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This document contains a revised version of lecture notes for the advanced course “Decidable
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Preface

Model-checking is a well-known approach to verifying behavioral properties of computing sys-
tems that has been very successful in the verification of finite-state systems, see e.g. [McM93,
CGP00, BBF+01]. The situation is different for infinite-state systems. Despite that numerous
symbolic representations have been proposed to deal with such systems (see e.g. timed au-
tomata [AD94]), their formal verification remains a difficult problem. Many general formalisms
referring to infinite-state systems have an undecidable model-checking problem. Sometimes,
decidability can be regained by considering subproblems of the general problem. The class of
counter systems is an example of such a formalism. Counter systems have many applications
in formal verification. Their ubiquity stems from their use as operational models of numerous
infinite-state systems, including for instance broadcast protocols [FL02], programs with pointer
variables (see [BFLS06, BBH+06]) and logics for data words [BMS+06]. Even the case of a
single counter has found some applications in the verification of cryptographic protocols [LLT05]
and the validation of XML streams [CR04]. However, numerous model-checking problems for
counter systems, such as reachability, are known to be undecidable. This does not end the story
since many subclasses of counter systems admit a decidable reachability problem such as reversal-
bounded counter automata [Iba78, ISD+00] and flat counter automata [Boi98, CJ98, FL02]. These
two classes of systems admit reachability sets effectively definable in Presburger arithmetic (as-
suming some additional conditions, unspecified herein).
This course is dedicated to the presentation of decidable problems for counter systems. We

develop techniques for various classes of counter systems (vector addition systems, reversal-
bounded counter systems, counter systems with errors, etc.) and for various problems including
reachability problems, and model-checking with linear-time temporal logics. Mainly, we focus
on decision procedures based on Presburger arithmetic, on the direct analysis of runs and on the
automata-based approach when it is relevant. Because of lack of space and time, the course does
not deal with: proof techniques based on theory of well-structured transition systems [FS01] and
decidability proof for the reachability problem on Petri nets [Reu90] (plus many other topics).
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Chapter 1

Introduction to Counter Systems

In this chapter, we present the class of counter systems as well as several standard subclasses,
some of them being further studied in the rest of the document. For instance, this includes Min-
sky machines, relational counter systems and other classes obtained by restriction (on the control
graph for example). Several decision problems are also defined. Moreover, this chapter presents
some basic material about Presburger arithmetic, the first-order theory of the set of natural num-
bers with addition. Indeed, this is a fundamental theory that is not only instrumental to define
counter systems but although it is central to show the decidability of several problems on sub-
classes of counter systems.

1.1 Introductory Example: Phone Controller
We start by presenting a simple computer system, namely a phone controller [CJ98], in order to
illustrate the goal we pursue by introducing and studying counter systems. Figure 1.1 presents the
phone controller from [CJ98, CC00].

⋆ Control state q1 is the initial and final contro state.

⋆ x1 is the number of coins which have been inserted.

⋆ x2 measures the total communication time. Herein, we assume that each coin allows a
communication for exactly one time unit. Total communication time is therefore the number
of time units spent for communication.

⋆ x′1 [resp. x′2] is the next value of x1 [resp. x2].

⋆ The controller interacts with the environment including the phone box. It can receive or
send messages. Messages followed by a question mark are received by the controller and
messages followed by an exclamation mark are sent by the controller. The message ’coin?’
means that the controller receives the information that a coin has been inserted. Similarly,
’signal?’ means that a communication time unit has been used. In this example, the mes-
sages are considered in order to clarify the role of the different transitions. Nevertheless, a
complete treatment would deserve to introduce channels or similar objects.

7
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q1 q2 q3 q4

q6 q5

x1 = x2 = 0,lift? dial? x1 > 0,connected?

x2 ≤ x1
busy?

hang?

x1 = x2, x′1 = x′2 = 0

x1 + +, coin?
x1 + +, coin?

x2 < x1, signal?, x2 + +

x′2 ≤ x1, x2 + +, coin!

Figure 1.1: Phone controller

⋆ A configuration of the controller is a triple (q, n1, n2) where q is a control state among
{q1, . . . , q6} and n1 [resp. n2] is the value of x1 [resp. x2]. It entirely describes the state of
the controller. The control state q1 is both an initial state and a final state.

⋆ An execution is a (possibly infinite) sequence of configurations, constrained by transitions
of the controller. Observe that different executions are possible, depending for instance on
the received messages (signals). Here is one execution:

(q1, 0, 0), (q2, 0, 0), (q2, 1, 0), (q2, 2, 0), (q2, 3, 0), . . .

For the sake of simplicity, the described system has no bound on the number of inserted
coins.

⋆ The system presented in Figure 1.1 is a finite and concise representation of an infinite la-
beled transition system (its interpretation). Moreover, this is obviously an abstraction of a
more complex system and refinements are still possible, for instance the system could be
completed in order to take into account situations when a break of communication occurs.

Here are examples of properties that one may wish to specify about the system, assuming
that the initial configuration is (q1, 0, 0). For each property, we provide a specification in natural
language and in some temporal logic (dialect close to CTL⋆).

⋆ Total communication time is never greater than the number of inserted coins (true):

A G ¬(x2 > x1).

⋆ For all the executions, the number of coins is infinitely often equal to zero (false):

A G F (x1 = 0).
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⋆ There is an execution of the controller such that the total communication time is always
equal to zero (true):

E G (x2 = 0).

From q1, it is sufficient to reach q2 (in one step) and then to loop on q2.

⋆ Whenever the communication is over, eventually the controller can reach the initial config-
uration (true):

A G (q5 ⇒ Fq1).

⋆ Whenever the control state q1 is reached, x1 = x2 = 0 and conversely (false):

A G(q1 ⇔ (x1 = 0 ∧ x2 = 0)).

The systems introduced in the sequel can be viewed as finite-state automata augmented with
counters (variables interpreted as natural numbers). Transitions are labelled by arithmetical con-
straints on counters, and possibly by letters from a finite alphabet. So, the phone controller (with-
out messages) shall be clearly an instance of counter system. Before defining the class of counter
systems, and fragments allowing us to get decidable verification tasks, we present the Minsky ma-
chines that use elementary operations and guards on transitions but still they are Turing-complete.

1.2 Minsky Machines
A Minsky machine [Min67] can be viewed as a finite-state automaton with two counters. Each
counter stores a nonnegative integer. The operations on counters are the following

⋆ Check whether the counter is zero (zero-test).

⋆ Increment the counter by one (increment).

⋆ Decrement the counter by one if nonzero (decrement).

A Minsky machine is defined as a set of n intructions on two counters C1 and C2. The lth instruc-
tion has one of the form below (i ∈ {1, 2}, l′ ∈ {1, . . . , n}):

l: Ci := Ci + 1; goto l′

l: if Ci = 0 then goto l′ else Ci := Ci − 1; goto l′′.

Configurations are elements of {1, . . . , n} × N × N and the initial configuration is (1, 0, 0).
A computation is a sequence (finite or infinite) of configurations starting from the initial configu-
ration and such that two successive configurations respect the instructions. Consider the Minsky
machine described by the two instructions below:

1: C1 := C1 + 1; goto 2

2: C2 := C2 + 1; goto 1
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Here is the unique computation:
(1, 0, 0) −→ (2, 1, 0) −→ (1, 1, 1) −→ (2, 2, 1) −→ (1, 2, 2) −→ (2, 3, 2) . . .

We present below a classical decision problem for Minsky machines.
HALTING PROBLEM

Input: a Minsky machineM ;

Question: is there a finite computation that reaches the instruction n?
An alternative way to define the halting problem is to assume that instruction n halts the

machine (and therefore it has a special instruction).
Theorem 1.2.1. [Min67, pp. 255–258] For every Turing machine, there is a Minsky machine
that simulates it.
Here are the different steps of the simulation (see also more details at http://en.wikipedia.

org/wiki/Counter machine or in [Min67]).
1. A Turing machine can be simulated by two stacks: the infinite tape is cut in half. For
instance, moving the head left or right is equivalent to popping a bit from one stack and
pushing it onto the other.

2. A stack over a binary alphabet can be simulated by two counters. One counter contains
the binary representation of the bits on the stack. For instance, pushing a 1 is equivalent to
doubling and adding 1, assuming that in the binary representation the least significant bit is
on the top. To do so, the second counter is auxiliary. Similarly, popping a zero is equivalent
to dividing by two.

3. Four counters can be simulated by two counters. The counter values (a, b, c, d) ∈ N4 are
encoded by the counter value 2a3b5c7d. For instance, checking the third counter is zero
is equivalent to dividing by 5 and see what the remainder is. The second counter is again
auxiliary.

As a consequence, we get the following undecidability result based on the undecidability of
halting problem for Turing machines [Tur36].
Theorem 1.2.2. [Min67] The halting problem is undecidable.
It is also possible to design nondeterministic Minsky machines by allowing nondeterministic

choice after incrementation and decrementation. The instructions are of the forms below:
l: Ci := Ci + 1; goto l′ or goto l′′

l: if Ci = 0 then goto l′ else Ci := Ci − 1; goto l′′0 or goto l′′1 .
Another classical decision problem for nondeterministic Minsky machines is the following.

RECURRENCE PROBLEM:
Input: a nondeterministic Minsky machineM ;

Question: is there an infinite computation with instruction 1 occurring infinitely often?
Theorem 1.2.3. [AH94] The recurrence problem is Σ1

1-complete.
Σ1

1-hard problems in the analytical hierarchy are understood as highly undecidable [Rog67].
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Toward counter systems. Even though Minsky machines have a strong computational power,
it is unlikely that one may wish to solve decision problems by programming Minsky machines.
Moreover, undecidability of the halting problem prevents us from encoding decidable problems by
Minskymachines without designing subclasses of Minsky machines with desirable computational
properties. That is why, we shall introduce the class of counter systems (subsuming the class of
Minsky machines) that is of more practical use, in particular by allowing more flexibility and
by admitting a richer set of instructions (in the same way, it makes sense to design convenient
programming languages). Nevertheless, we shall impose restrictions on such counter systems in
order to design classes with decidable problems.

1.3 A Fundamental Decidable Theory: Presburger Arithmetic
Roughly speaking, Presburger arithmetic is the first-order theory of the structure (N, +) shown
decidable in [Pre29] (which contrasts with Peano arithmetic). This logical formalism is used to
define sets of tuples of natural numbers. Moreover, in this course, it will serve two purposes.
Firstly, in the definition of counter systems, Presburger arithmetic is used as a language to de-
fine guards and actions (updates on counter values) on transitions. Secondly, each formula from
Presburger arithmetic defines a set of tuples (related to the set of valuations that make true the
formula) and Presburger arithmetic is therefore a means to represent and manipulate symbolically
infinite sets of tuples of natural numbers. This section is dedicated to the basics on Presburger
arithmetic and to the main properties we shall use in the sequel.

1.3.1 Basics on tuples of natural numbers
We write N [resp. Z] for the set of natural numbers [resp. integers] and [m, m′] with m, m′ ∈ Z

to denote the set {j ∈ Z : m ≤ j ≤ m′}. Given a dimension n ≥ 1 and a ∈ Z, we write a⃗ to
denote the vector with all values equal to a. For x⃗ ∈ Zn, we write x⃗(1), . . . , x⃗(n) for the entries
of x⃗. For x⃗, y⃗ ∈ Zn, x⃗ ≼ y⃗

def
⇔ for i ∈ [1, n], we have x⃗(i) ≤ y⃗(i). We also write x⃗ ≺ y⃗ when

x⃗ ≼ y⃗ and x⃗ ̸= y⃗.
In the sequel, we shall regularly use Dickson’s Lemma [Dic13] that states that for any ω-

sequence x⃗0, x⃗1, . . . of tuples in Nn, there are i < j such that x⃗i ≼ x⃗j .

1.3.2 Definition
Let VAR = {x, y, z, . . .} be a countably infinite of variables. Terms are defined by the grammar
below:

t ::= 0 | 1 | x | t + t

where x ∈ VAR and 0 and 1 are distinguished constants (interpreted by zero and one respectively).
For k ≥ 1, we write kx instead of x + · · · + x (k times). Presburger formulae are defined by the
grammar below:

ϕ ::= t ≡k t | t < t | ¬ϕ | ϕ ∧ ϕ | ∃x ϕ | ∀x ϕ

where k ≥ 2. As usual, an occurrence of the variable x in the formula ϕ is free if it does not occur
in the scope of either ∃x or ∀x. Otherwise, the occurrence is bound. For instance, in x1 < x2, all
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the occurrences of the variables are free. In (∃ x1 x2 x1 < x2) ∧ x1 < x2, each variable has a free
occurrence and a bound occurrence.
A valuation val is a map VAR → N and it can be extended to the set of all terms as follows:

val(0) = 0, val(1) = 1 and val(t+t′) = val(t)+val(t′). The satisfaction relation for Presburger
arithmetic is equipped with a valuation witnessing that Presburger formulae are interpreted over
the structure (N, +).

⋆ val |= t ≡k t′
def
⇔ there is n ∈ Z such that kn + val(t) = val(t′),

⋆ val |= t < t′
def
⇔ val(t) < val(t′),

⋆ val |= ¬ϕ
def
⇔ val ̸|= ϕ,

⋆ val |= ϕ ∧ ϕ′ def
⇔ val |= ϕ and val |= ϕ′,

⋆ val |= ∃x ϕ
def
⇔ there is n ∈ N such that val[x 0→ n] |= ϕ where val[x 0→ n] is equal to

val except that x is mapped to n,

⋆ val |= ∀x ϕ
def
⇔ for every n ∈ N, we have val[x 0→ n] |= ϕ.

Equality between two terms, written t = t′, can be expressed by ¬(t < t′ ∨ t′ < t). Observe
also that t ≡k t′ is equivalent to the formula below (x is a variable that does not occur in t and t′):

∃ x (t = kx + t′ ∨ t′ = kx + t)

As an exercise, we invite the reader to check that 0, 1 and < can be removed from the above
definitions without changing the expressive power of the formulae.
In the sequel, we assume that the variables in VAR are linearly ordered by their indices. So,

any valuation restricted to n ≥ 1 variables can be viewed as a tuple in Nn.
Given a Presburger formula ϕ, we write free(ϕ) to denote the free variables occurring in ϕ.

Any formula with n ≥ 1 free variables x1, . . . , xn defines a set of n-tuples as follows:

REL(ϕ)
def
= {(val(x1), . . . ,val(xn)) ∈ N

n : val |= ϕ}.

For instance, REL(x1 < x2) = {(n, n′) ∈ N2 : n < n′}. Similarly, the set of odd natural numbers
can be defined by the formula below:

∃y x = y + y + 1

The set {0} can be defined by the formula x = x + x.
A formula ϕ is satisfiable (in Presburger arithmetic) whenever there is a valuation val such

that val |= ϕ. Similarly, a formula ϕ is valid (in Presburger arithmetic) when for all valuations
val, we have val |= ϕ. When ϕ has no free variables, satisfiability and validity are equivalent
notions. Moreover, assuming that ϕ has at least one free variable, satisfiability is equivalent to the
nonemptiness of REL(ϕ). Furthermore, a formula ϕ with n free variables x1, . . . , xn is valid iff
∀ x1 · · ·∀ xnϕ is valid/satisfiable.
Two formulae are equivalent (in Presburger arithmetic) whenever they define the same set of

tuples.
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Theorem 1.3.1. [Pre29] (I) The satisfiability problem for Presburger arithmetic is decidable. (II)
Every Presburger formula is equivalent to a Presburger formula without first-order quantification.

Theorem 1.3.1(II) takes advantage of atomic formulae of the form t ≡k t′ that contain an im-
plicit quantification. Removing atomic formulae of the form t ≡k t′ does not change the expres-
sive power but the equivalence in Theorem 1.3.1(II) would not hold in that case. Moreover, in (II)
above, the equivalent formula can be effectively built witnessing the quantifier elimination prop-
erty. Here are a few known tools dealing with satisfiability based on automata: MONA [BKR96],
LASH [BJW01] and TAPAS [LP09] to quote a few of them. In subsequent developments, we
mainly consider quantifier-free Presburger formulae, which does not restrict the expressive power
but may modify complexity issues. It is worth noting that the first-order theory of (N,×) is decid-
able too (known as Skolem arithmetic) whereas the first-order theory of (N,×, +) is undecidable
(see e.g. [Tar53]). Observe also that (Z, <, +) is decidable [Pre29].
Satisfiability problem for Presburger arithmetic can be solved in triple exponential time [Opp78]

by analyzing the quantifier elimination procedure described in [Coo72]. Besides, satisfiabil-
ity problem for Presburger arithmetic is shown 2EXPTIME-hard in [FR74] and in 2EXPSPACE
in [FR79]. An exact complexity charaterization is provided in [Ber80] (double exponential time
on alternating Turing machines with linear amounts of alternations). Due to the wide range of ap-
plications for Presburger arithmetic, computational complexity of numerous fragments has been
also characterized, see e.g.,[Grä88]. Moreover, its restriction to quantifier-free formulae is NP-
complete [Pap81] (see also [BT76]).
As mentioned earlier, Presburger arithmetic will be shown to be an essential logical formal-

ism to define the class of counter systems, providing symbolic constraints between counter val-
ues. Furthermore, it is used in many occasions, for instance to verify infinite-state systems (see
e.g., [Ler03, Sch07]), to express constraints on the number of event occurrences [BEH95], on
XML documents [ZL03, SSM07], to define linear-time temporal logic LTL with counters [CC00,
DG08] (see Chapter 2) or graded modal logics and description logics (see e.g. [Fin72, HB91,
DL10]). This list is certainly not exhaustive.

1.3.3 Semilinear sets
A linear set X (of dimention k ≥ 1) is defined as a subset of Nk for which there exists a basis
b⃗ ∈ Nk and a finite set of periods P = {p⃗1, . . . , p⃗m} ⊆ Nk such that

X = {⃗b +
i=m
∑

i=1

nip⃗i : n1, . . . , nm ∈ N}

For example, the set of even numbers {0 + i × 2 : i ∈ N} is a linear subset of N (dimension 1).
Similarly, {1 + i × 2 : i ∈ N} is a linear set with b⃗ = 1 and with unique period 2. A semilinear
set is defined as a finite union of linear sets. Each semilinear set can be represented by a finite set
of pairs of the form (⃗b, P ). Here is a linear set of dimension 2:

{(

3
4

)

+ i ×

(

2
5

)

+ j ×

(

4
7

)

: i, j ∈ N

}
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By contrast, one can show that the sets below are not semilinear:

{2i : i ∈ N} {i2 : i ∈ N}

By way of example, let us show that X = {2i : i ∈ N} is not semilinear. The proof is ad
absurdum. Suppose that X is semilinear. Since X is an infinite set, there exist a basis b ∈ N

and period(s) p1, . . . , pm ∈ (N \ {0}) (m ≥ 1) such that Y = {b +
∑i=m

i=1 nipi : n1, . . . , nm ∈
N} ⊆ X . There exists 2α ∈ Y such that p1 < 2α. By definition of Y , we have 2α + p1 ∈ Y but
2α < 2α + p1 < 2α+1, which leads to a contradiction.

Theorem 1.3.2. [GS66] The class of semilinear sets are effectively closed under union, inter-
section and complementation.

Closure by union is immediate from the definition of semilinear sets.
The class of semilinear sets happen to be much more interesting since it contains exactly the

sets of tuples defined by Presburger formulae.

Theorem 1.3.3. [GS66] Semilinear sets coincide with sets definable by Presburger formulae,
i.e.,

1. for every Presburger formula ϕ with n ≥ 1 free variables, REL(ϕ) is a semilinear subset of
Nn.

2. for every semilinear setX ⊆ Nn, there is a Presburger formula ϕ such that X = REL(ϕ).

Observe that if X1 and X2 are semilinear subsets of Nn such that X1 = REL(ϕ1) and X2 =
REL(ϕ2), then X1 ∩ X2 = REL(ϕ1 ∧ ψ2) and Nn \ X1 = REL(¬ϕ1). An alternative proof can
be found in [Kra02].
For example, a Presburger formula for the semilinear set

{(

3
4

)

+ i ×

(

2
5

)

+ j ×

(

4
7

)

: i, j ∈ N

}

is ∃ y, y′ (x1 = 3 + 2y + 4y′ ∧ x2 = 4 + 5y + 7y′).
We conclude this section about Presburger arithmetic and semilinear sets by a result relat-

ing commutative images of context-free languages and semilinear sets. Let Σ = {a1, . . . , ak}
equipped with an arbitrary linear ordering of the letters, say a1 < · · · < ak. Given a word u ∈ Σ∗,
its Parikh image is defined as a tuple Π(u) ∈ Nk such that for i ∈ [1, k], Π(u)(i) is the number
of occurrences of the letter ai in the word u. For instance, the Parikh of the word abaab under

the ordering a < b is the tuple
(

3
2

)

. Naturally, the Parikh image of the language L ⊆ Σ∗ is

the set {Π(u) ∈ Nk : u ∈ L}. Parikh’s remarkable result states that the Parikh image of any
context-free language is semilinear [Par66] and that its representation is effectively computable
from pushdown automata.
This result can be refined by imposing constraints on the size of the representation in terms of

basis and periods. LetA be a finite-state automaton with set of control statesQ and finite alphabet
Σ. The Parikh image of L(A), a subset of Ncard(Σ), is a finite union X1 ∪ · · · ∪ Xm of linear sets
of the form Xi = {⃗b +

∑h
j=1 yj p⃗j : yj ≥ 0} where b⃗ and each p⃗j is in {0, . . . , card(Q)}card(Σ)

by [SSMH04, Theorem 1]. Consequently, h is bounded by (card(Q) + 1)card(Σ).
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1.3.4 Fragments
We define below several fragments of Presburger arithmetic that allow us to define fragments of
CLTL(PrA) in Chapter 2. Formulae of the difference logic DL are the following:

ϕ ::= x ∼ y + d | x ∼ d | ϕ ∧ ϕ | ¬ϕ

with d ∈ Z,∼∈ {<, >, =}. Formulae of the logicDL+ are obtained from those forDL by adding
periodicity constraints x ≡k c and x ≡k y + c with c ∈ N and k ≥ 1. Finally, the formulae of
quantifier-free Presburger arithmetic QFP are defined as follows:

ϕ ::=
∑

i∈I

aixi ∼ d |
∑

i∈I

aixi ≡k c | ϕ ∧ ϕ | ¬ϕ

with the ai’s in Z.
Let us conclude this section by introducing the fragment IPC* made of qualitative constraints

only, for which formulae are defined as follows:

ϕ ::= x ∼ d | x ∼ y | x ≡k k′ | ¬ϕ | ϕ ∧ ϕ

with d ∈ Z, k′ < k ∈ N, ∼∈ {<, >, =,≤,≥}. Such constraints can be found in formalisms
dealing with calendars or in DATALOG with integer periodicity constraints.

1.4 Classes of Counter Systems

1.4.1 Counter systems
A counter system S is defined below as a finite-state automaton equipped with counters, i.e.
variables interpreted over N. In full generality, the counters are governed by constraints that can
be expressed by Presburger formulae. Minsky machines form a special class of counter systems
and therefore most interesting problems on counter systems happen to be undecidable. However,
we shall study important subclasses of counter systems for which decidability can be regained for
various decision problems.

Definition 1.4.1. A counter system S = (Q, n, δ) (of dimension n) is a structure such that

⋆ Q is a nonempty finite set of control states (a.k.a. locations),
⋆ n ≥ 1 is the dimension of the system, i.e. the number of counters; we assume that the
counters are represented by the variables x1, . . . , xn,

⋆ δ is the transition relation defined as a finite set of triples of the form

(q,ϕ, q′)

where q, q′ are control states and ϕ is a Presburger formula whose free variables are among
x1, . . . , xn, x

′
1, . . . , x

′
n
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q0

x′ = x + 1

q1

(∃y(x = 2y) ∧ 2x′ = x) ∨ (¬∃y (x = 2y) ∧ x′ = 3x + 1)

x′ = x

Figure 1.2: An example of counter system

∇

Elements t = (q,ϕ, q′) are called transitions and are often represented by q
ϕ
−→ q′. As usual,

by convention, prime variables are intended to be interpreted as the next values of the unprimed
variables. Moreover, observe that a counter system has no initial control state and no final control
state but in the sequel we shall introduce such control states on demand. It is certainly possibly to
propose an alternative definition without control states and to encode them by a new counter, for
instance. However, when infinite-state transition systems arise in the modeling of computational
processes, there is often a natural factoring of each system state into a control component and a
memory component, where the set of control states (locations) is typically finite.
Figure 1.4.1 contains a counter system (augmented with an initial control state and a final

control state). It is related to the famous Collatz problem (see e.g. http://mathworld.
wolfram.com/CollatzProblem.html). The role of control state q0 is to compute an
arbitrary counter value before reaching the control state q1. At the control-state q1, if the counter
value is even, then divide by two the counter value. Otherwise, multiply by 3 and add 1. It is open
whether whenever the system enters in the control-state q1, eventually it reaches the counter value
1.
A configuration of the counter system S = (Q, n, δ) is defined as a pair (q, x⃗) ∈ Q×Nn. Given

two configurations (q, x⃗), (q′, x⃗′) and a transition t = q
ϕ
−→ q′, we write (q, x⃗)

t
−→ (q′, x⃗′) whenever

valx⃗,x⃗′ |= ϕ and for i ∈ [1, n], valx⃗,x⃗′(xi)
def
= x⃗(i) and valx⃗,x⃗′(x′i)

def
= x⃗′(i). The operational

semantics of counter systems updates configurations, and runs of such systems are essentially
sequences of configurations.
Every counter system S = (Q, n, δ) induces a (possibly infinite) graph made of configurations.

Indeed, all the interesting problems on counter systems can be formulated on its transition system.

Definition 1.4.2. Given a counter system S = (Q, n, δ), its transition system T (S) = (S,−→) is
a graph such that S = Q × Nn and −→⊆ S × S such that ((q, x⃗), (q′, x⃗′)) ∈−→

def
⇔ there exists a

transition t ∈ δ such that (q, x⃗)
t
−→ (q′, x⃗′). ∇

As usual, ∗
−→ denotes the reflexive and transitive closure of the binary relation −→.

The class of counter systems is quite general and very often it makes sense to label the tran-
sitions by Presburger formulae that can be decomposed by a guard (constraints on the current
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q1 q2

x′1 = x1 + 1 ∧ x′2 = x2

x′2 = x2 + 1 ∧ x′1 = x1

Figure 1.3: A Minsky machine

counter values) and an update function (constraints on the way the new counter values are com-
puted from the previous ones).
Given a counter system S, a run ρ is a nonempty (possibly infinite) sequence

ρ = (q0, x⃗0), . . . , (qk, x⃗k), . . .

of configurations such that two consecutive configurations are in the relation −→ from T (S).
(q0, x⃗0) is called the initial configuration of ρ. A run can be alternatively represented by an initial
configuration and a sequence of transitions, assuming that firability holds true for the intermediate
configurations and Presburger formulae labelling the transitions define deterministic relations (as
in VASS, see Section 1.4.3).

Extensions. Sometimes, we may slightly extend the model of counter systems, for instance
by labelling the transitions by a letter from a finite alphabet or by allowing counter values in Z

or R. In those cases, we need to interpret the formulae on the adequate structures. Similarly,
the transition system can be also defined as a labelled transition system by labelling transition by
letters or by transitions. In the sequel, we shall make it clear when we need these slight extensions.
In Figure 1.4.1, we present a graphical representation of the counter system corresponding to

the Minsky machine made of the two instructions below:

1: C1 := C1 + 1; goto 2

2: C2 := C2 + 1; goto 1

1.4.2 Decision problems
In this section, we enumerate a list of standard decision problems about counter systems. They
are mainly related to reachability questions. The list is certainly not exhaustive (model-checking
problems can be found in Chapter 2).
REACHABILITY PROBLEM:
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Input: a counter system S and two configurations (q, x⃗) and (q′, x⃗′).

Question: is there a finite run with initial configuration (q, x⃗) and final configuration (q′, x⃗′)?
CONTROL STATE REACHABILITY PROBLEM:
Input: a counter system S, a configuration (q, x⃗) and a control state qf .

Question: is there a finite run with initial configuration (q, x⃗) and whose final configuration has
control state qf?

CONTROL STATE REPEATED REACHABILITY PROBLEM:
Input: a counter system S, a configuration (q, x⃗) and a control state qf .

Question: is there an infinite run with initial configuration (q, x⃗) such that the control state qf is
repeated infinitely often?

COVERING PROBLEM:
Input: a counter system S and two configurations (q, x⃗) and (q′, x⃗′).

Question: is there a finite run with initial configuration (q, x⃗) and whose final configuration is
(q′, x⃗′′) with x⃗′ ≼ x⃗′′?

BOUNDEDNESS PROBLEM:
Input: a counter system S and a configuration (q, x⃗).

Question: is the set {(q′, x⃗′) ∈ Q × Nn : (q, x⃗)
∗
−→ (q′, x⃗′)} finite?

TERMINATION PROBLEM:
Input: a counter system S and a configuration (q, x⃗).

Question: is there an infinite run with initial configuration (q, x⃗)?
Designing algorithms for counter systems can be helpful for instance to verify programs with

pointers [BFN04, BBH+06, FLS09], broadcast protocols [EFM99] or systems with energy con-
straints [BFL+08], see also its use for discrete timed automata (with digital clocks) [DPK03].

1.4.3 Various classes
In this section, we introduce several subclasses of counter systems by restricting the general defi-
nition provided above. Additional requirements can be of distinct nature:

⋆ restriction on syntactic ressources (number of counters, Presburger formulae etc.)

⋆ restriction on the control graph (e.g. flatness),

⋆ semantical restrictions (reversal-boundedness, etc.)
Other subclasses will be considered in this course, but we shall consider them in due course.
Our intention in this section is to provide typical examples and results, without being necessarily
exhaustive. In Figure 1.4.3, we present (syntactic) inclusions between classes of counter systems
(CS stands for ’counter systems’ and CA for ’counter automata’).
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Succinct CA – Sect. 1.4.3

Standard CAVASS – Chap. 3

Reset VASS – Sect. 5.2.3

VAS Minsky Machines – Sect. 1.2 Reversal-bounded CA – Chap. 4

Lossy/Gainy CA – Sect. 5.2.3

Relational CS – Sect. 1.4.3Affine CS – Sect. 5.3

Flat relational CS

Admissible CS – L5

Figure 1.4: Classes of Counter Systems

Relational counter systems

A relational counter system S = (Q, n, δ) is a counter system such that for each transition q
ϕ
−→

q′ ∈ δ, the Presburger formula ϕ is a conjunction of atomic formulae of the form

⋆ either x ∼ y + c,
⋆ or x ∼ c,

where x, y ∈ {x1, . . . , xn, x
′
1, . . . , x

′
n}, c ∈ Z and ∼∈ {≥,≤, =, >, <}. It is worth observing

that other Presburger formulae can define relations between counter values (instead of functions).
However, in the sequel, relational counter systems are understood with the above meaning (more
general classes are considered in [BIK10]).
Here is an example of formula labelling a transition for n = 2: ϕ = (x1 + 1 < x′1)∧ (x2 − 3 =

x′2). The phone controller in Figure 1.1 in which messages are removed can be viewed as a
relational counter system (see Figure 1.4.3). In Figure 1.4.3, id preserves the counter values and
each variable that does not occur in the expression labelling a transition implicitly preserves its
value.
In [CJ98] such systems have been studied and the first result states that the set of Presburger

formulae occurring in relational counter systems are closed under composition. For instance,
q

x′1=x1+1
−−−−→ q′ followed by q′

x′1>x1
−−→ q′′ is equivalent to

q
x′1≥x1+2
−−−−→ q′′

Similarly, q
x′1=x′2=x1
−−−−→ q′ followed by q′

x′1>x1∧x′2>x2
−−−−−−−→ q′′ is equivalent to

q
x′1>x1∧x′2>x1
−−−−−−−→ q′′

which is generalized below.
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q1 q2 q3 q4

q6 q5

x1 = x2 = 0 id x1 > 0

x2 ≤ x1
id

id

x1 = x2, x′1 = x′2 = 0

x1 + +
x1 + +

x2 < x1, x2 + +

x′2 ≤ x1, x2 + +

Figure 1.5: Phone controller (bis)

Lemma 1.4.1. [CJ98] Let S be a relational counter system. Given two transitions t1 = q
ϕ1−→ q′

and t2 = q′
ϕ2−→ q′′, there exists a Presburger formula ϕ of the form described above for defining

relational counter systems such that for all x⃗, x⃗′ and x⃗′′ inNn, we have (q, x⃗)
t1−→ (q′, x⃗′)

t2−→ (q′′, x⃗′′)

iff (q, x⃗)
t
−→ (q′′, x⃗′′) with t = q

ϕ
−→ q′′.

By way of example, the composition of x′1 ≥ x1 + 1 ∧ x′2 ≤ x2 and x′1 ≤ x2 ∧ x′1 = x′2 leads to
x′1 ≤ x2 ∧ x′1 = x′2.

Flat relational counter systems

The key result in [CJ98] states that the transitive closure of transitions occurring in such systems
is definable in Presburger arithmetic, see a precise statement in Theorem 1.4.2. The proof is
quite difficult; an alternative proof can be found in [BIL09]. For instance, with unique transition
t = q

x′1=x1+1
−−−−→ q, we have (q, K)

∗
−→ (q, K ′) iff K ′ ≥ K. So, the finite iteration of the transition t

corresponds to the transition q
x′1≥x1+1
−−−−→ q. By contrast, with unique transition t = q

x′1=x1+2
−−−−→ q, we

have (q, K)
∗
−→ (q, K ′) iff there is k ∈ N such thatK ′ = K +2k. Consequently, (q, K)

∗
−→ (q, K ′)

iff valK,K ′ |= ∃ y x′1 = x1 + 2 × y. Theorem 1.4.2 below generalizes closure under iteration with
Presburger arithmetic.

Theorem 1.4.2. [CJ98] Let S be a relational counter system made of a unique transition q
ϕ
−→ q.

One can effectively compute a Presburger formula ϕ′ with free(ϕ′) = {x1, . . . , xn, x′1, . . . , x
′
n}

such that for all x⃗, x⃗′ in Nn, (q, x⃗)
∗
−→ (q, x⃗′) iff valx⃗,x⃗′ |= ϕ′ (where −→ is the transition relation

from the transition system T (S)).

A direct application of the above theorem concerns relational counter systems with restriction
on the control graph. A relational counter system is flat whenever, in the control graph, every
control state belongs to at most one simple cycle. i.e. with no repeated vertex. Moreover, we
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require that there is at most one transition between two control states. Here is an example of flat
control graph:

The main result in [CJ98] is the following.

Theorem 1.4.3. [CJ98] Let S be a flat relational counter system and q, q′ ∈ Q. One can effec-
tively compute a Presburger formulaϕ such that for all x⃗, x⃗′ inNn, (q, x⃗)

∗
−→ (q′, x⃗′) iff valx⃗,x⃗′ |= ϕ

(with free(ϕ) = {x1, . . . , xn, x
′
1, . . . , x

′
n}).

The proof goes roughly as follows. Lemma 1.4.1 allows to compute the effects of each simple
cycle and by flatness the number of simple cycles is bounded by card(Q). Then, Theorem 1.4.2
allows to compute the effects of passing a finite number of times on each simple cycle. Flatness
guarantees that reaching a control state from another control state implies passing through the
simple cycles in a regular manner which can be mimicked at the level of formulae.
Consequently,

Corollary 1.4.4. The reachability problem for flat relational counter systems is decidable.

The corollary can be obtained as follows. Consider the instance S, (q, y⃗) and (q′, y⃗′). We have
seen that we can compute the Presburger formula ϕ that encodes the reachability relation in S. It
remains to check satisfiability of the formula below:

(
i=n∧

i=1

(xi = y⃗(i) ∧ x′i = y⃗′(i))) ∧ ϕ

assuming free variables in ϕ are x1, . . . , xn, x
′
1, . . . , x

′
n. This can be done since the satisfiability

problem for Presburger arithmetic is decidable. Other types of counter systems with semilinear
reachability sets can be found in [Iba78, HP79, Esp97, FS00, FL02, Ler03, LS05, FS08]. A
generalization has been also considered in [BIK10].
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Succinct counter automata

In the sequel, we adopt the convention that a counter automaton is a counter system in which
the instructions are either zero-tests, increments or decrements, possibly encoded succinctly. A
succinct counter automaton is a counter system (Q, n, δ) in which the transitions are of the form

either q inc(⃗b)
−−→ q′ with b⃗ ∈ Zn or q zero(b⃗′)

−−−→ q′ with b⃗′ ∈ {0, 1}n where

⋆ inc(⃗b) is a shortcut for
∧

i∈[1,n] x
′
i = xi + b⃗(i),

⋆ zero(b⃗′) is a shortcut for
∧

i∈[1,n] s.t. b⃗′(i)=1 xi = 0 ∧
∧

i∈[1,n] x
′
i = xi (as usual, empty con-

junction is understood as ⊤).

In succinct counter automaton, each transition either performs zero-tests on a subset of counters
or updates counters by adding a vector in Zn. All the counters are tested or updated simulateously.
It is easy to check that every succinct counter automaton is a relational counter system.

Standard counter automata

A standard counter automaton is a counter system (Q, n, δ) in which the transitions are of the
form either q inc(i)

−−→ q′ or q dec(i)
−−→ q′ or q zero(i)

−−−→ q′ (i ∈ [1, n]) where

⋆ inc(i) is a shortcut for (x′i = xi + 1) ∧ (
∧

j ̸=i x
′
j = xj) (also written xi++),

⋆ dec(i) is a shortcut for (x′i = xi − 1) ∧ (
∧

j ̸=i x
′
j = xj) (also written xi- -),

⋆ zero(i) is a shortcut for (xi = 0) ∧ (
∧

j x′j = xj) (also written xi = 0?).

By contrast to succinct counter automata, transitions in standard counter automata can perform
a simple operation at once (otherwise, a succession of transitions is needed). Indeed, standard
counter automata and succinct counter automata are very similar but when it comes to complexity
issues, exponential blow-up may occur when passing from one model to another. In the sequel,
unless otherwise stated, by a counter automaton we mean a standard one.
It is easy to check that Minsky machines (with two counters) form a subclass of standard

counter automata.

Vector addition systems with states

A vector addition system with states [KM69] (VASS for short) is a succinct counter automata
without zero-tests, i.e. all the transitions are of the form q

inc(⃗b)
−−→ q′ with b⃗ ∈ Zn. In the sequel, a

VASS is represented by a tuple V = (Q, n, δ) where Q is the finite set of control states and δ is a
finite subset of Q × Zn × Q.
Standard counter automata can be naturally viewed as vector addition systems with states aug-

mented with zero-tests by simulating transitions of the form q
b⃗
−→ q′ by sequences of increments

and decrements.
Figure 1.6 presents an example of VASS. As an exercise, one can show that for all x⃗ ∈ N4, the

set {y⃗ ∈ N4 : (q0, x⃗)
∗
−→ (q0, y⃗)} is finite.
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Figure 1.6: A VASS weakly computing multiplication

A vector addition systems (VAS for short) is defined as a VASS with a unique control state. In
the sequel, a VAS T is represented by a finite subset of Zn corresponding to its set of transitions.
VASS and VAS are be viewed as equivalent models, see e.g. [Reu90]. Moreover, for many prob-
lems such as covering or boundedness, the problems on VASS and Petri nets are equivalent (see
Chapter 3).

Theorem 1.4.5. [May84, Kos82, Reu90, Lam92] The reachability problem for VASS is decid-
able.

This famous result has been the subject of the book [Reu90] since the proof requires many
steps involving expertise in graph theory, logic, theory of well-quasi orderings etc. Nevertheless,
the exact complexity of the reachability problem is open: we know it is EXPSPACE-hard [Lip76,
CLM76, Esp98] and no primitive recursive upper bound exists. By contrast, the covering problem
and boundedness problems seem easier.

Theorem 1.4.6. [Lip76, Rac78] The covering and boundedness problems for VASS are EX-
PSPACE-complete.

Decidability is established in [KM69] but with a worst-case non primitive recursive bound
(see Section 3.3). The EXPSPACE lower bound is due to Lipton and the upper bound to Rackoff
(see Section 3.4). In order to be precise, one should explain how vectors in Zn are encoded. The
upper bound holds true with a binary representation of integers whereas the lower bound holds
true already with the values -1, 0 and 1. Consequently, the problem is EXPSPACE-hard even with
an unary encoding. In general, the less the encoding is concise, the more difficult hardness results
are possible. We shall present the proof for the upper bound in Chapter 3. Observe also that the
covering problem can also express the thread-state reachability problem for replicated finite-state
programs, see e.g. [KKW10] as well as decision problems for the parameterized verification of
ad-hoc networks [DSZ10]. Similarly, the boundedness problem for asynchronous programs has
been considered in [GaAR09].
The operation of resetting a counter consists in providing the value zero to the counter. For

instance reset(i) can be defined as the formula (x′i = 0) ∧ (
∧

j ̸=i x
′
j = xj) A reset VASS is defined

as a VASS except that we allow transitions labelled by reset(i). It is worth noting that the bound-
edness and the reachability problems for reset VASS become undecidable, see e.g. [DFS98]. By
contrast, the covering problem for reset VASS is decidable by using the theory of well-structured
transition systems, see e.g. [FS01].
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1.5 Exercises
Exercise 1.5.1. Let ϕ be a Presburger formula with more than one free variable. Define a Pres-
burger formula ψ such that ψ is satisfiable iff REL(ϕ) is finite.

Exercise 1.5.2. LetX ⊆ N2 be a semilinear set. Show that {k ∈ N : (k, k′) ∈ X} (projection) is
a semilinear subset of N.

Exercise 1.5.3. Define a Presburger formula ϕ such that REL(ϕ) = {(n1, n2) ∈ N × N : n1 ×
n2 is odd}.

Exercise 1.5.4. Show that any arithmetic progression (viewed as a set of natural numbers) can be
defined in Presburger arithmetic.

Exercise 1.5.5. Show that a set X of natural numbers is semilinear iff there are N, M ∈ N such
that for every n ≥ N , n ∈ X iff n + M ∈ X (X is ultimately periodic). Conclude that the sets
{2i : i ∈ N} and {i2 : i ∈ N} are not semilinear.

Exercise 1.5.6. Show that semilinear sets are Presburger definable.

Exercise 1.5.7. LetX, Y ⊆ Nn. We defineX + Y as the set {x⃗ + y⃗ : x⃗ ∈ X, y⃗ ∈ Y }. Show that
if X and Y are semilinear, then X + Y is also semilinear.

Exercise 1.5.8. Dickson’s Lemma [Dic13] states that for any ω-sequence x⃗0, x⃗1, . . . of tuples in
Nn, there are i < j such that x⃗i ≼ x⃗j . Show Dickson’s Lemma.

Exercise 1.5.9. Let S = (Q, n, δ) be a VASS and (q0, x⃗0) be a configuration. Using Dickson’s
Lemma, show the equivalence between the two statements below:

⋆ There is an infinite run with initial configuration (q0, x⃗0).

⋆ There exist a finite run (q0, x⃗0), . . . , (qk, x⃗k) and k′ < k such that qk′ = qk and x⃗k′ ≼ x⃗k.

Does the equivalence hold true for VASS with resets? for standard counter automaton?

Exercise 1.5.10. Let us consider the VASS S presented in Figure 1.6. Determine the set of initial
configurations such that S is terminating from them.

Exercise 1.5.11. Consider the counter system obtained from Figure 1.1 by deleting the communi-
cation labels (of the form either a! or b?). Show that the set {x⃗ ∈ N2 : (q1, 0⃗)

∗
−→ (qi, x⃗), i ∈ [1, 6]}

is semilinear.

Exercise 1.5.12. Check the statement in Lemma 1.4.1 with

ϕ1 = x′1 ≥ x1 + 1 ∧ x′2 ≤ x2 ϕ2 = x′1 ≤ x2 ∧ x′1 = x′2 ϕ = x′1 ≤ x2 ∧ x′1 = x′2

Exercise 1.5.13. Show the following equality for the VASS defined in Figure 1.6:

{
(

a
b
d

)

∈ N
3 : d ≤ a × b} =

{
(

a
b
d

)

∈ N
3 : ∃

(
a′

b′

c′

)

∈ N
3, run (q0,

(
a
b
0
0

)

)
∗
−→ (q0,

(
a′

b′

c′

d

)

)}



Chapter 2

Linear-Time Temporal Logics

This chapter is mainly dedicated to present a linear-time temporal logic LTLCS(PrA)whose mod-
els are infinite runs from counter systems. First, we recall the definitions for standard linear-time
temporal logic LTL as well as its automata-based approach with Büchi automata. Then, we define
the very expressive logic LTLCS(PrA) and its two fragments CLTL(PrA) (Presburger LTL) and
LTLwith registers (LTL↓) obtained by restricting the first-order quantification over counter values.
The chapter concludes by providing the decidability status for several fragments for CLTL(PrA)
and LTL↓. In the subsequent chapters, we shall refer to these logics to state the decidability status
of satisfiability and model-checking problems.

2.1 Temporal Modalities on Computations
Temporal logics contain modalities with a temporal interpretation. A modality is usually defined
as a syntactic object (term) that modifies the relationships between a predicate and a subject. For
example, in the sentence “Tomorrow, it will rain”, the term “Tomorrow” is a temporal modality.
Temporal logics make use of different types of modalities and we recall below some of them
interpreted over runs (a.k.a. executions or ω-sequences). The temporal modalities (also known
as temporal operators) allow one to speak about the sequencing of states along an execution,
rather than about the states taken individually. The simplest temporal operators are X (“neXt”), F
(“sometimes”) and G (“always”). Below, we shall freely use the Boolean operators ¬ (negation),
∨ (disjunction), ∧ (conjunction) and⇒ (material implication).

⋆ Whereas ϕ states a property of the current state, Xϕ states that the next state (X for “neXt”)
satisfies ϕ. For example, ϕ ∨ Xϕ states that ϕ is satisfied now or in the next state.

Xp p

Xp: next-time p

⋆ Fp announces that a future state (F for “Future”) satisfies ϕ without specifying which state,
and Gϕ that all the future states satisfy ϕ. These two operators can be read informally as “ϕ
will hold some day” and “ϕ will always be”.

25



26 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

Fp p

Fp: sometimes p

Duality The operator G is the dual of F: whatever the formula ϕ may be, if ϕ is always
satisfied, then it is not true that ¬ϕ will some day be satisfied, and conversely. Hence Gϕ
and ¬F¬ϕ are equivalent.

Gp, p p p p p

Gp: always p

By way of example, the expression alert ⇒ F halt means that if we (currently) are in a
state of alert, then we will (later) be in a halt state.

⋆ The temporal operator U (for “Until”) is richer and more complicated than the temporal
operator F. ϕ1Uϕ2 states that ϕ1 is true until ϕ2 is true. More precisely: ϕ2 will be true
some day, and ϕ1 will hold in the meantime.

pUq, p p p p q

pUq: p until q

The example G(alert ⇒ F halt) can be refined with the statement that “starting from a
state of alert, the alarm remains activated until the halt state is eventually reached”:

G(alert ⇒ (alarm U halt)).

Sometime operator. The temporal operator F is a special case of U: Fϕ and true U ϕ are
equivalent.

Weak until. There exists also a “weak until”, denoted W. The statement ϕ1Wϕ2 still ex-
presses “ϕ1Uϕ2”, but without the inevitable occurrence of ϕ2 and if ϕ2 never occurs, then
ϕ1 remains true forever. So, ϕ1Wϕ2 is equivalent to Gϕ1 ∨ (ϕ1Uϕ2).

2.2 Linear-Time Temporal Logic LTL
As far as we know, linear-time temporal logic LTL in the form presented herein has been first
considered in [GPSS80] based on the early works [Kam68, Pnu77]. The version of LTL with
explicitely the next-time and until operators first appeared in [GPSS80]. Surprisingly, the next-
time operator has been introduced in [MP79] in order to define LTL restricted to the next-time
and sometime operators (see also a similar language in [Pnu79]). Nowadays, LTL is one of the
most used logical formalisms to specify the behaviours of computer systems in view of formal
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verification. It has been also the basis for numerous specification languages such as PSL [EF06].
Moreover, it is used as a specification language in tools such as SPIN [Hol97] and SVM [McM93].
Let us provide below a few definitions about LTL. LTL formulae are built from the following

abstract grammar:
ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | ϕUψ

where p ranges over a countably infinite set PROP of propositional variables.
LTL models are intended to be infinite runs from counter systems, i.e. ω-sequences of config-

urations. In plain LTL, a model ρ is simply a map N → P(PROP). The satisfaction relation |=
is defined as follows:

⋆ ρ, i |= p
def
⇔ p ∈ ρ(i),

⋆ ρ, i |= ¬ϕ
def
⇔ ρ, i ̸|= ϕ,

⋆ ρ, i |= ϕ1 ∧ ϕ2
def
⇔ ρ, i |= ϕ1 and ρ, i |= ϕ2,

⋆ ρ, i |= ϕ1 ∨ ϕ2
def
⇔ ρ, i |= ϕ1 or ρ, i |= ϕ2,

⋆ ρ, i |= Xϕ
def
⇔ ρ, i + 1 |= ϕ,

⋆ ρ, i |= ϕ1Uϕ2
def
⇔ there is j ≥ i such that ρ, j |= ϕ2 and ρ, k |= ϕ1 for all i ≤ k < j.

As usual, we pose Fϕ def
= ⊤Uϕ and Gϕ def

= ¬F¬ϕ. Observe that ψ1Uψ2 is equivalent to ψ2 ∨ (ψ1 ∧
Xψ1Uψ2).
Given a LTL formula ϕ, we write Models(ϕ) to denote the set of sequences ρ in P(PROP)ω

such that ρ, 0 |= ϕ. We recall below that Models(ϕ) can be effectively represented by a Büchi au-
tomatonAϕ (see basics in Section 2.3), namelyAϕ recognizes exactly the sequences inModels(ϕ).

2.3 A Brief Introduction to Büchi Automata
Automata-based approach

The automata-based approach consists in reducing logical problems into automata-based decision
problems in order to take advantage of known results from automata theory. Alternatively, this
can be viewed as a means to transform declarative statements (typically formulae) into opera-
tional devices (typically automata with sometimes rudimentary computational power). The most
standard target problems on automata used in this approach are the following:

⋆ the nonemptiness problem checks whether an automaton admits at least one accepting com-
putation (in symbols L(A) ̸= ∅?),

⋆ the universality problem checks whether an automaton accepts everything (of course this
needs to be made more precise depending on the objects we are dealing with, words, trees
etc.),

⋆ the inclusion problem checks whether the language accepted by the automaton A is in-
cluded in the language accepted by the automaton B (in symbols L(A) ⊆ L(B)?).
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A =

a b

b

a

Figure 2.1: L(A) = {σ ∈ {a, b}ω | |σ|a = ω}

A pioneering work is due to Büchi [Büc62] in which Büchi automata are shown equivalent to
formulae in monadic second-order logics (MSO) over (N, <); models of a formula built over the
second-order variables P1, . . . , PN are ω-sequences over the alphabet P({P1, . . . , PN}). In full
generality, here are a few desirable properties of the approach.

⋆ The reduction should be conceptually simple, apart from being semantically faithful.

⋆ The computational complexity of the automata-based target problem should be well-characterized.
In that way, one gets a complexity upper bound for solving the source logical problem.

⋆ Last but not least, preferrably, the reduction should allow obtaining the optimal complexity
for the source logical problem.

In this chapter, we shall present the automata-based approach for solving logical problems in-
volving temporal logics (see also Chapter 5). However, nowadays this approach is quite active
and among the trends one can distinguish the development of algorithmic automata theory (for
instance to design efficient decision procedures for testing nonemptiness, complementing etc., see
e.g. [GS09]) and the appearance of new source problems (see e.g. axiom pinpointing in [BP08]).

Büchi automata in a nutshell

A Büchi automaton is defined as a finite-state automaton that accepts ω-words instead of finite
words. Formally, a Büchi automatonA is a tupleA = (Σ, Q, Q0, δ, F ) such that

⋆ Σ is a finite alphabet,

⋆ Q is a finite set of states,

⋆ Q0 ⊆ Q is the set of initial states,

⋆ the transition relation δ is a subset of Q × Σ × Q,

⋆ F ⊆ Q is a set of final states.

Given q ∈ Q and a ∈ Σ, we also write δ(q, a) to denote the set of states q′ such that (q, a, q′) ∈ δ.
A run ρ of A is a sequence q0

a0−→ q1
a1−→ q2 . . . such that q0 ∈ Q0 and for every i ≥ 0,

(qi, ai, qi+1) ∈ δ (also written qi
ai−→ qi+1). The run ρ is successful if some state of F is repeated

infinitely often in ρ: inf(ρ) ∩ F ̸= ∅ where we let inf(ρ) = {q ∈ Q : ∀ i, ∃ j > i, q = qj}. The
label of ρ is the word σ = a0a1 · · · ∈ Σω. The automaton A accepts the language L(A) made of
ω-words σ ∈ Σω such that there exists a successful run of A on the word σ, i.e., with label σ. For
instance, the automaton in Figure 2.1 accepts those words over {a, b} having infinitely many a’s
(the initial states are marked with an incoming arrow and the states in F are doubly circled).
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Now, we introduce a standard generalization of the Büchi acceptance condition by considering
conjunctions of classical Büchi conditions. A generalized Büchi automaton (GBA) is a structure

A = (Σ, Q, Q0, δ, {F1, . . . , Fk})

such that F1, . . . , Fk ⊆ Q and Σ, Q, Q0 and δ are defined as for Büchi automata. A run is defined
as for Büchi automata and a run ρ of A is successful iff for 1 ≤ i ≤ n, we have inf(ρ) ∩ Fi ̸=
∅. Lemma 2.3.1 below simply states each GBA A can be easily translated into a classical BA,
preserving the language of accepted ω-words.

Lemma 2.3.1. LetA = (Σ, Q, Q0, δ, {F1, . . . , Fk}) be a generalized Büchi automaton. One can
compute, in logarithmic space in the size of A, a Büchi automatonAb = (Σ, Qb, Qb

0, δ
b, F b) such

that L(Ab) = L(A).

Proof: Let A = (Σ, Q, Q0, δ, {F1, . . . , Fk}) be a generalized Büchi automaton. The idea of
the proof consists in defining Ab from k copies of A and to simulate the generalized accepting
condition by passing from one copy to another.

1. Qb def
= Q × {1, . . . k},

2. Qb
0

def
= Q0 × {1},

3. F b def
= F1 × {1},

4. δb((q, i), a) is defined as the union of the two following sets

(a) {(q′, i) : q
a
−→ q′ ∈ δ, q ̸∈ Fi} (stay in the same copy if no final state in Fi is reached),

(b) {(q′, (i mod k) + 1) : q
a
−→ q′ ∈ δ, q ∈ Fi} (go to the next copy if a final state in Fi is

reached).

One can check that A and Ab accept the same language. QED

The class of languages accepted by Büchi automata admits various characterizations, for in-
stance it corresponds to the class of ω-regular languages. On the logical side, such languages
correspond exactly to the set of models satisfied by formulae from LTL augmented with automata-
based temporal operators [Wol83]. There exist alternative characterizations, see e.g. [Var88].

Proposition 2.3.2. The family of ω-regular languages is closed by intersection, union and com-
plementation.

The proof for union is similar to the proof for standard finite-state automata, the proof for
intersection uses an idea similar to the proof of Lemma 2.3.1. By contrast, the closure by comple-
mentation is much more difficult to show, see e.g. [Büc62, Tho99, Muk09] (see also [FKV04]).
The nonemptiness problem for Büchi automata is defined as follows:

Input: a Büchi automatonA,

Question: is L(A) ̸= ∅?
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{p′}, {p, p′}

{p}, {p, p′}

Σ
Figure 2.2: An automaton for pUp′ models

In order to characterize the computational complexity of the nonemptiness problem, we can
use the lemma below.

Lemma 2.3.3. Let A = (Σ, Q, Q0, δ, F ) be a Büchi automaton. L(A) ̸= ∅ iff there is a path in
the graph (Q, {(q, q′) : ∃a s.t. q

a
−→ q′ ∈ δ}) of the form q0

∗
−→ q

+
−→ q with q0 ∈ Q0 and q ∈ F .

Proposition 2.3.4. [VW94] The nonemptiness problem for Büchi automata is NLOGSPACE-
complete.

By contrast, the universality problem for Büchi automata is PSPACE-complete, see e.g., [SVW87].

2.4 From Formulae to Automata
Here we will show that given an LTL formula ϕ built over the set of propositional variables
{p1, . . . , pN}, it is possible to effectively construct a Büchi automaton Aϕ over the alphabet
{p1, . . . , pN} such that L(Aϕ) = Models(ϕ).
Figure 2.2 presents a Büchi automaton A such that L(A) = Models(pUp′) with Σ = {p, p′}.

We wish to define Aϕ from ϕ in a systematic and optimal way. This allows us to obtain optimal
complexity bounds and if the construction of automata is optimized, it can also provide efficient
algorithms.

Proposition 2.4.1. [VW94] For every LTL formula ϕ, there is a Büchi automatonAϕ such that

1. L(Aϕ) =Models(ϕ),

2. |Aϕ| is in 2O(|ϕ|) and,

3. Aϕ can be effectively computed in polynomial space in |ϕ|.
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In Proposition 2.4.1, it should be understood that the set of propositional variables PROP is
restricted to the atomic formulae occurring in ϕ. Below, we explain how Aϕ is defined from ϕ
without providing the formal proofs.

Definition 2.4.1. Let ϕ be an LTL formula. The closure of ϕ, denoted by cl(ϕ) is the smallest
set

⋆ containing the subformulae of ϕ,
⋆ closed under negation (we identify ¬¬ψ with ψ),
⋆ if χ1Uχ2 ∈ cl(ϕ), then X(χ1Uχ2) ∈ cl(ϕ).

∇

The closure set contains all the formulae we need to consider to check satisfiability and the
cardinality of cl(ϕ) is linear in the size of ϕ. An atom X is a subset of cl(ϕ) satisfying the
conditions below:

1. for all formulae ψ in cl(ϕ), ψ ∈ X iff ¬ψ ̸∈ X ,
2. ψ1 ∧ ψ2 ∈ X iff ψ1,ψ2 ∈ X ,
3. ψ1 ∨ ψ2 ∈ X iff ψ1 ∈ X or ψ2 ∈ X .

An atom is nothing but a maximally consistent subset of cl(ϕ). A pair of atoms (X, X ′) is said
to be one-step consistent iff the conditions below hold true:

⋆ if ψ1Uψ2 ∈ X , then ψ2 ∈ X or (ψ1 ∈ X and ψ1Uψ2 ∈ X ′),
⋆ for Xψ ∈ cl(ϕ), Xψ ∈ X iff ψ ∈ X ′.

Now, let us defineAϕ based on the previous definitions. Aϕ is actually a generalized Büchi au-
tomaton that can be converted into a standard Büchi automaton. SoAϕ = (Σ, Q, Q0, δ, F1, . . . , Fα)
with:

⋆ Σ = P({p1, . . . , pN}) (set of propositional variables occurring in ϕ),

⋆ Q is the set of atoms (its cardinality is exponential in the size of ϕ),

⋆ Q0 is the subset of atoms containing ϕ,

⋆ X
a
−→ Y ∈ δ iff a = {p1, . . . , pN} ∩ X and (X, Y ) is one-step consistent,

⋆ for each until formula ψ1Uψ2, there is exactly one set Fi such that Fi = {X ∈ Q :
either ψ1Uψ2 ̸∈ X or ψ2 ∈ X}.

Each control state X ∈ Q is a set of formulae that are intended to be satisfied at the current
position. Either this satisfaction can be checked locally (typically for Boolean formulae using
the fact that X is an atom) or the transition relation of Aϕ allows us to propagate the constraints.
Accepting conditions F1, . . . , Fα (indexed by until formulae occurring in ϕ) guarantee that the
search for witnesses is not delayed forever. In particular, they forbid postponing forever the
satisfaction of ψ2 when ψ1Uψ2 has to be satisfied.
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Proposition 2.4.2. L(Aϕ) =Models(ϕ).

The equality is obtained by establishing the two following properties.

⋆ Given a model ρ : N → P({p1, . . . , pN}) ∈ Models(ϕ), i.e. ρ, 0 |= ϕ, there is a unique
accepting run X0

ρ(0)
−→ X1

ρ(1)
−→ X2

ρ(2)
−→ · · · in Aϕ such that for all i ≥ 0 and ψ ∈ cl(ϕ), we

have ψ ∈ Xi iff ρ, i |= ψ.
⋆ Conversely, for each accepting run X0

a0−→ X1
a1−→ X2

a2−→ · · · in Aϕ, the model ρ defined by
ρ(i) = ai for i ≥ 0 satisfies that for i ≥ 0 and ψ ∈ cl(ϕ), we have ψ ∈ Xi iff ρ, i |= ψ.

In the sequel, we writeAϕ to denote the Büchi automaton recognizing Models(ϕ).

2.5 Full Presburger LTL for Counter Systems
Linear-time temporal logic LTL equipped with “next-time” operator X, “until” operator U and their
past-time counterparts is known to be equivalent to first-order theory of order [Kam68]. Satisfi-
ability and model-checking problems for LTL (even with past-time operators) are known to be
PSPACE-complete [SC85]. In spite of these nice features, it is worth recalling that a propositional
variable p only represents a property of the current configuration of the system. For instance, p
may hold true whenever the value of the variable x is greater than the value of the variable y after
running the current instruction. A more satisfying solution is to include in the logical language
the possibility to express directly constraints between variables of the program, whence giving
up the standard abstraction made with propositional variables. When the variables are typed,
they may be interpreted in some specific domain like integers, real numbers, strings and so on;
reasoning in such theories can be performed thanks to satisfiability modulo theories proof tech-
niques, see e.g., [BSST08] and [GNRZ07] in which SMT solvers are used for model-checking
infinite-state systems. Hence, a proposition like “x is greater than the next value of y” can be
encoded in such extended temporal logics by x > Xy but this time the models are sequences
of configurations. This means that each position comes with a control state and a valuation for
variables. Hence, the basic idea behind the design of the logic LTLCS(PrA) is to refine the lan-
guage of atomic formulae and to allow the possibility to compare counter values at successive
positions of the run of the counter systems. Similar motivations can be found in the introduc-
tion of concrete domains in description logics, that are logic-based formalisms for knowledge
representation [BH91, Lut03, Lut04].
We define below a version of linear-time temporal logic LTL dedicated to counter systems in

which the atomic formulae are Presburger formulae about counter values, the temporal operators
are those of LTL and first-order quantification over natural numbers is allowed, although we shall
use it in a restricted way. The main advantage of defining a so general language is that it is then
easy to compare the different languages in a uniform framework. Similarly, in [MP95], a mixture
of first-order logic and LTL is shown sufficient to precisely state verification problems for the
class of reactive systems.
We introduce a countable set of integer variables, say VARp = {y1, y2, . . .}, for quantification

over natural numbers. Elements of VARp are distinct from the counter variables in VAR =
{x1, x2, . . .} that are free variables, only interpreted by the counter values on configurations. We



2.5. FULL PRESBURGER LTL FOR COUNTER SYSTEMS 33

also consider a countably infinite set Q = {q1, q2, . . .} of control state symbols. As usual, a
formula contains only a finite number of such symbols but a priori, we do not bound the number
of control states. The LTLCS(PrA) formulae are defined as follows:

ϕ ::= ψ | q | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ | ∃ y ϕ

where ψ is a Presburger formula with free variables included in VARp ∪ VAR and q ∈ Q. The
symbols X and U are respectively the classical operators next-time and until from LTL.
The models of LTLCS(PrA) formulae are infinite runs from counter systems whose set of

control states is included in the countable set Q, i.e. they are ω-sequences of configurations. A
model ρ of dimension n for LTLCS(PrA) is an element of (Q×Nn)ω for some finite subsetQ ⊆ Q.
An environment E is a partial map VARp → N. The empty environment is denoted by ∅. The
satisfiability relation |= is defined as follows between a model ρ of dimension n, a position i ≥ 0,
an environment E and a formula in which the free variables are among VARp ∪ {x1, . . . , xn}.
The satisfaction relation |=E is defined on runs ρ of the form

ρ = (q0, x⃗0), . . . , (qk, x⃗k), . . .

⋆ ρ, i |=E q
def
⇔ q = qi,

⋆ When ψ is a Presburger formula with free variables included in VARp ∪ {x1, . . . , xn}, we
have ρ, i |=E ψ

def
⇔ vali |= ψ in Presburger arithmetic where vali is a conservative exten-

sion of E such that for j ∈ [1, n], vali(xj) = x⃗i(j),

⋆ ρ, i |=E ¬ϕ
def
⇔ ρ, i ̸|=E ϕ,

⋆ ρ, i |=E ϕ1 ∧ ϕ2
def
⇔ ρ, i |=E ϕ1 and ρ, i |=E ϕ2,

⋆ ρ, i |=E Xϕ
def
⇔ ρ, i + 1 |=E ϕ,

⋆ ρ, i |=E ϕ1Uϕ2
def
⇔ there is j ≥ i such that ρ, j |=E ϕ2 and ρ, k |=E ϕ1 for all i ≤ k < j.

⋆ ρ, i |=E ∃ y ϕ iff there is a natural numberm ∈ N such that ρ, i |=E[y (→m] ϕ.

As usual, we pose Fϕ def
= ⊤Uϕ and Gϕ

def
= ¬F¬ϕ. A semi-closed formula is an LTLCS(PrA)

formula such that no integer variable from VARp is free. By construction, the counter variables
x1, . . . , xn are always free and are interpreted as the current counter values. In the decision
problems defined below, we shall only consider semi-closed formulae and therefore there is no
need to specify an environment in the statements.
For instance, one can express that the first counter strictly increases at every step:

G ∃ y (y = x1 ∧ X(x1 > y))

Similarly, the first counter takes a finite number of values along the run can be expressed by
∃ y G(x1 ≤ y).
SATISFIABILITY PROBLEM FOR LTLCS(PrA)

Input: An LTLCS(PrA) semi-closed formula ϕ with free counter variables x1, . . . , xn.
Question: Is there a model ρ ∈ (Q× Nn) of dimension n such that ρ, 0 |=∅ ϕ?
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LTLCS(PrA)

CLTL(PrA)

CLTL(QFP)

CLTL(DL+)

CLTL(IPC∗)CLTL(DL)

LTL↓

LTL(Q) ≈ LTL

Figure 2.3: Fragments of LTLCS(PrA)

Observe that for satisfiability checking, it is not necessary that the model is derived from a
counter system.
EXISTENTIAL MODEL-CHECKING PROBLEM FOR LTLCS(PrA)

Input: A counter system S = (Q, n, δ), an initial configuration (q0, x⃗0) and an LTLCS(PrA)
semi-closed formula ϕ with free variables among {x1, . . . , xn}.

Question: Is there an infinite run ρ starting at (q0, x⃗0) such that ρ, 0 |=∅ ϕ?

Similarly, one can define the universal model-checking problem for LTLCS(PrA).
UNIVERSAL MODEL-CHECKING PROBLEM FOR LTLCS(PrA)

Input: S = (Q, n, δ), (q0, x⃗0) and ϕ as above.
Question: It is true that for all the infinite runs ρ starting at (q0, x⃗0), we have ρ, 0 |=∅ ϕ?

Temporal logics with Presburger constraints has been developped, for instance, in [Čer94,
BEH95, BGP97, CC00, BDR03, LMP10]. Some of them have quite expressive decidable frag-
ments. Undecidability of the existential model-checking problem for LTLCS(PrA) can be shown
using the undecidability of the halting problem for Minsky machines. Still, using SMT solvers
can be done for checking bounded reachability problems, see e.g., [BFM+10]. A linear-time
temporal logic with first-order variables can be also found in [RGL01] for log auditing.
In the rest of this section, we shall present fragments of LTLCS(PrA) obtained by restricting

first-order quantification over natural numbers. Figure 2.5 illustrates the syntactic fragments based
on fragments of Presburger arithmetic defined in Section 1.3.4. Moreover, we write LTL(Q) to
denote the variant of LTL in which the atomic formulae are control states; this is obviously a
fragment of LTLCS(PrA).
First, let us observe that if we restrict ourselves to formulae in which temporal operators

are not in the scope of first-order quantification, then we get a fragment of LTLCS(PrA) that is
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very similar to plain LTL. Indeed, atomic formulae are arithmetical constraints between counter
values and they can be understood as high-level propositional variables; whence the automata-
based approach for LTL can be easily adapted to this fragment. In that fragment, the arithmetical
constraints are only local and in the construction of Büchi automata, the existence of transitions
between states depends on the satisfiability status of Presburger formulae. Below, we provide
restrictions in which the temporal operators may occur in the scope of first-order quantification.
Observe that variants first-order temporal logics have been introduced in [DSV04] to verify data-
driven web applications. The interplay between temporal operators and first-order quantifiers is
restricted, which guarantees better computational properties.

Comparing successive counter values. Given a Presburger formula ψ(z1, . . . , zk), we shall
write ψ(Xi1xj1, . . . ,X

ikxjk
) to denote the formula below

(∃ y1, . . . , yk X
i1(y1 = xj1) ∧ · · · ∧ Xik(yk = xjk

) ∧ ψ(y1, . . . , yk),

where y1, . . . , yk are new variables distinct from the free variables that are present in ψ(z1, . . . , zk).
It is easy to see that ψ(Xi1xj1, . . . ,X

ikxjk
) is interpreted as the formula ψ(z1, . . . , zk) in which

each variable za takes the value of xja at the iath next configuration. For instance, x1 = Xx2

specifies that the next value of x2 is equal to the current value of x1. Similarly, G(x1 = Xx1)
states that counter 1 has a constant value along the model. In Section 2.5.1, we present a simple
fragment of LTLCS(PrA) by allowing first-order quantification only for formulae of the form
ψ(Xi1xj1, . . . ,X

ikxjk
) and Presburger formulae (at the atomic level) are quantifier-free too. It is

worth observing that we use ’X’ as the next-time temporal operator whereas ’Xx’ refers to the
value of x at the next position. Hence X and X are of different nature but both refer to the next
position (no confusion is possible).

Freeze operator. In order to verify properties on counter systems, we want also to be able
to compare counter values. For that, we will define the so-called ’freeze operator’. We shall
consider formulae of the form ↓j

r ϕ interpreted as ∃ yr (yr = xj ∧ ϕ) that store counter values.
Symmetrically, there are counterpart formulae of the form ↑j

r interpreted as yr = xj that perform
equality tests. Intuitively, the modality ↓j

r is used to store the value of the counter j into the
register r; the atomic formula ↑j

r holds true if the value stored in the register r is equal to the
current value of the counter j. For instance, the formula G(↓1

1 XG¬ ↑1
1) states that the first counter

has distinct values at distinct positions.

2.5.1 Presburger LTL CLTL(PrA)

As mentioned earlier, we define below the logic CLTL(PrA) as a fragment of LTLCS(PrA) with
the following restrictions.

1. The Presburger formulae at the atomic level of temporal formulae are quantifier-free.
2. First-order quantification at the level of temporal formulae is restricted to macro formulae
of the form below:

ψ(Xi1xj1, . . . ,X
ikxjk

)
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Consequently, there are no more quantification over integer variables from VARp and no variable
in VARp occurs in CLTL(PrA) formulae.
The logic CLTL(PrA) is defined as an extension of LTL(Q) where the atomic formulae are

constraints from Presburger arithmetic built over expressions of the form Xix where x ∈ VAR is
a variable andXi is understood as a sequence of i consecutive symbolsX. The expressionXix is
interpreted as the value of x at the ith next state. The CLTL(PrA) formulae are defined as follows
(first, we need to define temporal terms)

t ::= 0 | 1 | Xix | t + t

ϕ ::= t ≡k t | t < t | q | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ.

with x ∈ VAR, k > 1 and q ∈ Q. For instance, a formula of the form G(x1 < Xx1) states that
counter 1 is strictly increasing, that is a satisfiable formula. By constrast, the formula G(x1 > Xx1)
is not satisfiable. Atomic formulae ofCLTL(PrA) can be also written ψ(Xl1x1, . . . ,X

lnxn)where
ψ is a Presburger formula and its variables are substituted by expressions of the formXix. A one-
step constraint is an atomic formula of the form either t1 ≡k t2 or t1 < t2 such that each variable
is prefixed by at most one symbol X. Given a CLTL(PrA) formula ϕ, we define its X-length
|ϕ|X as the maximal number i such that an expression of the formXix occurs in ϕ. Intuitively, the
X-length defines the size of a frame of consecutive states that can be compared. The models of
CLTL(PrA) are pairs of sequences σ = (σ1, σ2) such that σ1 : N → (VAR → N), σ2 : N → Q
for a finite subsetQ ⊆ Q. The satisfaction relation is defined as for LTL except at the atomic level:

⋆ σ, i |= q iff σ2(i) = q,

⋆ σ, i |= ψ(Xl1x1, . . . ,X
lnxn) iff (σ1(i + l1)(x1), . . . , σ1(i + ln)(xn)) ∈ REL(ψ).

⋆ σ, i |= Xϕ iff σ, i + 1 |= ϕ,

⋆ σ, i |= ϕUϕ′ iff there is j ≥ i such that σ, j |= ϕ′ and for every i ≤ l < j, we have σ, l |= ϕ.

As usual, a formula ϕ ∈ CLTL(PrA) is satisfiable whenever there exists a model σ such that
σ, 0 |= ϕ. We write CLTLl

n(PrA) to denote the restriction of CLTL(PrA) to formulae with at
most n variables and X-length less or equal to l (below the value ω is used for some syntactic
resource when there is no restriction). Moreover, observe that infinite runs from counter systems
can be viewed as CLTL(PrA) models. Besides, control states as atomic formulae can be easily
removed from CLTL(PrA), as far as satisfiability problems are concerned; indeed they can be
encoded by atomic Presburger formulae, for instance of the form z = z′ (where z and z′ are
uniquely dedicated to encode one control). z = 0 would also be fine.

Lemma 2.5.1. There is a logspace reduction from the satisfiability problem for CLTL(PrA) to
the satisfiability problem forCLTLω(PrA) restricted to formulae ofX-length at most 1 (CLTL1

ω(PrA)).

The proof of Lemma 2.5.1 is done by renaming terms and requires an unbounded amount of
variables in CLTL1

ω(PrA). For instance, the expressions x1, . . . ,X3x1 are encoded by the formula

G(x′′ = Xx′ ∧ x′ = Xx ∧ x = Xx1)
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(assuming that x, x′ and x′′ are new variables) and each occurrence of Xx1 [resp. X2x1, X3x1] is
replaced by x [resp. x′, x′′]. For reductions between satisfiability problems, the introduction of
new variables is harmless.
We recall below the existential version of CLTL(PrA) model-checking over counter systems.

EXISTENTIAL MODEL-CHECKING PROBLEM FOR CLTL(PrA):

Input: a counter system S of dimension n, a configuration (q, x⃗) and an CLTL(PrA) formula ϕ
with n free variables,

Question: Is there an infinite run ρ with initial configuration (q, x⃗) such that ρ, 0 |= ϕ?

The halting problem for Minsky machines can be easily reduced to the satisfiability problem
for CLTL(PrA) or to the existential model-checking problem for CLTL(PrA), leading to simple
undecidability proofs. In the sequel, we show how to restrict the class of counter systems or the
logical language in order to regain decidability.
Let us define below several fragments of CLTL(PrA). Given a fragment L from Presburger

arithmetic (see e.g., Section 1.3.4), we write CLTL(L) to denote the restriction of CLTL(PrA) to
atomic formulae of the form ψ(Xi1xj1, . . . ,X

ikxjk
) with ψ ∈ L. Similarly, we write CLTLl

n(L)
(n ≥ 1, l ≥ 0) to denote the restriction of CLTL(L) to formulae such that the variables are
among {x1, . . . , xn} and the X-length is bounded by l. We use ω when there is no restriction,
either on the number of variables or on theX-length. For instance, x1 = X8x2 +1 ∈ CLTL8

2(DL)
and XXX(5Xx1 + 2x2 ≥ 27) ∈ CLTL1

2(QFP). The logic CLTL defined in [CC00] is precisely
CLTL1

ω(DL).
Similarly, an L-counter system is defined as counter system such that the Presburger formu-

lae labelling the transitions are in L. The table below summarizes the complexity status of three
decision problems (existential model-checking problems restricted to DL-counter systems, re-
stricted to standard counter automata and satisfiability problem) restricted to different fragments
of CLTL(PrA). ’U’ stands for undecidability

MC (DL) SAT MC (CA)
CLTL1

3(DL) U U U
CLTLω2 (DL) U U U
CLTL2

1(DL) U U PSPACE-c
CLTL1

2(DL) U U U
CLTL1

1(DL or DL+) PSPACE-c. PSPACE-c. PSPACE-c
CLTL1

1(QFP) U U PSPACE-c
CLTLω1 (QFP) U U PSPACE-c.

By way of example, let us provide the main simple ideas to show the proposition below.

Proposition 2.5.2. The satisfiability problem for CLTL1
3(DL) is undecidable.

Proof: Let us consider a slight (and indeed standard) variant of Minsky machines S in which
the last instruction n is halt. The halting problem checks whether the Minsky machine can
reach this instruction. Since the Minsky machine is deterministic, either the Minsky machine
has a unique infinite run (and never visits the instruction n) or it has a unique finite (and halts at
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instruction n). We build an CLTL1
3(DL) formula ϕ = (

∧

i∈[1,n] ψi) ∧ ψinit ∧ G¬qn such that ϕ is
satisfiable iff S has an infinite run. The formula ψinit is of the form x1 = 0 ∧ x2 = 0 ∧ x3 = 1, so
the third counter encodes the instruction ordinal (the run starts with two counters equal to zero). If
the ith instruction increments the counter j and go to instruction i′, then ψi is of the form below:

G(x3 = i ⇒ (Xx3 = i′) ∧ (xj + 1 = Xxj) ∧ (x3−j = Xx3−j)).

Decrements are encoded similarly. Moreover, if the ith instruction performs a zero-test on counter
j and go to instruction i′ otherwise go to instruction i′′, then ψi is of the form below:

G(x3 = i ⇒ ((xj = 0 ⇒ (Xx3 = i′) ∧ (xj = Xxj) ∧ (x3−j = Xx3−j))∧

(xj ̸= 0 ⇒ (Xx3 = i′′) ∧ (xj − 1 = Xxj) ∧ (x3−j = Xx3−j))))

So, the formulae in CLTL1
3(DL) can easily internalize the instructions of Minsky machines. Of

course, if we restrict further the number of variables or the arithmetical constraints, undecidability
might be a bit less easy to obtain. QED

Theorem 2.5.3. [DD07, DG08] Satisfiability problem for CLTL(IPC∗) is PSPACE-complete.

The proof uses the automata-based approach for LTL with an alphabet of symbolic valua-
tions (constraints). Its difficulty comes from the fact that the sets of symbolic models that admit
concrete models are not necessarily ω-regular, i.e. definable by a Büchi automaton.

2.5.2 LTL with registers: LTL↓

In this section, we present the logic LTL with registers (also known as Freeze LTL) as a fragment
of LTLCS(PrA) by restricting first-order quantification to the operators ↓ and ↑.

Logical formalisms with the freeze operator. The freeze quantifier in real-time logics has been
introduced in the logic TPTL, see e.g. [AH94, Hen90, HLP90]. In spite of its rich language of
constraints, TPTL model-checking is decidable [AH94] (discrete version). In this case, decidabil-
ity is due to the subtle combination of the constraint system and the semantical restrictions. The
formula x · ϕ(x) binds the variable x to the time t of the current state: x · ϕ(x) is semantically
equivalent to ϕ(t).
This variable-binding mechanism, quite natural when rephrased in first-order logic, is present

in various logical formalisms including for example hybrid logics [Gor94, Gor96, ABM99, Are00,
ABM01]: ↓x ϕ(x) holds true iff ϕ(x) holds true when the propositional variable x is interpreted
as a singleton containing the current state. The downarrow binder in such hybrid logics records
the value of the current state. Similarly, in temporal logic with forgettable past [LMS02], the
effect of the Now operator is that the origin of time takes the value of the current state: the states
before the current state are forgotten. Identical mechanisms are used in navigation logics for
object structures, see e.g., [dBvE01]. In the context of spatio-temporal logics, Wolter and Za-
kharyaschev [WZ00, Section 7] advocate the need to consider operators expressing constraints of
the form

∧

i∈N
x = Xiy and

∨

i∈N
x = Xiy. They are simple to express in LTL with registers and

the above-mentioned operators have been considered in LTL-like formalisms in [DDG07].
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A number of decidability and undecidability results for half-order modal logics (to be com-
pared with [Hen90]) are presented in [Fit02]. The half-order aspect of such logics is due to a
predicate λ-abstraction mechanism, which solves the famous problem of interpreting constants in
modal logic. Several undecidability results for LTL-like logics with predicate λ-abstraction have
recently been obtained in [LP05], independently and concurrently with [DLN05].
Last, but not least, the temporal semantics for imperative programs, may use first-order tempo-

ral logics, see e.g. [MP92]. For instance, the statement that the program variable x never decreases
below its initial value can be expressed by the formula below that uses a form of freeze operator:
∃y (x = y) ∧ G(x ≥ y).

Automata for data languages and logics. In [BPT03, Bou02], data languages are defined as
sets of finite data words in (Σ × D)∗ where Σ is a finite alphabet and D is an infinite domain
(generalizing the concept of timed languages), and automata which recognise data languages are
introduced. First-order logic over finite data word models is considered in [BMS+06], with moti-
vations stemming from query languages for semistructured data. More precisely, the carrier of a
model is the set of positions in a data word, there are no function symbols, the unary predicates
correspond to elements of Σ, and there are binary predicates <, +1, as well as ∼ which is inter-
preted as equality of elements of D at given positions. FOk(∼, <, +1) denotes such a logic with
k variables. The main result of [BMS+06] is that satisfiability of FO2(∼, <, +1) is decidable,
by a doubly exponential-time reduction to emptiness of multicounter automata without zero-tests
(more details are provided in Chapter 3).

Definitions. The datum stored in a register is the current counter value and equality tests are
performed between a register value and the current counter value. When dealing with counter
systems, a register can store the value of a counter and test it later against the value of counter
(possibly different from the first one). Below, we present different ways to restrict the equality
tests between registers and counters. Given n ≥ 1, the formulae of the logic LTL↓[n] are defined
as follows:

ϕ ::= q | ↑j
r | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ | ↓j

r ϕ

where q ∈ Q, j ∈ {1, . . . , n} and r ∈ N+. An occurrence of ↑j
r within the scope of some freeze

quantifier ↓c
r is bound by it; otherwise it is free. A sentence is a formula with no free occurrence

of any ↑c
r.

Models of LTL↓[n] are ω-sequences in (Q × Nn)ω for some finite subset Q ⊆ Q. A register
valuation f is a finite partial map fromN+ toN. Note that whenever f(r) is undefined, the atomic
formula ↑j

r is interpreted as false. Given an infinite run ρ = (q0, x⃗0), (q1, x⃗1), . . . and a position i,
the satisfaction relation |= is defined as follows (Boolean clauses are omitted):

ρ, i |=f q
def
⇔ qi = q

ρ, i |=f ↑j
r

def
⇔ r ∈ dom(f) and f(r) = x⃗i(j)

ρ, i |=f Xϕ
def
⇔ ρ, i + 1 |=f ϕ

ρ, i |=f ϕ1Uϕ2
def
⇔ for some i ≤ j, ρ, j |=f ϕ2

and for all i ≤ j′ < j, we have ρ, j′ |=f ϕ1

ρ, i |=f ↓j
r ϕ

def
⇔ ρ, i |=f [r (→x⃗i(j)] ϕ



40 CHAPTER 2. LINEAR-TIME TEMPORAL LOGICS

f [r 0→ x⃗i(j)] denotes the register valuation equal to f except that the register r is mapped to x⃗i(j).
In the sequel, we omit the subscript “f” in |=f when sentences are involved.
For example, the formula below states that sometimes there is a value of the counter 1 such

that

(1) infinitely often counter 2 takes that value if and only if infinitely often counter 3 takes that
value and,

(2) from some future position, the counter 4 has always that value.

F ↓1
1 [(GF ↑2

1⇔ GF ↑3
1) ∧ FG ↑4

1]

We define below fragments of LTL↓[n] by restricting the use of the freeze operators. The strict
fragment, written LTL↓,s[n], consists in associating a unique counter to each register (to store and
to test). More precisely, a formula ϕ in LTL↓,s[n] verifies the following syntactic property: if ↓j

r ψ
is a subformula of ϕ, then ϕ has no subformulae of the form either ↑j′

r or ↓j′

r ψ′ with j ̸= j′.
EXISTENTIAL MODEL-CHECKING PROBLEM MCω(LTL↓)

Input: A counter system S = (Q, n, δ), an initial configuration (q, x⃗), a sentence ϕ ∈ LTL↓[n].
Question: Is there an infinite run ρ starting at (q, x⃗) such that ρ, 0 |= ϕ?

Given n ≥ 1, we writeMCω(LTL↓[n]) to denote the subproblem ofMCω(LTL↓) with counter
systems of dimension at most n. In this existential version of model checking, this problem can
be viewed as a variant of satisfiability in which satisfaction of a formula can be only witnessed
within a specific class of data words, namely the runs of the counter machine. Note that results for
the universal version of model checking will follow easily from those for the existential version
when considering fragments closed under negation or deterministic counter systems.
Let us mention main results about the decidability status of satisfiability and model-checking

problems. By default, satisfiability problem is related to infinite models, usually ω-sequences.
The finitary satisfiability problem considers models of nonzero finite length and the temporal
operators are defined accordingly in the usual way.

Theorem 2.5.4.

(I) Infinitary satisfiability problem for LTL↓[1] restricted to the temporal operators X and F and
to a single register is undecidable [DL09].

(II) Finitary satisfiability problem for LTL↓[1] restricted to a single register is decidable [DL09]
and its restriction to the temporal operator F and to a unique register is nonprimitive recur-
sive [FS09].

(III) Finitary satisfiability problem for LTL↓[1] restricted to the temporal operator F and to two
registers is undecidable [FS09].

By contrast, the infinitary satisfiability problem for the safety fragment of LTL↓[1] restricted
to a single register is EXPSPACE-complete [Laz06].
Proof: By way of example, we show (I) by reducing the control state repeated reachability prob-
lem for gainy counter automata, shown undecidable in Section 5.2.3.
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A gainy counter automaton is a standard counter automaton (Q, n, δ) such that for q ∈ Q and
i ∈ [1, n], q inc(i)

−−→ q ∈ δ (which allows us to simulate gains). In the sequel, we shall not represent
these transitions. Instead, we consider that the one-step derivation relation is modified as follows:
(q, x⃗)

t
−→g (q′, x⃗′) iff there are y⃗ and y⃗′ in Nn such that x⃗ ≼ y⃗, (q, y⃗)

t
−→ (q′, y⃗′) (exact step) and

y⃗′ ≼ x⃗′. Observe that we can restrict ourselves to gains that occur in a lazy way: decrement on
zero has no effect.
Let S be a gainy counter automaton with initial configuration (q0, 0⃗). For each transition t, we

write Σ(t) to denote the letter in Σ = {inc(i), dec(i), zero(i) : i ∈ [1, n]} labelling the transition
t. We build a formula ϕ in LTL↓[1] such that ϕ is satisfiable iff (S, (q0, 0⃗)) has an infinite run
with qf occurring infinitely often. The formula ϕ shall be satisfiable only in models in which each
position is labelled by a transition from δ and by a value in N. Infinite models of ϕ are of the form
(t0, y0), (t1, y1), (t2, y2), · · · with ti ∈ δ and yi ∈ N. For I, J ∈ N, we write I ∼ J iff yI = yJ .
Let us explain how the run from (q0, 0⃗)

(q0, x⃗0)
a0−→ (q1, x⃗1)

a1−→ · · ·
aK−1
−−→ (qK , x⃗K) · · ·

is encoded. The projection of the model over δ will be precisely

t0t1t2 · · · = q0
a0−→ q1, q1

a1−→ q2, · · ·

and qf is repeated infinitely often. This is taken care by the formulae below as conjuncts of ϕ:

⋆ Initial state is q0: ∨

t=q0
a−→q

t

⋆ The sequence of transitions respects the control graph of the gainy counter automaton:

G(
∧

t=q
a−→q′∈δ

(t ⇒ X
∨

t′=q′
a−→q′′

t′))

⋆ Control state qf is visited infinitely often:

GF
∨

t=q
a−→qf

t

We write ↓ [resp. ↑] to denote ↓1
1 [resp. ↑1

1] and for each a ∈ Σ, we write below a to denote
the following disjunction:

∨

t=q
b−→q′∈δ, a=b

t

Moreover, we are considering the following constraints and the additional formulae are con-
junctively considered in ϕ:

⋆ For i, j ∈ [1, n], there are no two positions for increments having the same value:

G(inc(i) ⇒ ¬(↓ XF(↑ ∧ inc(j))))
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⋆ For i, j ∈ [1, n], there are no two positions for decrements having the same value:

G(dec(i) ⇒ ¬(↓ XF(↑ ∧ dec(j))))

⋆ For i ∈ [1, n] and J > I , if Σ(tI) = inc(i) and Σ(tJ ) = zero(i), then there is no K > J
such that Σ(tK) = dec(i) and I ∼ K:

G(inc(i) ⇒↓ ¬(F(zero(i) ∧ (F(↑ ∧ dec(i))))))

⋆ For i ∈ [1, n], if there are J > I such that Σ(tI) = inc(i) and Σ(tJ ) = zero(i), then there
isK > I such that Σ(tK) = dec(i) and I ∼ K.

G((inc(i) ∧ Fzero(i)) ⇒↓ (F(dec(i)∧ ↑)))

The last conditions are formulated in such a way to avoid using the until operator U. So, one can
show that ϕ is satisfiable iff (S, (q0, 0⃗)) has an infinite run such that qf occurs infinitely often.
QED

Now, as far as model-checking problems are concerned, the situation is not better. Reversal-
bounded counter automata are defined in Chapter 4 (see also Theorem 4.4.3).

Theorem 2.5.5.

(I) The existential model-checking problemMCω(LTL↓[1]) restricted to one register and to one-
counter automata is undecidable [DLS10].

(II) The existential model-checking problemMCω(LTL↓,s[4]) restricted to reversal-bounded VASS
is undecidable [DS10].

Reversal-bounded counter automata are formally defined in Chapter 4.

2.6 Exercises
Exercise 2.6.1. Show that the class of languages accepted by Büchi automata is closed under
union and intersection.

Exercise 2.6.2. In the proof of Lemma 2.3.1, show that A and Ab accept the same language.

Exercise 2.6.3. Show that p U p′ is equivalent to p′ ∨ (p∧ X(pUp′)) in a sense that these formulae
hold true exactly at the same positions in every run.

Exercise 2.6.4. Build a Büchi automaton over the alphabet Σ = {q1, q2, q3} that recognizes the
infinite words in Σω such that q1 occurs infinitely often implies q2 occurs too infinitely often.
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Exercise 2.6.5. Construct a Büchi automaton for the LTL formula

G F p1 ∧ G F p2

over the alphabet {p1, p2, p3} .

Exercise 2.6.6. Prove Lemma 2.5.1.

Exercise 2.6.7. Which decision problems on counter systems can be viewed as subproblems of
the model-checking problem restricted to LTLCS(PrA) formulae without first-order quantification
and the atomic formulae are reduced to control states?

Exercise 2.6.8. Let LTL+ be the fragment of LTLCS(PrA) in which the atomic formulae are
either control states or Presburger formulae of the form “xj = 0” (zero-test on the jth counter).

1. Let us consider the VASS below.

A

B

C

„

0
1

« „

0
0

«

„

1
−1

« „

0
0

«

For each formula ϕ below, determine whether there is an infinite run ρ starting at (A, 0⃗)
such that ρ, 0 |= ϕ.

(a) ϕ = GF A,
(b) ϕ = GF (x2 = 0),
(c) ϕ = GF (x1 = 0) ∧ GF C,
(d) ϕ = G(C ⇒ XG¬(x1 = 0)),
(e) ϕ = (GF A) ∧ (GF B) ∧ (GF C) ∧ (GF x2 = 0) ∧ (GF ¬(x1 = 0)).

2. For which formulae ϕ among (a)-(e) is it the case that for all infinite runs ρ starting at (A, 0⃗),
we have ρ, 0 |= ϕ?

3. Show the LTL+ existential model-checking problem restricted to VASS is undecidable. For
instance, reduce the halting problem for Minsky machines to it by simulating zero-tests in
formulae.

Exercise 2.6.9. Design a decision procedure for the satisfiability problem for LTLCS(PrA) for-
mulae in which temporal operators are not in scope of first-order quantification.

Exercise 2.6.10. Let us consider the two following fragments of LTLCS(PrA).
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⋆ L1 is a fragment of LTL↓[n] such that for any formula ϕ in L1 (flatness condition):

∗ if ψ1Uψ2 occurs positively in ϕ, then ↓ does not occur in ψ1;
∗ if ψ1Uψ2 occurs negatively in ϕ, then ↓ does not occur in ψ2.

⋆ L2 is the fragment ofCLTL(DL) such that the only atomic formulae are either control states
or equality tests of the form either x = Xx′ or x = x′.

1. Define a logspace reduction from the satisfiability problem for L1 to the satisfiability prob-
lem for L2.

2. Show that the satisfiability problem for L2 can be solved in polynomial space.

Exercise 2.6.11. Show that finitary satisfiability problem for LTL↓[1] restricted to one register
with the past-time temporal operator F−1 is undecidable (ρ, i |=f F−1ϕ iff there is j ≤ i such that
ρ, j |=f ϕ). Hint: adapt the proof of Theorem 2.5.4(I).



Chapter 3

Vector Addition Systems

In this chapter, we first show relationships between vector addition systems with states and other
systems and formalisms (VAS, Petri nets, FO2 over data words). Then, we briefly present funda-
mental structures to solve decision problems on VASS, namely coverability graphs. This chapter
concludes by presenting a proof for the EXPSPACE upper bound of the covering problem for
VASS/VAS. Such a proof is performed by an induction on the dimension that allows to shorten
the length of witness runs.

3.1 VASS vs. FO2 on Data Words
Properties on data structures can be specified by formulae from temporal logics, such as LTL,
CTL or the µ-calculus, possibly equipped with predicates about data. Logics for data trees can
be found in [BDM+06, JL07, Fig09, Fig10] for which predicates are reduced to equality (see the
survey paper [Seg06]). Similarly, logics for data words can be found in [BMS+06, DL06, FS09].
These works have shed some new light between data logics and classes of counter automata. For
instance, in [BMS+06] it is shown how the satisfiability problem for a fragment of data logic is
equivalent to the reachability problem in VASS (over finite data words), whose exact complexity
is still open. The exact relationships counter automata and data logics still need to be formalized
(see the recent work [BL10]). We recall below a few basic definitions and results.
Formulae of the logic FOΣ(∼, <, +1) [BMS+06] where Σ is a finite alphabet are defined as

follows:
ϕ ::= a(x) | x ∼ y | x < y | x = y + 1 | ¬ϕ | ϕ ∧ ϕ | ∃x ϕ

where a ∈ Σ and x, y range over a countably infinite set VAR′ of variables. Variables are inter-
preted as positions in a (data) word; so apart from atomic formulae of the form x ∼ y, formulae are
similar to those of first-order logic on words, see e.g. [Str94]. We write FO(∼, <, +1) to denote
FOΣ(∼, <, +1) for some unspecified finite alphabet Σ. Models for FOΣ(∼, <, +1) are (finite or
infinite) sequences of pairs from N × Σ (also known as data words in [Bou02, BMS+06]). A
variable valuation val for a model σ is a map from VAR′ to the indices of σ. We write N(x)
to denote the natural number in the pair σ(val(x)) (the datum) and Σ(x) to denote its letter (the
label).
Given a finite alphabet Σ = {a1, . . . , aN} and an infinite domain D, a finite data word

(ai1 , d1) · · · (aiK , dK) can be viewed as the structure ({1, . . . , K}, <,∼, +1, P1, . . . , PN) such that
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46 CHAPTER 3. VECTOR ADDITION SYSTEMS

⋆ for j, j′ ∈ {1, . . . , K}, j ∼ j′ iff dj = dj′,

⋆ for j ∈ {1, . . . , K} and l ∈ {1, . . . , N}, j ∈ Pl iff aij = al.

The satisfaction relation |= is defined as follows (Boolean clauses are omitted):

σ |=val a(x)
def
⇔ Σ(x) = a

σ |=val x ∼ y
def
⇔ N(x) = N(y)

σ |=val x < y
def
⇔ val(x) < val(y)

σ |=val x = y + 1
def
⇔ val(x) = val(y) + 1

σ |=val ∃ x ϕ
def
⇔ there is i < |σ| such that σ |=val[x (→i] ϕ.

Here val[x 0→ i] denotes the variable valuation equal to val except that the variable x is mapped
to the position i. FOΣ

2 (∼, <, +1) is defined as the fragment of FOΣ(∼, <, +1) restricted to two
individual variables. For example, the formula below in FOΣ

2 (∼, <, +1) states that there are no
two distinct positions labelled by a having the same datum:

∀x y (x < y ∧ a(x) ∧ a(y)) ⇒ ¬(x ∼ y).

The finitary [resp. infinitary] satisfiability problem for FOΣ
2 (∼, <, +1) is to check whether a

sentence from FOΣ
2 (∼, <, +1) has a finite [resp. infinite] model. Even though satisfiability for

FO(∼, <, +1) restricted to three individual variables is undecidable [BMS+06, Dav09], decid-
ability can be regained with only two variables.

Theorem 3.1.1. [BMS+06, Dav09, BMSS09] The finitary and infinitary satisfiability problems
for FO2(∼, <, +1) are decidable.

Let us sketch how decidability for finitary satisfiability is shown in [BMS+06]. Satisfiability is
first reduced to nonemptiness for data automata, which in turn is reduced to reachability problem
for vector addition systems with states. There is also a reduction in the other direction.

Theorem 3.1.2. [BMS+06, Dav09] There is a polynomial-space reduction from the reachability
problem for vector addition systems with states to finitary satisfiability for FO2(∼, <, +1).

Proof: First, the reachability problem for vector addition systems with states can be reduced in
polynomial-space to its restriction such that the initial and final configurations have all the coun-
ters equal to zero and each transition can only increment or decrement a single counter. In the
sequel, we consider an instance of this subproblem: S = (Q, n, δ) is a VASS, the initial con-
figuration is (qi, 0⃗), and the final configuration is (qf , 0⃗). Indeed, transitions can be restricted to
increments of decrements of a single counter. For example, the translation

(
2
−3

)

can be encoded
by 2 increments of the first counter followed by 3 decrements of the second counter. Similarly, ini-
tial and final configurations (q0,

(
2
1

)

) and (qf ,
(

1
1

)

) can be reduced to (q′0,
(

0
0

)

) and (q′f ,
(

0
0

)

)
respectively, by adding the transitions

q′0
inc(1)
−−→ q1

0

inc(1)
−−→ q2

0

inc(2)
−−→ q0 qf

dec(1)
−−→ q1

f

dec(2)
−−→ q′f
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All these reductions require only polynomial space. So, we can assume that S is a standard
counter automaton without zero-tests.
Now, we shall build a formula ϕ in FO2(∼, <, +1) such that the final configuration is reach-

able from the initial configuration iff ϕ is satisfiable. To do so, we encode runs of S by data words
in the following way. The alphabet Σ is defined as the set Q = {inc(i), dec(i) : i ∈ [1, n]}.
Let us explain how the run

(q0, x⃗0)
a0−→ (q1, x⃗1)

a1−→ · · ·
aK−1
−−→ (qK , x⃗K)

is encoded. The projection of the data word over the alphabet Σ will be precisely

q0a0q1a1 · · ·aK−1qK

The formula ϕproj states that the projection corresponds to an accepting run of S, leaving away
the fact that counter values must belong to N:

⋆ The first letter is qi: ∃x (¬∃y y < x) ∧ qi(x).

⋆ The last letter is qf : ∃x (¬∃y x < y) ∧ qf (x).

⋆ The sequence of locations and actions respects the control graph of S:

∀ x (
∨

q∈Q

q(x)) ⇒ ((¬∃y x < y)∨

∨

q
a−→q′∈δ

(q(x) ∧ (∃y y = x + 1 ∧ a(y)) ∧ (∃y y = x + 1 ∧ (∃x x = y + 1 ∧ q′(x)))))

Observe the nice (and standard) recycling of variables. Moreover, we shall impose constraints on
data values. For instance, the run

q0 q1 q2 q3 q4 q5 q6(
0
0

) (
1
0

) (
2
0

) (
2
1

) (
1
1

) (
0
1

) (
0
0

)

corresponds to a data word of the form below

q0 inc(1) q1 inc(1) q2 inc(2) q3 dec(1) q4 dec(1) q5 dec(2) q6

⋆ k1 ⋆ k2 ⋆ k3 ⋆ k1 ⋆ k2 ⋆ k3 ⋆

⋆ denotes an arbitrary data value. The main idea is to observe that each action is attached to a
data value and the data value for a decrement has to occur already in the past for an increment.
We impose the following constraints, taken conjunctively with ϕproj we obtain the formula ϕ:

⋆ For i, j ∈ [1, n], there are no two positions labelled by inc(i) and inc(j) having the same
datum:

∀x y (x < y ∧ inc(i)(x) ∧ inc(j)(y)) ⇒ ¬(x ∼ y).

⋆ For i, j ∈ [1, n], there are no two positions labelled by dec(i) and dec(j) having the same
datum:

∀x y (x < y ∧ dec(i)(x) ∧ dec(j)(y)) ⇒ ¬(x ∼ y).
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⋆ For i ∈ [1, n], for every position labelled by dec(i), there is a past position labelled by
inc(i) with the same datum:

∀x dec(i)(x) ⇒ (∃ y y < x ∧ x ∼ y ∧ inc(i)(y))

⋆ Since in the final configuration, any counter value is zero, we impose that for i ∈ [1, n], for
every position labelled by inc(i), there is a future position labelled by dec(i) with the same
datum:

∀x inc(i)(x) ⇒ (∃ y x < y ∧ x ∼ y ∧ dec(i)(y))

One can then show that (qf , 0⃗) is reachable from (qi, 0⃗) iff ϕ is satisfiable. QED

It is worth noting that a fragment of LTL↓[1] with one register has been shown equivalent to
FO2(∼, <, +1) in [DL09].

3.2 Relationships with Petri Nets
In this section, we show how Petri nets (see e.g. [RR98]) are related to VASS and VAS. First, let
us recall that a Petri net N is a structure (S, T, W, mI) such that S is a finite set of places, T is
a finite set of transitions,W : (S × T ) ∪ (T × S) → N is a weight function. A marking m is a
map of the form S → N: for each place, we specify a number of tokens (possibly none). In the
Petri net N , mI : S → N is the initial marking (initial distribution of tokens). We assume that
the reader is familiar with the semantics of this model (otherwise see e.g., [Pet81, RR98]). We
just recall below a few definitions. A transition t ∈ T is m-enabled, written m

t
−→, whenever for

all places p ∈ S, m(p) ≥ W (p, t). An m-enabled transition t may fire and produce the marking
m′, written m

t
−→ m′, with for all places p ∈ S, m′(p) = m(p) − W (p, t) + W (t, p). A marking

m′ is reachable from m whenever there is a sequence of the form m0
t0−→ m1

t1−→ · · ·
tk−1
−→ mk with

m0 = m andmk = m′ (also writtenm
t0···tk−1−−−−→ m′).

Here are standard problems for Petri nets.
REACHABILITY PROBLEM FOR PETRI NETS:

Input: a Petri net (S, T, W, mI) and a markingm.

Question: ism reachable frommI?

COVERING PROBLEM FOR PETRI NETS:

Input: a Petri net (S, T, W, mI) and a markingm.

Question: is there a marking m′ reachable from mI such that for all p ∈ S, we have m′(p) ≥
m(p)?

BOUNDEDNESS PROBLEM FOR PETRI NETS:

Input: a Petri net (S, T, W, mI).

Question: is the set of markings reachable frommI infinite?
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pA pB pC

p1

A

B

C

+1 0

−1 0

Figure 3.1: A VASS and an equivalent Petri net

Lemma 3.2.1. The reachability problem for VASS is equivalent to the reachability problem for
Petri nets. The same holds true for the covering and boundedness problems.

Proof: First, let us show how to simulate a VASS by a Petri net, which allows us to get a logspace
many-one reduction for the reachability, boundedness and covering problems. Let V be a VASS
(Q, n, δ), (qI , x⃗I) and (qF , x⃗F ) be two configurations. We can build a Petri net NV that simulates
V , by using a standard translation from VASS to Petri nets. For every control state q in V , we
introduce a place pq in NV and for i ∈ [1, n], we introduce a place pi. An initial marking mI

contains one token in the place pqI
and for i ∈ [1, n],mI(pi) = x⃗I(i). From this marking, we only

obtain markings where a unique token belongs to a place of the form pq (q ∈ Q) which means that
a unique control state is active for every marking. For every transition in V , say t = q

b⃗
−→ q′, we

consider a transition t in NV that consumes a token in pq, produces a token in pq′ and produces
[resp. consumes] b⃗(i) tokens in the place pi when b⃗(i) ≥ 0 [resp. when b⃗(i) < 0].
In Figure 3.1, we present a VASS of dimension 1 with three control states and its equivalent

Petri net with the above-mentionned construction. In order to ensure the correctness of our re-
duction, we need first to handle transitions of the form t = q

b⃗
−→ q (self-loop) in V separately as

follows. We transform a transition of the form t = q
b⃗
−→ q in V by the two transitions q

0⃗
−→ qnew

and qnew
b⃗
−→ q in NV , where qnew is a new location designed for q and 0⃗ is the zero vector.

When V is self-loop free, for all configurations (q, x⃗), the propositions below are equivalent:

⋆ there is a run of the form (qI , x⃗I)
t1−→ · · ·

tk−→ (q, x⃗) in V ,

⋆ there exists a sequence of transitions u = t1 · · · tk such that m0
u
−→ m where for q′ ∈

Q \ {q},m(pq′) = 0,m(pq) = 1 and for i ∈ [1, n],m(pi) = x⃗(i).
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Figure 3.2: A Petri net and an equivalent VASS

Now, let (S, T, W, mI) be a Petri net. Let us define the VASS V = (Q, n, δ) as follows
(assuming an arbitrary bijection f : {1, . . . , card(S)} → S):

⋆ Q = {1} = T ,

⋆ n = card(S),

⋆ for each transition t, we introduce two transitions in V , namely t = 1
b⃗−
−→ t and t′ = t

b⃗+
−→ 1

such that for i ∈ [1, n], b⃗−(i) = −W (f(i), t) and b⃗+(i) = W (t, f(i)).

Let (qI , x⃗I) be the configuration of V such that qI = 1 and for i ∈ [1, n], x⃗I(i) = mI(f(i)).
In Figure 3.2, we present a Petri net with four places and four transitions and its equivalent

VASS with the above-mentionned construction (with f(pA) = 1, f(pB) = 2, f(pC) = 3 and
f(p1) = 4). Again, we can show that for all markingsm, the propositions below are equivalent:

⋆ there exists a sequence of transitions u = t1 · · · tk such thatm0
u
−→ m,

⋆ there is a run of the form (qI , x⃗I)
t1t1

′

−−→ · · ·
tktk

′

−−→ (qk, x⃗k) in V , where qk = 1 and for i ∈ [1, n],
x⃗k(i) = m(f(i)).

QED

Lemma 3.2.2. The reachability problem for VASS is equivalent to the reachability problem for
VAS. The same holds true for the covering and boundedness problems.
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Proof: Since a VAS is a VASS with a unique control state, we only need to show how to simulate
a VASS by a VAS. As in the proof of Lemma 3.2.1, without any loss of generality, we can assume
that the VASS is without self-loop.
Let V = (Q, n, δ) be a VASS without self-loop and h be an arbitrary bijection from Q to

{n + 1, . . . , n + card(Q)}. The bijection h is dedicated to relate each control state of V with a
unique component in the VAS we shall build.
Let X be subset of Nn+card(Q) such that

X = {x⃗ ∈ N
n+card(Q) : x⃗([n + 1, n + card(Q)]) = ei ∈ N

card(Q) for some i ∈ [1, card(Q)]},

where x⃗([n + 1, n + card(Q)]) is the tuple in Ncard(Q) restricted to the card(Q) last components
of x⃗ and ei ∈ Ncard(Q) is a unit element with 1 for the ith component and zero otherwise.
For the VASS in Figure 3.1, we haveX = N × {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Let T be a VAS such that for t = q

b⃗
−→ q′ ∈ δ (q ̸= q′ by hypothesis), the transition t′ ∈ T is

defined as follows:

⋆ (t′)([1, n]) = b⃗,

⋆ for q′′ ∈ Q \ {q, q′}, t′(h(q′′)) = 0,

⋆ t′(h(q)) = −1 and t′(h(q′)) = 1.

For the VASS in Figure 3.1, we have following set of transitions in the corresponding VAS:

(1,−1, 1, 0), (−1, 0,−1, 1), (0, 0, 1,−1), (0, 1,−1, 0)

Let f be the bijection between the configurations of V and X such that

f((q, x⃗))([n + 1, n + card(Q)]) = eh(q) and f((q, x⃗))([1, n]) = x⃗.

For the VASS in Figure 3.1, we have for instance that f((B, 3)) = (3, 0, 1, 0) and f((A, 8)) =
(8, 1, 0, 0).
For each run (q0, x⃗0) . . . (qk, x⃗k) of V , it is possible to associate the run

f((q0, x⃗0)) . . . f((qk, x⃗k))

in T . One can check that each configuration f((qi, x⃗i)) belongs to X . Similarly, for each run
x⃗0 · · · x⃗k in T , the sequence f−1(x⃗0) · · · f−1(x⃗k) is a run of V .
First, observe that (q′, x⃗′) is reachable from (q, x⃗) in V iff f((q′, x⃗′)) is reachable from f((q, x⃗))

in V . This can be easily shown by induction on the lenght of the run. So, the reachability problem
for VASS can be reduced to the reachability problem for VAS.
Furthermore, given a configuration (q, x⃗) for V and a control state q′, the propositions below

are equivalent:

⋆ in V , there is a run of the form (q, x⃗), . . . , (q′, x⃗′),

⋆ in T , there is a run of the form f((q, x⃗)), . . . , x⃗′′ with f((q′, 0⃗)) ≼ x⃗′′ (which is equivalent
to the fact that the control state of f−1(x⃗′′) is q′).
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Consequently, the covering problem for VASS can be reduced to the covering problem for VAS.
Similarly, given a configuration (q, x⃗) for V , the propositions below are equivalent:

⋆ the set of configurations reachable from (q, x⃗) (in V) is infinite,

⋆ the set of configurations reachable from f((q, x⃗)) (in T ) is infinite.

Whereas one direction is obvious, observe that for any configuration reachable from f((q, x⃗)),
its restriction to the card(Q) last components can take at most card(Q) distinct values. Conse-
quently, if the set of configurations reachable from f((q, x⃗)) is infinite, then there is a location
q′ such that there are an infinite amount of configurations reachable from f((q, x⃗)) of the form
f((q′, y⃗)). Hence, this entails that the set of configurations reachable from (q, x⃗) is infinite. So,
the boundedness problem for VASS can be reduced to the boundedness problem for VAS. QED

In [HP79], it is shown that VAS can simulate VASS by adding at most 3 to the dimension,
whereas in the above proof the dimension is augmented by the number of control states.

3.3 Coverability Graphs in a Nutshell
We recall that a VAS T of dimension n can be encoded as a finite subset of Zn.
In this section, we recall the main definitions and properties about coverability graphs, see

e.g. [KM69]; for instance decidability of the covering and boundedness problems can be obtained
from its properties. However, in Section 3.4, we shall provide the optimal complexity upper bound
for the covering problem. A coverability graph shall approximate the set of reachable configura-
tions from a given configuration and it is a finite structure that can be effectively computed.
Let us start by preliminary definitions. Let us consider the structure (N∪{∞},≤) such that for

k, k′ ∈ N ∪ {∞}, k ≤ k′ def
⇔ either k, k′ ∈ N and k ≤ k′ or k′ = ∞. We write k < k′ whenever

k ≤ k′ and k ̸= k′. The ordering ≤ can be naturally extended to tuples in (N ∪ {∞})n by
defining it component-wise: x⃗, x⃗′ ∈ (N ∪ {∞})n, x⃗ ≤ x⃗′ def

⇔ for i ∈ [1, n], either x⃗(i), x⃗′(i) ∈ N

and x⃗(i) ≤ x⃗′(i) or x⃗′(i) = ∞. We also write x⃗ < x⃗′ when x⃗ ≤ x⃗′ and x⃗ ̸= x⃗′. Given
x⃗, x⃗′ ∈ (N ∪ {∞})n such that x⃗ < x⃗′, we write acc(x⃗, x⃗′) to denote the element of (N ∪ {∞})n

such that for i ∈ [1, n], if x⃗(i) = x⃗′(i) then acc(x⃗, x⃗′)(i)
def
= x⃗′(i), otherwise acc(x⃗, x⃗′)(i)

def
= ∞.

For instance,
acc(

(
2
3
1

)

,
(

2
4
1

)

) =
(

2
∞
1

)

.

Let us conclude this paragraph by a last definition. For x⃗ ∈ (N∪{∞})n and t ∈ Zn, x⃗+t is defined
as an element of (Z ∪ {∞})n such that for i ∈ [1, n], if x⃗(i) ∈ N then (x⃗ + t)(i)

def
= x⃗(i) + t(i),

otherwise (x⃗ + t)(i)
def
= ∞. For instance,

(
2
∞
1

)

+
(

−3
−6
2

)

=
(

−1
∞
3

)

.
Given a VAS T of dimension n and a configuration x⃗0, we shall define a coverability graph

CG(T , x⃗0) as a structure (V, E) such that V ⊆ (N ∪ {∞})n and E ⊆ V × T × V . Here are
essential properties of CG(T , x⃗0):

(a) CG(T , x⃗0) is a finite structure. This a consequence of König’s Lemma (any infinite finite-
branching tree has an infinite branch) and Dickson’s Lemma (for any infinite sequence
z⃗0, . . . z⃗i, . . . of tuples of Nn, there exist i < j such that z⃗i ≼ z⃗j).
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(b) For any configuration y⃗ reachable from x⃗0 in T , there is y⃗′ in CG(T , x⃗0) such that y⃗ ≼ y⃗′.
Otherwise said, any reachable configuration can be covered by an element of CG(T , x⃗0).
Moreover, if y⃗ reachable from x⃗0 with the sequence of transitions σ, then there is path
labelled by σ between x⃗0 and y⃗′.

(c) For every extended configuration y⃗′ in CG(T , x⃗0) and bound B ∈ N, there is a configura-
tion y⃗ reachable from x⃗0 in T such that for i ∈ [1, n], if y⃗′(i) = ∞ then y⃗(i) ≥ B otherwise
y⃗(i) = y⃗′(i).

Consequently, we can solve the boundedness and covering problems from the construction of
the coverability graph thanks to the following equivalences.

Lemma 3.3.1. We have the following charaterizations.

(I) There is some configuration x⃗′′ reachable from x⃗0 such that x⃗′ ≼ x⃗′′ iff there is y⃗ inCG(T , x⃗0)
such that x⃗′ ≼ y⃗.

(II) The set of configurations reachable from x⃗0 is infinite iff there is an extended configuration
in CG(T , x⃗0) with at least one component equal to∞.

(III) Every run from x⃗0 terminates iff there is no cycle in CG(T , x⃗0).

Unfortunately, even though CG(T , x⃗0) is finite, in the worst-case its number of nodes can be
nonprimitive recursive [VVN81]. Let us precise what it means by recalling a variant of Acker-
mann function:

⋆ A0(m) = 2m + 1, An+1(0) = 1.

⋆ An+1(m + 1) = An(An+1(m)).

⋆ A(n) = An(2).

The function A(n) majorizes the primitive recursive functions and the size of the coverability
graph can be in O(A(n)) where n is the size of T and x⃗0.
Proof: By way of example, we show (I) and (II).
(I) Suppose that x⃗′′ reachable from x⃗0 and x⃗′ ≼ x⃗′′. By (b), there is y⃗ in CG(T , x⃗0) such that

x⃗′′ ≼ y⃗. Since ≼ is transitive on (N ∪ {∞})n, we get x⃗′ ≼ y⃗. Conversely, suppose that there is
y⃗ in CG(T , x⃗0) such that x⃗′ ≼ y⃗. Let B be the maximal value occurring in x⃗′. By (c), there is
a configuration y⃗′ reachable from x⃗0 in T such that for i ∈ [1, n], if y⃗(i) = ∞ then y⃗′(i) ≥ B
otherwise y⃗′(i) = y⃗(i). Hence, x⃗′ ≼ y⃗′.
(II) Suppose that the set of configurations reachable from x⃗0 is infinite. Ad absurdum, assume

that ∞ does not occur in CG(T , x⃗0). By (b), there is y⃗ in CG(T , x⃗0) such that for an infinite
amount of configurations x⃗ reachable from x⃗0, we have x⃗ ≼ y⃗. This leads to a contradiction since
there are at most (1 + max(y⃗))n distinct configurations smaller than y⃗ since y⃗ ∈ Nn. If∞ occurs
in CG(T , x⃗0), then by (c) the set of configurations reachable from x⃗0 is infinite (consider bounds
B greater and greater when applying (c)).
(III) Use the second part of (b). QED
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Boundedness problem as a subproblem of existential model-checking problem. Thanks to
Lemma 3.3.1(II), an instance of the boundedness problem can be viewed as an instance of the
existential model-checking with the LTLCS(PrA) formula

∨

q∈Q

F(∃ y1, . . . , yn (
∧

i

yi = xi) ∧ q ∧ F((
∧

i

yi ≤ xi) ∧ (
∨

i

yi < xi) ∧ q))

Existential model-checking for LTLCS(PrA) for VASS can be easily shown to be undecidable
and the boundedness problem is known to be EXPSPACE-complete. It is unclear what are the
interesting maximal fragments of LTLCS(PrA) for which existential model-checking problem is
decidable or in EXPSPACE (see related works in [Yen92, AH09, Dem10]).

Construction of coverability graphs. Let us define CG(T , x⃗0) by building incrementally V
and E.

1. E := ∅; V := ∅;

2. ToBeTreated := {x⃗0};

3. while ToBeTreated ̸= ∅ do

⋆ Select an element x⃗ from ToBeTreated;
⋆ ToBeTreated := ToBeTreated \ {x⃗};
⋆ for t ∈ T such that x⃗ + t ∈ (N ∪ {∞})n do

∗ x⃗′ := x⃗ + t;
∗ if there is y⃗ ∈ V s.t. y⃗ ∗

−→ x⃗ in (V, E) and y⃗ < x⃗′ then
· Let y⃗0 be the extended configuration the closest to x⃗ in (V, E) such that y⃗0 <

x⃗′;
· x⃗′ := acc(y⃗0, x⃗′);

∗ if x⃗′ ̸∈ V then
· V := V ∪ {x⃗′};
· ToBeTreated := ToBeTreated ∪ {x⃗′};

∗ E := E ∪ {x⃗
t
−→ x⃗′};

Figure 3.3 contains a VASS (that can be easily seen as a VAS using previous developments)
and a coverability graph for the initial configuration (0, 1, 0, 0).

3.4 Solving the Covering Problem in Exponential Space
In this section, we present the proof establishing that the covering problem for VAS can be solved
in exponential space [Rac78]. This completes the worst-case complexity charaterization of the
problem since Lipton has shown earlier that the problem is EXPSPACE-hard [Lip76] (see also a
more accessible proof in [Esp98]). The result is not only interesting for complexity purpose but
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Figure 3.3: A VASS/VAS and a coverability graph

also because its proof uses a simple induction on the dimension. By contrast, the decidability
proof from Karp and Miller tree [KM69] requires more work and does not provide the optimal
upper bound as far as worst-case complexity is concerned.
Let T be a VAS of dimension n, and x⃗ and x⃗′ be two configurations in Nn. We will show that

if there is a run from x⃗ leading to y⃗ such that x⃗′ ≼ y⃗, then there is a small run from x⃗ leading to y⃗′

such that x⃗′ ≼ y⃗′ and its length is at most double-exponential in the size of the instance T , x⃗ and
x⃗′. Of course, we need to specify what a size means; no surprise is expected here since this will be
a reasonably succinct encoding with a binary representation for integers. For instance, consider
the VASS in Figure 3.4. There are various options to cover (A, (1, K)) from (A, (0, 0)) for some
K ≥ 0. For instance, here is a first covering

(A, (0, 0))
(t1t2)2

K
t1

−−−−−→ (B, (0, 2K + 1))
t3t4t2−−→ (A, (1, 2K)) ≽ (A, (1, K))

Nevertheless, the covering below is obviously much shorter:

(A, (0, 0))
(t1t2)K t1
−−−−→ (B, (0, K + 1))

t3t4t2−−→ (A, (1, K)) ≽ (A, (1, K))

The idea of the proof by Rackoff [Rac78] is to shorten systematically long coverings by using
an induction on the dimension.
Still, we need to establish that the small run property entails the exponential space upper

bound announced earlier, which is not immediate since a run of double-exponential length re-
quires double-exponential space to be fully encoded and a priori there is a triple-exponential
amount of such runs. It is the place where we use Savitch’s theorem [Sav70]. Indeed, one can
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Figure 3.4: A simple VASS

design a decision procedure that nondeterministically guesses the small run (if it exists) and that
requires only exponential space. Here is the principle of the nondeterministic algorithm with
inputs T , x⃗, x⃗′ and L ≥ 0 (bound on the length of the witness run):

1. i := 0; x⃗c := x⃗ (current configuration);

2. While x⃗′ ̸≼ x⃗c and i < L do

(a) Guess a transition t ∈ T ;
(b) If x⃗c + t ̸∈ Nn then abort;
(c) i := i + 1; x⃗c := x⃗c + t.

3. If x⃗′ ≼ x⃗c then accept else abort (i.e., i = L).

Observe that if the maximal absolute value in T , x⃗, x⃗′ is 2N where N is intended to be the size of
the instance of the covering problem and L = 22N3

, then the maximal absolute value appearing
in the algorithm is 2N + 2N × 22N3

(it can be encoded with exponential space in N). Moreover,
determinism can be regained with recursive calls to a function F (T , x⃗, x⃗′, L) since the number of
transitions is finite (and will be bounded by N). Basically, F (T , x⃗, x⃗′, L) returns true whenever
x⃗′ can be covered from x⃗ by a run with at most L transitions.
Therefore, exponential space shall be obtained for the following reasons:

⋆ a counter bounded by a double-exponential value (for the maximal length of the small run)
needs only an exponential amount of bits,

⋆ we only need to store in memory two successive configurations (since we use nondetermin-
ism),

⋆ given a size N , 22N3

× 2N is still of double-exponential magnitude and can be encoded
with an exponential amount of bits (so each configuration requires at most an exponential
amount of bits),
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⋆ checking the ordering between two natural numbers can be done in logarithmic space in
their size (useful for the final check x⃗′ ≼ y⃗ and for verifying that no component has negative
value),

⋆ similarly, adding two natural numbers can be done in logarithmic space in their size (useful
for going one step further).

Now, Savitch’s theorem states that given a nondeterministic procedure for a given problem using
space f(N) greater than log(N), there exists a deterministic procedure solving the same problem
using f(N) × f(N) space [Sav70]. Since exponential functions are closed under multiplication,
we obtain that checking whether an instance of the covering problem for VAS admits a small run
can be done in exponential space in its size.
It is time to fix a few definitions. Let us start by defining the size of some VAS T of dimension

n ≥ 1. Given x⃗ ∈ Zn, we write maxneg(x⃗) [resp. max(x⃗)] to denote max({max(0,−x⃗(i)) : i ∈

[1, n]}) [resp. max({x⃗(i) : i ∈ [1, n]})]. For example, maxneg(

(
−1
−2
−8
7

)

) = max(0,−(−8)) = 8

andmax(

(
−1
−2
−8
7

)

) = 7. By extension, we writemaxneg(T ) to denotemax{maxneg(t) : t ∈ T }.

Furthermore, we write scale(T ) to denote the value

max({|t(i)| : t ∈ T , i ∈ [1, n]}).

For instance, scale(

(
−1
−2
−8
7

)

) = | − 8| = 8. More generally, we write scale(X) to denote

max({|y⃗(i)| : y⃗ ∈ X, i ∈ [1, n]}) when X is a finite subset of Zn. The size of T , written
|T |, is defined by the value below:

n × card(T ) × (2 + ⌈log2(1 + scale(T ))⌉)

Observe that 2 + ⌈log2(1 + K)⌉ is a sufficient number of bits to encode integers in [−K, K] for
K > 0. Given a finite subsetX of Zn, we also write |X| to denote

n × card(X) × (2 + ⌈log2(1 + scale(X))⌉)

In the sequel, given an instance T , x⃗, x⃗′ ∈ Nn of the covering problem we define its size by
N = |T | + |{x⃗}| + |{x⃗′}|. Observe that maxneg(T ), card(T ), max(x⃗′) ≤ 2N .
A path is a finite sequence of transitions. A path π′ is a subpath of the path π = t1 . . . tk

def
⇔

there are 1 ≤ j1 < j2 · · · < jk′ ≤ k such that π′ = tj1 . . . tjk′
.

Whereas a configuration for T is an element of Nn, a pseudo-configuration is defined as an
element of Zn. When π = t1 . . . tk is a path, the pseudo-run (π, x⃗) is the sequence of pseudo-
configurations x⃗0 · · · x⃗k such that x⃗0 = x⃗ and for i ∈ [1, k], x⃗i = x⃗i−1 + ti. The pseudo-run
x⃗0 · · · x⃗k is induced by the path π and of length k + 1; the path π is of length k. x⃗0 is called
the initial pseudo-configuration and x⃗k is called the final pseudo-configuration in the pseudo-run
x⃗0 · · · x⃗k. A pseudo-run x⃗0 · · · x⃗k is a covering of x⃗′ when x⃗′ ≼ x⃗k.
Let π be a path and x⃗ be a configuration such that (π, x⃗) is a run covering x⃗′. We write

m(T , x⃗, x⃗′, π) to denote the length of the shortest subpath π′ of π such that (π′, x⃗) is also a run
covering x⃗′. Obviously,m(T , x⃗, x⃗′, π) is less or equal to the length of π.
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LetMB(n) be the supremum of the set below (B, n ≥ 1):
{

m(T , y⃗, y⃗′, π) : (π, y⃗) is a run covering y⃗′

T is a VAS of dimension n and maxneg(T ) + max(y⃗′) ≤ B
}

We show below thatMB(n) is finite. More precisely, let us show thatMB(n) ≤ gB(n) for all
n, B ≥ 1 with

gB(n) =

{

B if n = 1,
(

B · gB(n − 1)
)n

+ gB(n − 1) if n ≥ 2.

Lemma 3.4.1. For n ≥ 1 and B ≥ 2, gB(n) ≤ B3n!.

Proof: The proof is by induction on the dimensionn.The base case n = 1 is by an easy verification
and gB(1) ≤ B ≤ B6. Now suppose that the property holds true for n− 1 with n− 1 ≥ 1. Then,
we have

gB(n) ≤
(

B · gB(n − 1)
)n

+ gB(n − 1) ≤
(

B · gB(n − 1)
)n+1

≤ . . .

. . . ≤
(

B1+(3(n−1))!
)n+1

≤ B(3n)!

QED

Lemma 3.4.2. We have the following inequalities for n, B ≥ 1:

MB(n) ≤

{

B if n = 1,
(

B · gB(n − 1)
)n

+ gB(n − 1) if n ≥ 2.

Consequently,MB(n) ≤ gB(n) for all n, B ≥ 1.
Proof: Let us treat the base case with n = 1. Consider the instance T , x⃗ and x⃗′ with T of
dimension 1. In order to cover x⃗′, there is no need to use negative values from T and therefore
m(T , x⃗, x⃗′, π) is bounded by max(x⃗′) for any path π, which provides a bound B toMB(1).
Let us treat the induction step and suppose the property holds true for n− 1 ≥ 1. Let us show

that
m(T , x⃗, x⃗′, π) ≤

(

B · gB(n − 1)
)n

+ gB(n − 1)

whenevermaxneg(T ) + max(x⃗′) ≤ B.
First observe that in a pseudo-run, at each single step, a component may decrement by at most

maxneg(T ). So, if at some stage a component has value greater than gB(n − 1)maxneg(T ) +
max(x⃗′) then after gB(n − 1) steps, that component has a value greater or equal to max(x⃗′). We
pose B′ = gB(n − 1)maxneg(T ) + max(x⃗′) ≤ BgB(n − 1).
A pseudo-run x⃗0 · · · x⃗k is said to be r-bounded for some r > 0 when for i ∈ [0, k], we have

x⃗i ∈ [0, r − 1]n. Let π be a path and x⃗ be a configuration such that (π, x⃗) is a run covering x⃗′ for
the VAS T . Suppose π = t1 · · · tk and (π, x⃗) = x⃗0 · · · x⃗k.
Case 1: (π, x⃗) is B′-bounded.
If there are 0 ≤ i < j ≤ k such that x⃗i = x⃗j , then (π′, x⃗) is also a run covering x⃗′ where
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π′ = t1 · · · titj+1 · · · tk. Observe that π′ is a subpath of π. This situation occurs necessarily when
k ≥ (B′)n and we can repeat the above transformation (pigeonhole principle). Consequently,
when (π, x⃗) is B′-bounded, there is a subpath π′ such that (π′, x⃗) is also a run covering x⃗′ and its
length is bounded by (B′)n, that is by (BgB(n − 1))n.
Case 2: (π, x⃗) is not B′-bounded.
The path π can be uniquely divided into two paths π1 and π2 of respective length k1 and k2

(k = k1 + k2) such that the only values in x⃗0 · · · x⃗k1 that are greater or equal to B′ are in x⃗k1 ,
(π1, x⃗) is not B′-bounded and π = π1π2. So, π has unique decomposition π = π1π2 such that

⋆ π1 is of length k1,

⋆ all values in x⃗0 · · · x⃗k1−1 are strictly smaller than B′.

⋆ (π1, x⃗) is not B′-bounded (“faulty” configuration x⃗k1).

x⃗0
t1−→ · · ·

tk1−1
−−→ ⃗xk1−1

︸ ︷︷ ︸

B′−bounded

tk1−→ x⃗k1 ̸∈ [0, B′ − 1]n
tk1+1
−−→ ⃗xk1+1 · · ·

tK−→ x⃗K

π1 = t1 · · · tk1 π2 = tk1+1 · · · tK

By using a reasoning similar to the one in Case 1, there is a path π′
1, subpath of π1, such that its

length is bounded by (BgB(n−1))n+1 and, (π1, x⃗) and (π′
1, x⃗) have the same final configuration,

say y⃗ = x⃗k1 . Hence, (π′
1π2, x⃗) and (π2, y⃗) are also runs covering x⃗′. By construction of π1, there

is i ∈ [1, n] such that y⃗(i) ≥ B′. The run (π2, y⃗) can be illustrated as follows:

x⃗k1 =

⎛

⎜
⎝

...
· ≥ B′

...

⎞

⎟
⎠

tk1+1
−−→ · · ·

tK−→ x⃗K =

⎛

⎜
⎝

...
·
...

⎞

⎟
⎠ ≽ x⃗′

Let T −, π−
2 , y⃗− and x⃗′

−
be the respective restrictions of T , π2, y⃗ and x⃗′ to the components in

[1, n] \ {i}. Similar notations are used for any element of Zn or for any subset of Zn. (π−
2 , y⃗−) is

a run covering x⃗′
−
in T − as illustrated below:

x⃗k1

− =

( ...
...

)

t−k1+1
−−→ · · ·

t−K−→ x⃗K =

( ...
...

)

≽ x⃗′
−

Observe that maxneg(T −) + max(x⃗′
−
) is also less than B and therefore we can apply the

induction hypothesis. By the induction hypothesis, there is a path π′
2, subpath of π−

2 such that
(π′

2, y⃗
−) is a run covering x⃗′

−
and its length is less than gB(n − 1). From π′

2, we can obtain a
path π′′

2 for T , such that (π′′
2 , y⃗) is a pseudo-run with final pseudo-configuration z⃗ such that for

j ∈ ([1, n] \ {i}), z⃗(j) ≥ x⃗′(j). The path π′′
2 is obtained from π′

2 by adding the ith missing
component. However since y⃗(i) ≥ B′ and after gB(n − 1) steps, the ith component is greater or
equal tomax(x⃗′), (π′′

2 , y⃗) is a run covering x⃗′. The length of the path π′
1π

′′
2 is at most (B×gB(n−

1))n + gB(n − 1) and π′
1π

′′
2 is a subpath of π. QED



60 CHAPTER 3. VECTOR ADDITION SYSTEMS

Corollary 3.4.3. Let T , x⃗ and x⃗′ be an instance of the covering problem. There is a run from x⃗
leading to y⃗ such that x⃗′ ≼ y⃗ iff there is a run from x⃗ leading to y⃗′ such that x⃗′ ≼ y⃗′ and its length
is bounded by (maxneg(T ) + max(x⃗′) + 2)(3n)!.

Let us pose N = |T | + |{x⃗}| + |{x⃗′}|. So N ≥ 3, maxneg(T ) ≤ 2N , max(x⃗′) ≤ 2N and
n ≤ N . We obtain the following inequalities (with rough simplifications)

(maxneg(T ) + max(x⃗′) + 2)(3n)! ≤ (2N + 2N + 2)2Nlog2(N)
≤ (2N+2)2N2

≤ 22N3

.

Theorem 3.4.4. [Rac78] The covering problem for VAS, VASS and Petri nets can be solved in
exponential space.

Corollary 3.4.5. For any fixed n ≥ 1, the covering problem restricted to VAS of dimension at
most n can be solved in polynomial space.

Boundedness problem for VASS has also been shown in EXPSPACE in [Rac78] and a gener-
alization of the proof technique has been shown in [AH09] (we cannot exactly rely on [Yen92,
Theorem 3.8] for decidability since [Yen92, Lemma 3.7] contains a flaw, as observed in [AH09]).

3.5 Further reading
⋆ A very well-presented proof of EXPSPACE-hardness of covering, boundedness and reacha-
bility problems for VAS can be found in [Esp98] (based on [Lip76], see also in [CLM76]
how the lower bound is preserved for reversible Petri nets). EXPSPACE-hardness is obtained
by reduction from the halting problem for counter automata when counters are bounded by
22n . A counter C in the counter automaton is represented by two components iC and iC.
Whenever a configuration x⃗ is reached, we require the invariant x⃗(iC)+ x⃗(iC) = 22n . Incre-
ments and decrements C are easy to simulate while preserving the equality x⃗(iC)+ x⃗(iC) =
22n . The simulation of zero-test on C is more delicate: one should be able to decrement
x⃗(iC) by 22n . In order to perform this large decrement, auxiliary components with values
22α with α ≤ n are needed and initialized by using concentric loops with

22α−1
× 22α−1

= 22α

⋆ Complexity and decidability issues for Petri nets are considered in [Had01] (in French but
an English version exists also).

⋆ Useful references about the decidability of the reachability problem for VAS include the
following: [Kos82, May84, Reu90, Lam92, Had01, Ler09, Ler11]. Relationships between
semilinear sets and reachability sets in VAS can be found in [HP79], [Mog01, Theorem 9]
and [Ler09].

⋆ Computations with VAS are words and systems with tree-like computations have been in-
troduced, extending what exists for VAS, and leading to the model of branching vector
addition systems (BVAS). In recent years, it has turned out that BVAS have interesting
connections to a number of formalisms:



3.6. EXERCISES 61

∗ BVAS correspond to a class of linear index grammars in computational linguistics, see
e.g. an up-to-date presentation in [Sch10a].

∗ Reachability problem for BVAS is decidable iff provability in multiplicative exponen-
tial linear logic (MELL) is decidable [dGGS04].

∗ Verma and Goubault-Larrecq [VGL05] have extended the computation of Karp and
Miller trees to BVAS, and used it to draw conclusions about a class of equational tree
automata which are useful for analysing cryptographic protocols.

Covering and boundedness for BVAS are decidable using a branching extension of Karp and
Miller’s procedure [VGL05] and the complexity has been recently characterized in [DJLL09].
Moreover, the current presentation of the proof from [Rac78] for the EXPSPACE upper
bound for the covering problem for VASS follows [DJLL09]. Nevertheless, BVASmodel in
full generality is not so well understood. For instance, the decidability status of the reach-
ability problem is open whereas it has been recently shown 2EXPSPACE-hard [Laz10].
Moreover, we ignore which standard restrictions existing for VAS could be relevantly a-
dapted to BVAS in order to weaken the computational complexity of various problems. A
serious candidate is to adapt developments from [PL09] for BVAS. Finally, observe that a
stronger model of branching VASS has been considered in [LMSS92, Urq99].

3.6 Exercises
Exercise 3.6.1. Complete the end of the proof of Theorem 3.1.2.

Exercise 3.6.2. Show that satisfiability problem for FO(∼, <, +1) restricted to three individual
variables is undecidable. Answer can be found in [BMS+06, Dav09].

Exercise 3.6.3. Answer the following questions for the Petri net presented in Figure 3.2.

⋆ Is (1000, 0, 0, 1) reachable from (0, 1, 0, 0) (with implicit ordering of the places pA, pB, pC ,
p1) ?

⋆ Is (2, 1, 0, 1) reachable from (0, 1, 0, 0)?

⋆ Is the Petri net with initial marking (0, 1, 0, 0) bounded?

⋆ Is there some markingm reachable from (1, 0, 0, 0) such that (1000, 1, 0, 0) ≼ m?

Exercise 3.6.4. Show that the simulations in the proof of Lemma 3.2.1 allow us to obtain equiv-
alence for reachability, boundedness and covering problems.

Exercise 3.6.5. By using the proof of Lemma 3.2.2, explain how to reduce the control state reach-
ability problem for VASS to the covering problem for VAS.

Exercise 3.6.6. Show that the construction of coverability graphs terminates.
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Exercise 3.6.7. Show Lemma 3.3.1(III).

Exercise 3.6.8. Show that the covering problem restricted to VAS of dimension 1 can be solved
in linear time.

Exercise 3.6.9. Show that the covering problem for VASS augmented the multiplication by 2 can
be solved in exponential space.

Exercise 3.6.10. Define a reduction from the covering problem for counter systems to existential
model-checking problem for LTLCS(PrA).

Exercise 3.6.11. We have seen that (T , x⃗0) is unbounded iff there is a run of the form x⃗0
∗
−→ y⃗

∗
−→

y⃗′ with y⃗ ≺ y⃗′. Assuming that T has dimension n, we say that (T , x⃗0) is i-unbounded (i ∈ [1, n])
def
⇔ {y⃗(i) : x⃗0

∗
−→ y⃗} is infinite. Hence, (T , x⃗0) is unbounded iff there is some i ∈ [1, n] such that

(T , x⃗0) is i-unbounded. Are the propositions below equivalent?

1. (T , x⃗0) is i-unbounded.

2. There is a run of the form x⃗0
∗
−→ y⃗

∗
−→ y⃗′ with y⃗ ≼ y⃗′ and y⃗(i) < y⃗′(i).

Exercise 3.6.12. Define a polynomial-time reduction from the covering problem for VASS to the
reachability problem for VASS.

Exercise 3.6.13.
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Exercise 3.6.14. Below, we assume that we have a terminating procedure such that given a VASS
V , and two configurations (q, x⃗) and (q′, x⃗′), returns ’yes’ iff there is a run from (q, x⃗) to (q′, x⃗′)
respecting the transitions from V .

1. Let us consider a first model that extends VASS by allowing transitions of the form

t = q
≥b⃗
−→ q′ with b⃗ ∈ N

n

such that (q, a⃗)
t
−→ (q′, a⃗′) iff b⃗ ≼ a⃗ and a⃗ = a⃗′. As usual, b⃗ ≼ a⃗

def
⇔ for i ∈ [1, n], we have

b⃗(i) ≤ a⃗(i). Show that the covering problem for this extended class of VASS can be solved
in exponential space.

2. Let us consider another model that extends VASS by allowing transitions of the form

t = q
xi≤k
−−→ q′ with i ∈ [1, n], k ∈ N

such that (q, a⃗)
t
−→ (q′, a⃗′) iff a⃗(i) ≤ k and a⃗ = a⃗′. Show that the covering problem for this

extended class of VASS is undecidable.
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3. Let us consider a third model that extends VASS by allowing transitions of the form

t = q
≤b⃗
−→ q′ with b⃗ ∈ N

n

such that (q, a⃗)
t
−→ (q′, a⃗′) iff a⃗ ≼ b⃗ and a⃗ = a⃗′. Define a polynomial-time reduction from

the reachability problem for VASS into the covering problem for this extended class of
VASS. Comment this result.

4. Let V be an extended VASS of dimension n (with set of locationsQ) such that the extended
transitions are exactly

q1
≤b⃗1−→ q′1, . . . , qN

≤b⃗N−→ q′N

with b⃗1, . . . , b⃗N ∈ Nn. Show that if there is a run from (q, x⃗) to (q′, x⃗′), then there is a run
such that the number of times extended transitions are fired is at most exponential in the
size of V . Provide a precise upper bound.

5. Given an initial configuration (q, x⃗), design an algorithm that computes the set below:

{(qi, a⃗) ∈ Q × N
n : i ∈ [1, N ], a⃗ ≼ b⃗i, (q, x⃗)

∗
−→ (qi, a⃗) in V}

6. Conclude that the reachability problem and the covering problem for this extended class of
VASS are decidable.

Exercise 3.6.15. (another variant) Let us consider an extension of VASS by allowing extended
transitions of the form t = q

=b⃗
−→ q′ with b⃗ ∈ Nn such that (q, a⃗)

t
−→ (q′, a⃗′) iff a⃗ = b⃗ (equality

test) and a⃗′ = a⃗ (update is identity).

Question 3.6.15.1 Let V = (Q, n, δ) be an extended VASS such that the extended transitions of V
are exactly those below (apart from the standard transitions):

q1

=b⃗1−→ q′
1, . . . , qN

=b⃗N−→ q′
N

Show that if there is a run from (q, x⃗) to (q′, x⃗′), then there is a run from (q, x⃗) to (q′, x⃗′)
such that the number of times extended transitions are fired is at mostN .

Question 3.6.15.2 Given an initial configuration (q, a⃗), design an algorithm that computes the set
below:

{(qi, b⃗i) : i ∈ [1, N ], (q, a⃗)
∗
−→ (qi, b⃗i) in V}

Hint: use as a subroutine an algorithm for solving the reachability problem for VASS (taken
for granted).

Question 3.6.15.3 Conclude that the reachability problem for this class of extended VASS is de-
cidable.



Chapter 4

Reversal-Bounded Counter Automata

In this chapter, we present and study the class of reversal-bounded counter automata introduced
in [Iba78] and we present several decision problems based on temporal logics. This class of
counter systems, as well as slight extensions, are known to admit Presburger-definable accessibil-
ity relations and one can effectively build the Presburger formulae. The reachability sets defined
by reversal-bounded (initialized) counter automata are effectively Presburger-definable [Iba78]
and this is the main result presented in this chapter. In order to prove it, we shall use the fact
that the Parikh images of context-free languages are effectively semilinear. These results extend
to weak reversal-boundedness, a relaxed version of reversal-boundedness introduced in [FS08].
This chapter also deals with linear properties such as control state repeated reachability and in-
finite repetition of Presburger properties. Borderlines of undecidability are discussed leading to
various temporal fragments with decidable model-checking problems.
The content of this chapter is the following.

⋆ We present the class of reversal-bounded counter automata for which reachability sets can
be shown effectively semilinear (i.e., definable in Presburger arithmetic).

⋆ We show how semilinearity can be preserved for various extensions (weak reversal-boun-
dedness, addition of a free counter).

⋆ Although the reachability problem for reversal-bounded ( initialized) counter automata is
decidable by effective semilinearity, we consider linear-time properties on reversal-bounded
counter automata and present decidable problems as well as undecidable ones, providing
rough borders for decidability.

4.1 What is reversal-boundedness?
A reversal for a counter occurs in a run when there is an alternation from nonincreasing mode to
nondecreasing mode and vice-versa. For instance, in the sequence below, there are three reversals
identified by an upper line:

00112233344443332223334444555554

Similarly, the sequence 00111222223333334444 has no reversal. Figure 4.1 presents schemati-
cally the behavior of a counter with 5 reversals. A counter automaton is reversal-bounded when-

65
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Figure 4.1: 5 reversals in a row

ever there is r ≥ 0 such that for any run from a given initial configuration, every counter makes no
more than r reversals. This class of counter automata has been introduced and studied in [Iba78],
partly inspired by similar restrictions on multistack automata [BB74]. A formal definition will
follow, but before going any further, it is worth pointing out a few peculiarities of this subclass.
Indeed, reversal-boundedness is defined for initialized counter automata (a counter automaton
augmented with an initial configuration) and the bound r depends on the initial configuration.
Secondly, this class is not defined from the class of counter automata by imposing syntactic re-
strictions but rather semantically. In spite of the fact that the problem of deciding whether a
counter automaton is reversal-bounded is undecidable [Iba78] (see Theorem 4.1.1), we shall see
that reversal-bounded counter automata have numerous fundamental properties.
Let S = (Q, n, δ) be a standard counter automaton. Let us define the auxiliary (succinct)

counter automaton Srb = (Q′, 2n, δ′) such that Q′ = Q × {DEC, INC}n and (q, ⃗mode)
ϕ′

−→

(q′, ⃗mode
′
) ∈ δ′

def
⇔ there is q

ϕ
−→ q′ ∈ δ such that if ϕ does not deal with the jth component, then

⃗mode(j) = ⃗mode
′
(j) and for every i ∈ [1, n], one of the conditions below is satisfied:

⋆ ϕ = zero(i), ⃗mode(i) = ⃗mode
′
(i), ϕ′ = ϕ ∧

∧

j∈[1,n] x
′
n+j = xn+j,

⋆ ϕ = dec(i), ⃗mode(i) = ⃗mode
′
(i) = DEC and ϕ′ = ϕ ∧

∧

j∈[1,n] x
′
n+j = xn+j,

⋆ ϕ = dec(i), ⃗mode(i) = INC, ⃗mode
′
(i) = DEC and

ϕ′ = ϕ ∧ (x′n+i = xn+i + 1) ∧
∧

j∈[1,n]\{i}

x′n+j = xn+j,

⋆ ϕ = inc(i), ⃗mode(i) = ⃗mode
′
(i) = INC and ϕ′ = ϕ ∧

∧

j∈[1,n] x
′
n+j = xn+j,

⋆ ϕ = inc(i), ⃗mode(i) = DEC, ⃗mode
′
(i) = INC and

ϕ′ = ϕ ∧ (x′n+i = xn+i + 1) ∧
∧

j∈[1,n]\{i}

x′n+j = xn+j.

Essentially, the n new components in Srb count the number of reversals for each component from
S. Observe that Srb is succinct because two counters may be updated in one step. However, it is
easy to turn Srb into a standard counter automaton by adding intermediate control states.
Initialized counter automaton (S, (q, x⃗)) is reversal-bounded [Iba78] def

⇔ for every i ∈ [n +
1, 2n], {y⃗(i) : run (qrb, x⃗rb)

∗
−→ (q′, y⃗) in Srb} is finite with qrb = (q, ⃗INC), x⃗rb restricted to the
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Figure 4.2: A counter automaton that bounds the numbers of reversals

n first components is x⃗ and x⃗rb restricted to the n last components is 0⃗. When r ≥ max({y⃗(i) :
run (qrb, x⃗rb)

∗
−→ (q′, y⃗) in Srb} : i ∈ [n + 1, 2n]) S is said to be r-reversal-bounded from (q, x⃗).

For a fixed i ∈ [1, n], when {y⃗(n + i) : run (qrb, x⃗rb)
∗
−→ (q′, y⃗) in Srb} is finite, we say that

(S, (q, x⃗)) is reversal-bounded with respect to i.
Figure 4.2 contains a counter automaton S such that any initialized counter automaton of the

form (S, (q1, x⃗)) with x⃗ ∈ N2 is reversal-bounded.
Since reversal-boundedness is not defined from counter automata by a syntactic criterion, the

following problem makes sense and indeed it happens to be undecidable.
REVERSAL-BOUNDEDNESS DETECTION PROBLEM

Input: Initialized counter automaton (S, (q, x⃗)) of dimension n and i ∈ [1, n].
Question: Is (S, (q, x⃗)) reversal-bounded with respect to the component i?

Theorem 4.1.1. [Iba78] Reversal-boundedness detection problem is undecidable.

Proof: Let us consider a slight (and indeed standard) variant of Minsky machines in which the last
instruction n is halt. The halting problem checks whether the Minsky machine can reach this
instruction. Since the Minsky machine is deterministic, either the Minsky machine has a unique
infinite run (and never visits the instruction n) or it has a unique finite (and halts at instruction n).
Let us consider a Minsky machine S with the above-mentioned last instruction, which can be

defined as a standard counter automaton. Let us build the counter automaton S ′ of dimension
1 obtained from S by replacing every transition t = qi

ϕ
−→ qj (each instruction is attached to a

dedicated control state) by qi
inc(1)
−−→ qnew

1,t

dec(1)
−−→ qnew

2,t

ϕ
−→ qj where qnew

1,t and qnew
2,t are new control

states associated to the transition t. We have the following equivalences, which allows us to get
undecidability:

⋆ The Minsky machine S halts.
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⋆ For the counter automaton S ′, the control state qn can be reached from the initial configu-
ration (q1, 0⃗).

⋆ The unique run of S ′ with initial configuration (q1, 0⃗) is finite.

⋆ S ′ is reversal-bounded with respect to component 1 from the initial configuration (q1, 0⃗).

QED

Even though reversal-boundedness detection problem is undecidable in full generality, it is
shown in [FS08] that the problem is decidable for counter automata without zero-tests, and more
generally for vector addition systems with states (by adapting in the obvious way the concept of
reversal-boundedness to VASS). More recently, it has been shown that the reversal-boundedness
detection problem restricted to VASS is EXPSPACE-complete [Dem10]. Furthermore, checking
whether a counter automaton S is r-reversal-bounded is undecidable [Iba78, Theorem 4.1(b)] (the
inputs are S and r ≥ 0) whereas the problem is decidable for VASS, as a consequence of [FS08].
Reversal-boundedness for counter automata is very appealing because reachability sets are

semilinear as stated below.

Theorem 4.1.2. [Iba78] Let (S, (q, x⃗)) be an initialized counter automaton that is r-reversal-
bounded for some r ≥ 0. For each control state q′, the set {y⃗ ∈ Nn : ∃ run (q, x⃗)

∗
−→ (q′, y⃗)} is

effectively semilinear.

This means that one can compute effectively a Presburger formula that characterizes precisely
the reachable configurations whose control state is q′. The original proof for reversal-boundedness
can be found in [Iba78]. Main part of this chapter is dedicated to the proof of Theorem 4.1.2.
A counter automaton S is uniformly reversal-bounded iff there is r ≥ 0 such that for ev-

ery initial configuration, the initialized counter automaton is r-reversal-bounded. The question
of checking whether a counter automaton S is uniformly reversal-bounded can be reduced to
reversal-boundedness. Indeed, it is sufficient to introduce a new control state qnew that contains
as many self-loops as the dimension n and each self-loop i increments the ith component. Then,
nondeterministically we jump to the rest of the counter automaton with no effect on the counters.
In this way, (S ′, (qnew, 0⃗)) is reversal-bounded (S ′ is the new counter automaton obtained as a
variant of S) iff S is uniformly reversal-bounded. As an exercise, one can check that the counter
automaton in Figure 4.2 is not uniformly reversal-bounded.
Let us consider the following problem.

REACHABILITY PROBLEM WITH BOUNDED NUMBER OF REVERSALS:

Input: a counter automaton S, a bound r ∈ N, an initial configuration (q0, x⃗0) and a final con-
figuration (q, x⃗),

Question: Is there a finite run of S with initial configuration (q0, x⃗0) and final configuration (q, x⃗)
such that each counter has at most r reversals?

Observe that when (S, (q0, x⃗0)) is r′-reversal-bounded for some r′ ≤ r, we get an instance of
the reachability problem with initial configuration (q0, x⃗0).

Corollary 4.1.3. The reachability problem with bounded number of reversals is decidable.
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Proof: Here is the decidability proof that uses Theorem 4.1.2. Let S = (Q, n, δ), r ∈ N, (q0, x⃗0)
and (q, x⃗) be an instance of the reachability problem with bounded reversals. First, we build a
counter automaton S ′ = (Q′, n, δ′) with Q′ = Q × {DEC, INC}n × [0, r]n.
By construction of S ′, we guarantee that (S ′, ((q0, ⃗INC, 0⃗), x⃗0)) is r-reversal-bounded. In-

deed, for each counter, we shall count the number of reversals and by construction of S ′ we
shall enforce that it is bounded by r on each run. The set of transitions δ′ is defined as follows:
(q, ⃗mode, ♯a⃗lt)

ϕ
−→ (q′, ⃗mode

′
, ♯a⃗lt

′
) ∈ δ′

def
⇔ q

ϕ
−→ q′ ∈ δ and for i ∈ [1, n], the relation described

by the following table is verified. The values of two first columns induce values for the two last
columns (when it is possible, see e.g. the condition ♯a⃗lt(i) < r).

ϕ ⃗mode(i) ⃗mode
′
(i) ♯a⃗lt

′
(i)

dec(i) DEC DEC ♯a⃗lt(i)

dec(i) INC DEC ♯a⃗lt(i) + 1 and ♯a⃗lt(i) < r

inc(i) INC INC ♯a⃗lt(i)

inc(i) DEC INC ♯a⃗lt(i) + 1 and ♯a⃗lt(i) < r

zero(i) DEC DEC ♯a⃗lt(i)

zero(i) INC INC ♯a⃗lt(i)

By construction, S ′ is r-reversal bounded and the properties below are equivalent:

1. there is a run of S with initial configuration (q0, x⃗0) and final configuration (q, x⃗) such that
each counter has at most r reversals,

2. ((q, ⃗mode, ♯a⃗lt), x⃗) is reachable from ((q0, ⃗INC, 0⃗), x⃗0) in S ′ for some ⃗mode, ♯a⃗lt.

The number of distinct pairs ( ⃗mode, ♯a⃗lt) is bounded by 2n × (r + 1)n and therefore (1.) is
equivalent to the existence of ( ⃗mode, ♯a⃗lt) among a finite set such that

3. ((q, ⃗mode, ♯a⃗lt), x⃗) is reachable from ((q0, ⃗INC, 0⃗), x⃗0) in S ′.

By Theorem 4.1.2, the set

X( ⃗mode,♯a⃗lt) = {x⃗′ ∈ N
n : ((q0, ⃗INC, 0⃗), x⃗0)

∗
−→ ((q, ⃗mode, ♯a⃗lt), x⃗′)}

is effectively semilinear. This means that one can construct a Presburger formula ϕ( ⃗mode,♯a⃗lt) such
that REL(ϕ( ⃗mode,♯a⃗lt)) = X( ⃗mode,♯a⃗lt) and checking whether x⃗ ∈ X( ⃗mode,♯a⃗lt) amounts to verify the
satisfiability of the formula

(
i=n∧

i=1

xi = x⃗(i)) ∧ ϕ( ⃗mode,♯a⃗lt).

Since the satisfiability problem for Presburger arithmetic is decidable, we get an algorithm to solve
the reachability problem with bounded reversals. Indeed, it amounts to checking satisfiability of
some Presburger formula made a disjunction with at most 2n(r + 1)n disjuncts. QED

In the sequel, when we consider a uniformly reversal-bounded counter automaton or a reversal-
bounded initialized counter automaton, it comes with a maximal number of reversals r ≥ 0 that
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has been computed by some means. Remember that in full generality, the reversal-boundedness
detection problem is undecidable. Nevertheless, the situation is not that bad, since the problem
restricted to VASS is decidable [FS08] and can be solved in exponential space [Dem10]. Hence,
for VASS, in case of reversal-boundedness, the value r can be effectively computed. Alternatively,
given a counter automaton and a bound r ≥ 0, it is possible to build a new counter automaton
such that each counter has at most r reversals on each runs, possibly at the cost of increasing
exponentially the cardinal of the set of control states (see the proof of Corollary 4.1.3). It is
sufficient to take the product between S and a finite-state automaton with number of control
states in O(rn).

4.2 Reachability sets are semilinear
In this section, we shall show that reachability sets in reversal-bounded (initialized) counter au-
tomata are effectively semilinear. Moreover, when uniform reversal-boundedness is satisfied, one
can show that the reachability relation is also effectively semilinear. Effectiveness refers here
to the possibility to construct Presburger formulae defining exactly those sets or binary relations.
The first part of the proof amounts to showing that we can restrict ourselves to 1-reversal-bounded
counter automata at the cost of introducing additional counters; this restriction is indeed based
on [BB74] for reversal-bounded multistack automata. Then, the second part shows that reachabil-
ity sets for 1-reversal-bounded counter automata are effectively semilinear, essentially based on
Parikh’s theorem [Par66] restricted to regular languages. Section 4.2.2 provides the main ingre-
dient of the proof establishing that the commutative image of any regular language is effectively
semilinear. Semilinearity is obtained by expressing Birkhoff’s equations about control states aug-
mented by connectivity constraints. This analysis allows us to conclude that when a counter
automaton is uniformly reversal-bounded, then the reachability relation is effectively definable in
Presburger arithmetic.

4.2.1 Hints of the proof
In this section, we briefly provide hints to understand the proof below that establishes that reversal-
bounded initialized counter automata have effectively semilinear reachability sets.
The first part of the proof shows that given a reversal-bounded initialized counter automaton

S, one can effectively define a uniformly 1-reversal-bounded counter automaton S ′ such that the
reachability set for S can be defined as a finite union of reachability sets in S ′. Each reachability
set in the finite union is parameterized by a control state from S ′. This is fine since Presburger
arithmetic has disjunction. Moreover, S ′ has more counters than S and in order to be precise
each reachability set is obtained by projection which is still fine since Presburger arithmetic has
existential quantification (which allows to perform a projection at the level of tuples of natural
numbers). This part is based on [BB74] for multistack systems.
The second part of the proof shows that the reachability set of any 1-reversal-bounded initial-

ized counter automaton (S, (q0, x⃗0)) is effectively semilinear. Given a control state q ∈ Q, we
aim at characterizing the counter values x⃗k ∈ Nn such that there is a run

(q0, x⃗0)
a1−→ (q1, x⃗1)

a2−→ (q2, x⃗2) · · ·
ak−→ (qk, x⃗k)
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with qk = q and u = a1 · · ·ak over the symbolic alphabet

Σ = {inc(i), dec(i), zero(i) : i ∈ [1, n]}.

We write Π(u)(a) to denote the number of occurrences of the letter a in u (Π(u) being the Parikh
image of u). Observe that for i ∈ [1, n], we have that x⃗k(i) = x⃗0(i)+Π(u)(inc(i))−Π(u)(dec(i)).
Consequently, characterizing the set of counter values x⃗k amounts to determine which sequences u
of instructions from (q0, x⃗0) can lead to the control state q. The sequence u satisfies the following
simple properties:

1. Control graph of S allows to perform the sequence of intructions u from the control state
q0 until control state q.

2. Because of 1-reversal-boundedness, for i ∈ [1, n], the projection of u on the subalphabet
Σi = {inc(i), dec(i), zero(i)}, written uΣi

, belongs to

zero(i)∗inc(i)∗dec(i)∗zero(i)∗.

These two properties can be checked by building the product finite-state automaton A between
S understood as a finite-state automaton over Σ and a finite-state automaton over Σ such that
the projection of each accepted word is in uΣi

. Since the Parikh image of L(A) is effectively
semilinear by Parikh Theorem, the set

{x⃗0 + (Π(u)(inc(1)), . . . , Π(u)(inc(n))) − (Π(u)(dec(1)), . . . , Π(u)(dec(n))) : u ∈ L(A)}

is effectively semilinear too. Indeed, if u labels a run then the final configuration has counter
values:

(u(x⃗0)
def
=)x⃗0 +

⎛

⎜
⎜
⎜
⎝

Π(u)(inc(1))
Π(u)(inc(2))

...
Π(u)(inc(n))

⎞

⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎝

Π(u)(dec(1))
Π(u)(dec(2))

...
Π(u)(dec(n))

⎞

⎟
⎟
⎟
⎠

We have the following inclusion (overapproximation):

{x⃗ : ∃ run (q0, x⃗0)
∗
−→ (qf , x⃗)} ⊆ {u(x⃗0) : u ∈ L(A)}

Let ϕA(zinc
1 , zdec

1 , zzero
1 , . . . , zinc

n , zdec
n , zzero

n ) capturing the Parikh image of L(A) and ψ be

∃ zinc
1 , . . . , zzero

n (x1 = x⃗0(1) + zinc
1 − zdec

1 ) ∧ · · ·

· · · ∧ (xn = x⃗0(n) + zinc
n − zdec

n ) ∧ ϕA(zinc
1 , . . . , zzero

n )

We have REL(ψ) = {u(x⃗0) : u ∈ L(A)} but this is not sufficient ! Not every word accepted by
A corresponds to a sequence of instructions from (q0, x⃗0) leading to q. The sequence u satisfies
also the following properties for i ∈ [1, n]:

1. For every prefix v of uΣi
, x⃗0(i) + Π(v)(inc(i)) − Π(v)(dec(i)) ≥ 0 (counter values are

nonnegative). Since uΣi
∈ zero(i)∗inc(i)∗dec(i)∗zero(i)∗, it is sufficient to satisfy x⃗0(i) +

Π(u)(inc(i)) − Π(u)(dec(i)) ≥ 0.
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2. If x⃗0(i) ̸= 0, then the first letter of uΣi
is different from zero(i).

3. If the last letter of uΣi
is equal to zero(i), then

x⃗0(i) + Π(u)(inc(i)) − Π(u)(dec(i)) = 0.

Conditions (1.) and (3.) can be easily expressed with the Presburger formula characterizing the
Parikh image of L(A). Condition (2.) is taken care by the initial states of A (see the definition
of A(q0,v⃗0) in Section 4.2.4). Now, it remains to provide the details of the proof. Let us start by
Parikh Theorem for regular languages.

4.2.2 Parikh image of regular languages
We recall that a finite-state automaton is a tupleA = (Σ, Q, Q0, δ, F ) such that

⋆ Σ is a finite alphabet,
⋆ Q is a finite set of states,
⋆ Q0 ⊆ Q is the set of initial states,
⋆ the transition relation δ is a subset of Q × Σ × Q,
⋆ F ⊆ Q is a set of final states.

Given q ∈ Q and a ∈ Σ, we also write δ(q, a) to denote the set of states q′ such that (q, a, q′) ∈ δ.
A run ρ of A is a sequence q0

a0−→ q1
a1−→ q2 . . . such that for every i ≥ 0, (qi, ai, qi+1) ∈ δ (also

written qi
ai−→ qi+1). The finite run ρ = q0

a0−→ q1
a1−→ q2 . . .

an−1
−−→ qn is successful if q0 ∈ Q0 is initial

and qn ∈ F is final. The label of ρ is the finite word σ = a0a1 · · ·an. The automaton A accepts
the language L(A) of finite words u ∈ Σ∗ such that there exists a successful run ofA on the word
u, i.e., with label u.
Let Σ = {a1, . . . , ak} be an finite alphabet equipped with an arbitrary linear ordering of the

letters, say a1 < · · · < ak. Given a word u ∈ Σ∗, its Parikh image Π(u) is defined as the
tuple Π(u) ∈ Nk such that for i ∈ [1, k], Π(u)(i) is the number of occurrences of the letter
ai in the word u. For instance, the Parikh of the word abaab under the ordering a < b is the

tuple
(

3
2

)

. Naturally, the Parikh image of the language L ⊆ Σ∗, written Π(L) is the set

{Π(u) ∈ Nk : u ∈ L}. Parikh’s remarkable result states that the Parikh image of any context-
free language is semilinear [Par66] and that its representation is effectively computable from a
pushdown automaton. Below, we provide the proof for regular languages only, which is sufficient
to deal with reversal-boundedness in the simple case. By the way, the proof of Parikh’s Theorem
can be also found in [Koz97, Chapter H]. An alternative proof is also given in [Esp97] based on
the result that the reachability relation for communication-free Petri nets is effectively semilinear.

Theorem 4.2.1. [Par66] Let Σ be a finite alphabet (equipped with a linear ordering) and A
be a finite-state automaton over Σ. Then, one can compute effectively a Presburger formula
ϕA(x1, . . . , xk) such that for every valuation val, we have val |= ϕA(x1, . . . , xk) iff there is a
finite word u ∈ L(A) such that Π(u) = (val(x1), . . . ,val(xk)).
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Proof: Given a direct graph G = (V, E), the proof below essentially determines when a map
f : E → N is the Parikh image of a path in G. Indeed, regular languages are definable from
finite-state automata and words accepted by such automata are strongly related to paths (runs).
Roughly speaking, f corresponds to a path iff the subgraph induced by f is connected and the
number of edges entering in a node is equal to the number of edges going out of the node. This
may be slightly different for the initial node and for the final node of the path (see details below).
Let A = (Σ, Q, Q0, δ, F ) be a finite-state automaton. Given a transition t = q

a
−→ q′, we write

beg(t) to denote q, end(t) to denote q′ and Σ(t) to denote a.
A path of A is a finite sequence π = t1 · · · tk of transitions such that for i ∈ [1, k − 1],

end(ti+1) = beg(ti). We say that π is a path from beg(t1) to end(tk). We admit empty paths of
length 0, one for each state q. Two paths π and π′ are consecutive if end(π) = beg(π′). When π
and π′ are consecutive, we write ππ′ to denote the path obtained by concatenation. The image of
π = t1 · · · tk is a map Iπ : δ → N that counts how many times each transition is used in π, i.e.,
Iπ(t) = card({i ∈ [1, k] : ti = t}). Given I : δ → N, we write AI to denote its restriction to the
transitions in I, i.e. to denote the directed labelled graph (Σ, Q′, δ′) such that

⋆ δ′ = {t ∈ δ : I(t) > 0}.

⋆ Q′ is the set of states q for which at least a transition in δ′ begins or ends by q. So, Q′ =
{beg(t), end(t) : t ∈ δ′}.

A directed labelled graph (Σ, Q, δ) is connected iff for all q, q′ ∈ Q, there is a path from q to q′ in
(Σ, Q, δ ∪ δ) with δ = {end(t)

Σ(t)
−→ beg(t) : t ∈ δ}. Basically, we forget about the direction of

transitions.
The two following properties can be easily shown:

(P1) Let π1 and π2 be two paths sharing at least one state such that beg(π2) = end(π2). Then,
there is a path π such that Iπ = Iπ1 + Iπ2 , beg(π) = beg(π1) and end(π) = end(π1).

(P2) LetA be a finite-state automaton and π = t1 · · · tk be a path from q to q′ with image Iπ . The
following statements hold true:

(I) AIπ is connected.
(II) If q = q′, i.e. π is a cycle, then for each state q′′, the number of transitions entering in

q′′ is equal to the number of transitions going out of q′′. In symbols, for every q′′ ∈ Q,
we get the satisfaction of the following equation.

∑

t∈δ s.t. end(t)=q′′

Iπ(t) −
∑

t∈δ s.t. beg(t)=q′′

Iπ(t) = 0.

(III) If q ̸= q′, then for every q′′ ∈ Q\{q, q′}, we are in the position as in (II). However, the
number of transitions entering in q is one less than the number of transitions going out
of q. Similarly, the number of transitions entering in q′ is one more than the number
of transitions going out of q′. In symbols, we get the satisfaction of the following
equations.
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1. for every q′′ ∈ Q \ {q, q′},
∑

t∈δ s.t. end(t)=q′′

Iπ(t) −
∑

t∈δ s.t. beg(t)=q′′

Iπ(t) = 0.

2.
∑

t∈δ s.t. end(t)=q

Iπ(t) −
∑

t∈δ s.t. beg(t)=q

Iπ(t) = −1.

3.
∑

t∈δ s.t. end(t)=q′
Iπ(t) −

∑

t∈δ s.t. beg(t)=q′
Iπ(t) = 1.

Now, we can show the property below that is a variant of the characterization for the existence
of Eulerian paths in a directed graph. Let A be a finite-state automaton and I : δ → N be a map.
Based on the properties (P1) and (P2) and on a further analysis that is omitted (see [Reu90] for
further details), we can show the property (♯) below:

(♯) I is the image of some path iff there are q and q′ inQ such that (I)–(III) hold true (by replacing
Iπ by I).

For each letter a ∈ Σ, we introduce the variable xa. Similarly, for each transition t ∈ δ, we
introduce the variable xt′ . Say δ = {t1, . . . tk′}.
The Presburger formula ϕA(xa1, . . . , xak

) is of the form below:

∃xt1 · · · xtk′
(

k∧

i=1

xai
=
∑

Σ(t)=ai

xt)∧

(
∨

q0∈Q0,qf∈F

∨

connected (Q′,δ′), q0,qf∈Q′

ϕ(Q′,q0,qf ,δ′) ∧ (
∧

t∈δ′

xt > 0) ∧ (
∧

t∈(δ\δ′)

xt = 0))

In the generalized disjunction over the connected direct labelled graphs (Q′, δ′), we assume that
Q′ ⊆ Q and δ′ ⊆ δ ∩ Q′ × Σ × Q′. It remains to explain how the formula ϕ(Q,q0,qf ,δ′) is defined
based on the previous properties.

⋆ If q0 = qf , then ϕ(Q′,q0,qf ,δ′) takes the following value (see (II)):
∧

q′′∈Q′

(
∑

t∈δ′ s.t. end(t)=q′′

xt −
∑

t∈δ′ s.t. beg(t)=q′′

xt = 0.)

⋆ If q0 ̸= qf , then ϕ(Q′,q0,qf ,δ′) is the conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 (see (III)(1.–3.)):

∗ ϕ1 =
∧

q′′∈Q′\{q0,qf}
(

∑

t∈δ′ s.t. end(t)=q′′
xt −

∑

t∈δ′ s.t. beg(t)=q′′
xt = 0).

∗ ϕ2 =
∑

t∈δ′ s.t. end(t)=q0

xt −
∑

t∈δ′ s.t. beg(t)=q0

xt = −1.

∗ ϕ3 =
∑

t∈δ′ s.t. end(t)=qf

xt −
∑

t∈δ′ s.t. beg(t)=qf

xt = 1.

Condition (I) for connectivity is taking care by a case analysis; (Q′, δ′) has to be connected and
there is an exponential amount of such restrictions. The formula (

∧

t∈δ′ xt > 0)∧(
∧

t∈(δ\δ′) xt = 0)
plays also a central role since it guarantees that exactly the transitions in δ′ have been considered.
QED
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counter 1

counter 2

counter 3

counter 1

Run in S

Run in S ′

Figure 4.3: Counter 1 in S and counters 1, 2 and 3 in S ′

4.2.3 1-reversal-bounded counter automata

In this section, we show that in order to show that reachability sets [resp. reachability relation]
for [resp. uniformly] reversal-bounded counter automata are Presburger-definable, it is sufficient
to show that the reachability relation for uniformly 1-reversal-bounded counter automata is effec-
tively Presburger-definable.
Let (S, (q0, x⃗0)) be an initialized counter automaton that is r-reversal-bounded for some r ≥ 0

with S = (Q, n, δ). Before going any further, let us introduce a bit of vocabulary. A phase
for a counter i ∈ [1, n] in a finite run is a finite sequence of instructions dealing with counter
i and extracted from a larger sequence of instructions obtained by erasing instructions dealing
with other counters, such that the sequence is either in zero(i)∗ · inc(i)∗ (increasing phase) or in
dec(i)∗ · zero(i)∗ (decreasing phase). A biphase is defined as a sequence in zero(i)∗ · inc(i)∗ ·
dec(i)∗ · zero(i)∗ obtained by concatenating an increasing phase with a decreasing phase. A
biphase is complete when it is in zero(i)∗ · inc(i)+ · dec(i)+ · zero(i)∗, that is there is at least an
increment followed by a decrement. In Figure 4.3, the counter 1 has three complete biphases in
the run of S. When the counter i has value different from zero, it is clear that any increasing phase
started from this value is in inc(i)∗. It is worth observing that 1-reversal-boundedness implies that
counters admit at most a complete biphase on each run starting at the initial configuration.
From (S, (q0, x⃗0)), we shall build a counter automaton S ′ that is uniformly 1-reversal-bounded

for which the set of configurations reachable from (q0, x⃗0) in S, can be characterized as a finite
union of reachability sets from S ′, possibly by performing some projections since S ′ has more
components/counters than S. Without any loss of generality, we can assume that r is even and
each counter has at most r

2 complete biphases for any run starting at (q0, x⃗0). A global biphase
vector is an element from [0, r

2 ]
n indicating for each counter the ordinal of the current biphase.

Similarly, a refined global biphase vector w⃗ is an element from ({INC, DEC}× [0, r
2 ])

n that also
specifies whether the presence in some biphase is currently either in the increasing phase or in the
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decreasing phase. These vectors shall be encoded in the control states of S ′ (there is only a finite
amount of such vectors) and for each counter and each biphase in S, one specific counter in S ′

mimicks the original counter (see an illustration in the bottom part of Figure 4.3). More precisely,
when in a run of S, a counter i enters in a new biphase l (typically this occurs when passing from
a decreasing phase to an increasing phase), this is mimicked in S ′ by introducing a new counter,
say i′ that depends only on i and on l. To do so, i′ is incremented until the counter i′′ attached to
counter i and biphase l−1 reaches the value zero; i′′ is the counter in S ′ that mimicks the counter
i from S in the previous biphase l − 1. Then, the counter i′ in S ′ behaves as i until a new biphase
is observed (see Figure 4.3). Hence, the number of counters in S ′ is n′ = n× (1+ r

2). Depending
on the current biphase ordinal, for each counter we shall be able to determine which counters are
active. Let c : [0, r

2 ] × [1, n] → [1, n′] be the map defined by c(l, i)
def
= (i − 1)( r

2 + 1) + (1 + l)
that determines for each counter and each biphase ordinal, the corresponding counter in S ′. For
instance with n = 2 and r

2 = 2, we have:

(

3 counters mimicking counter 1
︷ ︸︸ ︷

c(0, 1), c(1, 1), c(2, 1) ,

3 counters mimicking counter 2
︷ ︸︸ ︷

c(0, 2), c(1, 2), c(2, 2) ) = (1, 2, 3, 4, 5, 6)

Given a refined global biphase vector w⃗ ∈ ({INC, DEC} × [0, r
2 ])

n, we write NB(w⃗) ∈ [0, r
2 ]

n

to denote the corresponding global biphase vector obtained from w⃗ by omitting the information
about the type of the current phases. Similarly, we write PH(w⃗) ∈ {INC, DEC}n to denote the
restriction of w⃗ obtained from w⃗ by omitting the biphase ordinals.
Given a configuration ((q, w⃗), x⃗) of S ′, we write Act(((q, w⃗), x⃗)) to denote the corresponding

counter values in Nn by selecting only values corresponding to active counters (there are exactly
n): for i ∈ [1, n], we have Act(((q, w⃗), x⃗))(i)

def
= x⃗(c(NB(w⃗)(i), i)). In the sequel, we write

S ′[w⃗, i] instead of c(NB(w⃗)(i), i) to denote the counter in S ′ that behaves as the counter i in its
NB(w⃗)(i)th biphase in S. So, the value of counter i in S when the run is currently in the refined
global biphase vector w⃗ is taken care by the counter S ′[w⃗, i] in S ′.
We are now in position to define the counter automaton S ′ = (Q′, n′, δ′) such that Q ×

({INC, DEC} × [0, r
2 ])

n ⊆ Q′; the unspecified additional control states will appear to be aux-
iliary. It remains to define the transition relation δ′.

⋆ For all q inc(i)
−−→ q′ and w⃗ ∈ ({INC, DEC} × [0, r

2 ])
n such that PH(w⃗)(i) = INC, we have

(q, w⃗)
inc(S′[w⃗,i])
−−−−−→ (q′, w⃗) ∈ δ′.

⋆ For all q dec(i)
−−→ q′ and w⃗ ∈ ({INC, DEC} × [0, r

2 ])
n such that PH(w⃗)(i) = DEC, we have

(q, w⃗)
dec(S′[w⃗,i])
−−−−−→ (q′, w⃗) ∈ δ′.

⋆ For all q zero(i)
−−−→ q′ and w⃗ ∈ ({INC, DEC}× [0, r

2 ])
n, we have (q, w⃗)

zero(S′[w⃗,i])
−−−−−−→ (q′, w⃗) ∈ δ′.

⋆ For all q dec(i)
−−→ q′ and w⃗ ∈ ({INC, DEC} × [0, r

2 ])
n such that PH(w⃗)(i) = INC, we have

(q, w⃗)
dec(S′[w⃗,i])
−−−−−→ (q′, w⃗′) ∈ δ′ where w⃗′(j) = w⃗(j) for j ̸= i and w⃗′(i) = (DEC, l) with

w⃗(i) = (INC, l).
⋆ The remaining case in this definition is the more complex one since it corresponds to a
biphase change. For all q

inc(i)
−−→ q′ and w⃗ ∈ ({INC, DEC} × [0, r

2 ])
n such that w⃗(i) =
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q, w⃗

q′, w⃗′

zero(Iold)

zero(Iold)

inc(Inew)

dec(Iold)

inc(Inew)

dec(Iold) inc(Inew)

Figure 4.4: Completing δ′

(DEC, l), we add the transitions present in Figure 4.4 (there are four new auxiliary control
states).
We put w⃗′ ∈ ({INC, DEC}×[0, r

2 ])
n with w⃗′(j) = w⃗(j) for j ̸= i and w⃗′(i) = (INC, l+1):

a new biphase is considered. We also use the shortcuts Iold = S ′[w⃗, i] and Inew = S ′[w⃗′, i].
Observe that the effect of reaching (q′, w⃗′) from (q, w⃗) is to transfer the value of counter
Iold to counter Inew.

First, let us state a few properties about S ′ and its relationships with (S, (q0, x⃗0)).

Lemma 4.2.2.

(I) S ′ is uniformly 1-reversal-bounded.

(II) Let x⃗′
0 ∈ Nn′ such that

1. for i ∈ [1, n], x⃗′
0(S

′[ ⃗(INC, 0), i]) = x⃗0(i),

2. for j ∈ ([1, n′] \ {S ′[ ⃗(INC, 0), i] : i ∈ [1, n]}), we have x⃗′
0(j) = 0.

Then, {x⃗ ∈ Nn : (q0, x⃗0)
∗
−→ (q, x⃗) in S} = {Act(((q, w⃗), x⃗)) ∈ Nn : ∃ w⃗ ((q0, ⃗(INC, 0)), x⃗′

0)
∗
−→

((q, w⃗), x⃗) in S ′} for every q ∈ Q.

(III) Suppose that ((q0, ⃗(INC, 0)), x⃗′
0)

∗
−→ ((q, w⃗), x⃗). For j ∈ ([1, n′] \ {S ′[w⃗, i] : i ∈ [1, n]}),

we have x⃗(j) = 0.

Lemma 4.2.2(I) is by simple inspection of the construction of S ′. Lemma 4.2.2(III) reflects
the property that a counter in S ′ is either active or equal to zero (apart from the configurations
with auxiliary control states). Based on Lemma 4.2.2, we can show the following lemma.

Lemma 4.2.3.
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(I) If for (q, w⃗) ∈ ({INC, DEC}× [0, r
2 ])

n, the set

{x⃗ : ((q0, ⃗(INC, 0)), x⃗′
0)

∗
−→ ((q, w⃗), x⃗) in S ′}

is effectively semilinear, then {x⃗ ∈ Nn : (q0, x⃗0)
∗
−→ (q, x⃗) in S} is effectively semilinear

too, for every control state q.

(II) If S is uniformly r-reversal-bounded and the reachability relation for S ′ is Presburger-definable,
then the reachability relation for S is Presburger-definable too.

Proof: (I) Suppose one can compute effectively a formula ϕ(q,w⃗)(x1, . . . , xn′) characterizing the
configurations reachable from ((q0, ⃗(INC, 0)), x⃗′

0) with control state (q, w⃗). The formula below
characterizes the configurations reachable from (q0, x⃗0) with control state q:

∨

w⃗∈[0, r
2 ]n

(∃ y1 · · · yn′ ϕ(q,w⃗)(y1, . . . , yn′) ∧ (
∧

i∈[1,n]

xi = yS′[w⃗,i])).

(II) By assumption, for q, q′ ∈ Q′, there exists a formula ϕq,q′(x1, . . . , xn′, y1, . . . , yn′) such that
for every valuation val, we have

val |= ϕq,q′ iff (q, (val(x1), . . . ,val(xn′)))
∗
−→ (q′, (val(y1), . . . ,val(yn′))) in S ′.

The Presburger formula ϕ(z1, . . . , zn, z
′
1, . . . , z

′
n) encoding the reachability relation from control

state q ∈ Q to control state q′ ∈ Q is defined as follows:
∨

w⃗,w⃗′∈[0, r
2 ]n

(∃ x1 · · · xn′, y1 · · · yn′ ϕ(q,w⃗),(q′,w⃗′)

∧(
∧

i∈[1,n]

z′i = yS′[w⃗,i]) ∧ (
∧

i∈[1,n]

zi = xS′[ ⃗(INC,0),i]) ∧ (
∧

j∈NA

xj = 0)).

where NA = ([1, n′] \ {S ′[ ⃗(INC, 0), i] : i ∈ [1, n]}) (set of initial “nonactive” counters). QED

Figure 4.3 presents the behaviour of the counter 1 in S ( r2 = 3) and the behaviour of the
counters 1, 2 and 3 in S ′.

4.2.4 Reachability sets are effectively semilinear
Let S = (Q, n, δ) be a counter automaton such that (S, (q0, x⃗0)) is 1-reversal-bounded. For each
finite run from the initial configuration (q0, x⃗0), the restriction to counter i of the sequence of
actions corresponds to a biphase of the form zero(i)∗ · inc(i)∗ ·dec(i)∗ · zero(i)∗. When x⃗0(i) > 0,
the biphase can only be an element of inc(i)∗ · dec(i)∗ · zero(i)∗.
Let us define the auxiliary vector v⃗0 ∈ {eq(0), neq(0)}n that essentially records which coun-

ters in x⃗0 takes the value zero: for i ∈ [1, n], v⃗0(i)
def
= eq(0) if x⃗0(i) = 0 otherwise v⃗0(i)

def
=

neq(0). Now, for i ∈ [1, n] we write S v⃗0
i to denote either { 0

−→1,↗,↘,
0
−→2} when v⃗0(i) =

eq(0) or {↗,↘,
0
−→2} when v⃗0(i) = neq(0). Each element in S v⃗0

i corresponds to an action in
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{zero(i), inc(i), dec(i)} but we wish to possibly distinguish in a biphase the initial zero-tests
(represented by the letter 0

−→1) from the terminal zero-tests (represented by the letter 0
−→2). We

write S v⃗0 to denote the cartesian product S v⃗0
1 × · · · × S v⃗0

n . It is worth noting that assuming that
x⃗0 = 0⃗ would make unecessary the above definitions and would not simplify the main ingredients
of the proof below. Nevertheless, this smoothly prepares the treatment for uniform 1-reversal-
boundedness.
From (S, (q0, x⃗0)), we define a finite-state automaton A(q0,v⃗0) that can be viewed as a product

between S (viewed as a finite-state automaton in which the actions on counters are understood
as letters from a finite alphabet) and a finite-state automaton that checks that the sequence of
actions for each counter is compatible with 1-reversal-boundedness and with the initial vector v⃗0

(see explanations in Section 4.2.1). Hence, counters are removed but at the cost of adding a bit
more control in order to preserve 1-reversal-boundedness at the level of symbolic actions. So, the
language accepted by A(q0,v⃗0) overapproximates the sequences of instructions obtained from the
runs of (S, (q0, x⃗0)) but it shall be possible to add constraints to obtain precisely the sequences
from (S, (q0, x⃗0)). The finite-state automaton A(q0,v⃗0) = (Σ, Q′, Q0, δ

′, Q′) is defined as follows:

⋆ Σ = {inc(i), dec(i), zero(i) : i ∈ [1, n]}.
⋆ Q′ = Q × S v⃗0 .

⋆ Q0 = {(q0, v⃗
′
0)} where for i ∈ [1, n], v⃗′

0(i) =
0
−→1 if v⃗0 = eq(0), otherwise v⃗′

0(i) =↗.

It remains to define δ′.

⋆ If q zero(i)
−−−→ q′ ∈ δ, then (q, v⃗)

zero(i)
−−−→ (q′, v⃗′) ∈ δ′ with

1. for j ̸= i, v⃗(j) = v⃗′(j),
2. either v⃗(i) = v⃗′(i) ∈ {

0
−→1,

0
−→2} or v⃗(i) =↘ and v⃗′(i) =

0
−→2.

⋆ If q inc(i)
−−→ q′ ∈ δ, then (q, v⃗)

inc(i)
−−→ (q′, v⃗′) ∈ δ′ with

1. for j ̸= i, v⃗(j) = v⃗′(j),

2. either v⃗(i) = v⃗′(i) =↗ or v⃗(i) =
0
−→1 and v⃗′(i) =↗.

⋆ If q dec(i)
−−→ q′ ∈ δ, then (q, v⃗)

dec(i)
−−→ (q′, v⃗′) ∈ δ′ with

1. for j ̸= i, v⃗(j) = v⃗′(j),
2. either v⃗(i) = v⃗′(i) =↘ or v⃗(i) =↗ and v⃗′(i) =↘.

By Theorem 4.2.1, for every (q, v⃗) ∈ Q′, one can effectively compute a Presburger formula

ϕ
(q0,v⃗0)
(q,v⃗) (x1

inc, x
1
dec, x

1
zero, . . . , x

n
inc, x

n
dec, x

n
zero)

such that for every valuation val, we have val |= ϕ
(q0,v⃗0)
(q,v⃗) iff there is a finite word u in the language

L((Σ, Q′, Q0, δ
′, {(q, v⃗)})) such that Π(u) = (val(x1

inc), . . . ,val(x
n
zero)).
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Given q ∈ Q, let ψq(y1, . . . , yn) be the formula below:
∨

v⃗∈Sv⃗0

∃x1
inc, · · · , xn

zero (ϕ(q0,v⃗0)
(q,v⃗) (x1

inc, . . . , x
n
zero)

∧(
∧

i∈[1,n] s.t. v⃗(i)∈{
0−→1,

0−→2}

yi = 0)) ∧ (
∧

i∈[1,n]

yi = xi
inc + x⃗0(i) − xi

dec)

Lemma 4.2.4. For all q ∈ Q and all valuations val,

we have (q0, x⃗0)
∗
−→ (q, (val(y1), . . . ,val(yn))) iff val |= ψq(y1, . . . , yn).

Proof: Let (q0, x⃗0)
a0−→ (q1, x⃗1)

a1−→ · · ·
ak−1
−−→ (qk, x⃗k) be a run with u = a0 · · ·ak−1 ∈ Σ. It is clear

that by construction of A(q0,v⃗0), there is v⃗ ∈ S v⃗0 such that u ∈ L((Σ, Q′, Q0, δ
′, {(qk, v⃗)})). Let

val be the valuation such that for i ∈ [1, n], val(xi
inc) [resp. val(xi

dec), val(xi
zero)] is equal to the

number of occurrences of inc(i) [resp. dec(i), zero(i)] in u. It is easy to see that val |= ψqk
since

all the values x⃗0, . . . , x⃗k are in Nn and whenever v⃗(i) ∈ {
0
−→1,

0
−→2}, x⃗k(i) = 0 by construction of

δ′.
The proof in the other direction is analogous. QED

As a consequence, we obtain Theorem 4.1.2.
Now suppose that S is uniformly 1-reversal-bounded. This means that for every initial con-

figuration (q0, x⃗0), the initialized counter automaton (S, (q0, x⃗0)) is 1-reversal-bounded. In that
case, we can show that the reachability relation is Presburger-definable.

Theorem 4.2.5. Let S be a uniformly 1-reversal-bounded counter automaton. For all q, q′ ∈ Q,
one can effectively compute a formula ϕq,q′(x1, . . . , xn, y1, . . . , yn) such that for every valuation
val, we have

val |= ϕq,q′ iff (q, (val(x1), . . . ,val(xn)))
∗
−→ (q′, (val(y1), . . . ,val(yn))).

Proof: The formula ϕq,q′ is defined below by taking advantage of the construction for reachability
sets. Uniform reversal-boundedness ensures that the transition relation is uniformly defined. Nev-
ertheless, the main differences with the previous developments are the following. First, instead of
constant values x⃗0(1), . . . , x⃗0(n), we consider variables x1, . . . , xn and such a replacement in for-
mulae can be done smoothly while respecting the syntax of formulae from Presburger arithmetic.
Similarly, the value differences between counter values are precisely the differences between the
number increments and the number of decrements, which can be easily expressed by a formula
of the form yi = xi + xi

inc − xi
dec. Finally, we need to perform a case analysis on the value of the

auxiliary vector v⃗0 ∈ {eq(0), neq(0)}n, leading to simple constraints on the variables x1, . . . , xn.
The formula ϕq,q′ is defined below:

∨

v⃗0∈{eq(0),neq(0)}n

((
∧

i∈[1,n] s.t. v⃗0(i)=eq(0)

xi = 0) ∧ (
∧

i∈[1,n] s.t. v⃗0(i)=neq(0)

xi > 0))∧

∨

v⃗∈Sv⃗0

∃x1
inc, · · · , xn

zero (ϕ(q,v⃗0)
(q′,v⃗) (x

1
inc, . . . , x

n
zero)
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∧(
∧

i∈[1,n] s.t. v⃗(i)∈{
0−→1,

0−→2}

yi = 0)) ∧ (
∧

i∈[1,n]

yi = xi + xi
inc − xi

dec)

QED

As a corollary, we obtain the following result.

Corollary 4.2.6. [Iba78] Let S = (Q, n, δ) be a counter automaton, q, q′ ∈ Q, x⃗ ∈ N and r ≥ 0.

(I) If S is uniformly r-reversal-bounded, then one can effectively compute a formula ϕ such that
for every valuationval, we haveval |= ϕ iff (q, (val(x1), . . . ,val(xn)))

∗
−→ (q′, (val(y1), . . . ,val(yn))).

(II) If (S, (q, x⃗)) is r-reversal-bounded, then one can effectively compute a Presburger formula ϕ
such that for every valuationval, we have val |= ϕ iff (q, x⃗)

∗
−→ (q′, (val(x1), . . . ,val(xn))).

An alternative proof can be found in [LS05] that does not use Parikh’s theorem. Complexity
characterizations of reachability problems for reversal-bounded counter automata are presented
in [GI81, HR87]. Moreover, other classes of counter systems with reachability sets that are effec-
tively semilinear can be found in [HP79, Esp97, CJ98, FS00, LS05, BIL09] (see also Section 5.3).
Finally, the reachability problem with bounded number of reversals when natural numbers

are encoded with a binary representation is NEXPTIME-complete [GI81, HR87] (the problem is
NP-complete, assuming that all the natural numbers are encoded in binary except the number of
reversals). Moreover, decidable reachability problems for parameterized reversal-bounded (init.)
counter automata can be found in [ISD+02].

4.2.5 Variants admitting semilinearity too
In this section, we provide two generalizations of reversal-bounded counter automata for which
reachability sets are still effectively semilinear.

Adding a free counter

An essential way to relax the notion of reversal-boundedness consists in allowing one counter to
be free, i.e. no bounded number of reversals is required for that counter. If one wants to extend
the previous results to this new class of counter automata, it is the best we can expect since two
free counters already lead to undecidability because such a class would include Minsky machines.
In the sequel, we assume that the free counter is the first one. So, an initialized counter automaton
(S, (q, x⃗)) is almost reversal-bounded def

⇔ (S, (q, x⃗)) is reversal-bounded with respect to i, for
i ∈ [2, n] (assuming that the dimension of S is n). Uniform almost reversal-boundedness is
defined in the obvious way.
Given that (S, (q0, x⃗0)) is almost r-reversal-bounded, as done in Section 4.2.3, one can build

an almost 1-reversal-bounded counter automaton S ′ such that Lemma 4.2.3 can be adapted to
almost reversal-boundedness. Indeed, the first counter in S and S ′ behaves identically (no need to
introduce additional counters) whereas the counters in [2, n] from S are treated as in Section 4.2.3.
It remains then to show that the reachability relation for uniformly almost 1-reversal-bounded
counter automata is Presburger-definable, which can be shown as Theorem 4.2.5 by using that the
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Parikh image of languages definable by finite-state automata equipped with a single counter is
effectively semilinear. Indeed, such one-counter automata are pushdown automata for which the
stack alphabet is simply unary and therefore Parikh’s theorem applies [Par66].
Finally, this allows us to extend to almost reversal-bounded counter automata all the nice

properties about semilinearity, as stated below.

Theorem 4.2.7. [Iba78] Let S = (Q, n, δ) be a counter automaton, q, q′ ∈ Q, x⃗ ∈ N and r ≥ 0.

(I) If S is uniformly almost r-reversal-bounded, then one can effectively compute a Presburger
formulaϕ such that for every valuationval, we have val |= ϕ iff (q, (val(x1), . . . ,val(xn)))

∗
−→

(q′, (val(y1), . . . ,val(yn))).

(II) If (S, (q, x⃗)) is almost r-reversal bounded, then one can effectively compute a Presburger for-
mulaϕ such that for every valuationval, we haveval |= ϕ iff (q, x⃗)

∗
−→ (q′, (val(x1), . . . ,val(xn))).

Weak reversal-boundedness

An interesting extension of reversal-boundedness is introduced in [FS08, San08] for which we
only count the number of reversals when they occur for a counter value above a given bound B
(see Figure 4.5). For instance, finiteness of the reachability set implies reversal-boundedness in
the sense of [FS08, San08], which we shall call weak reversal-boundedness. Let S = (Q, n, δ) be
a (standard) counter automaton and a bound B ∈ N. Instead of defining a counter automaton Srb

as done to characterize (standard) reversal-boundedness, we define directly an infinite directed
graph that corresponds to a variant of the transition system of Srb: still, there are n new counters
that record the number of reversals but only if they occur above a bound B. That is why, the
infinite directed graph TSB defined below is parameterized by B. TSB = (Q× {DEC, INC}n ×

N2n,−→B) is defined as follows: (q, ⃗mode, x⃗) −→B (q′, ⃗mode
′
, x⃗′)

def
⇔ there is a transition q

ϕ
−→

q′ ∈ δ such that

⋆ if ϕ does not deal with the jth component, then ⃗mode(j) = ⃗mode
′
(j),

⋆ (q, x⃗([1, n]))
ϕ
−→ (q′, x⃗′([1, n])) in S,

⋆ for every i ∈ [1, n], one of the conditions below is satisfied:

∗ ϕ = zero(i), ⃗mode(i) = ⃗mode
′
(i), x⃗ = x⃗′,

∗ ϕ = dec(i), ⃗mode(i) = ⃗mode
′
(i) = DEC and x⃗([n + 1, 2n]) = x⃗′([n + 1, 2n]),

∗ ϕ = dec(i), ⃗mode(i) = INC, ⃗mode
′
(i) = DEC, x⃗(i) > B and x⃗([n + 1, 2n] \ {i}) =

x⃗′([n + 1, 2n] \ {i}), x⃗′(i) = x⃗(i) + 1,
∗ ϕ = dec(i), ⃗mode(i) = INC, ⃗mode

′
(i) = DEC, x⃗(i) ≤ B and x⃗([n + 1, 2n]) =

x⃗′([n + 1, 2n]),
∗ ϕ = inc(i), ⃗mode(i) = DEC, ⃗mode

′
(i) = INC, x⃗(i) > B and x⃗([n + 1, 2n] \ {i}) =

x⃗′([n + 1, 2n] \ {i}), x⃗′(n + i) = x⃗(n + i) + 1,
∗ ϕ = inc(i), ⃗mode(i) = DEC, ⃗mode

′
(i) = INC, x⃗(i) ≤ B and x⃗([n + 1, 2n]) =

x⃗′([n + 1, 2n]).
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. . . . . .
B

Figure 4.5: A counter satisfying weak reversal-boundedness

Initialized counter automaton (S, (q, x⃗)) is weakly reversal-bounded [FS08] def
⇔ there is some

B ≥ 0 such that for i ∈ [n + 1, 2n], {y⃗(i) : (qrb, x⃗rb)
∗
−→B (q′, y⃗) in TSB} is finite. When

r ≥ max({y⃗(i) : (qrb, x⃗rb)
∗
−→B (q′, y⃗) in TSB} : i ∈ [n + 1, 2n]) S is said to be r-reversal-

B-bounded from (q, x⃗). Observe that whenever (S, (q, x⃗)) is r-reversal-bounded, (S, (q, x⃗)) is
r-reversal-0-bounded. Figure 4.5 illustrates weak reversal-boundedness. Reversal-boundedness
for counter automata is very appealing because reachability sets are semilinear as stated below.

Theorem 4.2.8. [FS08, San08] Let (S, (q, x⃗)) be an initialized counter automaton that is weakly
r-reversal-B-bounded for some r, B ≥ 0. For each control state q′, the set {y⃗ ∈ Nn : run (q, x⃗)

∗
−→

(q′, y⃗)} is effectively semilinear.

The proof in [Iba78] extends to weak reversal-boundedness [FS08]; whenever a counter value
is below B, this information is encoded in the control state which provides a reduction to (stan-
dard) reversal-boundedness.
Moreover, a breakthrough has been done in [FS08] by establishing that checking whether a

vector addition systems with states is weakly reversal-bounded is decidable. The decidability
proof in [FS08] provides a decision procedure that requires nonprimitive recursive time in the
worst-case since Karp and Miller tree needs to be built [KM69, VVN81]. A complexity analysis
can be found in [Dem10]. Besides, further material about reversal-bounded counter automata can
be found in [San08, Chapter 2].

4.3 Decidable repeated reachability problems
In this section, we show how to reduce the control state repeated reachability problem to the
reachability problem when reversal-bounded counter automata are involved. Clearly, reversal-
boundedness is taken into account and we assume that reversal-bounded counter automata are
given with their maximal number of reversals r.

Lemma 4.3.1. [DIP01] Control state repeated reachability problem in the class of reversal-
bounded (initialized) counter automata is decidable.

Proof: Let (S, (q0, x⃗0)) be an initialized counter automaton that is r-reversal-bounded with S =
(Q, n, δ) and qf ∈ Q be the control state to be repeated infinitely often.
We propose an algorithm to answer the following question: is there an infinite run starting at

(q0, x⃗0) such that the control state qf is repeated infinitely often? We reduce it to a reachability
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question for a new reversal-bounded counter automaton S ′. Furthermore, we know that for each
control state, one can effectively compute a Presburger formula that represents the configurations
that can reach this control state, leading to decidability since satisfiability problem for Presburger
arithmetic is decidable.
Let (⋆) be the desired property:

(⋆) There is an infinite run from (q0, x⃗0) such that qf is repeated infinitely often.

Let (⋆⋆) be the property below:

(⋆⋆) There exist a finite run ρ = (q0, x⃗0)
t1−→ (q1, x⃗1) · · ·

tl−→ (ql, x⃗l), l′ ∈ [0, l − 1] and Z ⊆ [1, n]
such that

(a) ql = ql′ = qf ,
(b) for i ∈ Z and j ∈ [l′ + 1, l], x⃗j(i) − ⃗xj−1(i) = 0,
(c) for i ∈ ([1, n] \ Z), we have x⃗l′(i) ≤ x⃗l(i),
(d) for i ∈ ([1, n] \ Z) and j ∈ [l′ + 1, l], x⃗j(i) − ⃗xj−1(i) ≥ 0,
(e) for i ∈ ([1, n] \ Z), x⃗l′(i) ≥ 1.

Observe that (d) implies (c).
Below, we show that (⋆) and (⋆⋆) are equivalent, which allows us to reduce control state

repeated reachability to control state reachability problem. Indeed, checking (⋆⋆) amounts to
introduce card(P([1, n])) copies of S (one for each possible set Z ⊆ [1, n]).
First, let us show that (⋆) and (⋆⋆) are equivalent. Suppose (⋆). There exist an infinite run

ρ = (q0, x⃗0)
t1−→ (q1, x⃗1)

t2−→ (q2, x⃗2) · · · such that qf is repeated infinitely often. Let CST (ρ) be
the subset of [1, n] that contains exactly the counters that are constant in ρ, apart from a finite
prefix. Since (S, (q0, x⃗0)) is reversal-bounded, there exists I ≥ 0 such that for k ≥ I , no counter
in [1, n] \Z is decremented and its value is greater than 1 and all the counters in CST (ρ) remains
constant. Since qf is repeated infinitely often, there are I ≤ l < l′ such that ql = ql′ = qf and
(b)-(e) hold true. Now suppose that there exist a finite run ρ = (q0, x⃗0)

t1−→ (q1, x⃗1) · · ·
tl−→ (ql, x⃗l),

l′ ∈ [0, l − 1] and Z ⊆ [1, n] witnessing the satisfaction of (⋆⋆). It is then easy to show that the
ω-sequence of transitions t1 · · · tl′(tl′+1 · · · tl)ω allows us to define an infinite run ρ′ that extends ρ.
It is clear that in ρ′ the control state qf is repeated infinitely often. Zero-tests are also successful
because of condition (b).
Now, let us build an instance of the reachability problem for reversal-bounded counter au-

tomata that allows us to capture the condition (⋆⋆). We construct a reversal-bounded counter
automaton S ′ = (Q′, n, δ′) such that (⋆⋆) iff (q0, x⃗0)

∗
−→ (qnew, 0⃗) in S ′. By Theorem 4.1.2, one

can effectively build a Presburger formula ϕ with n free variables such that REL(ϕ) = {x⃗ :
(q0, x⃗0)

∗
−→ (qnew, x⃗)}. By decidability of Presburger arithmetic, we can therefore decide whether

there is an infinite run starting at (q0, x⃗0) in which qf is repeated infinitely often.
It remains to define the counter automaton S ′. The counter automaton S ′ is made of the

original version of S (called below the original copy) augmented with 2n copies of S; each copy
corresponds to a possible set Z ⊆ [1, n] in (⋆⋆). By the Z-copy, we mean the restriction of S such
that:

⋆ no transition in the Z-copy modifies a counter from Z,



4.3. DECIDABLE REPEATED REACHABILITY PROBLEMS 85

⋆ no transition in the Z-copy decrements a counter in [1, n] \ Z.

For each Z ⊆ [1, n], the control states of the Z-copy are pairs in Q × {Z}. The second
component simply indicates to which copy belongs the control state.
In order to simulate the subrun (ql′ , x⃗l′) · · · (ql, x⃗l) for the satisfaction of (⋆⋆) in S, nonde-

terministically we move from the original copy to some Z-copy in S ′ (and therefore we choose
which counters remain constants). To do so, for every set Z ⊆ [1, n], we consider in S ′ a sequence
of transitions from qf to (qf , Z) whose task is to check that for i ∈ [1, n] \ Z, we have xi ≥ 1
(which can be done by decrementing and incrementing counter i, inducing at most n reversals).
As soon as in the Z-copy, we reach again a control state whose first component is qf , we may

jump to the final control state qnew. QED

Even though the problem below is decidable (as shown above), as far as we know its compu-
tational complexity is open.

Input: a succinct counter automaton S, a bound r ∈ N, an initial configuration (q, x⃗) and a
control state qf .

Question: Is there an infinite run from (q, x⃗) such that qf is repeated infinitely often and each
counter has at most r reversals?

Lemma 4.3.1 can be extended so that, instead of repeating infinitely often control states, prop-
erties on counters definable in Presburger arithmetic are repeated infinitely often. Let us introduce
the following problem.
∃-PRESBURGER INFINITELY OFTEN PROBLEM

Input: Initialized counter automaton (S, (q, x⃗)) of dimension n that is r-reversal-bounded and
a temporal formula of the form ψ = GFϕ(x1, . . . , xn) where ϕ is a Presburger formula on
counters.

Question: Is there an infinite run from (q, x⃗) satisfying ψ?

The complement of the above problem is defined as follows. The ∀-PRESBURGER-ALMOST-
ALWAYS PROBLEM is defined analogously:

Input: Initialized counter system (S, (q, x⃗)) of dimension n that is r-reversal-bounded and a
temporal formula of the form ψ = FGϕ(x1, . . . , xn) where ϕ is a Presburger formula on
counters.

Question: Is it the case that every infinite run from (q, x⃗) satisfies ψ?

Theorem 4.3.2. [DPK03] The ∃-Presburger infinitely often problem and the ∀-Presburger-almost-
always problem are decidable for reversal-bounded (initialized) counter automata.

The proof is indeed a generalization of the proof of Lemma 4.3.1. As will shown in the sequel,
the combination of quantifications over runs and positions on runs is essential to get decidability.
The design of maximal logical fragments retaining decidability is still open.
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4.4 Undecidable reachability problems
Despite the content of the previous sections, many decision problems for reversal-bounded counter
automata are undecidable, even if the number of counters is bounded. For instance, a counter sys-
tem with alphabet is naturally defined as a counter system except that transitions are labelled by
letters from a finite alphabet Σ, and sets of initial and final control states are considered. This
allows us to define languages from counter systems with alphabet (subsets of Σ∗), as done for
finite-state automata (without counters). The universal problem consists in checking whether the
language defined by a counter system is Σ∗. It is known that the problem is PSPACE-complete for
finite-state automata. However, the same problem for 1-reversal-bounded one-counter automata
already leads to undecidability.

Theorem 4.4.1. [Iba79] The universal problem for 1-reversal-bounded one-counter automata
with alphabet is undecidable.

It is worth noting that one-counter automata with alphabet form a subclass of pushdown sys-
tems and therefore accept context-free languages.
In the rest of this section, we shall present two decision problems related to properties definable

in temporal logics that are undecidable for reversal-counter automata.

4.4.1 A simple temporal fragment leading to undecidability
In this section, we consider the following problem. The ∃-PRESBURGER-ALWAYS PROBLEM is
defined as follows:

Input: Initialized counter automaton (S, (q, x⃗)) of dimension n that is r-reversal-bounded and
a temporal formula of the form ψ = Gϕ(x1, . . . , xn) where ϕ is a Presburger formula on
counters.

Question: Is there an infinite run from (q, x⃗) satisfying ψ?

Theorem 4.4.2. [DPK03] The ∃-Presburger-always problem for reversal-bounded counter au-
tomata is undecidable.

As is shown in the proof below, we can even restrict ourselves to 0-reversal-bounded counter
automata without zero-tests and with a fixed number of counters (a subclass of VASS).
Proof: The proof is analogous to the undecidability of the reachability problem for reversal-
bounded counter automata augmented with guards of the form xi = xi′ and xi ̸= xi′ [ISD+02].
Let S = (Q, 2, δ) be a (deterministic) Minsky machine with a unique halting control state qh

without outgoing transitions. We shall build a 0-reversal-bounded counter automaton S ′ such that
for each counter i ∈ {1, 2} from S, two increasing counters i and i + 2 are considered in S ′;
i records the number of increments and i + 2 records the number of decrements. Zero-test for
counter i is performed by a simple test xi = xi+2. This encoding is indeed the main idea of the
proof.
For a technical reason in the proof below, it is helpful to know whether a configuration has

been obtained immediately after performing a zero-test on counter i ∈ {1, 2}. To do do, we can
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slightly modify S so that performing a zero-test on i can be detected by reaching a control state
in the subset Q′′

i . In particular, it is not possible to reach a control state in Q′′
i if a zero-test on i

has not been performed just before. So before defining S ′, let us observe that it is easy to define
a counter automaton S ′′ = (Q′′, 2, δ′′) from S, that behaves as S except that exactly the control
states inQ′′

1 ⊆ Q′′ [resp. Q′′
2 ⊆ Q′′] can be reached after a zero-test on counter 1 [resp. on counter

2]. Additionnally, the control states in Q′′
1 ∪ Q′′

2 cannot be reached after a decrementation or an
incrementation. Hence, each control state in S may lead to at most three control states in S ′′.
Finally, S ′′ may have more than one halting control state (and less than four).
Hence, without any loss of generality, we can assume that S = (Q, 2, δ) is a deterministic

counter automaton with halting control states inQh ⊆ Q and for which there are subsetsQ1, Q2 ⊆
Q containing exactly the control states that are reached after zero-tests. Moreover, from a control
state without outgoing transitions that increment some counter, one can either perform a zero-test
on some counter i or decrement the counter i. This type of constraints comes from the definition
of deterministic Minsky machines.
Let us now build a 0-reversal-bounded counter automaton S ′ = (Q′, 5, δ′) as follows:

⋆ Q′ = Q.

⋆ For q inc(i)
−−→ q′ ∈ δ, we have q

inc(i)
−−→ q′ ∈ δ′.

⋆ For q dec(i)
−−→ q′ ∈ δ, we have q

inc(i+2)
−−−−→ q′ ∈ δ′.

⋆ For q
zero(i)
−−−→ q′ ∈ δ, we have q

inc(5)
−−→ q′ ∈ δ′. The only reason to introduce counter 5 is to

perform a dummy instruction that does not involve the four first counters.

Given an initial configuration (q, 0⃗), it is possible to show that no halting control state is reached
from (q, 0⃗) in S iff there is an infinite run from (q, 0⃗) in S ′ satisfying the formula ϕ below:

G(

simulation of zero−tests
︷ ︸︸ ︷
∧

i∈{1,2}

∧

q∈Qi

(q ⇒ xi = xi+2))∧

G(

no negative counter values
︷ ︸︸ ︷
∧

i∈{1,2}

xi ≥ xi+2 ) ∧ G(

no halting state reached
︷ ︸︸ ︷
∧

q∈Qh

¬q )

It remains to show how we can get rid of atomic formulae made of control states. Suppose that
Q = {q1, . . . , qN}. We update the definition of S ′ by adding 4 counters such that the atomic
formula qj above can be replaced by the Presburger formula (x7 − x6 = j ∧ x9 − x8 = j), which
is then of the required form to get undecidability of the ∃-Presburger-always problem. The new
set of control states Q′ includes Q with auxiliary control states that are described below. The
definition of the transitions in δ′ is updated as follows.

⋆ For qj
inc(i)
−−→ qj′ ∈ δ with j ≤ j′, we consider the following sequence of transitions:

qj
inc(7)
−−→ q1

j

inc(7)
−−→ q2

j · · · q
(j′−j)
j

inc(i)
−−→ q

(j′−j)+1
j

(j′−j) incrementations of counter 9
︷ ︸︸ ︷

inc(9)
−−→ · · ·

inc(9)
−−→ qj′
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All the control states above that are not in Q are auxiliary and are used only for a unique
transition from S. Observe that the only control state for which a configuration can satisfy
(x7 − x6 = j′ ∧ x9 − x8 = j′) is precisely qj′ .

⋆ For qj
inc(i)
−−→ qj′ ∈ δ with j > j′, we consider the following sequence of transitions:

qj
inc(6)
−−→ q1

j

inc(6)
−−→ q2

j · · · q
(j−j′)
j

inc(i)
−−→ q

(j−j′)+1
j

(j−j′) incrementations of counter 8
︷ ︸︸ ︷

inc(8)
−−→ · · ·

inc(8)
−−→ qj′

⋆ Transitions from δ of the form either qj
dec(i)
−−→ qj′ or qj

zero(i)
−−−→ qj′ admit a similar treatement.

So, given an initial configuration (q, 0⃗), no halting control state is reached from (q, 0⃗) in S iff there
is an infinite run from (q, 0⃗) in S ′ satisfying ϕ above in which each qj is replaced by (x7 − x6 =
j ∧ x9 − x8 = j). If we allow a succinct version of counter automata (updates can be arbitrary
integers), we do not need to consider 4 new counters (2 should suffice). Indeed, we do not have
to bother about intermediate configurations that have no counterpart for S. QED

4.4.2 Freeze LTL and reversal-bounded VASS
In this section, we show another undecidability result whose proof uses the same idea of encoding
one counter by two increasing counters. Moreover, only equality tests are allowed at the level of
atomic formulae but we allow a restricted use of the freeze operator (only 1 register is allowed in
formulae). By contrast, in the proof of Theorem 4.4.2 constraints of the form either xi ≥ xi+2 or
x7 − x6 = x9 − x8 are used.

Theorem 4.4.3. [DS10] Model-checking problemMCω(LTL↓) restricted to 1 register and with-
out control states is undecidable for reversal-bounded VASS.

Proof: The proof has similarities with the proof of Theorem 4.4.2 in the way the counters are
encoded. Let S = (Q, 2, δ) be a deterministic counter automaton with halting control states
in Qh ⊆ Q and for which there are subsets Q1, Q2 ⊆ Q containing exactly the control states
that are reached after zero-tests. Moreover, from a control state without outgoing transitions that
increment some counter, one can either perform a zero-test on some counter i or decrement the
counter i.
Again, we shall build a 0-reversal-bounded counter automaton S ′ such that each counter i

in S is simulated by two increasing counters i and i + 2. Moreover, S ′ is without zero-test,
so it is indeed a VASS. Unlike the proof of Theorem 4.4.2, zero-test for counter i is performed
by the formula ↓i

1↑
i+2
1 . We recall that the atomic formula ↑j

1 is a shortcut for y1 = xj and a
formula of the form ↓j

1 χ is a shortcut for ∃ y1 (y1 = xj ∧ χ). So, ↓i
1↑

i+2
1 corresponds literally to

∃ y1 (y1 = xi ∧ y1 = xi+2), which is logically equivalent to xi = xi+2. Let us build a 0-reversal-
bounded counter automaton S ′ = (Q′, 5, δ′) as follows:

⋆ Q′ = Q.

⋆ For q inc(i)
−−→ q′ ∈ δ, we have q

inc(i)
−−→ q′ ∈ δ′.
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⋆ For q dec(i)
−−→ q′ ∈ δ, we have q

inc(i+2)
−−−−→ q′ ∈ δ′.

⋆ For q zero(i)
−−−→ q′ ∈ δ, we have q

inc(5)
−−→ q′ ∈ δ′.

Given an initial configuration (q, 0⃗), it is possible to show that no halting control state is reached
from (q, 0⃗) in S iff there is an infinite run from (q, 0⃗) in S ′ satisfying the formula ϕ below:

G(

simulation of zero−tests
︷ ︸︸ ︷
∧

i∈{1,2}

∧

q∈Qi

(q ⇒↓i
1↑

i+2
1 ))∧

G(

no negative counter values
︷ ︸︸ ︷
∧

q
dec(i)
−−→q′∈δ′

((q ∧ Xq′) ⇒↓i
1 ¬ ↑i+2

1 )) ∧ G(

no halting state reached
︷ ︸︸ ︷
∧

q∈Qh

¬q )

It remains to show how we can get rid of atomic formulae made of control states. Suppose that
Q = {q1, . . . , qN}. We update the definition of S ′ by adding 2N counters such that the atomic
formula qj above can be replaced by a formula stating that (1) the value of counter 5 + 2j − 1
(the first 5 counters are already booked for another purpose) is different from the value of counter
5+2j and (2) for j′ ̸= j, the value of counter 5+2j′−1 is equal to value of counter 5+2j′. Below,
we write α+

j to denote 5 + 2j − 1 and α−
j to denote 5 + 2j. In the following, we shall enforce that

when the value for counter α+
j is different from the value for counter α−

j , then their difference is
exactly one, the counter α+

j having the greater value. Let ψj be defined below expressing (1) and
(2):

↓
α+

j

1 ¬ ↑
α−

j

1 ∧
∧

j′ ̸=j

↓
α+

j′

1 ↑
α−

j′

1

The new set of control states Q′ includes Q plus auxiliary control states that are described below.

⋆ For qj
inc(i)
−−→ qj′ ∈ δ we consider the following sequence of transitions:

qj

inc(α−
j )

−−−→ q1
j,j′

inc(i)
−−→ q2

j,j′

inc(α+
j′

)

−−−→ qj′

When j = j′, we just need to include qj
inc(i)
−−→ qj in δ′.

⋆ For qj
dec(i)
−−→ qj′ ∈ δ we consider the following sequence of transitions:

qj

inc(α−
j )

−−−→ q1
j,j′

inc(i+2)
−−−−→ q2

j,j′

inc(α+
j′

)
−−−→ qj′

When j = j′, we just need to include qj
inc(i+2)
−−−−→ qj in δ′.

⋆ For qj
zero(i)
−−−→ qj′ ∈ δ we consider the following sequence of transitions:

qj

inc(α−
j )

−−−→ q1
j,j′

inc(5)
−−→ q2

j,j′

inc(α+
j′

)

−−−→ qj′

When j = j′, we just need to include qj
inc(5)
−−→ qj in δ′.
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So, given an initial configuration (qj , 0⃗), no halting control state is reached from (q, 0⃗) in S iff
there is an infinite run from (qj , y⃗j) in S ′ satisfying ϕ above in which each qj is replaced by ψj .
The initial counter values in y⃗j are defined as follows:

⋆ For i ∈ {1, . . . , 5}, y⃗j(i) = 0.
⋆ For j′ ∈ ({1, . . . , N} \ {j}), y⃗j(α

+
j′) = y⃗j(α

−
j′) = 0.

⋆ y⃗j(α
+
j ) = 1 and y⃗j(α

−
j ) = 0.

QED

It is open whether the above proof still works when the number of counters in the VASS is
bounded. Indeed, the undecidability proof uses an unbounded number of counters in VASS.

4.5 Exercises
Exercise 4.5.1. Let us consider the reversal-bounded counter automaton in Figure 4.2.

1. Is (S, (q1, 0⃗)) reversal-bounded?
2. For which q, every (S, (q, x⃗)) is reversal-bounded?
3. Let x⃗ ∈ N2 and ϕ be the Presburger formula

ϕ = (x1 ≥ 2 ∧ x2 ≥ 1 + x⃗(2) ∧ (x2 − x⃗(2)) + 1 ≥ x1)∨

(x2 ≥ 2 ∧ x1 ≥ 1 + x⃗(1) ∧ (x1 − x⃗(1)) + 1 ≥ x2)

Show that REL(ϕ) is equal to {y⃗ ∈ N2 : (q1, x⃗)
∗
−→ (q9, y⃗)}.

4. Find a Presburger formula ϕ′ such that REL(ϕ′) = {y⃗ ∈ N2 : (q1, 0⃗)
∗
−→ (q6, y⃗)}.

5. Show that for every q, {x⃗ ∈ N2 : (S, (q, x⃗)) is RB} is semilinear.

Exercise 4.5.2. Complete the proof of Theorem 4.2.1 where (♯) appears.

Exercise 4.5.3. Provide the proof of Lemma 4.2.2

Exercise 4.5.4. Show that the statement of Theorem 4.4.3 can be refined by imposing that the
freeze operator is used in the strict way, that is each register is associated with a unique counter
(see a solution in [DS10]).

Exercise 4.5.5. Prove Theorem 4.2.8

Exercise 4.5.6. Let us extend the class of standard counter automata by allowing transitions la-
belled by equality tests of the form xi = k? for some k ∈ N; this generalizes the usual zero-tests.
The notion of r-reversal-boundedness can be defined accordingly. Are the reachability sets of
r-reversal-bounded initialized enriched standard counter automata effectively semilinear?
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Exercise 4.5.7. A counter automaton S is uniformly reversal-bounded (Version 2) iff for every
initial configuration (q, x⃗), the initialized counter automaton (S, (q, x⃗)) is reversal-bounded. What
about the semilinearity of the reachability relation?

Exercise 4.5.8. A set X ⊆ Nn is upward closed def
⇔ for all x⃗, y⃗ ∈ Nn, x⃗ ∈ X and x⃗ ≼ y⃗ imply

y⃗ ∈ X .

1. Given a VASS V = (Q, n, δ) and q ∈ Q, show that the set {x⃗ ∈ Nn : (V, (q, x⃗)) is not RB}
is upward closed.

2. Show that the set {x⃗ ∈ Nn : (V, (q, x⃗)) is RB} is semilinear.

3. Suggest a proof strategy to show that the above set is effectively semilinear, i.e. one can
effectively compute a Presburger formula ϕ from V and q such that REL(ϕ) = {x⃗ ∈ Nn :
(V, (q, x⃗)) is RB}.

Exercise 4.5.9.

Question 4.5.9.1 Given B ≥ 0 and x⃗ ∈ Nn, we define the B-truncation of x⃗, written truncB(x⃗),
as a tuple in Nn such that for i ∈ [1, n], we have truncB(x⃗)(i)

def
= min(x⃗(i), B). A set

X ⊆ Nn is said to be simple def
⇔ there are B ≥ 0 and Y ⊆ [0, B]n such that for every

x⃗ ∈ Nn, x⃗ ∈ X iff truncB(x⃗) ∈ Y . A simple guard ϕ is defined as a Presburger formula
respecting the grammar below:

xi ≥ k | xi ≤ k | ϕ1 ∧ ϕ2 | ⊤

with k ∈ N, xi is a variable interpreted by a natural number in N and⊤ is the truth constant.
Let ϕ be a simple guard with free variables among {x1, . . . , xn}. Show that REL(ϕ) is a
simple set, i.e. ϕ can be associated with a pair (B, Y ) encoding REL(ϕ).

Question 4.5.9.2 An extended counter automata S of dimension n is a counter system of dimen-
sion n in which the transitions are represented in the following way:

t = q
(ϕ(x1,...,xn),⃗b)
−−−−−−−→ q′

where ϕ(x1, . . . , xn) is a simple guard with free variables among {x1, . . . , xn} and b⃗ ∈ Zn

(update vector). Given configurations (q, a⃗), (q′, a⃗′) ∈ Q × Nn, by definition (q, a⃗)
t
−→

(q′, a⃗′)
def
⇔ a⃗ |= ϕ(x1, . . . , xn) and a⃗′ = a⃗ + b⃗. Reversal-boundedness for extended counter

automata is defined as for standard counter automata: initialized extended counter automa-
ton (S, (q, x⃗)) is r-reversal-bounded def

⇔ for every run from (q, x⃗), every counter performs
at most r reversals.
Let (S, (q0, x⃗0)) be a reversal-bounded extended counter automata and Bmax be the maxi-
mal bound from all the boundsB associated to simple guards in S. Let (q0, x⃗0), (q1, x⃗1), . . .
be an infinite run for the extended counter automaton S such that the control state qf is re-
peated infinitely often. Show that there are positions l′ < l and a set of counters Z ⊆ [1, n]
such that:
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(a) ql = ql′ = qf ,
(b) for i ∈ Z and j ∈ [l′ + 1, l], x⃗j(i) − ⃗xj−1(i) = 0,
(c) for i ∈ ([1, n] \ Z), we have x⃗l′(i) ≤ x⃗l(i),
(d) for i ∈ ([1, n] \ Z) and j ∈ [l′ + 1, l], x⃗j(i) − ⃗xj−1(i) ≥ 0,
(e) for i ∈ ([1, n] \ Z), x⃗l′(i) ≥ Bmax.

Observe that (d) implies (c).

Question 4.5.9.3 Show that there is an infinite run from (q0, x⃗0) with control state qf repeated
infinitely often iff there are a finite run (q0, x⃗0), (q1, x⃗1), . . . , (ql, x⃗l), l′ < l and Z ⊆ [1, n]
such that (a)–(e) hold true.

Question 4.5.9.4 Define a reversal-bounded extended counter automaton S ′ such that there is an
infinite run from (q0, x⃗0) with qf repeated infinitely often in S iff (q0, x⃗0)

∗
−→ (qnew, 0⃗) in S ′

(qnew is a new control state occuring in S ′ but not in S).



Chapter 5

Model-Checking Counter Systems

In this chapter, we mainly focus on repeated control-state reachability problem (i.e. existing of
infinite runs with Büchi acceptance condition) and LTL model-checking when the atomic for-
mulae are simply control states. So, in this chapter, plain LTL is understood as the fragment of
LTLCS(PrA) in which the atomic formulae are restricted to control states (so there is no need
to use first-order quantification), i.e., LTL ≈ LTL(Q). The control state repeated reachability
problem is mainly considered for VASS, reversal-bounded counter automata, and lossy counter
automata; sometimes we summarize developments from previous chapters. In the second part
of this chapter, we show that existential model-checking for LTLCS(PrA) for admissible counter
systems is decidable by reduction to the satisfiability problem for Presburger arithmetic. We pro-
vide an almost complete proof for this result since we believe the proof technique is interesting
for its own sake. Admissible counter systems are defined as a subclass of counter systems with
affine updates with a condition imposing that the effect of loops is effectively semilinear.

5.1 When LTL model-checking is equivalent to repeated con-
trol state reachability

Let S be a counter system, (q0, x⃗0) be an initial configuration and ϕ be an LTL formula; the atomic
formulae are restricted to control states. If the run ρ starting by (q0, x⃗0) satisfies ρ, 0 |= ϕ, then
one can easily show that projQ(ρ), 0 |= ϕ, where projQ(ρ) ∈ Qω is obtained from ρ by erasing
the counter values. Consequently, by construction of the Büchi automatonAϕ with alphabet made
of singleton subsets of Q, there is a successful run of the form ρ′ = X0

projQ(ρ)(0)
−−−−−→ X1

projQ(ρ)(1)
−−−−−→

X2
projQ(ρ)(2)
−−−−−→ X3 · · · . The satisfaction of ρ, 0 |= ϕ and projQ(ρ), 0 |= ϕ can be represented by

the two synchronized sequences below:

(q0, x⃗0)
X0

−→
q0−→

(q1, x⃗1)
X1

−→
q1−→

(q2, x⃗2)
X2

−→
q2−→

(q3, x⃗3)
X3

−→
q3−→

· · ·
|= ϕ
|= ϕ

The definition of synchronized product below is motivated by the design of a unique counter
system synchronizing S and Aϕ with control states of the form (qi, Xi) and updating the counter
values according to the transitions from S. Acceptance condition from Aϕ shall be naturally

93
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expressed by infinite repetition of control states whose second component is a final state from
Aϕ.

Definition 5.1.1. [Synchronized product] Let S = (Q, n, δ) be a counter system and A =
(Σ, Q′, Q′

0, δ
′, F ) be a Büchi automaton with alphabet Σ = Q. The synchronized product S ⊗A

is a counter system (Q′′, n′′, δ′′) such that

⋆ Q′′ = Q × Q′,
⋆ n′′ = n,
⋆ (q0, q

′
0)

ϕ
−→ (q1, q

′
1)

def
⇔ q0

ϕ
−→ q1 ∈ δ and q′0

q0−→ q′1 ∈ δ′.

∇

Lemma 5.1.1. Let S = (Q, n, δ) be a counter system, (q, x⃗) be a configuration and ϕ be an LTL
formula built over the control states in S. Let Aϕ = (Σ, Q′, Q′

0, δ
′, F ) be the Büchi automaton

such that Models(ϕ) = L(Aϕ) and Σ = Q. The propositions below are equivalent:

(I) There is an infinite run ρ with initial configuration (q, x⃗) such that ρ, 0 |= ϕ.

(II) For some qi ∈ Q′
0 and (q′′, qf ) ∈ Q × F , there is an infinite run in S ⊗ Aϕ with initial

configuration ((q, qi), x⃗) such that the control state (q′′, qf) is repeated infinitely often.

Proof: Left as an exercise. QED

Consequently, an instance of the LTL model-checking problem can be solved by checking
several instances of the control state repeated reachability problem.

Theorem 5.1.2. Let C be a class of counter systems such that

1. the control state repeated reachability problem is decidable,

2. C is closed under synchronized products (with Büchi automata).

Then, the LTL model-checking problem restricted to counter systems in C is decidable.

In terms of computational complexity, in the worst-case we may observe an exponential blow-
up since the number of control states in S ⊗ Aϕ can be exponential in the size of S and ϕ.
Complexity results for LTLmodel-checking problems for infinite-state systems can be also found
in [TL10].
Proof: Let S, (q, x⃗) and ϕ be an instance the the LTL model-checking problem. The Büchi
automaton Aϕ can be effectively computed from ϕ and there is an infinite run ρ with initial
configuration (q, x⃗) such that ρ, 0 |= ϕ iff for some qi ∈ Q′

0 and (q′′, qf) ∈ Q × F , there is an
infinite run in S ⊗Aϕ with initial configuration ((q, qi), x⃗) such that (q′′, qf) is repeated infinitely
often (see Lemma 5.1.1). Since both Q′

0 and Q × F are finite sets, the existence of a finite run ρ
such that ρ, 0 |= ϕ can be verified by checking at most card(Q′

0) × card(Q × F ) instances of the
control state repeated reachability problem on the system S ⊗Aϕ. By (2.), such a system belongs
also to C and the target problem is decidable by (1.). QED
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5.2 Control State Repeated Reachability Problem
In this section, we review the decidability status of the control state repeated reachability problems
for several classes of counter systems, mainly those introduced earlier.

5.2.1 VASS
Control state repeated reachability problem restricted to VASS has been shown in [Jan90] whereas
the exponential space upper bound has been established in [Hab97] by adapting Rackoff’s proof
for solving the boundedness problem for VASS in exponential space.

Lemma 5.2.1. [Hab97] Control state repeated reachability problem restricted to VASS can be
solved in exponential space.

The proof is by adapting Rackoff’s technique, it is necessary to establish a property with a
witness path: there is an infinite run with initial configuration (q, x⃗) such that the control state qf

is repeated infinitely often iff there is a finite run (q0, x⃗0), . . . , (qk, x⃗k) such that

⋆ (q0, x⃗0) = (q, x⃗),
⋆ there is k′ < k such that x⃗k′ ≼ x⃗k,

⋆ qk = qk′ = qf .

This is obtained by using Dickson’s Lemma [Dic13]: for any ω-sequence x⃗0, x⃗1, . . . of tuples in
Nn, there are i < j such that x⃗i ≼ x⃗j . The key argument to get the EXPSPACE upper bound is to
show that k can be at most double-exponential in the size of the instance S, (q, x⃗), q′.
This allows to show the following result (the proof technique developped in [Rac78] has been

also used to establish the result below).

Theorem 5.2.2. [Hab97] LTL model-checking problem for VASS is EXPSPACE-complete.

Let us conclude this section by presenting a fragment of LTLCS(PrA) introduced in [Jan90]
such that the atomic formulae are either control states or atomic formulae of the form xi ≥ c or
¬(xi ≥ c) with c ∈ N. Atomic formulae are therefore richer than those of LTL but as will be
presented, temporal and Boolean operators are restricted.
The temporal logic with fairness TLF is defined as a logic on VASS for which formulae are

defined by the grammar below:

q | xi ≥ c | ¬(xi ≥ c) | ϕ ∨ ϕ | ϕ ∧ ϕ | GFϕ

where q ∈ Q and c ∈ N. Observe that TLF formulae are not closed under negations and the
temporal properties are intersection or union of fairness conditions.

Theorem 5.2.3. [Jan90] Existential model-checking problem fo TLF restricted to VASS is de-
cidable.



96 CHAPTER 5. MODEL-CHECKING COUNTER SYSTEMS

In [Jan90], decidability is shown by reduction into the reachability problem for VASS. The
proof is quite difficult and one of its interests is to reduce the existence of an infinite run to a
reachability question. Fairness conditions on VASS can be also found in [GS92].
Moreover, it is worth noting that the operator F cannot be expressed in TLF, otherwise unde-

cidability would hold. Indeed, in [HR89] a linear-time temporal logic (on Petri nets) is shown
undecidable with the temporal operator F, Boolean connectives and atomic formulae of the form
xi ≥ c and “transition t is the next one in the run”. Other decidability and undecidability results
for linear-time temporal logic on Petri nets can be found in [Esp94]; for instance linear µ-calculus
with propositions xi = 0 is undecidable.

5.2.2 Reversal-bounded counter automata
We have seen in Chapter 4 that the control state repeated reachability problem is decidable for
reversal-bounded (initialized) counter automata. Consequently, we obtain the following result
since the class of reversal-bounded counter automata is closed under synchronized product with
Büchi automata.

Theorem 5.2.4. LTL model-checking problem for reversal-bounded (initialized) counter au-
tomata is decidable.

It is worth observing that a stronger result is shown in [DIP01] since Presburger-definable
atomic properties can be included while preserving decidability.

5.2.3 Imperfect counter automata
In this section, we shall consider variants of counter automata in which counter values can be
decremented without notification (a loss) or counter values can be incremented without notifica-
tion (a gain) – but not the two possibilities in the same model. A similar model is the class of reset
VASS that has been defined in Section 1.4.3.

Theorem 5.2.5. Control state repeated reachability for reset VASS is undecidable.

By contrast, control state reachability problem for reset VASS is decidable as a consequence of
the decidability of the covering problem for reset Petri nets [DFS98]. However, the problem has
a nonprimitive recursive complexity, as a consequence of [Sch02]. Many results on reset VASS
can be found in [DFS98, DJS99], see also the recent survey [Sch10b].

Lossy counter automata

A lossy counter automaton is standard counter automaton such that for q ∈ Q and i ∈ [1, n],
q

dec(i)
−−→ q (which allows us to simulate losses).

Theorem 5.2.6. The control state reachability problem for lossy counter automata is decidable.
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It is worth noting that lossy counter automata form a subclass of lossy channel systems, see
e.g. [Sch02] and the reachability problem for lossy channel systems is decidable [AJ96, FS01].
For instance, they can be used to model lossy channel systems for which the ordering of the
messages is not relevant. In that case, each counter can store how many messages of a given type
are present in the channel. Lossy counter automata have been introduced in [May03] and a survey
paper on recent developments can be found in [Sch10b]. Besides, a logic with temporal operator
EF for lossy VASS has been shown to admit a decidable model-checking problem in [BM99].

Gainy counter automata

Let us shift to the model with gains. A gainy counter automaton is a standard counter automaton
(Q, n, δ) such that for q ∈ Q and i ∈ [1, n], q inc(i)

−−→ q ∈ δ (which allows us to simulate gains).
In the sequel, we shall not represent these transitions. Instead, we consider that the one-step
derivation relation is modified as follows: (q, x⃗)

t
−→g (q′, x⃗′) iff there are y⃗ and y⃗′ in Nn such that

x⃗ ≼ y⃗, (q, y⃗)
t
−→ (q′, y⃗′) (exact step) and y⃗′ ≼ x⃗′.

From a gainy counter automaton S, one can effectively compute in logarithmic space a reset
VASS S ′ such that runs of S are precisely reverse runs in S ′, whence the control state reachability
problem for gainy counter automata can be reduced to the analogous problem for reset VASS.

Corollary 5.2.7. The control state reachability problem for gainy counter automata is decidable.

Theorem 5.2.8. [Sch02, Sch10c] (see also [Urq99]1) The control state reachability problem for
gainy counter automata is nonprimitive recursive.

Lemma 5.2.9. [DL06] The control state repeated reachability problem restricted to gainy counter
automata is undecidable.

The proof is by adapting the proof for undecidability of the recurrence problem for Insertion
Channel Machines with Emptiness-Testing (ICMET) [OW06]. Non-reachability of a control state
q in Minsky machine S can be reduced to control state repeated reachability problem for gainy
counter automata.
Proof: Let S = (Q, 2, δ) be a (deterministic) Minsky machine with a special control state qh from
which no transition goes out (and this is the only dead-end control state). We have seen that it is
undecidable whether there is a run reaching a configuration with control state qh from the initial
configuration (qi, 0⃗).
First, we build a counter automaton S ′ = (Q′, 3, δ′) that behaves exactly as S as far as the

counters 1 and 2 are concerned. However, the counter 3 is incremented after each instruction of
S. Consequently, the control state qh cannot be reached in S iff for the unique run of S ′, the
counter 3 has no bounded value.
Second, we build a gainy counter automaton S ′′ with 6 counters:

⋆ The counters 1, 2 and 3 roughly behave as the three respective counters in S ′.

⋆ The counter 4 is the global budget that is progressively incremented.
1Thanks to M. Praveen (IMSc, Chennai) for pointing me to this work.
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⋆ The counter 5 is the current budget that records howmany increments on one of the counters
1, 2 or 3 can be still performed. For instance, an increment of counter 3 is followed by a
decrement of counter 5.

⋆ The counter 6 is an auxiliary counter that is mainly instrumental to perform a copy from
counter 4 to counter 5.

Figure 5.1 contains the schematic construction of S ′′. The instruction copy(4, 5) that copies the
content of counter 4 into counter 5 (with possible gains) can be performed thanks to the gadget
described on the left of Figure 5.2. Similarly, the instruction transfer(1 + 2 + 3, 5) that transfers
the content of the counters 1, 2 and 3 to the counter 5 (with possible gains) can be performed
thanks to the gadget described on the right of Figure 5.2. We have used shortcuts in some places
but it is easy to see that S ′′ can be defined as a gainy counter automaton.
It remains to explain the part of the simulation of S ′ (see middle of Figure 5.1). Below i ∈

{1, 2, 3}.

⋆ A transition q
dec(i)
−−→ q′ is simulated by two transitions q

dec(i)
−−→ ◦

inc(5)
−−→ q′. The location ◦ is an

arbitrary new location only used to simulate this transition.

⋆ A transition q
zero(i)
−−−→ q′ is simulated by itself.

⋆ A transition q
inc(i)
−−→ q′ is simulated by three transitions: q inc(i)

−−→ ◦, ◦ dec(5)
−−→ q′ and ◦ zero(5)

−−−→ MO
(memory overflow). This last transition is represented in Figure 5.1 by a transition entering
in the control state MO.

One can show that Minsky machine S cannot reach qh iff (S ′′, 0⃗) has a run that visits infinitely
often the control state (1). The Minsky machine S cannot reach qh iff the counter automaton S ′

cannot reach qh. If S ′ cannot reach qh, then an error-free run of S ′′ visits infinitely often (1). For
the converse direction we use the following facts:

⋆ In (A), the only way to decrement counter 5 is to simulate exactly S ′.

⋆ In order to reach (1), in the part between qi and (A), counter 5 is decremented regularly.

⋆ If S ′′ visits infinitely often (1) and S ′ can reach (qh, x⃗), then at some point an error-free
simulation of S ′ shall be done with value for counter 5 greater than x⃗(1) + x⃗(2) + x⃗(3), a
contradiction.

QED

As a corollary (using Lemma 5.1.1) the get the following negative result:

Corollary 5.2.10. LTL model-checking problem restricted to gainy counter automata is unde-
cidable.
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1

2

qi

MO:Memory Overflow

A

qh

inc(4)

copy(4, 5)

zero(5)

transfer(1 + 2 + 3, 5)

zero(5)

dec(5)

Simulation of S ′

Figure 5.1: Gainy counter automaton S ′′



100 CHAPTER 5. MODEL-CHECKING COUNTER SYSTEMS

dec(4) ∧ inc(5) ∧ inc(6)

zero(4)

dec(6) ∧ inc(4)

zero(6)

A gadget to copy counter 4 into counter 5

inc(5) ∧ dec(1)

inc(5) ∧ dec(2) inc(5) ∧ dec(3)

zero(1) ∧ zero(2) ∧ zero(3)

A gadget to transfer the counters 1, 2 and 3 into counter 5

Figure 5.2: Gadgets

5.3 Admissible Counter Systems
In this section, we introduce another class of counter systems for which we show that the acces-
sibility relation is effectively semilinear (we have already seen a detailed proof for the class of
reversal-bounded –initialized– counter automata in Chapter 4). This class is not comparable with
the class of flat relational counter systems for which semilinearity is a consequence of [CJ98] and
we provide below a proof for effective semilinearity based on [FL02, Ler03]. Moreover, not only
this implies that the reachability problem for admissible counter systems is decidable but we shall
show that the model-checking problem for LTLCS(PrA) restricted to admissible counter systems
is decidable too. This is obtained by reduction to satisfiability for Presburger arithmetic. The
class of admissible counter systems is defined by restricting both the control graph (flatness) and
the class of Presburger formulae labelling transitions (those defining affine functions).

5.3.1 Affine counter systems
In this section, we shall define the class of affine counter systems that slightly generalizes the
class of succinct counter automata (roughly speaking, a counter value can be multiplied by a
factor different from 1). To do so, we start by proposing a few definitions.
A binary relation of dimension n is a relation R ⊆ N2n. R is Presburger definable def

⇔ there
is a Presburger formula ϕ(x1, . . . , xn, x

′
1, . . . , x

′
n) with 2n free variables such that R = REL(ϕ).

A partial function f from Nn to Nn is affine def
⇔ there exist a matrix A ∈ Zn×n and b⃗ ∈ Zn such

that for every a⃗ ∈ dom(f), we have f (⃗a) = Aa⃗ + b⃗. f is Presburger definable def
⇔ the graph of

f is a Presburger definable relation.
A counter system S = (Q, n, δ) is affine when for every transition q

ϕ
−→ q′ ∈ δ, REL(ϕ) is

affine. In the sequel, each formula ϕ labelling a transition in an affine counter system is encoded
by a triple (A, b⃗,ψ) such that
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1. A ∈ Zn×n,
2. b⃗ ∈ Zn,
3. ψ has free variables x1, . . . , xn,
4. REL(ϕ) = {(x⃗, x⃗′) ∈ N2n : x⃗′ = Ax⃗ + b⃗ and x⃗ ∈ REL(ψ)}.

The formulaψ can be viewed as the guard of the transition and the pair (A, b⃗) as the (deterministic)
update function. Such a triple (A, b⃗,ψ) is called an affine update and we also writeREL((A, b⃗,ψ))
to denote REL(ϕ). Observe that one can decidable whether a Presburger formula ϕ satisfies that
REL(ϕ) is affine [DFGvD06, DFGvD11]. Furthermore, succinct counter automata are affine
counter systems in which the matrices are always equal to the identity matrix. Moreover, in
succinct counter automata the guards are reduced to the truth constant or to a zero-test. This class
of counter systems has been introduced in [FL02].

Observe that assuming the transition t = q
(A,⃗b,ψ)
−−−→ q′, there is a Presburger formula χ(⃗x, x⃗′) such

that for every val, we have val |= χ iff (q, (val(x1), . . . ,val(xn)))
t
−→ (q′, (val(x′1), . . . ,val(x

′
n))).

Here is the witness formula that encodes the one-step relation:

ψ(⃗x) ∧
∧

i∈[1,n]

(x′i =
∑

j

A(i, j)xj + b⃗(i))

Affine updates are closed under composition as illustrated below:

q0 q1 q2

„

x′
1

x′
2

«

=

„

1 0
0 1

« „

x1
x2

«

+

„

3
−3

« „

x′
1

x′
2

«

=

„

2 0
0 2

« „

x1
x2

«

+

„

−1
2

«

„

x′
1

x′
2

«

=

„

2 0
0 2

« „

x1
x2

«

+

„

5
−4

«

Lemma 5.3.1 roughly states that the composition of affine updates is still an affine update,
which shall be helpful to show that the accessibility relation for admissible counter systems is
Presburger definable.

Lemma 5.3.1. Let (A1, b⃗1,ψ1) and (A2, b⃗2,ψ2) be two affine updates. There exists an affine
update (A, b⃗,ψ) such that

REL((A, b⃗,ψ)) =

{(x⃗, x⃗′) ∈ N
2n : ∃y⃗ ∈ N

n (x⃗, y⃗) ∈ REL((A1, b⃗1,ψ1)) and (y⃗, x⃗′) ∈ REL((A2, b⃗2,ψ2))}

Proof: Consider the partial map fi : Nn → Nn such that

{(x⃗, x⃗′) ∈ N
2n : x⃗ ∈ REL(ψi), x⃗′ = Aix⃗ + b⃗i}

We have that REL((A, b⃗,ψ)) is equal to

{(x⃗, x⃗′) ∈ N
2n : ∃y⃗ ∈ N

n f1(x⃗) = y⃗, x⃗ ∈ dom(f1), f2(y⃗) = x⃗′, y⃗ ∈ dom(f2)}

Now, the condition “∃y⃗ ∈ Nn f1(x⃗) = y⃗, x⃗ ∈ dom(f1), f2(y⃗) = x⃗′, y⃗ ∈ dom(f2)” is equivalent
to the conditions:
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1. x⃗′ = A2A1x⃗ + A2b⃗1 + b⃗2,

2. x⃗ ∈ REL(ψ1),

3. A1x⃗ + b⃗1 ∈ REL(ψ2).

So, it is easy to see that the triple (A, b⃗,ψ) below satisfies the requirements:

⋆ A = A2A1,
⋆ b⃗ = A2b⃗1 + b⃗2,
⋆ ψ = ∃ y⃗ ψ1(⃗x) ∧ y⃗ = A1⃗x + b⃗1 ∧ ψ2(⃗y), where x⃗ = (x1, . . . , xn), y⃗ = (y1, . . . , yn) and

y⃗ = A1⃗x + b⃗1 is a shortcut for a conjunction made of n conjuncts. Indeed, assuming that
A1 = (ai,j)(i,j)∈[1,n]2, each conjunct is of the form yi =

∑

j ai,jxj + b⃗1(i).
QED

5.3.2 Loop effects
In the forthcoming class of admissible counter systems, we shall assume that the control graph is
flat. Hence, it becomes essential to represent symbolically the effect of loops on counter values.
Anyhow, this sounds as a necessary condition to establish that a reachability relation is semilinear.
We already know by Lemma 5.3.1 that transitions in affine counter systems are closed under
bounded compositions.
Let R be a binary relation of dimension n. The reflexive and transitive closure of R, written

R∗, is a subset of N2n such that (y⃗, y⃗′) ∈ R∗ iff there are x⃗1, . . . x⃗k ∈ Nn such that

⋆ x⃗1 = y⃗,
⋆ x⃗k = y⃗′,
⋆ for i ∈ [1, k − 1], we have (x⃗i, ⃗xi+1) ∈ R.
If R is Presburger definable, then this does not imply that R∗ is Presburger definable too. For

instance, if R = {(α, 2α) ∈ N2 : α ∈ N} then R∗ = {(α, 2βα) ∈ N2 : α, β ∈ N} is not
Presburger definable. By contrast, if S = {(α,α + 1) ∈ N2 : α ∈ N} then S∗ = {(α, β) ∈
N2 : α < β, α, β ∈ N} is Presburger definable. The question of deciding whether the reflexive
and transitive closure of a Presburger definable binary relation is Presburger definable is intimately
related to the fact that accessibility relations from counter systems are Presburger definable, which
leads to decidability when effectiveness is guaranteed too.
Indeed, consider the following loop with q1 = qk:

q1
ϕ1(x1,...,x′n)
−−−−−−→ q2

ϕ2(x1,...,x′n)
−−−−−−→ · · ·

ϕk−1(x1,...,x′n)
−−−−−−−→ qk−1

ϕk(x1,...,x′n)
−−−−−−→ qk.

The effect of the loop can be represented by the Presburger formula below:

ψ(x⃗1, x⃗′)
def
= ∃ y⃗1, . . . , y⃗k ϕ1(⃗x, y⃗1) ∧ ϕ2(y⃗1, y⃗2) ∧ · · · ∧ ϕk(y⃗k, x⃗′)

In order to decide the reachability problem on the loop, it is essential to represent symbolically
the set {(x⃗, x⃗′) ∈ N2n : (q1, x⃗) −→ (q2, y⃗1) · · · −→ (qk, x⃗′)}. The best we can hope for is that this
set is Presburger definable. This motivates the definition below.
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Definition 5.3.1. Given a binary relation R ⊆ N2n, we define the counting iteration of R as the
relation RCI ⊆ Nn × N × Nn such that (⃗a, i, b⃗) ∈ RCI

def
⇔ (⃗a, b⃗) ∈ Ri. R has a Presburger

counting iteration if its counting iteration is Presburger definable. ∇

If R has a Presburger counting iteration, then there exists a Presburger formula χ(⃗x, z, y⃗) such
that REL(χ) = RCI. Consequently, the relation R∗ is Presburger definable since REL(∃ z χ) =
R∗. Definition 5.3.1 is precisely the concept we need to show that the model-checking for
LTLCS(PrA) is decidable for admissible counter systems (see Theorem 5.3.5). Observe that
{(α,α+ 1) ∈ N2 : α ∈ N} has a Presburger counter iteration witnessed by a Presburger formula
of the form x′ = x + y.
Given A ∈ Zn×n, we write A∗ to denote the monoid generated from A with A∗ = {Ai : i ∈

N}. The identity element is naturally the identity matrix A0 = I . Given a matrix A ∈ Zn×n,
checking whether the monoid generated by A is finite, is decidable [MS77].

By way of example, with A =

(

1 0
1 1

)

, we have

A2 =

(

1 0
1 1

)(

1 0
1 1

)

=

(

1 0
2 1

)

A3 =

(

1 0
3 1

)

. . . Am =

(

1 0
m 1

)

So A does not have the finite monoid property. Finiteness of the monoid generated from A is
interesting because of the lemma below.

Lemma 5.3.2. [Boi98, FL02] Let R be a binary relation of dimension n defined by the triple
(A, b⃗,ψ) such that R = {(x⃗, x⃗′) ∈ N2n : x⃗′ = Ax⃗ + b⃗ and x⃗ ∈ REL(ψ)}. If A∗ is finite, then R
has a Presburger counting iteration.

It is worth adding that one can also effectively compute the Presburger formula encoding the
relation R∗, which is exactly what is done in the proof below.
Proof: Let R be a binary relation of dimension n defined by the triple (A, b⃗,ψ). We write g to
denote the total map from Zn to Zn such that g(⃗a) = Aa⃗ + b⃗.
Since A∗ is finite, there are α, β ∈ N such that Aα+β = Aα. By [MS77], α and β can

be effectively computed from A and below these values are therefore constants. The following
equalities are easy to show (k ≥ 1):

⋆ gk(⃗a) = Aka⃗ + Ak−1⃗b + · · ·+ b⃗ (shown by an easy induction on k).

⋆ gk(⃗0) = Ak−1⃗b + · · ·+ b⃗.

Before going any further, let us fix some notations about tuples of terms from Presburger
arithmetic. We recall that terms in Presburger arithmetic are defined by the grammar t ::= 0 |
1 | x | t + t where x ∈ VAR and 0 and 1 are distinguished constants (see also Section 1.3).
Given an n-tuple t⃗ of terms and k ≥ 1, we write gk(⃗t) to denote the n-tuple obtained from the
expression Ak t⃗ + Ak−1⃗b + · · · + b⃗. Similarly, we write ψ(⃗t) to denote the Presburger formula
∃x1, . . . , xn ψ(x1, . . . , xn) ∧ (

∧

i∈[1,n] xi = t⃗(i)). In the case t⃗ contains negative constants or neg-
ative factors, we replace xi = t⃗(i) by its variant in which negative terms are moved to the left of
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the equality. In this way, we completely respect our initial syntax for Presburger arithmetic. For
instance, if t⃗ takes the value below

t⃗ =

(

2 −2
−3 7

)(

x
y

)

+

(

1
−2

)

=

(

2x − 2y + 1
−3x + 7y − 2

)

then ψ(⃗t) is equal to

∃x1, . . . , xn ψ(x1, . . . , xn) ∧ x1 + 2y = 2x + 1 ∧ x2 + 3x + 2 = 7y.

Remember that (x⃗, x⃗′) ∈ R∗ iff there is i ≥ 0 such that x⃗′ = gi(x⃗) and for every 0 ≤ j < i,
gj(x⃗) |= ψ. So, the Presburger formula defining R∗ could look like

∃ i (x⃗′ = gi(⃗x)) ∧
∧

j<i

ψ(gj (⃗x)).

Unfortunately, gi(⃗x) is a shortcut for Aix⃗ + Ai−1⃗b + · · · + b⃗ and the generalized conjunction has
exactly i conjuncts, which disqualifies this expression as a formula from Presburger arithmetic.
Instead, the proof below uses Aα+β = Aα in order to replace i applications of the map g by
expressions in which i may appear as a variable that is multiplied by a constant factor. To do
so, we shall show that for q ≥ 1, we have gα+qβ (⃗a) = gα(⃗a) + qAαgβ (⃗0); observe that q as an
exponent is transformed into a factor and Aαgβ (⃗0) is in Zn. First, let us consider the following
identities:

gα+β (⃗a) = Aα+βa⃗ + Aα+β−1⃗b + · · ·+ b⃗.
= Aα+β a⃗ + Aα(Aβ−1⃗b + · · ·+ b⃗) + (Aα−1⃗b + · · ·+ b⃗)
= Aαa⃗ + Aαgβ (⃗0) + (Aα−1⃗b + · · · + b⃗)
= gα(⃗a) + Aαgβ (⃗0).

Now, let us show that for q ≥ 1, we have gα+qβ (⃗a) = gα(⃗a) + qAαgβ (⃗0). The case q = 1 is
treated above. For the induction step, let us compute the value of gα+(q+1)β (⃗a). By the induction
hypothesis, we have gα+(q+1)β (⃗a) = gα(gβ (⃗a)) + qAαgβ (⃗0). Using the argument from the base
case, we get gα+(q+1)β (⃗a) = gα(⃗a)+Aαgβ (⃗0)+ qAαgβ (⃗0), which entails gα+(q+1)β (⃗a) = gα(⃗a)+
(q + 1)Aαgβ (⃗0).
For each i ≥ 0, it is easy to define a Presburger formula R[i] such that REL(R[i]) = {(y⃗, y⃗′) ∈

N2n : y⃗Riy⃗′}. For instance, R[0] is equal to
∧

j∈[1,n] xj = x′j and R[i + 1] is equal to ∃ y⃗ ψ(⃗y) ∧

R[i](⃗x, y⃗)∧ x⃗′ = Ay⃗ + b⃗, where x⃗′ = Ay⃗ + b⃗ is again understood as a conjunction with n conjuncts.
In order to show that R has a Presburger counting iteration, we define below a formula

χ(⃗x, z, x⃗′) such that RCI = REL(χ(⃗x, z, x⃗′)). To do so, we use the fact that whenever (y⃗, y⃗′) ∈ Ri,
either (y⃗, y⃗′) ∈ Ri and i < α or (y⃗, y⃗′) ∈ Ri, i ≥ α, there are (r, q) ∈ [0, β − 1] × N such that
i−α = r + qβ, y⃗′ = gα(y⃗) + qAαgβ (⃗0) and for 0 ≤ i′ < i, gi′(y⃗) satisfies ψ. Here is the formula
χ(⃗x, z, x⃗′):

((z = 0 ∧ R[0]) ∨ · · · ∨ (z = α− 1 ∧ R[α− 1])) ∨ (z ≥ α ∧ ∃q (χq,0 ∨ · · · ∨ χq,β−1)
︸ ︷︷ ︸

one formula per remainder r

)
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where for r ∈ [0, β − 1], the formula χq,r is defined as follows:

(z = α + r + β × q) ∧ (∃y⃗′ (y⃗′ = Aαx⃗ + qAα(Aβ−1⃗b + · · · + b⃗))
︸ ︷︷ ︸

y⃗′=gz−r (⃗x)

∧(x⃗′ = gr(y⃗′))

︸ ︷︷ ︸

x⃗′=gz(⃗x)

) ∧ χguard(z, x⃗)

The formula χguard(z, x⃗) checks that the guard is satisfied for all the intermediate configura-
tions:

χguard(z, x⃗)
def
= (

∧

i∈[1,α]

∃ y⃗ R[i](⃗x, y⃗)) ∧ ∀ z′ α ≤ z′ < z ⇒

∨

r′∈[1,β−1]

∃ q′ (z′ = α + r′ + q′β ∧ (∃y⃗′ (y⃗′ = Aαx⃗ + q′Aα(Aβ−1⃗b + · · · + b⃗))
︸ ︷︷ ︸

y⃗′=gz′−r′ (⃗x)

∧

guard satisfaction
︷ ︸︸ ︷

ψ(gr′(y⃗′)
︸ ︷︷ ︸

=gz′ (⃗x)

) )))

It is now easy to check that χ(⃗x, z, x⃗′) belong to Presburger arithmetic and in particular no multi-
plication between variables is present in it. QED

A recent work unifying [CJ98, FL02, BGI09, BIL09] by considering all the families of for-
mulae labelling transitions from these works can be found in [BIK10].
A loop in an affine counter system has the finite monoid property def

⇔ its corresponding affine
update (A, b⃗,ψ), possibly obtained by composition of several affine updates, satisfies that A∗ is
finite.

5.3.3 Admissible counter systems
Let us introduce below the class of admissible counter systems.

Definition 5.3.2. A counter system S is admissible iff

1. S is an affine counter system,
2. there is at most one transition between two control states,
3. its control graph is flat (see Section 1.4.3),
4. each loop has the finite monoid property.

∇

Uniqueness of the transitions between two control states is a consequence of flatness. Defini-
tion 5.3.2 can be generalized as done in [DFGvD06] by requiring flatness, (effective) Presburger
counting iteration for every loop and functionality, which are all properties satisfied by admissible
counter systems with Definition 5.3.2. The restriction to admissible counter systems mainly takes
advantage of Lemma 5.3.2 as shown below.
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q q′

t1

t7

t3

t8

t4

t5

t10

t11

t9

t2

t6

Figure 5.3: An admissible counter system

Theorem 5.3.3. [FL02, Ler03] Let S be an admissible counter system and q, q′ ∈ Q. One can
effectively compute a Presburger formula ϕ such that for every valuation val, we have val |= ϕ

iff (q, (val(x1), . . . ,val(xn)))
∗
−→ (q′, (val(x′1), . . . ,val(x

′
n))).

If we give up the assumption on the finite monoid property, the reachability problem is un-
decidable for flat affine counter systems [Cor02]. However, Theorem 5.3.3 still holds true if we
relax a bit the notion of admissibility for instance by allowing that between two control states for
which no transition belongs to a cycle, more than one transitions are allowed.
Proof: Let S = (Q, n, δ) be an admissible counter system and q, q′ ∈ Q. We define below a finite-
state automaton that overapproximates the language of transitions between q and q′ (constraints on
counters are simply ignored). By way of example, let us consider the admissible counter system
from Figure 5.3.3. The language of transitions between q and q′ can be approximated by the union
below:

t1t3(t4t2t3)
∗t5t

∗
6 ∪ t7t8(t10t9)

∗t11t
∗
6

Let A = (Σ, Q, Q0, δ
′, F ) be a finite-state automaton such that

⋆ Σ = δ,
⋆ Q0 = {q}, F = {q′},

⋆ q1
t
−→ q2 ∈ δ′

def
⇔ t is of the form q1

(A,⃗b,ψ)
−−−→ q2.

Since S is flat, L(A) is a finite union of bounded languages of the form

L = u1(v1)
∗u2(v2)

∗ · · · (vk)
∗uk+1

with ui ∈ Σ∗ and vi ∈ Σ+. Moreover, by flatness, for each ui occurring between (vi)∗ and (vi+1)∗,
we have ui ∈ Σ+.
By Lemma 5.3.2, there is a Presburger formula that encodes the effect of applying a finite

number of times the sequence of transitions vi. Similarly, by Lemma 5.3.1, there is a Presburger
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formula that encodes the effect of applying once the sequence of transitions ui. Hence, one
can effectively compute the effect of applying a sequence of transitions in the language L; it is
sufficient to use existential quantification for intermediate positions.
Let us be a bit more precise by considering the sequence below:

u1(v1)
∗u2(v2)

∗ · · · (vk)
∗uk+1

⋆ By closure under composition, for i ∈ [1, k + 1], there is a Presburger formula ψi
seg (⃗x, x⃗

′)
that encodes the effect of segments of transitions ui.

⋆ By previous theorem, for i ∈ [1, k], there is a Presburger formula ψi
loop(⃗x, z, x⃗

′) that encodes
the effect of the loop vi.

⋆ Presburger formula encoding the effect of the above sequence is the following (free vari-
ables in x⃗, x⃗′):

∃ z1, . . . , zk, y⃗′1, y⃗2, y⃗′2, . . . , ⃗yk+1

ψ1
seg (⃗x, y⃗

′
1) ∧ ψ

1
loop(y⃗

′
1, z1, y⃗2) ∧ ψ

2
seg(y⃗2, z1, y⃗′2) ∧ ψ

2
loop(y⃗

′
2, z2, y⃗3) ∧ · · ·

· · · ∧ ψk
loop(y⃗

′
k, zk, ⃗yk+1) ∧ ψ

k+1
seg ( ⃗yk+1, x⃗′)

Since L(A) is made of a finite union of bounded languages and Presburger arithmetic has ob-
viously disjunction, one can effectively compute a Presburger formula ϕ(⃗x, x⃗′) such that for every
valuation val, we have val |= ϕ iff (q, (val(x1), . . . ,val(xn)))

∗
−→ (q′, (val(x′1), . . . ,val(x

′
n))).

QED

As observed in [CJ98, FL02, Ler03, BIL09], flatness is very often essential to get effective
semilinear reachability sets (but of course this is not a necessary condition, see e.g. [Par66,
HP79]). However, flat counter systems are seldom natural in real-life applications. That is why, a
relaxed version of flatness has been considered in [LS05, DFGvD06] so that an initialized counter
system (S, (q, x⃗)) is flattable whenever there is a partial unfolding of (S, (q, x⃗)) that is flat and
has the same reachability set as (S, (q, x⃗)). In that way, reachability questions on (S, (q, x⃗)) can
still be decided even in the absence of flatness. For the sake of completeness, let us provide below
basic definitions about flattable counter systems.
Let L be a finite union of bounded languages of the form

u1(v1)
∗u2(v2)

∗ · · · (vk)
∗uk+1,

where ui ∈ Σ∗, vi ∈ Σ+, Σ = δ is the set of transitions from S such that in the expression

u1(v1)
∗u2(v2)

∗ · · · (vk)
∗uk+1,

two consecutive transitions share an intermediate control state (as in the proof of Theorem 5.3.3).
So, (S, (q, x⃗)) is initially flattable [LS05] iff there is some language L of the above form such that
the configurations reachable from (q, x⃗) are those reachable by firing the sequences of transitions
from L (not every such sequence leads to a run). So, there is some language L of the above form
such that

{(q′, x⃗′) : (q, x⃗)
∗
−→ (q′, x⃗′)} = {(q′, x⃗′) : (q, x⃗)

u
−→ (q′, x⃗′), u ∈ L}
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For instance, the initialized relational counter system (S, (q1, 0⃗)) in Figure 1.4.3 is initially flat-
table. Similarly, S is uniformly flattable [LS05] iff there is some language L of the above form
such that

∗
−→= {((q, x⃗), (q′, x⃗′)) : (q, x⃗)

u
−→ (q′, x⃗′), u ∈ L}

Surprisingly, standard classes of counter automata contain already flattable counter systems.

Theorem 5.3.4. [LS05]

(I) Uniformly reversal-bounded counter automata are uniformly flattable and reversal-bounded
initialized counter automata are initially flattable.

(II) Initialized gainy counter automata are initially flattable.

Theorem 5.3.4(I) can be refined since the language L, finite union of bounded languages, can
be effectively computed from a uniformly reversal-bounded counter automaton, which provides
an alternative proof for the effective semilinearity of the reachability relation. Indeed, an initial-
ized counter automaton and a finite union of bounded languages can be simulated by an admissible
counter system.

5.3.4 LTLCS(PrA) model-checking for admissible counter systems
A consequence of Theorem 5.3.3, the reachability problem for admissible counter systems is
decidable. However, this result can be improved by showing decidability of LTLCS(PrA) model-
checking thanks to an encoding of runs in Presburger arithmetic.

Theorem 5.3.5. [DFGvD06] Existential model-checking problem for LTLCS(PrA) restricted to
admissible counter systems is decidable.

In [DFGvD06], Theorem 5.3.5 is extended to a branching-time variant of LTLCS(PrA).
Proof: Let S = (Q, n, δ) be an admissible counter system, (q, x⃗) be a configuration and ϕ be an
LTLCS(PrA) formula. Without any loss of generality, we can assume that ϕ has no control states
as atomic formulae; otherwise we can add one counter that behaves as the control states. We wish
to check whether there is an infinite run ρ starting from (q, x⃗) such that ρ, 0 |= ϕ. To do so, we
shall build a Presburger formula ψ (with free variables x1, . . . , xn) such that for every valuation
val, we have val |= ψ iff there is an infinite run ρ starting from (q, (val(x1), . . . ,val(xn))) such
that ρ, 0 |= ϕ. Then, the existence of the infinite run from (q, x⃗) satisfying ϕ is equivalent to the
satisfaction of ψ ∧ (

∧

i∈[1,n] xi = x⃗(i)).
As in the proof of Theorem 5.3.3, we consider sequences of transitions and we introduce a

Büchi automaton that accepts ω-sequences of transitions starting from the control state q. Let
A = (Σ, Q, Q0, δ

′, F ) be the Büchi automaton such that

⋆ Σ = δ, Q0 = {q}, F = Q,

⋆ q1
t
−→ q2 ∈ δ′

def
⇔ t is of the form q1

(A,⃗b,ψ)
−−−→ q2.
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Since S is flat, L(A) is a finite union of languages of the form

L = u1(v1)
∗u2(v2)

∗ · · · (vk)
ω

with ui ∈ Σ∗ and vi ∈ Σ+. Such an expression is called below a run schema and it may correspond
to an infinite number of runs starting at (q, x⃗) depending how many times each sequence vi is
visited. Alternatively, it may not correspond to any run from (q, x⃗), for instance if the sequence
of transitions vk can be taken only a finite amount of times. For instance, with the admissible
counter system described in Figure 5.3.3, we obtain the following run schemata:

t1t3(t4t2t3)
∗t5t

ω
6 , t1t3(t4t2t3)

ω, t7t8(t10t9)
∗t11t

ω
6 , t7t8(t10t9)

ω.

Observe that the number of run schemata is at most exponential in the size of S and the run
schemata can be effectively computed.
A run schema L = u1(v1)∗u2(v2)∗ · · · (vk)ω and natural numbers m1, . . . , mk−1 specify a

unique sequence u1(v1)m1u2(v2)m2 · · · (vk)ω that may correspond to an infinite run from (q, x⃗)
(or not). However, note that once L and m1, . . . , mk−1 are fixed, there is at most one infinite
run from (q, x⃗) obtained from the sequence of transitions u1(v1)m1u2(v2)m2 · · · (vk)ω. Indeed, the
update functions in affine counter systems (and a fortiori in admissible counter systems) are also
deterministic.
By using Lemma 5.3.1 and Theorem 5.3.3, one can effectively build Presburger formulae

χ∃
L(z1, . . . , zk−1, x⃗) and χsteps

L (z1, . . . , zk−1, x⃗, z, x⃗′) (see details of the contruction in [DFGvD06])
such that for every valuation val,

⋆ val |= χ∃
L(z1, . . . , zk−1, x⃗) iff there is an infinite run starting from (q, (val(x1), . . . ,val(xn)))

obtained from the sequence of transitions u1(v1)val(z1)u2(v2)val(z2) · · · (vk)ω.
⋆ val |= χsteps

L (z1, . . . , zk−1, x⃗, z, x⃗′) iff val |= χ∃
L(z1, . . . , zk−1, x⃗) and the val(z)th tuple of

counter values in the infinite run is (val(x′1), . . . ,val(x
′
n)).

In order to define such formulae, let us just mention that one needs to introduce variables for the
counter values obtained after applying the transitions for the following prefixes:

u1, u1(v1)
val(z1), u1(v1)

val(z1)u2, u1(v1)
val(z1)u2(v2)

val(z2), . . . , u1(v1)
val(z1) · · · (vk−1)

val(zk−1)

The formula ψ can be now defined as a finite disjunction (each disjunct is parameterized by
a run schema) and the values m1, . . . , mk−1 are encoded by existential quantifications, which
allows us to quantify over all possible runs in Presburger arithmetic. The translation map tL,
parametrized by the run schema L, simply mimicks LTLCS(PrA) semantics in first-order logic,
i.e. in Presburger arithmetic. Here is the definition of ψ:

∨

L=u1(v1)∗u2(v2)∗···(vk)ω

(∃z1, . . . , zk−1, z0 χ
∃
L(z1, . . . , zk−1, x⃗) ∧ z0 = 0 ∧ tL(z0,ϕ))

The translation map tL is defined as follows:

⋆ tL is homomorphic for Boolean connectives.
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q0 q1 q2
id id

x′1 = x′2 = x′3 = 0

x′1 = x1 + 1 x′2 = x2 + 1 x′3 = x3 + 1

Figure 5.4: An almost admissible counter system

⋆ tL(z,ψ(⃗y, x⃗))
def
= ∀ x⃗′ (χsteps

L (z1, . . . , zk−1, x⃗, z, x⃗′) ⇒ ψ(⃗y, x⃗′)) where ψ(⃗y, x⃗) is an atomic
formula with a tuple y⃗ of variables from VARp.

⋆ tL(z, Xψ)
def
= ∃ z′ (z′ = z + 1) ∧ tL(z′,ψ).

⋆ The definition of tL(z,ψ1Uψ2) is analogous.

⋆ tL(z, ∀ y ψ)
def
= ∀ y tL(z,ψ).

QED

It is worth noting that we have established decidability but the characterization of the com-
putational complexity is still open for the model-checking problem for LTLCS(PrA) restricted to
admissible counter systems. Moreover, it is open whether the above decidability results still hold
with the linear µ-calculus extension.
Moreover, in the above proof, flatness is essential and Figure 5.4 presents a affine counter

system Su of dimension 3 such that between two control states there is at most one transition
and each transition defines a functional relations (id refers to a transition that do not change the
counter values). However, Su is not flat because of the existence of the transition between q2 and
q1.

Theorem 5.3.6. Existential model-checking problem for LTLCS(PrA) restricted to the affine
counter system Su is undecidable.

Proof: The proof is by reducing the recurrence problem for nondeterministic Minsky machines
that is shownΣ1

1-hard in [AH94]. A nondeterministicMinskymachineM consists of two counters
C1 and C2, and a sequence of n ≥ 1 instructions. The lth instruction is written as one of the
following:

l : Ci := Ci + 1; goto l′ or goto l′′.
l : if Ci = 0 then goto l′ else Ci := Ci − 1; goto l′′0 or goto l′′1 .

We represent the configurations of M by triples (c1, c2, l) where 1 ≤ l ≤ n, c1 ≥ 0 and
c2 ≥ 0. A computation ofM is a finite sequence of related configurations, starting with the initial
configuration (0, 0, 1) (location encoded as last element). The recurrence problem can be stated
as the existence of an infinite execution that passes through the instruction 1 infinitely often. We
shall build a formula ϕ of LTLCS(PrA) such thatM visits 1 infinitely often iff there is an infinite
run ρ starting at (q2, (0, 0, 1)) such that ρ, 0 |= ϕ. The formula ϕ is of the form

GF(x3 = 1 ∧ Xq0) ∧
∧

1≤l≤n

Gψl,
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where ψl encodes the l-th instruction. For instance, the l-th instruction “C1 := C1 + 1; goto l′′0 or
goto l′′1 is encoded by

∀y, z (x1 = y ∧ x2 = z ∧ x3 = l ∧ Xq0) ⇒

X(¬(Xq0) U (Xq0 ∧

increase C1
︷ ︸︸ ︷

x1 = y + 1 ∧ x2 = z ∧ (x3 = l′′0 ∨ x3 = l′′1))).

Other instructions can be encoded similarly. QED

Here are a few open problems related to the second part of this chapter:

⋆ Computational complexity of the model-checking problem for LTLCS(PrA) restricted to
admissible counter systems is still open.

⋆ Decidability extends to a CTL⋆ extension of LTLCS(PrA). What about the linear µ-calculus
extension?

⋆ Which conditions in the definition of admissible counter systems can be relaxed so that the
model-checking problem for LTLCS(PrA) remains decidable?

5.4 Exercises
Exercise 5.4.1. Show that control state reachability problem for gainy counter automata is equiv-
alent to control state reachability problem for reset VASS.

Exercise 5.4.2. Prove Lemma 5.1.1.

Exercise 5.4.3.
q2

q1

(

„

1 0
0 1

«

,

„

3
−3

«

, x1 < x2)(

„

1 0
0 1

«

,

„

−1
2

«

, ⊤)

1. Computeϕ(x1, x2, x
′
1, x

′
2) such that for every val, we haveval |= ϕ iff (q1,val(x1),val(x2))

∗
−→

(q1,val(x′1),val(x
′
2)).

2. Same question when ⊤ is replaced by ¬(x1 ≡15 x2).

Exercise 5.4.4.
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q2

q1

(

„

1 0
0 1

«

,

„

3
11

«

, ⊤)(

„

1 0
0 1

«

,

„

−1
24

«

, ⊤)

1. Compute ϕ(x1, x2, z, x
′
1, x

′
2) such that for every val, we have val |= ϕ iff on the unique run

starting at (q1,val(x1),val(x2)), the val(z)th configuration has counter values (val(x′1),val(x′2)).

2. Given a Presburger formula ψ(y1, y2) viewed as a constraint on counter values, compute
ϕ′(x1, x2) such that for every val, we have val |= ϕ′ iff on the unique run starting at
(q1,val(x1),val(x2)), the number of configurations with counter values satisfying ψ(y1, y2)
is infinite.

Exercise 5.4.5. Define the formulae χ∃
L(z1, . . . , zk−1, x⃗) and χsteps

L (z1, . . . , zk−1, x⃗, z, x⃗′) in the
proof of Theorem 5.3.5.

Exercise 5.4.6. Prove Theorem 5.3.4(II). Hint: use the fact that any upward closed subset of Nn

(for the ordering ≼) has a finite set of minimal elements.

Exercise 5.4.7. Complete the proof of Theorem 5.3.5.

Exercise 5.4.8. Consider the extension of LTLCS(PrA) with existential and universal quantifi-
cations over infinite runs as in the branching-time temporal logic CTL⋆. Show that the model-
checking problem for this extension over admissible counter systems is decidable.

Exercise 5.4.9. Consider the variant of LTLCS(PrA) with existential and universal quantifica-
tions over infinite runs as in the branching-time temporal logic CTL⋆ in which the atomic formu-
lae are reduced to control states. Show that the model-checking problem for this extension over
VASS is undecidable.

Exercise 5.4.10. Let LTL+ be the fragment of the logic LTLCS(PrA)

⋆ with temporal operators X, U and standard Boolean connectives,

⋆ atomic formulae are restricted to control states or zero-tests of the form xj = 0.

⋆ without first-order quantification.

EXISTENTIAL MODEL-CHECKING PROBLEM FOR LTL+ RESTRICTED TO VASS is defined as
follows:

input: VASS V , configuration (q, x⃗) and a formula ϕ built over the control states and counters
from V .

question: is there an infinite run ρ starting at (q, x⃗) satisfying ϕ (written ρ, 0 |= ϕ)?
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Let us consider the VASS below:

A

B

C

„

0
1

« „

0
0

«

„

1
−1

« „

0
0

«

1. For each formula below, determine whether there is an infinite run starting at (A, 0⃗) such
that ρ, 0 |= ϕ.

(a) ϕ = GF A,
(b) ϕ = GF (x2 = 0),
(c) ϕ = GF (x1 = 0) ∧ GF C,
(d) ϕ = G(C ⇒ XG¬(x1 = 0)),
(e) (GF A) ∧ (GF B) ∧ (GF C) ∧ (GF x2 = 0) ∧ (GF ¬(x1 = 0)).

2. What are the formulae among (a)-(e) such that all the infinite runs starting at (A, 0⃗), we
have ρ, 0 |= ϕ?

3. Show that the existential model-checking for LTL+ restricted to VASS is undecidable.

Exercise 5.4.11. Let us consider the affine counter system below:

q1 q2 q3

(

„

1 0
0 1

«

,

„

3
−3

«

, x1 < x2)

(

„

1 0
0 1

«

,

„

1
−1

«

, ⊤)

(

„

2 0
0 2

«

,

„

3
−3

«

, x1 = x2)

Design a Presburger formula ϕ(x1, x2, y1, y2) such that for every valuation val, we have val |=
ϕ iff (q1,val(x1),val(x2))

∗
−→ (q3,val(y1),val(y2)), i.e. (q3,val(y1),val(y2)) is reachable from

(q1,val(x1),val(x2)).
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Chapter 6

Concluding Remarks

In order to conclude these notes, other related topics are enumerated below. By no means, this is
intended to be exhaustive and the main intention is to provide pointers for further reading.
Other topics related to these notes could have been added. Here some examples below:

⋆ Theory of well-structured transition systems, see e.g., [AJ96, FS01, FMP04].

⋆ The decidability proof for the reachability problem for VASS, see e.g., [Reu90, Lam92,
Mog01, Ler11].

⋆ Other decidability and computational complexity issues for reachability andmodel-checking
problems, see e.g., [FS00, LS05, AH09, HKOW09].

Finally, the following research trends generate an increasing interest:

⋆ Transition closures of integer relations, see e.g. [BIK10].

⋆ The branching extension of VASS, leading to BVASS [VGL05, DJLL09, Laz10, Sch10a].

⋆ SMT solvers for model-checking infinite-state systems, see e.g., [GNRZ07, BFM+10].

⋆ Relationships between counter automata and data logics [BMS+06, DL06, DDG07, BL10].
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[Tho99] W. Thomas. Complementation of Büchi automata revisited. In Jewels are Forever, Contribu-
tions on Theoretical Computer Science in Honor of Arto Salomaa, pages 109–122. Springer,
1999. (Cited on page 29)

[TL10] A. To and L. Libkin. Algorithmic metatheorems for decidable LTL model checking over
infinite systems. In FOSSACS’10, volume 6014 of Lecture Notes in Computer Science, pages
221–236. Springer, 2010. (Cited on page 94)

[Tur36] A. Turing. On computable numbers, with an application to the entscheidungsproblem. In
Proceedings of the London Mathematical Society, number 42 in 2, pages 230–265, 1936.
(Cited on page 10)

[Urq99] A. Urquhart. The Complexity of Decision Procedures in Relevance Logic II. The Journal of
Symbolic Logic, 64(4):1774–1802, 1999. (Cited on pages 61, 97)

[Var88] M. Vardi. A temporal fixpoint calculus. In 15th Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, San Diego, pages 250–259. ACM, 1988. (Cited
on page 29)

[VGL05] K. N. Verma and Jean Goubault-Larrecq. Karp-Miller Trees for a Branching Extension of
VASS. Discrete Mathematics and Theoretical Computer Science, 7:217–230, 2005. (Cited
on pages 61, 115)

[VVN81] R. Valk and G. Vidal-Naquet. Petri nets and regular languages. Journal of Computer and
System Sciences, 23:299–325, 1981. (Cited on pages 53, 83)

[VW94] M. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-
tion, 115:1–37, 1994. (Cited on page 30)

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72–99, 1983.
(Cited on page 29)



BIBLIOGRAPHY 129

[WZ00] F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning based on
RCC-8. In KR’00, pages 3–14, 2000. (Cited on page 38)

[Yen92] H.-C. Yen. A unified approach for deciding the existence of certain net paths. Information
and Computation, 96:119–137, 1992. (Cited on pages 54, 60)

[ZL03] S. Dal Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. In RTA’03,
volume 2706 of Lecture Notes in Computer Science, pages 246–263. Springer, 2003. (Cited
on page 13)


