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Abstract

For a class of propositional information logics defined from Pawlak’s information
systems, the validity problem is proved to be decidable using a significant variant of
the standard filtration technique. Decidability is proved by showing that each logic
has the strong finite model property and by bounding the size of the models. The
logics in the scope of this paper are characterized by classes of Kripke-style structures
with interdependent relations pairwise satisfying the Gargov’s local agreement condi-
tion and closed under the so-called restriction operation. They include Gargov’s data
analysis logic with local agreement and Nakamura’s logic of graded modalities. The
last part of the paper is devoted to the definition of complete Hilbert-style axiom-
atizations for subclasses of the introduced logics, thus providing evidence that such
logics are subframe logics in Wolter’s sense.

Keywords: information system, multimodal logic, local agreement condition, finite
model property, decidability

1 Introduction

During the last decade, the information logics derived from Pawlak’s information systems
[Paw81] have been the object of active research (see for example [Orlo84, OP84, Orlo85,
FdCO85, Kon87, Orlo88, Vak91b, Nak93, Bal96, Kon97]). The information systems have
been proposed for the representation of knowledge by the introduction of the concept of a
rough set leading to the notion of approximation of sets of objects by means of equivalence
relations. The rough sets are based on the notion of indiscernibility relations that are
binary relations identifying objects having the same description with respect to a given set
of attributes. The indiscernibility relations are equivalence relations, and so the logics of
indiscernibility relations can be viewed as multimodal logics for which the modal operators
behave as the S5-modalities, except that they are usually interdependent. Numerous logics
of this type have been studied in the past (see e.g., [Orlo85, FACO85, Orto89]) whereas

*This work has been supported by the Centre National de la Recherche Scientifique (C.N.R.S.), France.



the works [Paw&2, Orlo84] provide the logical foundations of the knowledge representation
by means of the modal logics.
An information system (see e.g. [Paw91]) can be seen as a structure

(OB, AT, {Valy; : at € AT}, f)
such that

e OB is a non-empty set of objects,

e AT is a non-empty set of attributes,

for each at € AT, Val,, is a non-empty set of values of at and,

o [ is a mapping OB x AT — Ugecar Valy such that for all (z,at) € OB x AT,
f(z,at) € Valg.

In that setting, two objects 01,05 are said to be indiscernible with respect to a set of

attributes A C AT (in short o, ind(A) o0,) iff
for all at € A, f(o1,at) = f(o0q, at).

Different generalizations of the notion of information system (for instance by changing the
profile of f with @ # f(o,at) C Val,) and various other relations between the objects
(similarity, weak indiscernibility, ...) can be found for instance in [Vak91la]. The modal
logics obtained from the information systems are multimodal logics such that the relations
in the Kripke-style semantical structures correspond to relations between objects in the
underlying information systems. Hence the relations are interdependent; for instance,
if BC A C AT, then ind(A) C ind(B). The decidability of the validity problem for
various information logics has been an issue of interest in the past (see for example the
valuable Vakarelov’s contributions in [Vak91b, Vak91la, Vak97]). The aim of this paper is
to prove that various information logics derived from Pawlak’s information systems have a
decidable validity problem by defining an original construction (see e.g. [Gab72, Seg71]).
The decidability is proved by showing that each logic has the strong finite model property
and by bounding the size of the models. The logics defined in [Nak93, Gar86] are used to
illustrate the general construction.

The paper is structured as follows. In section 2, the class of LA-logics is defined by
refining the local agreement condition defined in [Gar86]. Section 3 contains various filtra-
tion constructions for logics determined by classes of frames satisfying the local agreement
condition. In Section 4, an original construction is presented in order to show that every
LA-logic has the strong finite model property and we provide sufficient conditions so that
the validity problem is decidable. In Section 5, we show how to apply the results of the
previous section to logics defined in [Gar86, Nak93]. As a side-effect of our work, a sound
and complete axiomatization is defined for the logic introduced in [Nak93]. In Section 6,
complete Hilbert-style axiomatizations are defined for a particular class of LLA-logics that
happens to contain only subframe logics in Wolter’s sense [Wol93]. In section 7, possible
extensions of the present work are briefly discussed.

This paper is a corrected and full version of [Dem96a]. Section 3 and Section 6 are not
contained in the short version.



2 The LA-logics

In the sequel, any (propositional) modal language L is determined by three sets which are
supposed to be pairwise disjoint: the fixed countable set Fy = {p, ¢, ...} of propositional
variables, the set M of modal expressions and the set of propositional operators composed
of the unary = and the binary <, =, V, A. The set F of L-formulae is the smallest set
that satisfies the following conditions: Fq C F; if © is any n-ary propositional operator
and Aq,..., A, € F then &(A4,,...,A,) €Fand if « € M and A € F then {,A,0,A} CF
-0, and O, are called modal operators. Let L be a modal language'. We write sub(A)
(resp. mw(A)) to denote the set of subformulae of the formula A (resp. the modal weight
of A, i.e. the number of occurrences of modal operators in A). We also write suby(A) to
denote the set of modal expressions occurring in the formula A:

suby(A) ={aeM: QB € sub(A)}U{a e M:0,B € sub(A)}

As usual, by an L-frame we understand a pair (W, (R,),cyM) such that W is a non-
empty set and for all @ € M, R, is a binary relation on W. We write R to denote the
restriction of the binary relation R to the set W', that is RN (W' x W’). The set of
L-frames is denoted by X{. An L-frame 7' = (W', (R,),cp) is said to be a subframe of
the L-frame (W, (Rq),em) iff W/ C W and for all « € M, R, = (R,)jw:. As usual, by an
L-model we understand a triple (W, (R,),cM, V) such that F = (W, (R,) M) is an L-frame
and V' is a mapping Fo — P (W), the power set of W. M is said to be based on F. The
class of L-models is denoted by mody,. Let M = (W, (R,),cM, V) be an L-model. We say
that a formula A is satisfied by the object u € W in M (denoted by M, u = A) when the

following conditions are satisfied.

o M,ufEpiff u € V(p), for all p € Fy,

e M ul —Aiff not M,u | A,

e MuE AANBiff Mul= A and M,u = B,
M, ul=0,A iff for all v € R,(u), M,v = A where R,(u) = {v e W : (u,v) € R,},
o M,ul=Q,A iff there is v € R,(u) such that M, v |= A.

The conditions for the other logical operators correspond to their standard interpreta-
tion. Since the interpretation of ¢, can be defined in terms of O, (as usual, Q,p < -0, -p
is satisfied in any model), in the sequel only the operators of the form O, are used when
it is possible. A formula A is true in an L-model M (denoted by M [ A) iff for all
uwe W, M,ufE A.

In the sequel, by a logic £, we understand a triple? (L, S, =,) such that L is a modal
language, & C mody, and =, is the restriction of = to the sets S and L (satisfiability

'In the rest of the paper, the symbols A, B (possibly decorated) are used to denote formulae, the symbols
a,b (possibly decorated) are used to denote modal expressions, the symbols T', X (possibly decorated) are
used to denote sets of formulae and the symbol Y (possibly decorated) is used to denote sets of modal
expressions. Moreover the symbol M (possibly decorated) is used to denote models, the symbol F (possibly
decorated) is used to denote frames, the symbol £ (possibly decorated) is used to denote logics, the symbol
S (possibly decorated) is used to denote sets of models and the symbol X7 (possibly decorated) is used
to denote sets of frames.

2Tt is possible to define a logic in terms of L-frames but the definition of logic used in the paper is
sufficient for our needs.



relation). For all models M € &, M is said to be a model for £. An L-formula A is
said to be L-valid iff A is true in all L-models of §. An L-formula A is said to be L-
satisfiable iff there exist M = (W, (Ro),eM, V) € S and w € W such that M,u =, A. A
logic £ = (L, S, =) has the strong finite model property iff there is an effective procedure
g : F — wsuch that for every L-satisfiable formula A, there exist M = (W, (R,),eM, V) € S
and w € W such that W is finite, M, w |z, A and card(W) < ¢g(A). As usual, an instance
of the validity (resp. satisfiability) problem for L consists in the question: is the L-formula
A L-valid (resp. L-satisfiable)? It is immediate that the validity problem for £ is decidable
iff the satisfiability problem for L is decidable.

Definition 2.1. A logic £ = (L, S, ;) is said to be an LA-logic iff there is a set of linear?
orders over M, say lo(L), such that for all L-models M = (W, (R,) ,eM, V), M € S iff

1. for all @ € M, R, is an equivalence relation and,

2. for all u € W, there is < € lo(L) such that for all a,b € M, if a<b then R,(u) C Ry(u).

The set lo(L) is said to be the set of local agreements of L. \Y%

By the condition 1, the relations of the models can be interpretated as indiscernibility
relations between objects of some information systems. Hence the modal operators behave
as in the modal logic S5. The condition 2. is trickier since it states that locally the relations
in the family (R,),cy can be linearly ordered with respect to the set inclusion C. However
the different possible ways of ordering are fixed for each LA-logic. Condition 2. can also
be interpretated in terms of indiscernibility relations. Let (OB, AT, {Val,, : at € AT}, f)
be an information system and AT C P(AT) such that for all @,b € AT, either ¢ C b or
b C a. By writing a<b to denote b C a, we have:

for all o € OB, if a<b then ind(a)(o) C ind(b)(o)

As a straightforward consequence of Definition 2.1, each non-empty set lo of linear
orders over M defines a unique LA-logic £ such that lo(L) = lo.

Example 2.1. Let £ = (L', S, [=,/) be the LA-logic such that M = {1,2} and for all
L'models M = (W, (Ri);c(1.2y, V), M € §"iff Ry and Ry are equivalence relations and
R{ C Ry. L' is an example of LA-logic where lo(L’) is a singleton consisting of a single
linear order < such that 1<2. The set &’ can be related to the set of information systems as
follows. Let (OB, AT,{Val,, : at € AT}, f) be an information system and () # AT' C AT.
The L'-model (OB, (R;);c(1.2,V) with

(x) R4 = ind(AT) and Ry = ind(AT")

belongs to §’. Moreover for all M = (W, (R;);c(12y,V) € &', there exist an information
system (OB, AT, {Valy : at € AT}, f) and § # AT’ C AT such that (%) holds. Actually,
take

9 A linear order < is a binary relation over W such that < is reflexive, transitive, totally connected (for
all z,y € W either (z,y) € < or (y,z) € <) and antisymmetric (for all z,y € W if (z,y) € < and (y,z) € <
then z = y).



e OB=W, AT = {at,al'},
o Valyy ={Rq(z) : 2 € W}, Valyy ={Ro(z) : 2 € W},
o forall z € W, f(z,at) = Ry(z), f(z,at’) = Ro(z) and AT' = {at'}.

The term "LA-logic’ refers to the local agreement condition defined in [Gar86]. Two
relations R and S on a set W are said to be in local agreement (LA) iff

for all w € W either R(u) C S(u) or S(u) C R(u)

It is easy to show that for any LA-logic £ = (L, S, |=;), for any model M = (W, (R,) ,cM, V) €
S, for all a,b € M, R, and R, are in local agreement. The property stated in Proposition
2.1 might explain why the local agreement condition has been introduced in [Gar86].

Proposition 2.1. Let R and S be two equivalence relations on a set W. Then the
following conditions are equivalent:

1. R and S are in local agreement.

2. RUS is transitive (i.e., RUS is an equivalence relation).

Proof: (1) — ( ). Assume (z,y) € R and (y,2) € S. If R( ) € S(z) then by transitivity
of S, (z,2) € Now assume S(z) C R(z). If S(y) C R(y) then by transitivity of
R, (:v z) € R. NOW assume R(y) € S(y). Since R and S are equivalence relations,
R(z) = R(y), S(y) = S(z) and therefore S(z) C R(z) = R(y) C S(y) = S(z2). So
(z,z) € S. The case (z,y) € S and (y, z) € R is symmetric. Since R and S are transitive,
R U S is therefore transitive.

= (1) = = (2). Assume there are zg,yo, z0 € W such that (zo,y0) € R, (z0,%0) ¢ S
(hence R(zo) € S(z0)), (z0,20) € S and (zg,20) € R (hence S(zo) € R(zo)). It can be
shown that (yo,20) ¢ RU S (and therefore R U S is not transitive since (yo, o) € R and
(zo,20) € S). Suppose (yo,20) € R. By transitivity of R, (zo,20) € R which leads to a
contradiction. Now suppose (yo, 2z0) € S. By symmetry and transitivity of S, (zo,y,) € S
which also leads to a contradiction. Q.E.D.

The property stated in Fact 2.2 below shall be needed in the sequel.

Fact 2.2. Let (R;);cq1, .} be a finite family of relations on the set W such that the
relations are pairwise in local agreement. Then the following conditions are satisfied:

1. forall i € {1,...,n}, for all W C W,

(a) if R; is reflexive (resp. symmetrical, transitive) then (R;)w: is reflexive (resp.
symmetrical, transitive).

(b) for all j € {1,...,n}, for all € W', if R;(z) C R;(z) then (R;)w(z) C
(Bj)w (2)

2. for all € W, there is a permutation s of {1,...,n} such that R yy(z) C ...
Rs(n)(ac)

IN



3 Standard Filtrations and the Local Agreement Condition

In this section, we shall give some hints in order to understand why the standard filtration
constructions cannot be applied straightforwardly to the L A-logics.

3.1 The Filtration Technique

Let £ = (L, S, =,) be a logic (not necessarily an LA-logic), let M = (W, (R,),cM, V) be
an L-model and I' be a set of formulae closed under subformulae (that is (J{sub(B) : B €
['} =T). As usual, the relation = on W is defined by:

=r is an equivalence relation. For each equivalence relation =C=r on W, we write |z|
to denote the set {y € W : 2 = y}. The model M' = (W', (R)), .M, V") is said to be a
['(=)-filtration of M (see e.g. [Seg71, HC84, Gol92]) iff

LW =Alz|:a e W} V'(p)={|z| : 2 € V(p) and p € T} for all p € Fy,
2. for all @ € M,

(a) if 2R,y then |z|R!|y|,
(b) if |z|R,|y| and M,z = 0O,B for some O,B € I' then M,y = B.

When the equivalence relation = is equal to =r we use the standard term ’I'-filtration’.
Proposition 3.1 slightly generalizes the standard result about filtrations (see e.g. [Gol92]):

Proposition 3.1. Let I' be a set of formulae closed under formulae and let M = (W, (R,),eM, V)
be an L-model. Then for each equivalence relation =C=r on W, for all I'(=)-filtrations

M = (W' (R]),eM, V') of M,
VBel,VeeW, M,a=Biff M'||z|EB

The proof is by induction of the size of the formulae. The filtration technique has
been extensively used to prove the strong finite model property since if T' is finite so
is W' (card(W') < 2¢974)* when M’ = (W', (R’,) ey, V') is a D-filtration of M. For
instance take the logic S5; for some k£ > 1 (S5, has k distinct necessity modal operators).
Let M = (W,(Ry)ieq1,. k), V) be an S5;,-model, 2, € W and A be a formula such that
M, zq = A. Take I' = sub(A) and M' = (W', (R})ieq1, k3, V') with W’ and V' defined
as above with =r and for all ¢+ € {1,...,k}, |z|R}|y| iff for all O;B € ', M,z E OO0,B
iff M,y = O0;B. It can be shown that the R)’s are equivalence relations and M’ is a
I-filtration of M. As a consequence, S5, has the strong finite model property and the
validity problem for S5, is decidable.

It would be nice to use this construction to prove the decidability of the validity
problem for the L A-logics. However the following example definitely invalidates our first
hope since the local agreement condition is not preserved by the filtration construction for
Sby. Let A =0,pAOyq, T' = sub(A), and consider the model M = ({1,2,3},(Ru) My V)
such that

*For any finite set U, card(U) denotes the cardinality of U.




@p,q @p,q
oo @ o

Figure 1: A simple filtration construction not preserving the local agreement condition

L Ra = Rb = {(17 1)7 (272)’ (3’3)}7
b V(p) = {172}7 V(Q) = {173}'

Obviously, M,1 = A and R, and R, are in local agreement. Using the filtration con-
struction for S5z, we get the I-filtration M’ = ({[1], (2], [3[}, (R, yeM, V') of M with

o R =[], 11]), (121, 12D), (B[, 131), (1], 120), (12], 11D},
o Ry = {(I1],110), (I12], [2[), (13, 13D), (1], [3]), (13], [1) 3,
o V'(p) = {[1],|2[} and V"(q) = {[1], 3]}
Although M’,|1| E A (M’ is a [-filtration of M), R/, and R} are not in local agreement

(see Figure 1 -the reflexive closure of the relations is omitted in the figure). One can easily
find examples where the local agreement condition is not preserved with the set I' defined
as follows:

I'=sub(A) U {0,B :0,B € sub(A),a € suby(A)}

In order to prove the decidability of the LA-logics, modifications might be operated
about either the definition of I' or the construction of the R’s or the definition of |z|
or another type of construction has to be introduced. The last possibility is developed
in Section 4 whereas we have been unsuccessful with the first one. Before presenting
our restriction construction, we would like to emphasize that the very problem lies in
the fact that the relations of the models are equivalence relations being pairwise in local
agreement. When we use the local agreement condition with weaker conditions on the
relations (for instance with only reflexivity or symmetry) the usual filtration construction
can be adequately adapted which is shown in Section 3.2 below. For instance, consider the
multimodal logic Ty that extends the modal logic T (see e.g. [HC68]) such that M is the
set of modal expressions and the relations in the Ty-models are in local agreement. Then
the minimal filtration construction suffices to show the decidability of the satisfiability
problem for Ty. However the resulls in Section 3.2 do not apply to the LA-logics.

3.2 Minimal and Maximal Filtrations

Let £ = (L, S, =) be a monomodal logic (card(M) = 1) determined by the set of frames X7,
that is for all L-models M = (W, R, V), M € Siff (W, R) € X7 (following the terminology



in [HC84] for instance). So, we do not necessarily assume that the binary relations of the
models are equivalence relations. £ denotes a monomodal logic in the rest of the section.

The logic £ = (L', S',=') is said to be an LA-L-logic iff there is a set lo(L’) of linear
orders over M’ such that for all L'-models M = (W, (R,) ,cm', V), M € §"iff

1. for all @ € M, (W, R,) € X¥ (the condition 1. in Definition 2.1 is replaced by the
present one),

2. forall w € W, thereis < € lo(L’) such that for all a,b € ¥, if a<b then R,(u) C Ry(u).

It is immediate that the class of LA-logics is the class of LA-S5-logics. Different
monomodal logics satisfying the hypothesis in Proposition 3.2 below can be found in

[HC84] (K,T,B).

Proposition 3.2. Let £ = (L, S, =) be a monomodal logic determined by the class of
frames X7 such that it is decidable whether (W, R) € X7 for all finite frames (W, R).
We assume that for all sets of formulae I' closed under subformulae, for all M € S, the
minimal® (resp. the maximal®) T'(=)-filtration M’ of M belongs to § where = is an
equivalence relation included in =p. Then every LA-L-logic £’ = (L', 8, ') having a
finite set M’ of modal expressions has the strong finite model property and the validity
problem is decidable.

The hypothesis of Proposition 3.2 are crucial. For instance the modal logic S5 does
not satisfy the hypothesis since neither the maximal filtration construction nor the mini-
mal filtration construction preserves systematically reflexivity, symmetry and transitivity.
Hence the LA-logics are not in the scope of Proposition 3.2.

Proof: Let M = {ai,...,a,} and ¥ be the set of permutations on M. Let M =
(W, (Ra),ems V) € 8’ A € F, g € W be such that M,z, = A. We write ' to de-
note the set

I'={0,B:30, B € sub(A),a € M} U sub(A)

closed under subformulae. We also write =y to denote the binary relation on W such that
forall x,y e W, x = y iff ¢ =r y and

{S €3 Rs(al)(a?) Cc...C Rs(an)(.’lﬁ)} = {8 =3 Rs(al)(y) c...C Rs(an)(y)}

Then =, is an equivalence relation, and we write |z| to denote the equivalence class that
contains © € W. Let M’ = (W', (R},),.w, V') be the minimal (resp. the maximal) I'(=)-
filtration of M. Observe that W’ is finite,

C(l?"d(W/) S 2(card(sub(A))Xcard(Ml))+n! (1)

Now we prove that

(%) for all a,b € M and all z € W, if R,(z) C Ry(z) then R/ (|z|) C R, (|z]).

“For all z,y € W, a € M, |z|R,|y| iff 3z’ € |z|,y’ € |y| such that z'R.y’.
®For all z,y € W, a € M, |z|R,|y| iff for all JuA € T, if M,z |= 0. A then M,y = A.



Remember that for all @ € W, there is <, € lo(L’) such that for all a,b € W, if a<_b then
R.(z) C Ry(z). By proving (%) we establish that for all |z| € W', for all a,b € M, if a<,b
then R’ (|z|) C R}(|z|). Moreover for all @ € W', (W', R,) belongs to X* by the property
of the filtration in the monomodal case. So M’ € &', W' is finite and M’ |zo| = A (by
Proposition 3.1). Hence £’ has the strong finite model property and the validity problem
for £ is decidable. Indeed card(W') is bounded by (1) and it is decidable whether M’ € &'
for all finite L'-models M’.

It remains to prove (). Assume R,(z) C Ry(x) and suppose there is |y| € W’ such
that |z|R%|y| and not |z|R}|y|. If the minimal filtration is used to build M’ then there
exist no z’ € |z| and no y’ € |y| such that 2’ Ryy’. Since |z|R!|y|, there exist 2} € |z| and
Yy € |yl such that a{R,yj. Since |zj| = |2| then R,(z)) C Ry(x)) and zjRyyy which leads
to a contradiction. In case the maximal filtration is used to build M’, there is (0,B € T
such that M,z = 0,B and not M,y = B. Since R,(z) C Ry(z), then M,z =0,B. By
construction of I', O0,B € I', so |z|R.|y| and M,y = B which leads to a contradiction.
Q.E.D.

Simple counterexamples can be found in order to show that Proposition 3.2 does not
hold when the transitive fillration or the filtration for S5 are used which reduces our
chance to use the standard filtration construction for the LA-logics. However, a sufficient
condition to extend Proposition 3.2 to infinite M would be to prove that for each LA-L-
logic £' = (L', 8", ') (L satisfying the hypothesis of Proposition 3.2) the following holds:
for each finite set Y = {ay,...,a,} C W, for all structures (W, (R,)aev), if for all u € W,

< elo(L),Ya,be Y if (a(<y)b) then R,(u) C Ry(u)

forall « € Y, R, = R, (to be related to Definition 4.2). We were only able to prove this
property when card(lo(L)) = 1 or when L’ is either an LA-K-logic or an LA-KT-logic.

and for all @ € Y, (W, R,) € X7 then there exists M’ = (W, (R,,), ., V) € S’ such that

4 A Restriction Construction for the LA-logics

The aim of this section is to show that every LLA-logic has the strong finite model property.
Although the modal operators for each LA-logic behave as modal operators for S5, the
usual filtration construction for the multimodal logics S5, cannot be used straightforwardly
for the LA-logics (see Section 3). Instead of defining equivalence classes of worlds (as done
in the standard filtration constructions), restrictions of models are used. In the literature
restrictions are defined for instance in [Cer94, HM92]. With such a construction, no new
arrow is added, that is if  and y are in the relation R/, of the restricted model then z and
y are in the relation R, of the initial model. This does not always hold when filtrations
are involved.

In the rest of this section £ denotes an LA-logic (L, S, |=;) unless otherwise stated.
Let M = (W, (Ra),eM, V) € S and 0 # W’ C W. The restriction” of M to W', denoted
by M, is the L-model (W', (R}),cM, V') such that for all a € M, R, = (R,);w and for
all p € Fo, V'(p) = V(p) N W'. Proposition 4.1 below states that the class of models for
an LA-logic is closed under the restriction operation.

7J\/l|W/ is also called a submodel of M.



Proposition 4.1. For all M = (W, (R,),em,V) € Sand 0 # W' C W, My € S.

Proof: Direct consequence of Fact 2.2. Q.E.D.

Proposition 4.2 below states that in a model, if R,, (z) = R,, (y) then the linear orders
associated to z and y are not independent.

Proposition 4.2. Let {ai,...,a,} CM, M = (W, (Ra),eM, V) € S, € W be such that
R, (z) C...C R, (2). Assume (z,y) € R,, for some k € {1,...,n}. Then,

L. forall & € {k,...,n}, Ry, () = Rq,, (y).
2. forall ¥ € {1,...,k — 1}, Ry, (y) C Ra,(y)-

Proof: (1) Since R, (z) C R,,,(z) then (z,y) € R,,, and R,,, (z) = R,,, (y) since R,,, is
an equivalence relation. (2) Similar to (1). Q.E.D.

For all M = (W, (R.),eM, V) € S, for all L-formulae A and all w € W, if for some
a € suby(A), for all b € suby(A), Ry(w) C R,(w) then

M, w |: Auff MlRa(w)a w ): A

Although all the LA-logics satisfy the property above, there exist logics that do not
satisfy it. For the LA-logics, it is easy to check that

( U R)'(w)=Ra(w)

bEsubM(A)

when for some a € suby(A), for all b € suby(A), Ry(w) C R,(w).

For any finite sequence of natural numbers o, we write set(o) (resp. |o|) to denote the
set of elements occurring in o (resp. the length of o). For example set((1,2,3,3,4)) =
{1,3,2,4}. As usual, 0.0, denotes the concatenation of two sequences.

4.1 The Construction

Let A be an L-formula, M = (W, (R,),cM,V) € S, w € W such that M, w |= A. Assume
that suby(A) = {ay,...,a,} with R, (w) C ... C R, (w) (see Fact 2.2(2)). We shall
construct a set W' C W such that

o we W,
e W’ is finite and,
L4 M|W/,w ): A.

For the sake of clarity of exposition, first the construction is informally discussed and
then the formal definitions follow (a simple example shall be also given).

To build such a set W', we first consider the set Nec of necessity formulae 0, A’ such
that 0, A" € sub(A) for some modal expression b occurring in A. Then the construction
of W' is done recursively, that is W' = Jjc;<, W/ for some 0 < o < n where each W/ is

finite. Wy is initialized to {w} and then W, is defined from Wj. If a formula in Nec is
not satisfied at some element of Wy, we add a witness of this fact in W, (M, u = O, A’
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iff there exists ' such that (u,u’) € R, and M,u' [£ A’). Moreover, if M,u £ O, A4,
M,u (= Oy, A" and R, (u) € R,,(u) then a single witness u’ needs to be considered
satisfying (u,u) € Ry, and M,u' |= A’. The set of necessity formulae Nec{ ") is
introduced and it contains only the elements of Nec that require a witness for u. This is
an optimization of the construction.

The last point that deserves to be explained is how to end the construction (for the
multi-modal logics S5;, & > 2, we would not know when to terminate the process). Assume
that for some u € W/, M, u | 0., A’ requires a witness and R, (u) C Ry, (u). There exists
u' € W/, such that M, ' £ A" and (u,u’) € R,,. We can show that if M« = 0O, A" for
some [,; A" € Nec, there is no need to consider a new witness. Indeed, there exists «" such
that (v',4") € R,; and M,u" [ A”. Since R, is an equivalence relation, (u,u") € R,
and therefore M, u = O, A”. If the set W/, , has been properly built (this point should
become clear in the formal definition), there exists v € W/, such that (u,v) € R,; and
M, v lE A", Since (u',v) € R,,, vis already a witness for M, u’ = O, A”. This observation
allows us to find a < n such that for all »' € W/, no witness is needed. The crucial point
in the development above is the hypothesis R, (u) C R,,(u). In case R, (u) C Rq,(u)
(strict inclusion), we may have to introduce a new witness for M, u' = O, A".

We shall give in the sequel the formal definitions. The set Nec (which was related to
the construction of the set I' in Section 3.2) is defined by

Nec = {DbA/ . El I:la A/ € SU/b(A)7 Elb € SUbM(A)}

For all z € W, for all sequences o = (ji,...,jx) such that set(o) C {1,...,n} and
R, (z) C...C Ry, (z), the set Nec] is defined as follows,

Nec = {0, A’ € Nec : Ik’ € {1,...,k}, M,z = ~0,, A, and
if k' > 2then M,z =0 A}

Agpi_q

Observe that card(Nec) < n x mw(A), card(Nec]) < mw(A) and Nec] = () when o is the
empty sequence -denoted by A. Roughly speaking, Nec is the set of necessity formulae
O.A" occurring in A with their copies 0, A’ for all the indices b occurring in A. The
set Nec? contains the elements [, A’ of Nec such that there is w € W with M, u (£ A’
and (z,u) € R, (there is i € set(o) such that a; = @ and 7 is minimal in o). In that
way, if a,b € M, M,z £ 0,A" and M,z }E O, A’ then card(Nec] N {J,A',0,A'}) < 1.
In particular if {,A4",0,A’} N Nec = () then card(Nec] N {0,A’,00,A’}) = 0. For each
natural number ¢ < n, we are defining a set W; of triples (w’, ¢,7) where

o w e W,

e 0 is a sequence of elements of {1,...,n} without repetition,

e 7 is either the symbol 'A’ or some [0, A’ € Nec with p & set(o).
Each set W/ shall be later defined as the set {w' : (w',0,7) € W;}. The set W; is
an intermediate set that contains some information about the elements of W/. We let

Wy = {(w,(1,...,n),A)}. Assume W; is defined. We will now define W;,. Initialize
Wiy1 to the empty set ().

For each (w’,0,?) € W,

11



depth ¢ at most Rg (W) C ... C Ralj_l(w“)
n < miv(A) Part of W, Jj—1l<k—-1
Rowy () C . C R, (u)
{iy, .. ig_1} = {1,k =1}
—1<n

card(Wiy1) < mw(A) x card(W;), 1< i<

Figure 2: Mllustration of the construction

for each O,, A" € Necy,,
choose one u € W with the property (w',u) € R,, and M, u = —-A".

If 0 = (j1,...,Jx) then we write &’ to denote the element of {1,...,k} such that j.. = j.
The existence of k' is guaranteed by the definition of Nec?,. Add the 3-tuple

(4 (- o), Ty )
to the set W,y such that

o set((J1;- s Jpima)) = set((Gry - -5 Jri—n)) and
e R,,(u)C...CR,, (u)-whenever k' =1 the sequence (ji,...,j;,_;) is empty.

1 k-1

Let W,y be the set augmented this way. There exists a € {0,...,n} such that
W, # 0 and W,y = 0 as the length of the sequences of natural numbers strictly decreases.
Moreover if (w',0,7) € W; then |o| < n —i. Let U and W’ be the sets defined in the
following way:

U=w: W' =W withW={w €W : (v, 0,7?) €W}

(2
i=0 =0

Figure 4.1 illustrates the first steps of the construction.
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Proposition 4.3 below states the main properties of the construction. In particular,
for each (w',0,7) € U and for ¢ € {1,...,n} \ set(o) the elements in R, (w') are partly
known.

Proposition 4.3. For all 7 € {0,...,a} and all (w;, (j1,...,7%),7) € Wi,

1. Ran (LUZ) g e g Rdjk ('LUZ'),
2. 1f 7 = 0,, A" then R,; (w;) C Ry, (w;) and M, w; = —A’,
3. forall j € {1,...,n}\ set((j1,-.-,Jx))s Ra, (wi) C Ra,(w;).

Proof: (1),(2) Immediate by construction of W;. (3) By induction on i.
Base case (i = 0): Obvious.
Induction step: let (w;,0.(jgry ..., jr),?) € W; with

o set(o) ={j1,...,Jr—1} and |o| = k' — 1 (no repetition),

o (w;,wiy1) € Ry, , and,

aJk/

o (wigt, (Jiy--yJriz1)s DGWA’) € Wiyt (wigq is a witness for M, w; £ 0O,  A').

By the induction hypothesis, for all j € {1,...,n}\ set((ji,...,Jx)); Ra, (wi) C Rq,(w;).
By Proposition 4.3(1),
Rajk/ (wz) g e g Rajk (’LUZ)

So for all 7 € ({1,...,n}\ set((j1,---,7%))) U {Jkrg1s-- 178}, RGJL (w;) € Rg;(w;). By
Proposition 4.2, for all j € {1,...,n} \ set((j1,-..,Jrk-1)),
Raj (wi+1) = Rdj (wl)

Since R,, , (wit1) C Ra, , (wiy1) by Proposition 4.3(1), forall j € {1, ..., n}\set((j1, ..., jx-1)),
Rajk’—1 (wi+1) g Raj (wi+1)- Q.E.D.

Forall i € {0,...,a =1}, card(W;;1) < card(W;) X mw(A) and therefore card(W’) <
14+ n x mw(A)*. This construction is more general than the construction defined in
[HM92] to prove the NP-completeness of the satisfiability problem for the propositional
modal logic S5. Indeed for n = 1 the construction in [HM92] (see also [FHMV95]) and ours
are identical. Observe that S5 can be seen as an LA-logic with a unique modal expression

(then the local agreement condition is trivially satisfied). In Figure 3, an example of
construction with some finite model is given.

4.2 How the Construction Captures Enough Worlds
Now assume that M, w [= A for some L-formula A, M = (W, (R,),M;V) € S, w € W

and the distinct modal expressions occurring in A are exactly a4, ...,a, with R, (w) C
... C R, (w). The rest of the section is partly devoted to showing that

MwEAIff Mw,wE A

Proposition 4.4 below states that the set W’ contains enough worlds:
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e Element of W,
® Element of W,
@® Element of W,
@ Element of W3

The relations of the model are the reflexive,
symmetric and transitive closure of the relations
presented in the figure.

Some modal expressions are underlined to specify
the used modal expressions of the construction.

p: the propositional variable p
is not satisfied in the world.

W' = Upcica Wi card(Nec) =9

Figure 3: An £-model and a construction of the set W' for =(0,p VvV Oyq Vv O.r)

Proposition 4.4. For all w' € W’ and O,;A" € Nec, if M,w' | =,, A’ then there is
w" € W' such that (w',w") € R,, and M, w" = A’

Proof: By induction on i for (w',0,7) € W,.

Base case (i = 0, w' = w): assume that M, w |= -0, A’. Then there exist O, A" €
Nec(l o™ and (us, (1, -+ ., Jx_1), ey A') € Wi such that (w, ) € R,, and M, u; = A’
Since R,,(w) C R, (w) by the definition of Nec{!"™), we have (w, u;) € R,,.

Induction step: assume M, w;q = — 0Oy, A", (i1, (J1, -+ Jrr=1), Dajk, A') € Wigy.

If j € set((41,...,Jr—1)) then a new object in W;y, is built. There exist O, A" €
Necq(ﬁ:;l”]""l) and (wiya, (J15 -y Jpn_y), Oa, A”) € Wiya such that (w;gq, uiqq) € R,, and
M, u;yq = —A”. By definition of Necg:jr'l”’j""l) and Proposition 4.3(1), we have R,, (w;41) C
Ry, (w;41) and therefore (w;tq,u;42) € R,;. Now assume j ¢ set((j1,...,Jx—1)) (it is the
most interesting case), whence w # w;y,. There exists

(uiaal'(jk’a . 'ajk)??) € VVZ

such that (u;, w;yq) € R, set(o') = {j1,...,Jew—1} and |o'| = k' — 1. By Proposition
4.3(3), Raw (u;) € Ra,(u;). Hence (u;, wiy1) € R,, and therefore M, u; = -0, A" since
R, is transitive. By the induction hypothesis, there is w € W’ such that (u;,u) € R,;,
M, u = A", whence (w1, u) € Ry, since R, is an equivalence relation. Q.E.D.

Proposition 4.5 below provides a bound for the size of the models.

Proposition 4.5. An L-formula A is L-satisfiable iff it is satisfiable in a model for £ with
at most 1 4+ n X mw(A)" objects, where n = card(suby(A)).

14



The proof of Proposition 4.5 follows the lines of the proof of Lemma 6.1 in [Lad77].
Proof: Assume there exist M = (W, (R,),eM, V) € S and w € W such that M, w |= A.
Let M’ be M|y.. We can show that for all objects ' € W’ and for all B € sub(A),
M,u' = B iff M' v = B (so we prove M’ u |= A). We proceed by induction on the
structure of B. The only nontrivial case is when B is of the form O, B’. Take v’ € W'. If
M, v |=0,B, then for all v € W such that (uv/,v) € R, we have M, v |= B’. In particular,
for all v € W’ such that (u’,v) € R we have M, v = B’. By the induction hypothesis, for
allve W', M', v E B'. Thus M’ v |=0,B’. Now assume M, u' £ ,B’. By Proposition
4.4, there exists v € W’ such that (v',v) € R, and M, v £ B’. In consequence, (u',v) € R/,
and by the induction hypothesis M’, v £ B’. Hence M’, v’ £ 0,B'. Q.E.D.

Corollary 4.6. £ has the strong finite model property.

The construction in this section generalizes the technique used in [Dem96b] to the set of
LA-logics. Corollary 4.6 takes advantage of the fact that, for any LA-logic £ = (L, S, =,),
S is closed under submodels and any two binary relations R, S of a model for £ are in
local agreement.

In the sequel we shall provide sufficient conditions to prove the decidability of LA-
logics. For any set LO of linear orders over M and for any subset Y of M, we write LO 1Y
to denote the set of linear orders LO 1Y = {<y : < € LO}.

Definition 4.1. An LA-logic £ = (L, S, [=¢) is said to be (resp. polynomially) lo-decidable
iff it is decidable whether for all finite sets ¥ C M and all linear orders < over Y, < € [o(L) 1
Y (resp. and it can be checked in polynomial-time with respect to card(Y)). \Y

For instance for an LA-logic such that lo(L£) is finite and it is decidable for < € lo(L)
and a,b € M whether (a,b) € <, £ is lo-decidable.

Definition 4.2. An LA-logic £ = (L, S, =) is said to be (resp. polynomially) lo-complete
iff it is decidable whether for all finite sets Y C M and all structures (W, (R,)qey) such
that

1. W is a non-empty set,

2. fora € Y, R, is an equivalence relation over W

there is an £-model (W, (R,), .M,V ) such that for all @ € Y, R, = R, (resp. and it can
be checked in polynomial-time with respect to card(Y) and card(W)). \%

Proposition 4.7 provides sufficient conditions for the decidability of L A-logics.

Proposition 4.7. Let £ = (L,S,[=,) be an LA-logic such that £ is lo-decidable and
lo-complete. Then the L-satisfiability problem is decidable.

Proof: Take any formula A for which one wishes to know whether A is L-satisfiable. By

Proposition 4.5, A is L-satisfiable iff there exist an £-model M = (W, (R,),cM, V) and
w € W such that M, w = A and card(W) < 1+ n x mw(A)" where n = card(suby(A)).
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So in order to check whether A is L-satisfiable, enumerate all the structures M’ =
(W, (Ra)aesubM , V) (modulo the isomorphic® copies with respect to A) where

1. W =A{wy,...,w} is a finite non-empty set such that I <1+ n x mw(A)?
2. (Ra)aesubM(A) is a family of binary relations over W

3. V is mapping V : Fo(A) — P(W) where Fo(A) denotes the set of propositional
variables occurring in A.

and check whether

(¥) M',w = A for some w € W
(xx) for a,b € suby(A), R, and R, are equivalence relations in local agreement.

(x%%) For all ¢ € {1,...,}, there is a linear order < over suby(A) such that for all a,b €
suby(A) if a<b then R,(w;) C Ry(w;) and < € lo(L) 1 suby(A)
(% % %k) there is an £-model M = (W, (R, )aEM’ V') such that for all a € suby(A), R, = R,
and the restriction of V' to FO(A) is V.

When (%) — (% x %%) hold A is L-satisfiable. (%) can be checked in polynomial-time with
respect to [ and to the size of A (i.e., the length of the representation of A in any reasonable
-unspecified- encoding). (&%) can be checked in O(n!x 7). (%%x) and (xx**) are instances
of decidable problems since L is lo-decidable and lo-complete. Since the set of structures
(W, (Ra)aesub (modulo the isomorphic copies) such that card(U) < 1+ n x mw(A)"
is finite, the (li/leadablhty of the L-satisfiability problem follows. Q.E.D.

Proposition 4.7 is a weak version of Corollary 8 in [Dem96a] since the initial proof
(related to decidability) contains a flaw. It is however an open question whether every
LA-logic has a decidable validity problem.

Example 4.1. Let £ be an LA-logic such that lo(L£) is the set of all the linear orders over
M (resp. lo(L) = {<} is a singleton and it is decidable whether (a,b) € < for a,b € M). It
can be shown that £ is lo-decidable and lo-complete. Then the L-satisfiability problem is
decidable.

More can be said when M is finite.

Proposition 4.8. Let £ = (L, S, E,) be an LA-logic such that M is finite. Then,

1. £ is polynomially lo-decidable.

2. for all finite L-models M = (W, (R,),cM, V) one can check that M € S in polynomial-
time with respect to card(W).

3. The L-satisfiability problem is NP-complete.

5w, (RG)GEMZ,M(A),V) and (W', (Rl)aesubM , V') are isomorphic with respect to A iff there is a 1-

1 mapping g : W — W' such that for all a € subM(A) {(g(z),9(y)) : (z,y) € R} = Rl and for all
propositional variables p occurring in A, V'(p) = {g(z) : =z € V(p)}.
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Proof: (1) is immediate from Definition 4.1. (2) Direct calculations lead to the conclusion
that M € S can be checked in O(card(M)! x card(W)?). (3) is a direct consequence of
Proposition 4.5 and (2). Q.E.D.

For the sake of comparison, for all k& > 2, the satisfiability problem for the multimodal
logics S5, is PSPACE-complete [HM92], whereas the PSPACE-complete satisfiability
problem for S4 can be reduced in linear-time to the satisfiability problem for any LA-S4-
logic with a non-empty set of modal expressions.

5 Applications to Logics from the Literature

Below we relate the LLA-logics to some logics from the literature.

5.1 Gargov’s Data Analysis Logic with Local Agreement

The logic DALLA defined in [Gar86] (originally called DAL) restricts the class of models of
the logic DAL [FdCOB85] by requiring that any two indiscernibility relations of a model are
in (LA). A complete axiomatization of DALLA is given in [Gar86]. The decidability of the
validity problem for the logic DALLA is open, as mentioned in [Gar86]. The logic DALLA
= (Lp,Sp, Eparra) is defined as follows. Lp has a countable set of modal constants Myp,
and the operators N and U* interpretated as the intersection® and the transitive closure
of union respectively. The set of modal expressions (resp. Lp-formulae) is denoted by Mp
(resp. Fp) and Mp is the smallest set such that Mop C Mp and if a,b € Mp and & € {N,U*}
then ¢ @ b € Mp.

For all Lp-models M = (W, (R.),em,, V), M € Sp iff for all a,b € Mp, for any
@ € {n,u*},

e R, is an equivalence relation,

L4 Ra@b =R, D Ry,

e R, and R, are in local agreement.
Consider the Hilbert-style system dalla containing the following axiom schemes and in-
ference rules (A, B € Fp, a,a1,as € Mp):

P. All formulae having the form of a classical propositional tautology

0.(A= B) = (0.,A=0,B),
0,A = A,
0aA =0, Oa A,
Oa,ura,A < O, ANO,, A,
Oayna, A< O, AV O A
MP. From A and A = B infer B,
NR. From A infer (0, A.

- S o 3R

?For the sake of simplicity, the operators and the relational operations are denoted by the same symbols.
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For all Lp-formulae A, A is DALLA-valid iff A is a theorem of dalla [Gar86]. Although
DALLA is not stricto sensu an LA-logic (because of the condition R,g, = R, & Rs),
there exists a simple translation between DALLA and an LA-logic DALLA’ defined below.
Consider the LA-logic'® DALLA’ = (Lp:, Sp/, =p'), where Lp/ is the subset of Lp without
the modal operators {N,U*} and lo(DALLA’) is the set of all the linear orders over Myp.
Consider the mapping T of formulae from Lp into Lp: defined as follows:

e T(p) = p for all p € Fy, T(O,A;) = O,T(A,) for all a € Myp,
[ ] T(A1 A Az) = T(Al) AN T(Az), T(_|A1) = _|T(A1),
[ ] T(DCLIOGQAl) = T(DalAl) V T(DagAl) &Ild T(DGIU*G2A1) = T(DalAl) N T(DagAl).

Proposition 5.1. For all Lp-formulae A, A is DALLA-valid iff T(A) is DALLA-valid iff
T(A) is DALLA’-valid.

The proof is immediate considering the replacement of equivalents in dalla, complete-
ness of dalla with respect to the DALLA-validity, and the fact that for all A € Ly, A
is DALLA-valid iff A is DALLA’-valid. Actually, for all Lp,-formulae A, for all M =
(W, (Ra)geM,,» V) € Sp, w € W, M, w = A iff M',w |= A where M' = (W, (R}) ,eM,,» V)
with R, = R/, for all @ € Myp. DALLA has therefore the strong finite model property
and the validity problem for DALLA is decidable (see Example 4.1 for the decidability of
DALLA’). This section has reproduced the main arguments from [Dem96b].

5.2 Nakamura’s Logic of Graded Modalities

The logic of graded'! modalities (LGM = (Lpgum, Sraum, Erea) for short) introduced in
[Nak93] (see also [Nak92]) is based on the graded equivalence relations, i.e. the graded
similarity in Zadeh’s meaning [Zad71]. Although the decidability of LGM is proved in
[Nak93] using the rectangle method developed in [HC68], we prove that LGM has the
strong finite model property. The set of modal expressions of L4y, is the closed interval
[0, 1] of the real line. For all Lygay-models M = (W, (Rx)xepo,17, V), M € Spau iff there is
W x W — [0, 1] such that

1. forall 2 € W, p(z,z) =1,

2. forall 2,y € W, u(z,y) = ply, z),

3. for all z,z € W, u(z,z) > lub{min(u(z,y), u(y,2)) : y € W} (lubX: least upper
bound of the set X) and

4. for all A € [0,1], Ry = {(z,y) € W x W : u(z,y) > A}
The binary relations R, in a model for LGM are therefore equivalence relations. Moreover
we can easily show that LGM is not an LA-logic. However the LA-logic LGM’ (defined

below) is strongly related to LGM as shown below. So consider the unique LA-logic
LGM' = (LLGM7SLGM’7 ):LGM’) such that

In [DO97] (see also [Bal97]) a complete axiomatization of DALLA’ is given: it corresponds to dalla
where the axiom schemes U. and I. are deleted and the axiom schema (Og, Oa, A A Og, O4, A) &
(Oa, AAOg, A) for all ar,as € Mp is added.

"'The term ’graded’ should not be confused with its use, for instance, in [HM91, Cer94, MMN95, Mik95].
Its present use is similar to that in [Cha94].
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lo(LGM') = {>}, where > is the usual linear order on [0, 1].
Then for all M = (W, (Ry) 011 V) € Scam,
for all A, A" € [0,1], A > X implies Ry C Ry.

By Corollary 4.6, LGM’ has the strong finite model property, and the validity problem for
LGM' is decidable (see Example 4.1). In the sequel we show that for all A € Lyga, A is
LGM-valid iff A is LGM’-valid, although Speym # Stam:-

Proposition 5.2. Let M = (W, (R))xep,1], V) € Spogm. Then M € Sy and for all
A€Lligu, weW, M,w oy Aiff M,w Lo A.

The proof is by an easy verification. Proposition 5.3 below states the converse result.

Proposition 5.3. Let M = (W, (Rx)xep,17, V) € Scemry, w € Woand let A be an Lygy-
formula. Let denote the set of real numbers being indices of modal operators that occur in
A by {A1,...,Ax} (in increasing order). Let M’ be Mg, () = (Bx,(w), (R))xep,11, V'),
and let M" = (R, (w), (RY) xe[o,1], V') be a structure such that,

1. for all A € [0,A,] R{ = R}, ,

2. forall i € {1,...,n =1}, X €]A;, \iz1] (right-closed interval of the real line) Ry =
}%/

)\i+1’

3. for all X €]A,, 1], RY = R}.

and

Then M” € S gy and for all w' € R, (w),
M, w' Erow AT M w' Epaw AT M w' =rpay A.

Proof: First it is clear that M” € Spgar. For all A € {Ay,..., A\, }, Ry, = RY so for all
w' € Ry, (w), M',w' = Aiff M" w' |= A. Moreover, considering the remark following the
proof of Proposition 4.2, M,w’ = A iff M’,w’ = A (remember that R, C ... C R,,).
Now we prove that M” € Sraur.

Consider the function p : Ry, (w) X Ry, (w) — [0, 1] such that

for all (z,y) € Ry, (w) X Ry, (w), p(z,y) = lub{x € [0,1] : (z,y) € RY}.

This definition is correct since the latter set is not empty (it contains A;) and the least
upper bound of {X € [0,1] : (z,y) € RY} always exists. The possible values for lub{\ :
(z,y) € RY} arein theset {A,..., Ay, 1}. Hence by construction, for all (z,y) € R, (w) x
Rh(w)a ,u(xvy) = max{)‘ : (Iay) € Rl){}

(1) Since RY is reflexive, then for all z € Ry, (w), (z,z) € R} whence u(z,z) = 1.

(2) For all z,y € Ry, (w), p(z,y) = maz{X : (z,y) € R{} = maz{X: (y,z) € R} (by
symmetry of the relations RY) whence u(z,y) = u(y, z).

(3) Take z,y,z € R,,(w). We write k¥ to denote min(u(z,y), u(y,2)). By definition of
p, & = min(maz{X : (z,y) € Ry}, maz{X : (y,z) € RY}). It follows that maz{X :
(z,y) € R{} > k. There is &' > &k such that (z,y) € R,; so (z,y) € Rl since R, C R!.
In a similar way it can be shown that (y,z) € RY. By transitivity, (z,z) € R!, whence
p(z, z) > k by definition of p. Thus for all z,y, z € R, (w), u(z, z) > min(u(z,y), u(y, 2)).
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In consequence for all z,z € R, (w), p(z, z) > lub{min(u(z, y) p(y,2)) iy € Ry (w)}.

(4) By construction of M", (z,y) € RY, iff M € {X: (z,y) € Ry} iff X' < maz{):(z,y) €
Ry} iff X < p(w,y). Hence f01 all z,y € Ry, (w), X € [0,1], RY = {(z,y) : p(z,y) > A}
This terminates the proof. Q.E.D.

Proposition 5.2 implies that Spamr € Spem but Spem € Srea. For instance in a
model for LGM', Ry may not be the universal relation although in each model for LGM
R, is the universal relation. Proposition 5.2 and 5.3 imply that for all A € Lygar, A is
LGM-valid iff A is LGM’-valid. Hence LGM has the strong finite model property, and the
validity problem for LGM is decidable.

Although LGM is not an LA-logic (see Proposition 4.5), one can state:

Corollary 5.4. An L-formula A is LGM-satisfiable iff it is satisfiable in an LGM-model
with at most 14+ n x mw(A)” objects where n is the number of real numbers (viewed as
modal expressions) that occur in A.

As mentioned in [Nak92], the axiomatization of LGM is an interesting open problem.
As a side-effect of our work, we define a sound and complete axiomatization of LGM using
standard techniques for modal logics. Consider a Hilbert-style system 1gm’ containing the
following axiom schemes and inference rules (A, B € Lygar, A1, A2 € [0, 1]):

P. All formulae having the form of a classical propositional tautology,
K'. 0,,(A= B) = (O0,,A =0, B),
T. 0,,A = A,
5. 0,,A=0,0, A4
<. O0,,A=0,,A4 when Ay < A,
MP. + RN.

By using the canonical model construction (see e.g [Mak66]), it is a standard task to
prove that for all A € Lygar, A is a theorem of 1gm’ iff A is LGM’-valid. As a consequence,
1gm’ is a sound and complete system for the logic LGM.

The logics LGM’ and DALLA’ correspond to two extreme cases of LA-logics: lo(LGM')
is a singleton, whereas lo(DALLA') contains all the linear orders on the set of modal
expressions. Although the concepts of rough sets and fuzzy sets are different (see e.g.
a discussion in [Paw85]), the technique developed in Section 4 can be applied to logics
derived either from the notion of rough sets (DALLA for instance), or from the notion of
fuzzy sets (LGM for instance). However, our technique does not seem to be applicable for
instance to the modal fuzzy logics presented in [Yin88] since the value of any formula in
a model is a fuzzy set, which is not the case with LGM. Indeed the fuzziness in LGM is
relative to the binary relations but not to the valuation functions.

6 Hilbert-Style Axiomatization

In this section, we define complete Hilbert-style systems for each LA-logic such that lo(L)
is finite (finite M is a particular case). As usual, by an L-normal system we understand
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a subset X of F which contains the axioms of classical logic together with the formulae
O.(p = q) = (,p = O.q), and is closed under Modus Ponens, the Necessitation Rule
(from A infer O, A for any a € M) and the Substitution Rule.

Let £ be an LA-logic such that lo(L£) is finite (say card(lo(L)) = M) and let X, be the
set of L-valid formulae

X ={A:YM e S, M E A}

L is fixed in the rest of the section, unless otherwise stated. A formula A is true in an
L-frame F = (W, (R,),cm) (written F |= A) iff for all L-models M based on F, M = A.

For any set X7 of L-frames, we write Th(X7”) to denote the set of L-formulae below:
Th(X7)={AcF:VFe X7, F= A}

For any set X of L-formulae, we write F'r(X) to denote the set of L-frames
FrX)={FeX{ :VAe X, FE A}

Proposition 6.1. X, is an L-normal system.

The proof is immediate and it does not depend on the cardinality of lo(L). Let
XF={F e X{ : IM € S based on F}

be the set of L-frames on which the models of S are based on. It is easy to show that
Th(XT) = X;. Although it is clear that X7 is closed under subframes (see Proposition
4.1), we shall show that Fr(X;) is also closed under subframes. Until now, we can only
state that X7 C Fr(X;). Indeed take F = (W, (R,),cM) € XZ. All the models based on
F belong to S. Hence forall Be X, ={A:VMe S, M A}, FEB. SoF € Fr(Xg).

Each linear order < over a finite set of modal expressions {a1, ..., a,} shall be denoted
by (a;,,...,a;,) where set((iy,...,i,)) ={1,...,n} and forall j € {1,...,n—1}, a;,<a,,_,.
Let LO = {<,...,%,,} be a finite set of linear orders such that for all j € {1,...,m},
< = (@, ..., ;). We write A* to denote the L-formula

Vo (A @ape=0, pr)
kef{l,...m} je{2,..n} I it

where the p,’s are propositional variables, and k # &' implies py # pg:.

Proposition 6.2. Let 7 = (W, (R,),cM) be an L-frame. Then
(%) FE {APEY Ly CM,2< card(Y) < 2 x card(lo(L))} iff,
(xx) for every u € W there exist < € lo(L) such that for all a,b € M, a<b implies R,(u) C
Rb(u)

Proof: Let lo(L) = {<;,...,<,,}. First assume (%) holds. Suppose that there is z € W
such that for all k € {1,..., M}, there are a;,a;, € M with a;<,a) and R,, (2) € Ra ().
Hence for all k € {1,..., M}, there is zf € W such that (z,2¢) € R,, and (z,25) ¢ Rar .
We write LO to denote the set {<],...,< .} =lo(L) 1Y, with

M

Yo = U {alm a;c}

k=1
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and card(Yy) =n' <2x M. Forall i € {1,...,m'}, we write <} = (a!,...,a},). We have
ALO ¢ {APEY 1y CM,2 < card(Y) <2 x M}
since 2 < card(Yp) < 2 x M. For all k € {1,...,m'}, we write a(k) to denote an element

of {1,..., M} such that (<), = < (a(k) may not be unique).
Let M = (W, (R,),eM, V) be a model based on F such that

ke {L,...,m'}, V(p) = Rar , (2) (1)

Since M,z = AL© (by hypothesis F |= AX?) there is ko € {1,...,m'} such that M,z
Nietz,...n') Dajupko = Dafglpku' Since

.....

{@ly ) Qatr)} © Yo = {a* 1 j € {L,...,n'}}
and
(a’O‘(kO)7 a’/Oé(ko)) € Sﬁﬁo = (Sa(ko))|Y0

there exist j;,js € {1,...,n'} such that j; < js, aff = Ug(k,) and afg = apk, and for all
jed{in+1,.. 0L Mz E Dafopko = Dafglpko' So M,z E Ot Pro = Daggey Py We
have M,z | Da;(k Pk by (1). Therefore M,z = O,
(z,25"”) € R,
contradiction.

Now assume (%x). Let M = (W, (Rq,),cM, V) be a model based on F. Let Y C M be
such that card(Y) =n' < 2x M and n’ > 2. We write LO to denote the set lo(L) 1 Y.

For all v € W, there is < = (a1,...,a,) € LO such that R, (u) C ... C R, ,(u). Take
any k € {1,...,n'}. Tt is easy to show that for all &' € {1,...,k} and all p € Fy, M, u =

\Pr, and M,z = py. since

a(kg

But (z,20%) ¢ Rqr 0 by (1), M, z2%) k£ p. which leads to a

a(kp)”

AAAAA

Q.E.D.

In a similar way we can prove the particular case:

Proposition 6.3. Let 7 = (W, (R,),cM) be an L-frame. If M is finite then
(x) F | AP i,
(xx) for every u € W there exists < € [o(L) such that for all a,b € M, a<b implies
R.(u) C Ry(u).

Propositions 6.2 and 6.3 can be viewed as correspondence results (see e.g. [Ben84])
about the local agreement condition. It should be observed that in Proposition 6.2, the set
X* = {AOY 1Y CM,2 < card(Y) < 2xcard(lo(L))} is infinite if M is infinite. Moreover
for all finite subsets Y, Y’ of M, if Y C Y’ then F |z AP = AP Thyg the set X*
can also be replaced in Proposition 6.2, by {A°“)TY 1Y C M, card(Y) = 2 x card(lo(L))}.

Corollary 6.4. For any L-normal system X, if
{APONY 1y CM,2 < card(Y) <2 x card(lo(£))} C X

then for all 7 € Fr(X) the relations in F are pairwise in local agreement with the local
agreements in lo(L), i.e. for each F = (W, (R,),m) € Fr(X), for all w € W, there is
< € lo(L) such that for all a,b € M, a<b implies R,(w) C Ry(w).
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From now on, X/ denotes the smallest L-normal system that contains the axiom
schemata:

T. Uep = p,

B. p=0,-0, —p,

4. O,p = 0O, O, p,
LA A" for all finite Y C M such that 2 < card(Y) < 2 x card(lo(L))

As usual, aset X C Fissaid to be X, -consistentiff there is no finite subset {A;, ..., Ay} C
X such that =(A; A ... A Ag) € X.. X CFis called a mazimal X,.-consistent set iff X is
X/.-consistent and for all A € F either A € X or A € X. We write 00, X to denote the set
{A:0,A4 € X}, where X CF and a € M.

Proposition 6.5. X, C Th(X7]).

The proof is standard, considering the correspondence result of Proposition 6.2 as well
as the correspondences between T, B and 4 and the property of reflexivity, symmetry and
transitivity (see e.g. [Ben84]). We use the standard construction of the canonical model
(see e.g., [Mak66]). The canonical model for X/, is the triple M® = (W, (R) .M, V°)
where

e W< is the family of all the maximal X/.-consistent sets,
o Forall X, X' e WeandallaeM, (X,X') e Riff(0,X C X',
o Vi(p)={X e W |pe X} forall p€F,.

Proposition 6.6. M° ¢ S.

Proof: One can prove that the relations in M¢ are equivalence relations. The proof, being
quite standard is omitted here. Let lo(L) = {<;,...,<y}. In the sequel, we prove that
for all X € W¢, there is < € lo(L) such that for all a,b € M, a<b implies RS(X) C Rj(X).
Suppose there is X, € W€ such that for all & € {1,..., M}, there exist a;,a) € M such
that ax<,a), and R, (Xo) € Ry (Xo). Hence for all & € {1,..., M}, there is Xg ewe
such that (Xo, X§) € RS and there is Ay € F such that Oa Ax € Xo and A, ¢ Xk,

We write LO to denote the set LO = {<},...,<,} = lo(L) 1 Y, with Yy = Up—, {ax, a,}
and card(Yy) =n' (2<n' <2x M). Forall i € {1,...,m'}, we write </ = (ai,...,a’,)
and «(i) is an element of {1,..., M} such that < = (<,;))v,- We write A to denote the
formula obtained from A% by simultaneously replacing each p; in it by A,;). It is easy to
show that A € X;. Thus A € X, (every maximal X’.-consistent set contains the elements
of X;;) and there is ko € {1,...,m'} such that A\;c, .1 Dafvoz(ko) = DG:EIAQ(;%) € Xp
(BVB € X, iff Be€ X,or B € X, for all B;B" € F). Since aa(ku)ga(ko)a’a(%) and

GL(kO)AO‘(’“) € Xo, then D%(ko)Aa(ko) € Xo by Modus Ponens. Thus A,u,) € Xg‘(k“),

since (Xo, Xs(k°)) € R; which leads to a contradiction. Q.E.D.

da(ko)’

One can prove in a standard way that for all A € F and all X € W°, A € X iff
M, X = A (see e.g. [HC84]). Basing on this, one can establish completeness of X, with
respect to L.

0
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Proposition 6.7. Th(X7) C X,.

Proof: Assume that A € Th(X7) and suppose A ¢ X,.. Hence there is a maximal X/,-
consistent set, say Xo, such that =A € X (every X} -consistent set can be extended'? to a
maximal X}.-consistent set). Then M¢ [~ A. By the remark above, since (W, (RS) ,.m) €
XTI (because M € S by Proposition 6.6) this yields A ¢ Th(X7), which leads to a
contradiction. Q.E.D.

Proposition 6.8. The following propositions hold:

2. X is a subframe logic (see [Wol93]), that is F'r(X;) is closed under subframes.

Proof: (1) By Proposition 6.5 and 6.7, Th(X7) = X,.. Since Th(X7) = X, then X, = X,
whence X/. provides a complete Hilbert-style axiomatization for L.
(2) By Corollary 6.4, Fr(X;) = X7. Since X7 is closed under subframes, then Fr(X;) is

also closed under subframes.
(3) Direct consequence of (1) and (2). Q.E.D.

It is now a routine task to find complete axiomatizations for the LA-K-logics, the LA-
S4-logics, the LA-T-logics (and for some other ones) when lo(L) is finite. Moreover the
axiomatization of LGM' (card(lo(LGM')) = 1) turns out to be a particular case of the
present construction. When M is finite, LA can be replaced by A“) in the definition of
X’. and the Propositions 6.5-6.8 still hold true.

7 Concluding Remarks

Among the classes of logics defined in the paper, the LA-logics play a special role, not only
because of their relationships with the indiscernibility relations in information systems but
also because in their cases the standard filtration construction fails. This class includes
for instance some logics strongly related to the logics DALLA and LGM, respectively,
introduced in [Gar86, Nak92]. It has been proved herein that each LA-logic £ has the
strong finite model property (see Proposition 4.5). Moreover the £-validity problem is de-
cidable when L is lo-decidable and lo-complete (see Proposition 4.7), and the satisfiability
problem is NP-complete under the hypothesis that the set of modal expressions is finite
(see Proposition 4.8). As a side-effect of our work, we have defined a simple complete
axiomatization for LGM which has been until now an open problem stated in [Nak92]
(see Section 5.2). In Section 6, complete axiomatizations have been defined for LA-logics
characterized by a finite set of local agreements (a particular case is when the set of modal
expressions is finite). Although the construction introduced in Section 4.1 seems to be
limited to the set of LA-logics it provides an elegant construction strongly guided by the
properties of relations satisfying the local agreement condition. This technique cannot be
applied in a straightforward way to the family of logics DALD? defined in [DO97).

1214 holds even if M is uncountable.
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Further investigations of logics determined by classes of frames with relations agreeing
locally are possible. Concerning computational complexity questions, we believe that the
following open problems are worth investigating:

1. What is the complexity class of the satisfiability problem for the decidable LA-logics?
We have answered this question in the case when M is finite but for instance the case
of infinite M and finite lo(L) is open.

2. What is the complexity class of the satisfiability problem for logics sharing the same
language with the LA-logics but not requiring equivalence relations in the semantical
structures (while preserving the local agreement condition)? The standard filtration
constructions are enough to prove the finite model property for some of these logics
(for instance, when only reflexivity of the relations is required).

3. The complexity class of the satisfiability problem for the logics defined in [Bal97,
Waa| similar in some aspects to the LA-logics would be also worth investigating.

Some other questions that remain unanswered:

1. Is there a filtration-like construction that can prove the strong finite model property
for the LLA-S4-logics, in case this property holds? Proposition 3.2 and the results in
Section 4 do not cover either the LA-S4-logics or the LA-K4-logics.

2. Is it true that if a monomodal logic £ (characterized by a given class of frames) has
the strong finite model property, then so does every LA-L-logic?

3. Two equivalence relations R and S are said to be permutable (see e.g. [Pal95])
iff R;S = S;R (where ’;” is the composition operator) iff R;S is an equivalence
relation. If the equivalence relations R and S are in local agreement then they are
also permutable -but not conversely. It is an open question whether the results in
the present work can be extended to the case when the local agreement condition is

generalized to permutability.

Actually the question has been open for me until Maarten Marx has communicated
me recently that the logic determined by all the frames (W, (R:);c(1 2,3;) such that
the R;’s are equivalence relations and for all 4,5 € {1,2,3}, R;; R; = R;; R; has
an undecidable satisfiability problem due to a result proved by Roger Maddux in
[Mad80]. So assume that the finite set M of modal expressions has at least three
elements. For all & € {U,N,;}, we write S5% to denote the logic determined by all
the frames (W, (R,),cy) such that

e for all @ € M, R, is an equivalence relation and,
e forall a,b €M, R, ® R, is transitive.

Hence,

(a) The satisfiability problem for S5Y is decidable and it is NP-complete (see Sec-
tion 4.2).

(b) The satisfiability problem for S5" is decidable and it is PSPACE-complete
(see e.g. [HM92]).

(c) The satisfiability problem for S5' is undecidable (see [Mad80]).
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