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ABSTRACT: Solving the Economic Dispatch (ED) problem is an essential task in electrical power management 

systems. The aim of the ED is to minimize the fuel consumption costs of thermal power plants which could be carried 

out by finding the optimal generation power for each committed generating unit while providing the load demand and 

satisfying the operational constraints. This paper presents a comparative study of two classical optimization techniques 

for solving the conventional ED problem which are Gradient Search and Levenberg-Marquardt Optimization (LMO). 

The proposed techniques are used to reach the mentioned objective with consideration to real power line transmission 

loss. They are adapted to IEEE 9-bus 3-unit test system and simulated via MATLAB environment. The results reveal 

that LMO generates superior and efficient solutions.  

 

KEYWORDS: System optimizations, operations search, energy, production management, economic dispatch, 

Levenberg-Marquardt optimization.  

1 INTRODUCTION 

Since the electrical power system of most of the coun-

tries mainly consists of thermal plants, the conventional 

ED is an important task for energy management which 

deals with power mismatch, fuel cost economy and 

transmission losses reduction. 

The ED problem is solved traditionally using mathemat-

ical programming based on optimization techniques such 

as lambda Iteration method (Dewangan et al., 2015), 

gradient search (Wood and Wollenberg, 2012), Interior 

point method (Singhal et al., 2014), Newton’s method 

(Dogra et al., 2014), and Dynamic Programming method 

(Liang and Glover, 1992). 

Classical methods have some advantages such as their 

optimality that is mathematically proven (Xia and Elaiw, 

2010),they can be applied to large scale problems 

(Bansal, 2005) and they have no problem-specific pa-

rameters to specify (Mahdi et al., 2018). 

This paper intents to enhance the resolution of a tradi-

tional lossy economic active power dispatch via the two 

conventional optimization techniques; Gradient Search 

and Levenberg-Marquardt Optimization.  

The rest of this paper is organized as follows; Section 2 

introduces the traditional ED mathematical formulation 

along with the Lagrange function. Section 3 presents the 

Gradient Search technique applied for the proposed sys-

tem. Section 4 presents the Levenberg-Marquardt Algo-

rithm. Section 5 elaborates a comparison to discuss the 

convergence behavior between the Gradient method and 

LMO. Section 6 highlights the main conclusion. 

 

2 PROBLEM FORMULATION  

The ED is defined as a static constrained mono-objective 

optimization problem that minimizes the total power cost 

while satisfying a specific power demand (including the 

transmission losses) and respecting the power limits of 

the generators. It is mathematically formulated as fol-

lows (Xia and Elaiw, 2010). 

 

2.1 Cost objective function 

The main objective of the conventional ED is to mini-

mize the fuel cost to ensure optimal output of generated 

power while satisfying the operational constraints.  

 

 
1

min ( )
gN

i i

i

FT F Pg
=

=                                              (1) 

 

where 

FT  :  total fuel cost function   

iF
 : fuel cost function of the 

thi  generating unit  

Ng  : number of generating units 

iPg  : real power output of the 
thi  generating unit 

 
2( )i i i i i i iF Pg a Pg b Pg c= + +                                        (2) 

 

, ,i i ia b c  : cost coefficients of the thi generating unit 
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2.2 Problem constraints 

The objective cost function (1) is subject to the follow-

ing equality and inequality constraints. 

2.2.1 Power balance constraint 

 

The total generation power must satisfy the demand and 

the transmission losses. 

 

0
Ng

i

i

Pg Pd Pl− − =                                                  (3) 

 

Where 

Pd  : total power demand in MW 

Pl  : transmission lines network power losses in MW 

The transmission lines network power loss Pl  could be 

calculated by solving the Power Flow problem. The ob-

jective of a power flow study is to calculate the voltages 

(magnitude and angle) for a given load, generation, and 

network condition. Once voltages are known for all bus-

es, line flows and losses can be calculated (Albadi, 

2019). 

The total real power losses can be calculated using the 

total net injected real power at all buses using the follow-

ing relation (Ciornei and Kyriakides, 2013)  

 

2 2

1

[ 2 cos( )]
Nl

k i j i j i j

k

Pl g V V VV  
=

= + − −                      (4) 

 

Where  

Nl  : the number of the transmission lines 

kg  : conductance of the thk  line that connects bus i  to 

bus j   

 
iV : the voltage magnitudes at bus i . 

i : the voltage angles at bus i . 

2.2.2 Real power operating limit constraint 

 

The power generation of each unit should be between its 

minimum and maximum limits in order to guarantee a 

stable operation. 

 
min max

i i iPg Pg Pg                                                 (5) 

 

Where 
min

iPg  and 
max

iPg  are the minimal and maximal 

power limits of the 
thi  generating unit in MW. 

 

2.3 Lagrange function 

The above constrained optimization problem can be con-

verted into an unconstrained problem using the Lagrange 

function (Wood and Wollenberg, 2012) which is given 

by: 

  

1

( , ) ( ) ( )
Ng

i i i

i

L Pg FT Pg Pd Pl Pg 
=

= + − −    (6) 

 

Where   is the Lagrangian multiplier. 

Necessary conditions for the optimization problem are: 

 

( )
0i

i i

d FL

Pg dPg


= =


                                                          (7) 

 

1

0
Ng

i

i

L
Pd Pl Pg

 =


= − − =


                                         (8) 

 

Where ( )i

i

d F

dPg
 is called the incremental cost, it represents 

the increase of the supplementary cost of a generating 

unit. 

3 GRADIENT SEARCH 

The gradient method is based on the construction of a 

progression kx   that approaches to the minimum. Sup-

pose to start with a random initial value 0x  , and estab-

lish the gradient progression using the next relation: 

 

1 '( )k k kx x f x+ = +                                             (9) 

 

Where: 

   is a chosen positive constant value that helps to ad-

just the speed of the convergence of the algorithm. 

k  is the number of iterations. 

For the ED problem [ , ]ix Pg =  and '( ) ( , )if x L Pg =  

then the problem can be solved by finding the solution of 

the Gradient vector which is expressed as follows: 

 

1
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.

.
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L

Pg

L

Pg

L

L

Pg

L



 
 
 
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 
 
 

 =  
 
 
 
 
 
 
 

                                                                (10) 

 

The initial values of the generated power 
iPg  and the 

Lagrange multiplier are calculated with the use of the 

relations (7) and (8): 

 

11
( ) ( )

2 2

Ng Ng

i

i ii i

b
Pd Pl

c c
 −= + +                            (11) 
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11 1
( ) ( )

2 2 2

Ng Ng
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Pg Pd Pl b
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− 
= + + − 
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         (12) 

 

3.1 Gradient Search Algorithm 

Step 1: Read given data cost coefficients ( , ,i i ia b c ), 

power demand Pd  and power limits (
min max,i iPg Pg ) 

Step 2: Calculate the power losses Pl   

Step 3: Calculate the initial values of the Lagrangian 

multiplier  
0  and the initial values of the active gener-

ated power 0

iPg   

Step 4: Check generation limits for each unit 

 

Set  
min

i iPg Pg= if  min

i iPg Pg  

Set  max

i iPg Pg= if  max

i iPg Pg  

Step 5: Calculate the power mismatch  

 

 

1

gN

i

i

Pg Pg Pd Pl
=

 = − −                                            (13) 

                                                     

Step 7:  If Pg     (where   is the convergence cri-

teria, set to 0.01 = ), then stop calculation and move to 

Step 11 with the obtained optimal value. Otherwise, go 

to the next step.  

Step 8: Calculate the gradient vector L  

Step 9: Calculate 1k

iPg +  and 
1k +
 using (9) 

 
1k k

i iPg Pg L+ = −                                                      (14) 

 
1k k L  + = −                                                        (15) 

 

Where 410 −=  

Then update 
iPg  and  values. 

Step 10: Repeat the procedure from Step 4 

Step 11: Calculate the cost function with the optimal 

values of 
iPg  and   

The Gradient Search algorithm is illustrated in the fol-

lowing flowchart: 

 

 

 

 
Figure 1: Flowchart of gradient search for the ED 

4 LEVENBERG-MARQUARDT 

OPTIMIZATION 

Levenberg-Marquardt Optimization (Marquardt, 1963) is 

a combination of the directions of the algorithms Gauss-

Newton and Gradient descent. It is capable of finding a 

solution even if it started far from the minimum (Hagan 

and Menhaj, 1994) . LMO is faster than several numeri-

cal techniques such as Lambda iteration method, interior 

point method (Daniel et al., 2018). 

Suppose that we have a function that we aim to minimize 

( )V x  with the respect of the parameters vector x  where  

Newton’s update for this vector is as follows (Dogra et 

al., 2014) : 

 
2 1

1 [ ( )] ( )k kx x V x V x−

+ = −                                    (16) 

 

Where 2 ( )V x  is the Hessian matrix and ( )V x  is the 

gradient. 

If we assume that the function ( )V x  is a sum of squares 

function: 
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2

1

( ) ( )
n

i

i

V x e x
=

=                                                           (17) 

 

( )e x  is the difference between the target and the net-

work output then 2 ( )V x  and ( )V x  can be formulated 

to:   

 

( ) ( ) ( )TV x J x e x =                                                  (18) 

 
2 ( ) ( )TV x J J S x = +                                                (19) 

 

Where ( )J x  is the Jacobian matrix: 
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 
 
   
    

                        

(20) 

 

And  

 

2

1

( ) ( ) ( )
n

i i

i

S x e x e x
=

=                                             (21) 

 

The gauss-newton method assumed that ( ) 0S x ,so the 

update equation becomes: 

 
1

1 [ ( ) ( )] ( ) ( )T T

k kx x J x J x J x e x−

+ = −             (22) 

 

The Levenberg-Marquardt modification to the Gauss-

Newton method is: 

 
1

1 [ ( ) ( ) ] ( ) ( )T T

k k kx x J x J x I J x e x −

+ = − +           (23) 

 
1

1 [ ( ) ] ( )k k kx x H x V x −

+ = − +                          (24) 

 

The Important characteristic of this algorithm is k , 

generally it’s set to ( 0.01k = ) as a starting point then it 

is multiplied by 10 whenever a step results an increased 

( )V x . Otherwise, if a step decreases ( )V x ,  
k is divid-

ed by 10. 

Notice that when   is large the algorithm becomes 

steepest Gradient descent (with step Up), while for small 

  the algorithm becomes Gauss-Newton. The Mar-

quardt-Levenberg algorithm can be considered a trust 

region modification to Gauss-Newton (Battiti, 1992). 

For the ED problem  [ , ]ix Pg =  and ( ) ( , )iV x L Pg =  

 

4.1 Levenberg-Marquardt Algorithm 

Step 1: Read given data cost coefficients ( , ,i i ia b c ), 

power demand 
dP  and power limits ( min , max

i iPg Pg ) 

Step 2: Calculate the power losses Pl   

Step 3: Set the initial values of the Lagrangian multiplier  
0 , the active generated power 

0

iPg  the Levenberg-

Marquardt characteristic 0  

Step 4: Calculate the Langrange function ( , )iL Pg   for 

each unit  

Step 5: Calculate the Jacobian matrix 

 

 

1 2

1 1

1 1

1 1 1 1

2 2 2 2

...

...

( , ) . . . .

. . ... . .

. . . .
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Ng

Ng

Ng

i

Ng Ng Ng Ng

L L L L

Pg Pg Pg

L L L L

Pg Pg Pg

J Pg

L L L L

Pg Pg Pg









    
    
 
    
 
    
 

=
 
 
 
 
    
 
     

               (25) 

      

 

Step 6: Calculate the Hessian Matrix  

 

( ) ( ) ( )T

i i iH Pg J Pg J Pg=                                        (26) 

 

Step7: Update the power generation 
iPg  and   follow-

ing the equation (20) 

 

( 1) ( )

( 1) ( )

k ki i i

k k

Pg Pg Pg

 

+

+

     
= −     

       

                             (27)    

 

Step8: Calculate the new value of 
1( , )k iL Pg +

 for each 

generating unit 

Step9: Update of the characteristic    

If  
1k kL L+   set *10 =  

else if  
1k kL L+

set 
10


 =  

Step10: Check generation limits for each unit 

Set  
min

i iPg Pg= if  
min

i iPg Pg  

Set  
max

i iPg Pg= if  max

i iPg Pg  

Step 11: Calculate the power mismatch Pg using (13). 

Step 12:  If Pg     (where   is the convergence 

criteria, set to 0.01 = ), then stop the calculation and 

move to Step 14. Otherwise go to the next step. 
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Step13: Repeat the procedure from Step 4 

Step14: Calculate the cost function with the optimal 

values of 
iPg  and  . 

The LMO algorithm is illustrated in the following 

flowchart: 

 

 
Figure 2: Flowchart of LMO for the ED 

5 RESULTS AND DISCUSSIONS 

In this part we present the results of applying the Gradi-

ent Search and the LMO separately for the static ED 

using a quadratic cost function.  

The network considered is the IEEE.9 Bus system called 

WSCC 3 machines (also known as P.M Anderson 9 

Bus). It consists of 9 buses, 3 generators, 3 power trans-

formers, 6 lines and 3 loads. The load demand to be met 

by the 3 units is 315MW. 

As a first step, the power flow analysis problem was 

solved  using  the generators and transmission lines data 

which is taken from (Anderson and Bose, 1983). Results 

show that the total active power loss is 4.6410MW, 

which makes the total active power load set at 

319.6410MW. 

 

The cost coefficients and generators limits data are taken 

from MATPOWER4.1. 

Unit a  b  c  minPg  
maxPg  

1 0.11 5 150 10 250 

2 0.085 1.2 600 10 300 

3 0.1225 1 335 10 270 

Table 1: Network generators data 

 

The simulations results using gradient search and LMO 

separately are illustrated in Table 2: 

 Gradient 

Search 

LMO 

1
Pg [MW] 88.0918 88.0192 

2
Pg [MW] 136.0010 136.2601 

3
Pg [MW] 95.5521 95.3642 

opt  24.2057 73.0997 

Iterations number 493 3 

Total Cost [$] 5.3284e+03 5.3282e+03 

Table 2: results of ED using Gradient search and LMO 

 

We note that LMO provides optimal power generation 

while it is faster (fewer iterations) and less costly than 

the Gradient search. However, the Gradient search could 

give optimal results but it requires more computational 

time.  

As mentioned above the two optimizations techniques 

were applied for a specific instance of active power load 

which is 315MW.  

In order to test the performance of the proposed method 

we changed the load at different buses randomly in wide 

range. For each load the power flow was ran and the 

power losses was calculated. Some of the simulations 

results are represented in Table 3. 

Pd = 130[MW] 

 Gradient 

Search 

LMO 

1
Pg [MW] 31.3098 31.2377 

2
Pg [MW] 62.5172 62.7785 

3
Pg [MW] 44.5649 44.3768 

opt  11.8082 23.6875 

Iterations number 1061 2 

Total Cost [$] 2.0445e+03 2.0444e+03 
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Pd =400[MW] 

 Gradient 

Search 

LMO 

1
Pg [MW] 114.8892 114.8155 

2
Pg [MW] 170.6799 170.9377 

3
Pg [MW] 119.6150 119.4261 

opt  30.0836 121.0960 

Iterations number 400 4 

Total Cost [$] 7.6645e+03 7.6642e+03 

Pd =700[MW] 

 Gradient 

Search 

LMO 

1
Pg [MW] 213.4636 213.3900 

2
Pg [MW] 229.8868 298.5047 

3
Pg [MW] 208.1306 207.9420 

opt  51.7401 207.9672 

Iterations number 231 4 

Total Cost [$] 2.0598e+03 2.0597e+03 

Table 3: Test performance of Gradient search and LMO 

6 CONCLUSION 

We have presented in this paper a comparison between 

two classical optimization techniques for solving the 

conventional ED with convex cost function. The 

proposed techniques were applied to the IEEE.9 bus 

system with consideration of the transmission lines 

power loss. LMO has been shown to be more effective 

than Gradient Search in terms of precision and 

computation time. 

Since the Gradient Search is uncapable of solving the 

non-convex ED problem (with Valve Point Effects 

consideration), the LMO can be applied for such a 

problem and be compared to other classical and heuristic 

techniques. 
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