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Abstract: This paper is devoted to the navigation of a robot in orchard headlands using embedded sensors such as lasers,
Lidars or cameras. The main idea is to consider a differential robot model directly in polar coordinates and
not in Cartesian coordinates which makes it possible to obtain simpler expressions of the outputs. Then two
nonlinear output state feedback controllers are proposed to track two shapes based on spirals allowing to go
from one row of fruit trees to another. These controllers are based on an input to output linearization and
proved to be very efficient on simulations.

1 INTRODUCTION

According to (Foley et al., 2011), agriculture will
need by 2050 to double its production to feed the in-
creasing population. Mechanization has been iden-
tified as one of the best solutions to increase signifi-
cantly the food production (Reid, 2011). For mowing,
spraying, pruning, harvesting in fields or orchards,
one of the main challenge consists in navigating. In
other words, the robot has to autonomously drive from
the entrance of a row to its exit, then navigate in the
headlands to reach the entrance of the next row. This
process is repeated to cover the area of interest. This
problem has been addressed for many years as it is
shown in the review proposed in (Li et al., 2009).
Most of the presented solutions focus on open field
navigation and rely on GPS. The presented work is in-
cluded in the orchards navigation problem where GPS
cannot be used because its signal is blocked by the
dense canopy. For this reason, orchards navigation
systems are based on sensors such as laser range find-
ers, Lidars or cameras. For example, laser range find-
ers and cameras are used to drive through rows (Sub-
ramanian et al., 2006), (Sharifi and Chen, 2015). The
headland navigation problem is addressed in works
such as (Andersen et al., 2010), (Zhang et al., 2014)
and (Bayar et al., 2015) where sensory data (proprio-
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ceptive and/or exteroceptive) are used to localize the
robot in a metric map of the orchard in order to follow
a precomputed path. However, keeping an updated
metric map seems challenging due to constant varia-
tion of the environment. Indeed, over the years, trees
grow up, and are pruned; over the seasons, leaves
grow then disappear; over the days, fruits grow, bend
branches and finally fall. Moreover, metric localiza-
tion can accumulate errors and lead to the navigation
failure. To overcome these drawbacks, we have pre-
sented in (Durand-Petiteville et al., 2017) a solution
relying on a topological representation of the envi-
ronment coupled with a set of output feedback con-
trollers. Especially, the headland navigation consists
in a U-shape turn around the last tree of the row. It
is performed thanks to an output feedback controller
tracking a spiral, inspired by the work presented in
(Boyadzhiev, 1999).

However, as presented in (Bochtis and Vou-
gioukas, 2008) and in (Zhang et al., 2014), it is not
always possible to perform a simple U-shape turn be-
cause of the minimum turning radius of the robot
which might be too small to deal with narrow rows.
It is then mandatory to consider different shapes for
turns. Thus, in this paper, we address the headland
navigation by designing controllers allowing to per-
form two different shapes of turns (see figure 1). The
first one, the classical U-shape turn, is used when



the robot turning radius is large enough to allow the
vehicle directly reach the middle of the next row.
When it is not the case, a more complex shape for the
turn known as Ω-shape turn is chosen as proposed in
(Bochtis and Vougioukas, 2008). This shape is clas-
sically used when the robot can only drive forward.
The lack of sensors to detect hazards while driving
backward usually motivates this choice.

Figure 1: Dashed red: U-shape ‖ Solid blue: Ω-shape

The problem considered in this paper is centered
around control only (the planning level is not consid-
ered here). Thus, this work aims i) at creating the
paths of reference to perform U-turn maneuvers (ei-
ther Ω or U, built from spirals, following the ideas
proposed in (Boyadzhiev, 1999)) and ii) at design-
ing nonlinear controllers able to track the predefined
shapes. The whole problem is stated in terms of po-
lar coordinates instead of Cartesian ones. This for-
mulation allows to design output feedback controllers
which depend on the measurements and not only on
the robot absolute position for instance as it has been
done in (d’Andrea Novel et al., 1992; d’Andréa Novel
et al., 1995). Therefore, unlike the works (Asif et al.,
2016; Yang et al., 2016; Shi et al., 2016), there is
no need to consider the design of observers to re-
cover the whole state. In this way, metric localization
and cumulative errors can be avoided. From a tech-
nical point of view, the proposed controllers rely on
an input to output linearization based on the expres-
sion of the errors dynamics. A nonlinear diffeomor-
phism based only on the outputs allows to transform
the nonlinear model into a linear system. This latter
is then controlled using classical linear control laws.
Finally, notice that both controllers induce a zero dy-
namic which is proved to be stable only.

This paper is organized as follows. The next sec-
tion is devoted to the problem statement. An exoge-
nous model of the spiral shape is first derived using
polar information. Then, based on this reference, a
nonlinear model of the error dynamics is established.
The nonlinear output feedbacks controllers, based on
input to state linearization techniques (Isidori, 2013),
allowing to vanish these errors are designed in section
3. Finally, simulation results allowing to highlight the
interest and the efficiency of the approach end the ar-

ticle.

2 ROBOT AND U-TURNS
MODELING

In this section, the mathematical models used in
this paper are introduced. First the model of a differ-
ential robot is presented. Next, the spiral model from
(Boyadzhiev, 1999) is recalled. Finally, based on the
geometry of the spiral, the two shapes of turns are
modeled.

2.1 System modeling

We consider a differential robot driving in the head-
land by turning around the last tree of a row. Firstly,
a global frame Fw = (Ow,~xw,~yw,~zw) represents the
position of the tree of interest (see figure 2(a)). Next,
the frame Fr = (Or,~xr,~yr,~zr) is attached to the dif-
ferential robot. The robot states in Fw are defined by
χ(t) = [d(t) β(t) α(t)]T , where d(t) is the norm of
the vector ~d connecting Ow and 0r, β(t) the angle be-
tween ~xw and ~d , and α(t) the angle between ~xr and
~d. d(t) and β(t) are the polar coordinates of the robot
in Fw, and α(t) is its orientation. This choice for the
state representation is motivated by the fact that both
d(t) and α(t) can be directly measured by embedded
sensors such as laser range finders, stereo visions sys-
tems or Lidars. Thus, it is assumed that the measure
is given by:

y(t) =
[

1 0 0
0 0 1

]
χ(t) (1)

Finally, the robot control input is defined by
[v(t) ω(t)]T , with v(t) the linear velocity along~xr and
ω(t) the angular velocity around~zr. Thus, the kine-
matic equations are given by:ḋ(t)

β̇(t)
α̇(t)

=

−cos(α(t)) 0
−sin(α(t))

d(t) 0
sin(α(t))

d(t) −1

[v(t)
ω(t)

]
(2)

2.2 Spiral modeling

In this work, it is proposed to perform different shapes
of turns by tracking paths created thanks to spirals,
whose a model is given in (Boyadzhiev, 1999). Let
define a point Op moving on a plane with respect to
a fixed point Os (see figure 2(b)). From now on, Os
will be considered as the center of the spiral. ~v? is the
velocity vector applied to Op and its norm is denoted
by v?(t). Moreover ~d? is the vector connecting Os to



(a) System model (b) Spiral model

Figure 2: Models

Op whose norm is d?(t). Finally α?(t) is defined as
the oriented angle between~v? and ~d?. In (Boyadzhiev,
1999) it is shown that if both v?(t) and α?(t) are con-
stant then Op describes a spiral whose center is Os.
For this reason they are respectively denoted v? and
α? from now on. Moreover the author shows that the
dynamics of the distance d? is defined as follows:

ḋ? =−v? cos(α?) (3)

As it can be seen in this equation, the type of per-
formed spiral depends on the sole parameter α?. First
if 0 < α? < π, Op turns counter-clockwise with re-
spect to Os otherwise if 0 < α? < −π it turns clock-
wise. Then if 0 ≤ α? < π/2 or 0 ≤ α? < −π/2,
d?(t) decreases with time. In other words, Op is
describing an inward spiral around Os. If π/2 <
α? ≤ π or−π/2 < α? ≤−π then d?(t) increases with
time which means Op is describing an outward spi-
ral around Os. Finally, if α? = π/2 or α? = −π/2,
d?(t) = d?(0). Op then describes a circle of radius
d?(0) around Os.

Equation (3) and its analysis highlight our interest
in the spirals. Indeed, adapting the spiral model to our
system, i.e., the center of the spiral is the position of
the tree of interest with Ow = OS, defines a reference
path, whose distance dynamics is known, solely based
on one point. The reference path is thus defined in the
robot sensor space.

2.3 U-shape turn modeling

2.3.1 U-shape turn in the navigation problem

In the context of an orchard navigation, the robot has
to drive from pi, end of the current row, to p f , begin-
ning of the next row (see figure 3(a)). In this spe-
cific application, the width of each row is roughly
known (e.g., farmers data or Google map) and saved
in the robot database. Thus, when the end of the
row is detected by a dedicated data processing algo-
rithm, the robot measures dS1i and extracts dS1 f from

its database. It is then possible to compute the spiral
S1 linking those two points, i.e., to compute α? for a
given v?. Moreover, for a given spiral, one can calcu-
late the required turning radius. If this latter is smaller
than the robot one, then a U-shape turn is tracked to
enter the next row.

2.3.2 U-shape turn error

As previously explained, U-shape turns are performed
by tracking a spiral. To do so, it is mandatory to re-
spectively make α(t) and d(t) converge towards α?

and d?(t). Thus, the problem of tracking a U-shape
turn can be seen as the problem of finding a controller
such that the error (4) converges to zero.{

ed(t) = d(t)−d?(t)
eα(t) = α(t)−α? (4)

(a) U-shape and Ω-shape
turns
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(b) Dotted: dS1 & dS2 ‖
Solid: dβ(β(t))

Figure 3: U-shape, Ω-shape and distance profile dβ(β(t))

2.4 Ω-shape turn

2.4.1 Ω-shape turn in the navigation problem

In case the spiral S1 computed in 2.3.1 requires a too
large turning radius, the robot has to perform an Ω-
shape turn. One recalls that this choice is motivated
by the inability of the robot to go backward. An Ω-
shape turn is made of three parts: i) moving from pi
to a spiral S2 (ϕ1), ii) tracking S2 (ϕ2), and iii) mov-
ing from S2 to p f (ϕ3). For each part, the robot turn-
ing radius has to be large enough to track the refer-
ence. Moreover, one has to guarantee the Ω shape,
and thus the success of the U-turn. Let define, βϕ

the angular distance to switch from one row to the
next one. Moreover, βϕ1 , βϕ2 and βϕ3 are respec-
tively the angular distances of parts ϕ1, ϕ2 and ϕ3.
Because βϕ1 +βϕ2 +βϕ3 = βϕ, with βϕ1 ≥ 0, βϕ2 ≥ 0
and βϕ3 ≥ 0, it is mandatory that:

βϕ1 +βϕ3 ≤ βϕ (5)

Next, let define Smin, the spiral centered on Ow with
the smallest radius dmin such that the robot turning ra-
dius is large enough to track it. Thus, parts ϕ1 and ϕ3



have to make the robot move from/to spiral S1 to/from
a spiral S2 centered on Ow with a radius dS2 ≥ dmin
while respecting the constraint introduced by equa-
tion (5). For this reason, it is proposed to track a
distance profile dβ(β(t)), guaranteeing that the robot
reaches the spiral for a given angular distance.

2.4.2 Distance profile design

To design the distance profile dβ(β(t)), we first define
normalized angle β̄(t), with 0≤ β̄(t)≤ 1, as:

β̄(t) =
β(t)−β(t0)
β(t f )−β(t0)

(6)

where t0 and t f are the initial and final time, and β(t)
is based on the encoders measurements. β(t0) and
β(t f ) represent therefore the starting angle and the fi-
nal angle. In addition, d̄β(β̄(t)) is defined as the nor-
malized distance to track, with 0 ≤ d̄β(β̄(t)) ≤ 1. In
order to obtain a distance profile dealing with the ini-
tial and final robot orientations, the path described by
the profile is tangent to the spirals. Thus, it is pro-
posed to define d̄β(β̄(t)) such as:

d̄β(β̄(t)) = k0 tan−1(k1(β̄(t)+ k2))+ k3 (7)

with k0,k1,k2 and k3, scalar terms used to design
the shape of the normalized function. Moreover the
choice of those parameters has to guarantee that the
distance profile to track does not require a too large
turning radius. Finally, using equations (6) and (7),
we obtain:

dβ(β(t)) = d(t0)+ d̄β(β̄(t))[d(t f )−d(t0)] (8)

An example of this distance profile is given in figure
3(b) with k0 = 0.365, k1 = 10, k2 = −0.5, k3 = 0.5,
β(t0) = 0 rad, β(t f ) = π/4 rad, d(t0) = 5 m and
d(t f ) = 10 m.

2.4.3 Ω-shape turn error

As previously explained, Ω-shape turns are made of
three parts. ϕ2 consists in a spiral tracking and thus
requires to find a controller vanishing the error (4).
Regarding parts ϕ1 and ϕ3, it is mandatory to make
d(t) converge towards dβ(β(t)). Thus, the problem of
making the robot reach a spiral turns into the prob-
lem of finding a controller such that the error (9) con-
verges to zero.

edβ
(t) = d(t)−dβ(β(t)) (9)

U-shape and Ω-shape turns can thus be performed
by following a spiral and moving from one spiral to

the other. At this stage, as the different turns have
been expressed by introducing a set of errors, the next
section will be dedicated to the design of controllers
allowing to make them vanish.

3 CONTROLLERS DESIGN

This section proposes to design an output feed-
back control law which makes the errors (4) and (9)
converge toward zero asymptotically. As the sys-
tem is nonlinear, the main idea is to use an exact in-
put to state linearization method proposed by (Isidori,
2013). We first present the controller allowing the
tracking of a spiral. In a second subsection, an adap-
tation of this controller is presented to move from one
spiral to another one. In this section, it is assumed that
v(t) is a constant input set at v?. The only remaining
input is therefore ω(t).

3.1 Spiral tracking

The errors (4) dynamics are defined by:

{
ėd(t) = v? [cos(α?)− cos(α(t))]
ėα(t) =−ω(t)+ v?

d(t) sin(α(t)) (10)

Which can be written as follows:{
ėd(t) = v? [cos(α?)− cos(eα(t)+α?)]

ėα(t) =−ω(t)+ v?
ed(t)+d?(t) sin(eα(t)+α?)

(11)
The main idea of this section is to linearize the error
system. To this end, consider the transformation:

z =
[

z1
z2

]
=

[
ed(t)

v? [cos(α?)− cos(eα(t)+α?)]

]
= T (e)

(12)
Notice that T (0) = 0 and in the domain D defined by:

D =
{
(ed ,eα) ∈ℜ

2‖ed ∈ℜ,eα ∈]−α
?,−α

?+π[}
(13)

T defines a diffeomorphism. Applying this transfor-
mation to the error system leads to:{

ż1 = z2
ż2 = v? sin(eα(t)+α?)ėα(t)

(14)

and{
ż1 = z2

ż2 = v? sin(eα(t)+α?)(−ω(t)+ v?
ed(t)+d?(t) sin(eα(t)+α?))

(15)
Taking:



ω(t)=
1

v? sin(eα(t)+α?)
ω2(t)+

v?

ed(t)+d?(t)
sin(ed(t)+d?)

(16)
we obtain : {

ż1 = z2
ż2 = ω2(t)

(17)

where ω2(t) is a new control law, which has to be
designed. At this stage, as the system (17) is linear, a
classical linear control law:

ω2(t) =−λ1 z1(t)−λ2 z2(t) (18)

with λ1,λ2 > 0, allows to stabilize asymptotically
system (17).

Therefore, we propose the following theorem:
Theorem 1. Consider two positive scalars, λ1,λ2,
the error system (10) in closed loop with the control
law (16), (17), (18), where z = T (e) in (12) is locally
asymptotically stable.
Proof 1. It is sufficient to notice that z converge
asymptotically to zero and z = T (e) defines a local
diffeomorphism with T (0) = 0.
Remark 1. λ1 and λ2 are two gains used to tune the
speed of convergence of the system in closed loop.
Remark 2. The relative degree of the chosen output
ed used for the linearization is two while the original
state space dimension is three. Therefore, there exists
a zero dynamic. Defining β? the reference trajectory
for β, the β error dynamics is driven by

ėβ(t) = (− sinα

d(t)
+

sinα?

d?
)v?

Following (Isidori, 2013), it is straightforward to see
that the zero dynamic defined by

ėβ(t) = 0

is stable only. As a consequence, in steady state, we
may expect a static error between β(t) and its ex-
pected value β?(t).

3.2 Distance profile tracking

From now on, a path leading to the convergence to-
ward a specific spiral is described and thus a function
of dβ(β(t)) is proposed. Therefore, the error to be
minimized can be rewritten as:

edβ
(t) = d(t)− [d(β̄(t0))+ d̄β(β̄(t))dgap] (19)

The controller designed to ensure the convergence
of the error will use the same input to output feed-
back linearization method than the previous one. Let
introduce the following new states

zs =

[
z1s
z2s

]
=

[
edβ

(t)
ż1s

]
and therefore the transformation Ts

zs =

[
z1s
z2s

]
=

[
edβ

(t)

−v?cos(α)+d′
β
(β(t)) sin(α)

d

]
=Ts(χ(t))

(20)
where d′

β
(β(t)) stands for the derivative of dβ with

respect to β. It can be proved that the transformation
Ts defines a local diffeomorphism and applying this
transformation leads to:

ėdβ
(t) =−v? cos(α(t))− k0k1

˙̄
β(t)dgap

k2
1(β̄(t)+ k2)2 +1

(21)
Calculating the derivative of z2s along the trajectories
of the original system gives:

ëdβ
(t) =v? α̇(t)sin(α(t))−

k0k1
¨̄
β(t)dgap

(k2
1(β̄(t)+ k2)2 +1)

+
2k0k3

1
˙̄
β2dgap(β̄(t)+ k2)

(k2
1(β̄(t)+ k2)2 +1)2

(22)

where, thanks to the Eq.6, ˙̄
β(t) and ¨̄

β(t) are computed
as:

˙̄
β(t) =

v? sin(α(t))
d(t)βgap

(23)

¨̄
β(t) =−v? sin(α(t))ḋ(t)

d2(t) βgap
+

v?α̇(t)cos(α(t))
d(t)βgap

(24)

Hence, the zs system can be rewritten as :{
ż1s = z2s,
ż2s = f (α(t),β(t),d(t))+g(α(t),β(t),d(t))ω

(25)
where the function f is defined accordingly to
(22),(23),(24).

Choosing the control law for ω such that

ω(t) =
1

g(α,β,d)
( f (α,β,d)+ω3(t)) (26)

where ω3(t) is a new control allowing to obtain the
following system defined by a simple double integra-
tor: {

ż1s = z2s,
ż2s = ω3(t)

(27)



We propose therefore the following control law for
ω3(t)

ω3(t) =−λ1sėdβ
(t)−λ2sedβ

(t), (28)

where λ1s and λ2s are two positive scalars which en-
sure the asymptotic stability of the closed loop system
(25) with the control (26), (28).

Therefore we propose the following theorem:

Theorem 2. Consider two positive scalars, λ1s,λ2s,
the error system (25) in closed loop with the con-
trol law (26), (28), where zs = Ts(χ) in (20) is locally
asymptotically stable.

Proof 2. Omitted.

Remark 3. The controllers (16), (26), shows two sin-
gularities, when α(t) = π and α(t) = 0. These singu-
larities are due to the polar coordinates model and the
construction of the transformation T . Furthermore,
these ones occurs when the robot is facing the last tree
or let it on its back. Dealing with these configurations
are then easily avoidable.

As previously noted in the last subsection, 3.1, the
system in closed loop exibits also a stable zero dy-
namic.

In this section, we have proposed two output state
feedbacks controlling the convergence of the states to-
ward its references. A first one follows a specific spi-
ral based on d?(t) and α?(t). It is used for the part
ϕ2 of our shapes of turn. The second controller al-
lows performing the convergence toward a spiral with
a given angle β? through a arctan profile. It will be
used during the part ϕ1 and ϕ3 of our turns.

4 SIMULATIONS

In this section, simulations realized with the
MATLAB c© software are presented. First, we fo-
cus on the previously designed controllers, then we
couple them in order to simulate Ω-shape turns. For
all the simulations: the sampling time is setup as
Ts = 0.1 s, the spiral center is defined as [0,0] and
the linear velocity is given as v = 0.15 m.s−1. More-
over, the robot is represented by a set of green and red
lines, respectively~xr and~yr.

4.1 Spiral tracking

The first set of simulations shows the performance of
the spiral tracking controller given by equation (16)
setup with λ1 = 0.1 and λ2 = 0.5. Here, two different
situations are presented. The first column (i.e., figures
4(a), 4(c), 4(e) and 4(g)) presents the behavior of the
robot when the initial robot pose is on the spiral to
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Figure 4: Simulation of spiral tracking

be tracked. The robot starts at χ(t) = [7,0,π/2]T and
tracks an inward spiral defined by α?(t) = 15π/32 rad
and d?(t0) = 7 m. The second column (i.e., figures
4(b), 4(d), 4(f) and 4(h)) presents the behavior of the
robot when its initial pose is not on the spiral. The
robot starts at χ(t) = [6,0,π/2]T and tracks the same
spiral. In figure 4(a) it can be seen that the robot tracks
accurately the spiral when its initial position belongs
to it. In figure 4(b), the robot first converges toward
the spiral and then follows it. However, the tracking
is not fully accurate and there is an error between the
current position and the desired one. As mentioned in
section 3.1, it can be explained by a static error on β(t)
in steady state. Indeed, as it can be seen in figures 4(d)
and 4(c) displaying the evolution of β(t) and β?(t),
a static error exists on steady state when the initial
robot state does not belong to the spiral. However,



the static error on β does not modify the controller
performances regarding eα(t) and ed(t) which both
converge towards zero (see figures 4(f), 4(e)). Finally,
figures 4(h) and 4(g) show the evolution of ω(t) used
to track the spiral.

4.2 Distance profile tracking

The second set of simulations presents the perfor-
mances of controller given by equation (26), allow-
ing to move toward a specific spiral. The controller is
set up with λS1 = 0.05, λS2 = 0.1 and dβ(β(t)) is de-
fined with k0 = 0.365, k1 = 10, k2 = −0.5, k3 = 0.5,
β(t0) = 0 and β(t f ) = 3π/8. The robot starts at
χ(t)= [5,0,π/2] and has to reach a spiral defined with
d?(t0) = 10 m and α? = π/2 rad. As it can be seen
in figure 5(c), the robot reaches the desired spiral at
the given angle β(t f ). Moreover, the distance profile
is accurately tracked (5(b)) with a smooth command
ω(t) (see figure 5(a)).
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Figure 5: Distance profile tracking

4.3 Ω-shape turn

The third set of simulations presents an example of
Ω-turn in the context of a headland navigation. First,
a row following task (see (Durand-Petiteville et al.,
2017) for more details) is performed, followed by
an Ω-turn driving the robot to the next row. Fi-
nally, a new row following task is started. For this
simulation, the turn is performed with ωMIN−MAX =
±0.08 rad/s−1 and it requires both controllers given

by equations (16), (18), (26), and (28). The parame-
ters λ1 = 0.01, λ2 = 0.05 and λs1 = 0.01, λS2 = 0.05
are used for their respective controller. A profile
is created for ϕ1 and ϕ3 with k0 = 0.365, k1 = 10,
k2 = −0.5 and k3 = 0.5. The robot starts at χ(t) =
[3,0,π/2] and needs to reach a spiral defined at dS2 =
8m and α? = π/2 rad with a respective angle of refer-
ence of β(ϕ1) = 3π/8 rad. Finally, ds1 f = 2.5m with
an angle of reference of β(ϕ3) = 3π/8 rad. In addi-
tion, to assess the sensitivity of the controllers to er-
rors, a centered Gaussian noise has been added to d(t)
and α(t), with a respective amplitude of 0.05m and
1◦. As shown in 6(c), the robot successfully performs
a Ω-shape turn by using alternatively both controllers
presented above. Indeed the designed distance pro-
files, as well as the spiral, are accurately tracked by
the robot (see figure 6(b)). Moreover, it should be no-
ticed that the static error on steady state during the
spiral tracking does not affect the turn. Indeed, the
distance profile for ϕ1 is designed to allow to start the
spiral tracking when the robot state belongs to the spi-
ral. Thus, despite this drawback, the controller given
by (16) provides suitable performances for our spe-
cific navigation problem. It can also be noticed that
the noise added to the measures does not disturb the
behavior of the robot. Finally, an appropriate tuning
of parameters defining the distance profiles and spiral
allows to perform an Ω-shape turn while dealing with
a maximal robot turning radius.

0 20 40 60 80 100 120 140 160

time (s)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(t
) 

(r
a

d
.s

-1
)

(a) Dashed: ωMIN−MAX -
Solid: ω(t)

0 20 40 60 80 100 120 140 160 180

(t) (deg)

2

3

4

5

6

7

8

9

d
(

(t
))

 (
m

)

(b) Dashed: dS2(t) -
Dashed: d?(β(t)) - Solid:
d(β(t))

-10 -5 0 5 10

X(m)

-8

-6

-4

-2

0

2

4

6

8

Y
(m

)

(c) Dashed: Reference path - Solid:
Robot trajectory - Pink crosses: controller
switches - Black crosses: trees

Figure 6: Ω-shape turn



5 CONCLUSION

In this work, the problem of driving in headlands
during an orchard navigation has been addressed.
First, U-shape and Ω-shape turns have been modeled
using polar coordinates in order to generate the paths
to follow when driving in the headland. Then, two
nonlinear output state feedbacks controllers have been
designed to track the designed paths. Their design
was based on input to state linearization techniques.

Simulations have highlighted the suitable perfor-
mances of the controllers and their usefulness to effi-
ciently drive the robot in orchards headlands. The ob-
tained results are encouraging and must be integrated
on our testbed. To do so, it is planned to couple the
controllers with a perception system allowing to de-
tect the trees in the surroundings of the robot. Thus, it
will be possible to evaluate the efficiency and robust-
ness of the proposed approach.

Moreover, a couple of challenges have to be ad-
dressed to obtain a fully autonomous system. The
first one consists in automatically generating the spi-
ral and distance profile parameters based on the a pri-
ori known and on-line acquired data related to the or-
chard structure. Moreover, the controller sensitivity
to robot state has to be investigated. Thus, it might
be required to design a recursive estimation process
based on the acquired data to improve the accuracy
of the state knowledge. Finally, it seems relevant to
guarantee the continuity of the control law when the
robot switches from one controller to the other one.
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