungus 92 

Glomus mosseae was not able to develop in the presence of nettle (Vierheilig et al., 1996). The 93 

authors speculated that a rhizome protein called Urtica dioica agglutinin (UDA) with anti-94 

fungal properties (Broekaert et al., 1989) could be involved in AM avoidance. In addition, this 95 

inhibitory effect could even affect the mycobiome of neighbouring plants (Fontenla et al., 96 

1999).  97 

The present study aimed at characterizing, using Illumina Mi-seq sequencing, the 98 

mycobiome associated with nettle and poplar roots co-occurring in an agrosystem set up on a 99 

contaminated site, where two areas were clearly distinguished by their TM concentrations. We 100 

hypothesised that poplar and nettle would harbour distinct root-associated fungal communities: 101 

poplar mycobiome would be dominated by EM and AM fungi; at the opposite, nettle 102 

communities would be composed of endophytic fungi (i.e. fungi colonizing root tissues 103 

asymptomatically (Wilson, 1995)) with a low fungal diversity as described above. We further 104 

hypothesised that the level of TM contamination would alter the root-associated mycobiomes 105 

by reducing root fungal diversity and by increasing the diversity and abundance of TM-tolerant 106 

fungi, as mentioned elsewhere (Giller et al., 2009; Zappelini et al., 2015). 107 

 108 

2. Material and methods  109 

2.1. Site description 110 

The study site located at Fresnes-sur-Escaut (France, 50°25'47.9"N 3°35'07.8"E) is a 111 

nettle-poplar agrosystem on a dredged sediment disposal site, contaminated with TM, that 112 

operated between 1978 and 1989.  113 

Approximately 200 000 m3 of silt and sand from the dredging of l’Escaut canal were 114 

deposited, resulting in heterogeneous contamination with As, Cd, Cu, Ni, Pb and Zn within the 115 

surface horizons (0-50 cm). The experimental site is divided into two areas differing by the 116 

level of TM: the low trace-metal (LTM) and the high trace-metal (HTM) areas. The HTM area 117 
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has mean soil concentrations of Zn (2231 mg/kg), Pb (425 mg/kg), Cu (108 mg/kg) and Cd (63 118 

mg/kg), on average 20-, 9-, 4- and 100-fold higher than the LTM area, respectively 119 

(Phanthavongsa et al., 2017). A phytomanagement field trial was implemented in 2011 on this 120 

site (covering both areas) with plots of poplar Skado (P. trichocarpa × P. maximowiczii) or 121 

I214 (P. deltoides x P. nigra) as a short-rotation coppice (SRC; 2200 stems/ha). A detailed 122 

description of the experimental design is provided in Ciadamidaro et al., (2017) and 123 

Phanthavongsa et al., (2017). Five years after planting, the spontaneous herbaceous layer 124 

evolved in the same way as that of another similar experiment set up in eastern France, with a 125 

dominance of the stinging nettle under poplars with a coverage rate depending on the poplar 126 

cultivar (Yung et al., 2019). In order to get rid of this variable and appreciate the contaminant 127 

effect on the microbiomes associated with nettle and poplar roots, we selected only one plot for 128 

each poplar cultivar (i.e. Skado or I214) for both the HTM and LTM areas, each of 504 m² (28m 129 

x 18m), i.e. 4 plots in all. These plots are of sufficient size to allow for replicate collection.  130 

2.2. Sample collection and preparation 131 

The sampling was conducted in November 2016, consisting of root samples from the 132 

upper 20-cm layer of soil from 9 random poplars and 9 adjacent nettles for each of the four 133 

studied plots. Comparisons between soil and poplar root mycobiomes were done and available  134 

in our previous studies (Durand et al., 2017; Foulon et al., 2016b, 2016a). A total of three 135 

pseudo-replicates of thin roots were sampled from each tree and mixed to obtain one composite 136 

per poplar individual, whereas the entire root system of nettles was collected. For each plant, 137 

the root samples were carefully sorted so as not to be mixed, the soil was carefully removed in 138 

three successive baths in sterilized distilled-water, and the smallest roots were selected and 139 

separated from larger roots by sampling them with a scalpel. The samples were freeze-dried 140 

and stored at −20 °C before molecular analysis. Thus, we considered both the endophytic and 141 

epiphytic fungi from the rhizoplane. 142 

2.3. Molecular method 143 
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The environmental DNA from the roots was extracted with the PowerSoil DNA 144 

isolation Kit following the manufacturer’s instructions (MoBio Laboratories, Inc., Carlsbad, 145 

CA, USA). The PCR was performed using the specific fungal primers ITS1F (5’-146 

CTTGGTCATTTAGAGGAAGTAA-3’) and ITS2 (5’-GCTGCGTTCTTCATCGATGC-3’) 147 

(Gardes and Bruns, 1993; White et al., 1990). We selected these primers to allow for 148 

comparison with our previous dataset obtained on a similar plantation, at a different site 149 

(Durand et al., 2017). These primers has also been found as one of the most competent in 150 

uncovering the fungal diversity of plant root (Bainard et al., 2017; Huang et al., 2020). PCR 151 

was performed in a reaction volume of 35 µL using 0.5 µM forward and reverse primer each, 152 

200 µM dNTPs, 1 µL of Phire hot start II DNA polymerase (1 U/µl), 26.25 µL of 5X Phire 153 

reaction buffer (Thermo Fisher Scientific, Inc. USA), 10 ng template DNA and sterilized water 154 

to reach a final volume of 35 µl. The PCR conditions were 98 °C for 30 sec, followed by 25 155 

cycles of 98°C for 5 sec, 57.2 °C for 5 sec and 72 °C for 15 sec, followed by a final extension 156 

step at 72 °C for 1 min. These primers targeted a short portion of the fungal ITS region, resulting 157 

in amplicons of small size (~300 bp), appropriated for Illumina sequencing. The DNA quality 158 

and quantity were assessed by agarose gel electrophoresis using the ImageLab software (Bio-159 

Rad, USA) and with a QubitTM dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) using 160 

the Qubit 4 fluorometer. The partial fungal ITS region (Wang et al., 2015) of 6 and 7 of nine 161 

poplar and nettle samples (i.e. with the concentration of environmental DNA required) were 162 

sequenced with the Illumina MiSeq platform (Microsynth AG, Switzerland).  163 

2.4. Bioinformatic analysis 164 

The sequence data were processed using Mothur (Schloss et al., 2009). First, all raw 165 

read pairs were joined at the overlapping region to create consensus sequences. Then several 166 

steps of filtering were performed, consisting in removing homopolymers, ambiguous sequences 167 

and sequences with an inappropriate length (shorter than 220 bp and greater than 400 bp). The 168 

18S RNA region amplified by the ITS1F primer (Toju et al., 2012) was removed by in-silico 169 
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PCR to target precisely the ITS1 region. After quality filtering, reads were then clustered into 170 

OTUs using the swarm tools (Mahé et al., 2015) with a difference value of 1 and fastidious 171 

option enable. The OTU clustering method has been repeatedly shown to be powerful for 172 

recovering the richness and composition of the fungal community (Bell et al. 2014; Durand et 173 

al., 2017; Foulon et al., 2016b; Huang et al. 2020; Nguyen et al., 2016). We removed singleton 174 

OTUs to avoid technical artefacts and overestimation of the number of species (Tedersoo et al., 175 

2010). The taxonomic assignment of OTUs was performed using the UNITE (Kõljalg et al., 176 

2013) database by a naïve Bayesian approach (Wang et al., 2007).The presence of plant 177 

sequences was verified using the BLAST tool of the GenBank database and removed. Each 178 

fungal OTU was further assigned to functional or morphological groups of fungi using 179 

FUNguild (Nguyen et al., 2016). For each assignment, three confidence rankings (i.e., 180 

“possible”: suspected, “probable”: fairly certain, “highly probable”: absolutely certain) 181 

referring to previously peer reviewed data were given. We only considered the functional and 182 

morphological assignation with at least a “probable” confidence ranking. Finally, the guilds 183 

related to a similar function were grouped to obtain a total of six main guilds, based on the 184 

literature.  185 

2.5. Data analysis 186 

Alpha diversity indices (OTU richness, Chao estimation, Shannon diversity index, 187 

inverse of the Simpson diversity index) were calculated using MOTHUR. Samples were 188 

rarefied at 33 000 sequences, corresponding to the smallest number of sequences detected in a 189 

sample. No sample was excluded. To verify that sequencing depth allowed covering most of 190 

the fungal diversity of our root samples, Good’s coverage was calculated as C = [1 − (n / N)] × 191 

100 (%), where “n” is the number of OTUs, and “N” is the number of sequences (Good, 1953).  192 

Statistical analyses were performed with R software v.3.6.1 (R Development Core 193 

Team, 2019). All the considered variables were tested for their homoscedasticity (Bartlett or 194 

Levene tests) and normal distribution (Shapiro–Wilk test) and compared using analysis of 195 
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variance (ANOVA) followed by a Tukey HSD test. Where necessary, data were “log” 196 

transformed to improve normality. Data that did not fit a normal distribution after 197 

transformation were analysed with non-parametrical tests (Kruskal-Wallis test by ranks). First 198 

we calculated and drew rarefaction curves for each experimental condition of nettle and poplar, 199 

using “rarecurve” function available in the R Vegan package. The shape of the curve is a graphic 200 

display of the relative estimated species accumulation rates. All diversity and richness indices 201 

and the mean number of OTUs were then compared between all experimental conditions and 202 

plants through ANOVA followed by a Tukey HSD test.  203 

To summarize differences in fungal OTU composition between the experimental 204 

conditions for both the I214 and Skado plots, we used two-dimensional non-metric Multi-205 

Dimensional Scaling (NMDS) plots based on Bray-Curtis dissimilarity matrix (k = 2) using the 206 

metaMDS function of the R Vegan package. Permutational multivariate analyses of variance 207 

(PERMANOVA) based on Bray-Curtis dissimilarity were applied to determine the potential 208 

effects of the plant species (nettle vs poplar) and the level of contamination (LTM vs HTM) on 209 

fungal communities for both I214 and Skado plots. To assess the influence of the studied factors 210 

on the fungal classes, genera, EM fungal taxa and guilds, the experimental conditions were 211 

compared using a Kruskal-Wallis test, followed by a post-hoc test with a Holm correction of 212 

the p-value.  213 

NMDS and PERMANOVA analyses were further performed on the EM fungal guilds. 214 

For the whole fungal community and the six most abundant guilds taken individually, for nettle 215 

and poplar, we tested the correlation and the overlapping between the OTU composition using 216 

Mantel test (ade4 package) and by calculating the Morisita-Horn similaritity index (SpadeR 217 

package), respectively. The relative abundances of EM fungal OTUs were represented by a 218 

heatmap, from the pheatmap R package. Similarly, a hierarchical cluster analysis of the relative 219 
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abundances of EM fungal OTUs from the various experimental conditions was represented by 220 

a dendrogram expressing the linkage between species and between the experimental conditions.  221 

  222 

3. Results 223 

3.1. Diversity of mycobiome associated with nettle and poplar roots 224 

 225 
Illumina MiSeq sequencing of ITS1 amplicons obtained from 26 root samples of poplar 226 

and 25 root samples of nettle generated a total of 3,481,223 non-chimeric fungal sequences. 227 

The initial total number of sequences obtained per sample ranged from 33,615 to 140,409. The 228 

sample with the lowest number of sequences was selected for subsampling, revealing a total 229 

number of 1833 non-singleton OTUs for 1,683,000 fungal reads, and constituting our final 230 

dataset.  231 

Table 1: Results of the Illumina MiSeq sequencing of ITS1 amplicons, including richness and 232 
diversity indices of the mycobiomes associated to I214 and Skado poplar roots, or to nettle 233 
roots growing in the I214 or Skado plots, at low trace-metal (LTM) and the high trace-metal 234 
(HTM) areas. Mean values and standard deviations (mean ± SD) are provided for each 235 
experimental condition. The “total number of sequences” corresponds to datasets before 236 
subsampling at 33,000 sequences, while the other parameters are calculated after subsampling. 237 
Values designated with the same letters are not significantly different (Kruskal–Wallis test, P 238 
< 0.05). 239 
  NETTLE POPLAR 

 LTM HTM LTM HTM 

 I214 Skado I214 Skado I214 Skado I214 Skado 

Number of 
samples 6 6 6 7 6 7 6 7 

Mean total 
number of 
sequences 

52,264 73,778 68,434 70,185 69,479 63,116 55,243 61,067 

Mean OTUs 
observed 175ab (± 56) 168ab (± 69) 122b (± 23) 109b (± 52) 178ab (± 19) 196a (± 30) 156ab (± 38) 204a (± 43) 

Chao 
estimation 248 c (± 56) 280bc (± 61) 221c (± 25) 210c (± 64) 362ab (± 31) 410a (± 74) 232c (± 33) 358ab (± 70) 

Shannon 
index 2.3ab (± 0.8) 2.7a (± 1.0) 2.2ab (± 0.6) 1.4b (± 1.0)  2.4ab (± 0.5) 2.7a (± 0.5) 2.9a (± 0.7) 2.9a (± 0.5) 

Inverse of 
Simpson 
diversity 
index 

6.0
a
 (± 5.4) 8.9

a
 (± 6.1) 5.8

a
 (± 3.4) 3.1

a
 (± 2.8) 5.7

a
 (± 2.3) 7.7

a
 (± 5.3) 10.1

a
 (± 5.7) 8.9

a
 (± 6.1) 

 240 

Rarefaction curves calculated for each experimental condition of nettle and poplar 241 

tended to reach an asymptotic profile, suggesting that the sequencing depth was sufficient to 242 
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cover the fungal diversity of our root samples. Additionally, the measured Good’s coverage 243 

values were greater than 99% for each condition and in every sample, suggesting a 244 

representative sampling. Rarefaction curves for nettles clearly exhibited divergent trends in 245 

LTM vs. HTM areas. For a same number of reads on the asymptote, the HTM plots reached a 246 

number of OTUs reduced by approximately 30%, as compared to the LTM plots (Figure S1). 247 

Concerning poplar, the curve for the I214-HTM plot was clearly lower than those corresponding 248 

to the three other experimental conditions.  249 

The total number of fungal OTUs was comparable for nettle (1218) and poplar (1321). 250 

Among them, nettle and poplar shared 766 OTUs, representing 63% of the total number of 251 

OTUs for nettle and 58% for poplar. The mean number of fungal OTUs associated with the 252 

roots of nettle and poplar are detailed in Table 1 for each experimental condition. The highest 253 

mean number of OTUs was obtained for Skado roots from the HTM area, whereas the lowest 254 

was obtained for nettles within the same area, with a significant difference (P < 0.05). Only 255 

7.1% and 7.5% of the total number of OTUs were shared between the four conditions for nettle 256 

and poplar, respectively. Additionally, the percentage of OTUs specific to each condition 257 

ranged between 8.5% and 19.9% for nettle and between 11.2% and 14.8% for poplar (Figure 258 

1). For nettle, this number of specific OTUs was 2-fold higher in the LTM area (35.4%) 259 

compared to the HTM area (17.3%), whereas it was comparable for poplar (23 vs 26%). 260 

Depending on the experimental condition, nettle shared between 47.3% and 63.0% of their 261 

OTUs with poplar, while poplar shared between 39.5% and 44.0% of their OTUs with nettle 262 

(Figure 1). 263 
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 264 
Figure 1: Venn diagrams showing the overlap of the fungal communities according to the 265 
poplar cultivar plot (I214 and Skado) and the level of TM in soil (LTM and HTM), for nettle 266 
(left) and poplar (right). These diagrams present the number of total (above the ellipses), 267 
specific (within non-intersected ellipses) and shared OTUs (intersected ellipses). The five 268 
couples of circles provide the total number of OTUs for nettle (left) and poplar (right) and the 269 
shared number (intersection) for the whole dataset (center) and for each experimental 270 
conditions (bottom). 271 
 272 

While the obtained mean numbers of fungal OTUs were comparable between nettle and 273 

poplar, the estimated number of fungal OTUs (using the Chao model) showed a higher species 274 

richness in poplar roots, except for the I214-HTM condition (Table 1). The species richness of 275 

the HTM area was lower than the LTM area for nettle, while this tendency was only noticeable 276 

for I214 poplars, as suggested by the rarefaction curves (Figure S1). For nettle, we collected an 277 

average of 65% and 54% of the estimated number of OTUs (Chao estimation) for the LTM and 278 

HTM areas, respectively, whereas we obtained 69% for HTM versus 48% for LTM for poplar. 279 

Overall, when considering the individual diversity estimators related to poplar or nettle, no 280 

apparent influence of the studied factors level of contamination was noticeable. However, 281 

NMDS analysis revealed a clear clustering of fungal communities according to the plant species 282 
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(nettle vs poplar) and the level of contamination (LTM vs HTM) for the I214 and Skado plots 283 

(Figure 2). Thus, while the fungal diversity did not seem to be significantly influenced by the 284 

experimental condition (Table 1), the fungal composition of nettle and poplar appeared 285 

contrasted and affected by the level of TM contamination and the plant species (Figure 2). 286 

NMDS and PERMANOVA indicated substantial differences in the composition of fungal 287 

communities between nettle and poplar (Figure 2), the plant species factor explaining 24% and 288 

17% of the variance in the fungal community for I214 and Skado plots, respectively (P < 0.001; 289 

Table S1). The level of TM had a significant effect on the fungal communities, both for nettle 290 

grown under I214 (28%) and Skado (37%) and for poplar, although to a lesser extent (26% for 291 

I214, and 16% for I214 Skado) (all P < 0.01; Figure 2, Table S1). 292 

 293 

Figure 2: Non-parametric multidimensional scaling (NMDS) plot of fungal communities 294 
associated with nettles and poplars grown at LTM and HTM areas, for I214 (left) and Skado 295 
(right) plots, using the Bray Curtis dissimilarity measure. Small and large circles represent the 296 
individual samples and the centroids of the different temperatures, respectively. Results from a 297 
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PERMANOVA analysis for plant species (“species”) and level of TM (“contamination”) 298 
factors and their interaction, and conducted separately by species (contamination effect) and 299 
contamination (species effect) are provided under each NMDS, with the following legend: ***, 300 
P < 0.001; **, P < 0.01; * P < 0.05. 301 
 302 

 303 

3.2. Taxonomic characterization of the mycobiome of nettle and poplar roots 304 

The fungal communities associated with roots of plants growing at the sediment disposal 305 

site studied were dominated by the phylum Ascomycota in nettle roots (84.5% of total relative 306 

abundance) whereas Basidiomycota (43.2%) and Ascomycota (52.3%) were more equally 307 

represented in poplar roots (the Ascomycota/Basidiomycota ratio was significantly higher for 308 

nettle than for poplar; P < 0.05).  309 

Among all samples, we detected 29 and 28 distinct fungal classes for nettle and poplar, 310 

respectively. Among them, the most abundant classes were Pezizomycetes, Agaricomycetes, 311 

Leotiomycetes, Dothideomycetes, Sordariomycetes, Mortierellomycetes, Eurotiomycetes and 312 

Olpidiomycetes (total relative abundance of each > 0.5%; Figure S2). For this study, 313 

Dothideomycetes and Leotiomycetes, as abundant classes, characterized the mycobiome of 314 

nettle roots. In contrast, poplar roots were characterized by Agaricomycetes, representing 20-315 

66% of all sequences, depending on the experimental condition (Figure S2). Pezizomycetes 316 

were also well represented and similarly abundant in both plants.  317 

For poplars, 79% of the fungal sequences were successfully assigned to a genus (73% 318 

for I214 vs 85% for Skado), whereas only 54% were successfully assigned for nettle (Figure 3). 319 

The genus Kotlabaea was the most abundant genus associated in nettle roots (26.5% of the total 320 

number of fungi associated with nettle), followed by three unknown genera belonging to 321 

Helotiales (17.5%), Didymosphaeriaceae (8.7%) and Phaeosphaeriaceae (5.8%). The genera 322 

Tetracladium (5.7%) and Hymenoscyphus (2.5%) were the most abundant nettle-associated 323 

Leotiomycetes and were also present in poplar roots with comparable relative abundances 324 

(Figure 3). For poplar, the most abundant genera were Inocybe (17.1% of the total number of 325 
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fungi associated with poplar), Tuber (10.8%), Hebeloma (7.3%), Tomentella (6.9%) and 326 

Geopora (7.1%), the latter being almost absent in nettle roots (< 0.02%) (Figure 3). The genus 327 

Olpidium (Olpidiomycetes), accounting for 1.3% and 1.4% of the fungal sequences for nettle 328 

and poplar, respectively, was also well represented.  329 

We detected significant differences in terms of fungal composition between the two 330 

poplar cultivars. Tomentella, Geopora, Hymenogaster, Hebeloma and Clavulina were more 331 

represented in roots of the Skado cultivar, while Helvella and Kotlabaea were mostly associated 332 

with I214 cultivar (P < 0.05), but each of these trends were only significant for one of the two 333 

considered areas (i.e., LTM or HTM; P < 0.05; Figure 3, Table S2). Differences were also 334 

noticed between mycobiomes of nettles grown in I214 plots (high density of nettle) and those 335 

grown in Skado plots (low density of nettle). Inocybe, Genabea, Helvellosebacina and 336 

Hebeloma were more abundant in roots of nettles grown in the Skado plot (P < 0.05), whereas 337 

Olpidium and Calyptella were more abundant in the I214 plot (P < 0.05). These results were 338 

significant for only one of the two considered areas (Figure 3, Table S2). Pezizomycetes were 339 

significantly influenced by TM contamination : first, their relative abundance was significantly 340 

higher at the HTM area for nettles, both the I214 (10% for LTM vs. 32% for HTM; P < 0.05) 341 

and Skado (7% vs. 68%; P < 0.05) plots. Second, the same trend was observed on poplar but 342 

only statistically supported for the Skado cultivar, (6% vs. 41%; P < 0.05; Figure S2). Among 343 

Pezizomycetes, the genus Kotlabaea significantly increased in the HTM area (for I214 plots: 344 

0.1% vs. 31.7%; for Skado plots: 2.5% vs. 65.1%; P < 0.05; Figure 3). Similarly, the genus  345 

Tuber was more represented in the poplar roots collected from the HTM area (for the I214 346 

cultivar: 6.2 % vs. 17.6%; for the Skado cultivar 4.6% vs. 15.2%; P), however, the high 347 

between-sample variability did not allow to statistically support this. Agaricomycetes associated 348 

with both poplar and nettle were influenced by TM as their abundance was significantly reduced 349 

in the HTM areas (P < 0.05), except for nettle in the I214 plots (Figure S2). This reduction of 350 
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Agaricomycetes in the HTM area was mainly due to the decrease of the Inocybe genus, the most 351 

abundant of all Agaricomycetes for nettle (34%) and poplar (40%) (Figure 3). When considering 352 

nettle and poplar together, the relative abundance of Inocybe species decreased from LTM- to  353 

HTM area, namely from 31.9 to 1.5% for I214 plots and from 24.1 to 8.1% for Skado plots (P 354 

< 0.05 in each case; Figure 3). A similar but less pronounced trend was also noticeable for the 355 

genus Tomentella within the I214 plots.  356 

 357 

Figure 3: Relative abundance of the 20 most represented fungal genera (based on the 358 
taxonomic assignment of OTUs), belonging to 7 classes, according to the level of TM in soil 359 
(LTM and HTM) for nettle (orange bubbles) and poplar (blue bubbles) grown in the I214 or 360 
Skado plots. The classes with a relative abundance <0.5% have been gathered in the “others” 361 
group. For each genus, the related results from Kruskal–Wallis pairwise or Tukey HSD tests 362 
are provided in the Table S2. 363 
 364 

3.3. Functional characterization of the mycobiome of nettle and poplar roots 365 
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Among the 1218 and 1321 fungal OTUs recorded in nettle and poplar roots (Figure 1), 366 

70.4% and 83.1%, respectively, were successfully assigned to a functional guild with at least a 367 

“probable” confidence ranking using FUNguild (Nguyen et al., 2016). This functional 368 

assignment revealed a majority of saprotrophic fungi (from 18 to 69% depending on the 369 

condition), followed by plant pathogens (6 - 15%) and EM fungi (1 - 30%) in the nettle roots 370 

whereas EM fungi (26 - 75%), mainly represented by Tomentella, Geopora, Hymenogaster, 371 

Hebeloma and Clavulina genera, were the most abundant guild in poplar roots (Figure 4). This 372 

guild was significantly more abundant in roots of Skado poplar, compared to I214 poplar (63% 373 

vs 26% for HTM area, P < 0.05; Figure 4). EM fungi were abundant on nettle roots and, for the 374 

LTM area, even more on nettle grown with the Skado cultivar than on those grown with I214 375 

(30% vs 2%; P < 0.05). Endophytes were poorly represented in the poplar roots in contrast to 376 

nettle (0.1% vs. 9.2% of all sequences; P < 0.05; Figure 4). Twelve OTUs assigned to AM fungi 377 

were found in nettle and poplar roots, accounting for less than 0.05% of all sequences (not 378 

shown). Plant pathogenic fungi were equally represented in poplar and nettle roots, without any 379 

influence of the studied factors (Figure 4).  380 

Functional guild also revealed several differences between soil contamination levels. 381 

Indeed, the relative abundance of nettle saprotrophs was higher in the HTM area (statistically 382 

supported only for the Skado plots; P < 0.05) (Figure 4). This result was driven by Kotlabaea, 383 

the most abundant genus within this guild (Figure 3): an unidentified species from this genus, 384 

accounting for 66% of all the saprotrophs associated with nettle, was indeed significantly more 385 

present in the HTM areas (P < 0.001). EM fungi associated with poplar (particularly Inocybe 386 

and Tuber) and nettle (particularly Inocybe) tended to decrease in the HTM area, which was 387 

statistically supported for I214 plot in the case of poplar (75% vs 26%, P < 0.05) and for  Skado 388 

plot in the case of nettle (30% vs 6%; P < 0.05; Figure 4).   389 
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 390 

Figure 4: Relative abundance of the four most abundant fungal guilds associated with nettles 391 
and poplars grown at the LTM or HTM area, for I214 (left) and Skado (right) plots. Data are 392 
the means ± SE (n = 6 or 7). For each class, bars designated with the same letter(s) are not 393 
significantly different (Kruskal–Wallis, P < 0.05). 394 

 395 

3.4. Overlap of poplar and nettle microbial communities 396 

According to the Mantel test, nettle and poplar total fungal communities under I214 (P 397 

< 0.05) or Skado (P < 0.01) plots were significantly correlated (Figure 5), while the 398 

corresponding Morisita-Horn similarity index did not corroborate this result. However, 399 

similarity indexes and Mantel tests converged for nettle and poplar root-associated animal 400 
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pathogenic fungi, EM fungi and saprotrophs that were significantly correlated (Mantel test, P < 401 

0.05) and overlapped (Morisita-Horn index < 0.5; Figure 5). Despite the low relative abundance 402 

of EM fungi on nettle under I214 plots (Figure 4), nettle and poplar composition of EM fungi 403 

were strongly correlated (P < 0.001, Figure 5) for I214, while it was not the case for Skado 404 

plots. Interestingly, the saprotrophic guild of the two plant species were only correlated and 405 

overlapped at I214 plots, where the most abundant genera Kotlabaea was driving the trend. 406 

Consequently, these results suggested that nettle and poplar roots shared large part of their 407 

fungal communities.  408 

 409 

Figure 5: Correlations (Mantel test) and similarity (Morisita-Horn index) between the OTUs 410 
composition of nettle and poplar, for the whole fungal community (“Total Fungi”) and the six 411 
most abundant guilds depending on the poplar cultivar plot. The size of the circles is 412 
proportional to the P-value for the Mantel test and to the index value for Morisita-Horn. Two 413 
communities with a Morisita-Horn index ≥0.5 are considered similar. P-value of the Mantel 414 
tests are represented with the following legend***, P < 0.001; **, P < 0.01; * P < 0.05. 415 
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Although there was a significant relationship between EM fungi associated with the two 416 

plants, the NMDS analysis showed that EM fungi of nettle and poplar clustered for each host, 417 

but not together, suggesting host differentiation (Figure 6.A). EM fungi were significantly more 418 

represented (59.6% vs 9.7%; P < 0.05) and diverse (330 vs 146 OTUs; P < 0.05) in poplar than 419 

in nettle roots (Figure 4 and 6.C). Moreover, the ratios between nettle and poplar EM richnesses 420 

were similar for each condition (ranging from 0.64 to 0.83). A Venn diagram showed a higher 421 

species richness of EM fungi associated with poplar and particularly with the Skado cultivar 422 

(Figure 6.B), confirming poplar as the main host for EM fungi. As observed above for poplar, 423 

nettle EM fungi were more represented in terms of richness (115 vs 65 OTUs) and abundance 424 

(27.1 vs 1.7% of the total number of sequences) under the Skado plots as compared to the I214 425 

plots. Among the 138 OTUs associated with nettle, 102 OTUs were shared between nettle and 426 

poplar (Figure 6.B). Only 29 of the 115 EM OTUs (representing 1.6% of the total abundance 427 

of EM fungi) under the Skado plots and 8 of the 65 EM OTUs (11.7% of the total abundance) 428 

under the I214 plots were specific to nettle (Figure 6.B). These results suggested that most of 429 

the EM fungi associated with nettle were related to these hosted by poplar.  430 

431 
Figure 6: (A) Non-metric multidimensional scaling (NMDS) analysis of the EM fungal guild 432 
structure associated to poplar or nettle roots, (B) a Venn diagram based on EM OTUs and (C) 433 
the EM OTU richness, depending on the plant species (poplar or nettle), the poplar cultivar 434 
plot and the level of contamination (LTM and HTM). 435 

 436 

According to a hierarchical cluster analysis of the relative abundances of EM fungal 437 

OTUs , LTM poplars were mostly colonized by the EM Inocybe rimosa, Tomentella sp., 438 
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Helvella elastica, Inocybe semifulva, Clavulina sp. and Hebeloma eburneum (Figure S3). The 439 

EM OTUs Geopora cervina and Tuber rapaeodorum were abundant in roots of poplar grown 440 

at the HTM area (Figure S3). Most of these taxa were poorly represented in the nettle roots, 441 

except for Inocybe rimosa, which was the most abundant EM fungus in both plants (Figure S3). 442 

Indeed, this species accounted for 4% of nettle sequences (95% from the Skado plots) and 443 

12.3% of poplar sequences (52% from the Skado plots). Additionally, this species was more 444 

abundant in roots of nettle grown with the Skado cultivar (P < 0.05), and when associated with 445 

poplar, it was sensitive to the soil contamination (P < 0.05) (Figure S3).  446 

 447 

4. Discussion 448 

4.1. EM fungi dominated the poplar mycobiome  449 

In this study, the mycobiome associated with poplar roots were clearly dominated by 450 

several EM fungal species, such as the Agaricomycetes Inocybe rimosa, Tomentella sp., and 451 

Hebeloma spp., and the Pezizomycetes Tuber rapeodorum and Geopora cervina. We also 452 

detected the presence of AM fungi belonging to the Rhizophagus and Glomus genera, although 453 

with a rather low number of sequences (< 0.001%), partially due to the choice that was made 454 

to target the ITS1 region, which is not the most adapted region for the study of Glomeromycota 455 

(Beeck et al., 2014). The recorded EM fungal species are known fungal symbionts of poplar 456 

(Podila et al., 2009) that improve plant health by enhancing resistance to diverse stresses like 457 

drought, salinity, heavy metals and pathogens, etc. (van der Heijden et al., 2015). Particularly, 458 

they facilitate the adaptation of plants to TE stress, promoting host growth and 459 

phytomanagement of TM-contaminated soils (Gil-Martínez et al., 2018). 460 

 In a previous study on a Hg-enriched sediment disposal site, the same experimental 461 

design was set up in 2011. Durand et al. (2017) showed that EM fungi, and particularly the 462 

Tuber and Geopora genera also dominated the roots of Skado poplar at this site. These taxa 463 

seemed to be largely abundant in TM contaminated sites (Bonito et al., 2014; Guevara et al., 464 
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2013; Lacercat-Didier et al., 2016). Moreover, these EM fungi were not only related to the 465 

physico-chemical properties of these sites, but rather to the juvenil tree stage that promotes 466 

some Pezizales (Geopora spp., Tuber spp.) or Agaricales (Inocybe spp.) (Foulon et al., 2016b; 467 

Hrynkiewicz et al., 2010; Lacercat-Didier et al., 2016). Hebeloma or Inocybe species, which 468 

were well represented at the studied site, are “early stage” fungi capable of colonizing roots of 469 

trees established in virgin or disturbed habitats (Smith and Read, 2010). In our dataset, only 7% 470 

of the variability were explained by the cultivar factor when performing a PERMANOVA on 471 

the poplar dataset (data not shown), indicating that the mycobiomes of Skado and I214 roots 472 

were comparable, consistently our previous results (Foulon et al., 2016a): in our previous work, 473 

the mycobiome of eight poplar cultivars grown at a TM-contaminated site, exhibited slight 474 

differences, especially between I214 and Skado roots. Together with the present study, the only 475 

discrepancy between the two communities concerned the Laccaria genus, only recorded under 476 

the I214 cultivar in small abundance. This similarity between the two studies might be linked 477 

to the similar TM composition of the two sites and the similar age of the poplar plantation (7-478 

years in Foulon et al., (2016a) vs 6-years in the present study).  479 

4.2. Saprotroph and endophytic fungi dominated the nettle root mycobiome 480 

The overall fungal composition of nettle roots differed from that of poplar, despite their 481 

co-occurrence. Most of the dominant species associated with nettles were only assigned to the 482 

family or order level, reflecting a lack of information concerning the nettle mycobiome. 483 

Dominant species on nettle roots were mostly endophytic or pathogenic fungi, such as 484 

Tetracladium sp., Olpidium spp., or saprotroph belonging to the Helotiales and Pleosporales 485 

orders as previously observed for the non-mycorrhizal plant Arabis alpina (Almario et al., 486 

2017). The most abundant OTU was assigned to the Kotlabaea genus, accounting for more than 487 

26% of all sequences. This species belongs to the Pyronemataceae, one of the largest family of 488 

Pezizales traditionally considered saprotrophic, although the trophic strategies of most species 489 

remain undocumented (Perry et al., 2007). Indeed, an increasing number of them are being 490 
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identified as EM (Tedersoo et al., 2010). We classified Kotlabaea spp. as saprotrophic based 491 

on (Tedersoo et al., 2014), but uncertainties remained. Overall, knowledge about taxonomy and 492 

functional role of these root-associated fungi of nettle needs to be enriched by fungal isolation 493 

and characterisation experiments, which has not yet been performed to our knowledge. 494 

4.3. The degree of contamination differently affected the mycobiomes of poplar and 495 

nettle 496 

According to a previous pedogeochemical characterization of the soils from the two 497 

areas, Zn and Cd concentrations were the most contrasted parameters between the two areas 498 

(Phanthavongsa et al., 2017). Other soil parameters were rather comparable, suggesting that the 499 

level of TM is one of the main factor influencing the soil fungal communities. 500 

A slight reduction of fungal diversity was noticed for plants grown at the most 501 

contaminated area (HTM), which is commonly observed (Bååth, 1989; Giller et al., 2009). 502 

Indeed, while certain fungal microorganisms can tolerate large concentrations of non-essential 503 

heavy metals (e.g. Al, As, Cd, Hg, Pb), plant mycobiome is generally affected (Gadd, 2010). 504 

Other studies showed that TM tended to reduce the amount of soil microbial biomass as well 505 

as the species richness, changing microbial structure in favor of tolerant taxa and modifying the 506 

soil functioning (Giller et al., 1998, 2009). 507 

Some mycorrhizal fungi isolated from contaminated soils develop adaptations to 508 

tolerate metals (Colpaert et al., 2011; Gonçalves et al., 2009), which make them particularly 509 

suitable for phytomanagement applications. Indeed, plants inoculated with metal-tolerant EM 510 

fungi (Adriaensen et al., 2005; Redon et al., 2009) or DSE (Likar and Regvar, 2013) showed 511 

enhanced tolerance when compared to plants inoculated with non-tolerant strains. In our 512 

observations, Agaricomycetes, and particularly the Inocybe and Tomentella genera, when 513 

associated with nettle or poplar, were the most impacted by contamination. Although 514 

significantly reduced, these two EM fungi were still well represented at the heavily 515 

contaminated area on poplar roots. Additionally, the Inocybe genus has already been isolated 516 
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(Repáč, 1996), and successfully tested as an inoculum strain on coniferous trees (Flores-517 

Rentería et al., 2018), which supports its interest in bioremediation applications. Their 518 

usefulness and functional importance in nettle plantation deserves further analyses (see below). 519 

 In our study, members of the Pezizomycetes seemed to be the most tolerant fungi as the 520 

Kotlabaea genus associated with nettle and the Tuber genus, associated with poplars, were more 521 

represented in the area with the highest concentration of Cd, Zn, Cu and Pb. This increase of 522 

Perizomycetes related to soil contamination has already been detected in hydrocarbon-523 

contaminated soils (Bell et al., 2014; Tardif et al., 2016). Indeed, an untested possibility is that 524 

hydrocarbons are also present at our site because canals dredged sediments generally contain 525 

various contaminants (Besser et al., 1996; King et al., 2006).  526 

4.4. A significant fraction of EM fungi were shared by poplar and nettle roots 527 

Despite the noticeable differences mentioned above in terms of fungal composition 528 

between nettle and poplar, our results suggested that their respective mycobiome could be 529 

influenced by the other when co-occurring. More specifically, fungal taxa associated with 530 

abundant plants seemed more likely to colonize neighbouring plants than if the later were alone. 531 

Indeed, taxa characteristics of the nettle mycobiome (e.g. Helvella, Kotlabaea) where more 532 

represented in the I214 plot where nettle covered up to 60% of the herbaceous layer, compared 533 

to the Skado plot where nettle and other plants were rare. Similarly, an influence of Skado 534 

poplar on the mycobiome of neighbouring nettles was possibly detected, since a significant part 535 

(9.7%) of EM OTUs, which were characteristic of poplars mycobiomes, contributed to the 536 

mycobiome of nettle roots, which might be surprising as this plant is a recognised non-537 

mycorrhizal plant (Vierheilig et al., 1996). Nettle roots were carefully washed and sorted, 538 

making contaminations by the adjacent soil or poplar roots unlikely. Yet their presence on the 539 

rhizoplane or as true endophytes (i.e. with root penetration) deserves further investigations.  540 

 Indded, the ability of some EM fungi to colonize AM (and more generally non-EM) 541 

plants has already been described for several clades based on molecular detection and direct 542 
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observations, mainly for Sebacinaceae (Selosse et al., 2009; Weiß et al., 2011) and Tuber spp. 543 

(Gryndler et al., 2014; Schneider-Maunoury et al., 2018, 2020). In addition, some suspicion 544 

exists, based on molecular detection only, for Thelephoraceae and Inocybaceae (Schneider-545 

Maunoury et al., 2018, 2020), Pyronemataceae (Hansen et al., 2013) and Helotiales (Wang et 546 

al., 2006). Such a dual, EM and endophytic interaction has been viewed as a persistence of the 547 

evolutionary past of EM fungi, if they evolved from endophytic species: in the so-called 548 

‘waiting room hypothesis’, endophytism is considered as a niche from which the tighter and 549 

more elaborate mycorrhizal symbiosis can evolve (Schneider-Maunoury et al., 2018; Selosse et 550 

al., 2009; van der Heijden et al., 2015). It was recently commentated that many fungi have more 551 

complex niches (e.g., dual niches) than what is commonly agreed, which could be explained by 552 

such evolutionary trajectories (Selosse et al., 2018, Thoen et al., 2020).  553 

Recently, Taschen et al. (2020) demonstrated that Tuber melanosporum growth gains 554 

benefit from the non-EM plants it colonizes, while it has a negative effect on them. 555 

Additionally, the EM trees colonized by this fungus as ectomycorrhizal partners gain, at least 556 

in terms of nitrogen content, from the interaction between truffles and non-EM plants. The 557 

possibility of an overlooked interaction between EM- and AM- or non-mycorrhizal plants 558 

growing close to host trees is further supported by the fact that connection and the exchange of 559 

carbon between plant sharing the same belowground ectomycorrhizal network were 560 

demonstrated for trees (Klein et al., 2016; Selosse et al., 2006), even when one of the plant was 561 

herbaceous (Selosse et al., 2009). The functional implications for plants of an extensive sharing 562 

of non-mycorrhizal fungi remained unclear and highly dependant on the plant-fungus 563 

association. In case they are beneficial, and this happens even for non-mycorrhizal endophytic 564 

fungi such as dark septate endophytes in non-mycorrhizal plants (Liu et al., 2017; Yung et al., 565 

2021), there may be mutual reinforcement of the two plant species by way of coordinated 566 

responses to stresses, nutritional sharing, etc. Yet, the benefit can be asymmetric, or even 567 
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relevant for one plant species only. Moreover, an intriguing possibility is pathogen spillover 568 

(Mordecai, 2011), i.e. one plant promotes the spread of pathogens that harm competitors more 569 

strongly than itself. In this context, further investigations are now necessary to conclude about 570 

the exact nature and functionality of this poplar-nettle EM sharing and its consequence for this 571 

agroforestry system.  572 

Inocybe rimosa, the most abundant EM fungal species found on nettle roots, accounting 573 

for approximately 4% of the total fungal sequences, is a major candidate for such studies. The 574 

presence of I. rimosa is reported in TM-polluted soils (Huang et al., 2012; Krpata et al., 2009) 575 

and, although its ability to colonize roots of non-EM plant has not been previously investigated, 576 

Inocybaceae were already detected in some AM plants (Schneider-Maunoury et al., 2018). Any 577 

facilitation mechanism through EM fungi could contribute to the dominance of nettles within 578 

Salicaceous SRC in natural (Cronk et al., 2016) and contaminated sites (Yung et al., 2019). 579 

However, further research about the mycobiome of nettle roots and particularly in the case of 580 

co-cropping at phytomanagement sites, especially to assess morphological (e.g. by fluorescent 581 

in-situ hybridization; Schneider‐Maunoury et al., 2020) and functional evidence of interactions 582 

with EM fungi, is now awaited. I. rimosa is present in the CBS Filamentous fungi and Yeast 583 

Collection as CBS 210.55. It will be used in further experiments, for poplar x nettle experiments 584 

to test its growth between the two plants and assess its positive or negative or no influence on 585 

nettle.  586 

As a conclusion, we taxonomically and functionnaly characterized the fungal 587 

microbiomes of a spontaneous species (i.e., Urtica dioica L.) co-occuring with cultivated crops 588 

(i.e., Populus spp.) at a phytomanaged area contaminated with TM. Our results suggested that 589 

nettle and poplar had distinct root-associated fungal communities, albeit sharing many common 590 

ectomycorrhizal fungi and particularly the genus Inocybe, which is surprising given the non-591 

mycorrhizal status of nettle. These results suggest to reconsider the ecological niches of fungi.  592 
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