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Solving the Economic Dispatch (ED) problem is an essential task in electrical power management systems. The aim of the ED is to minimize the fuel consumption costs of thermal power plants which could be carried out by finding the optimal generation power for each committed generating unit while providing the load demand and satisfying the operational constraints. This paper presents a comparative study of two classical optimization techniques for solving the conventional ED problem which are Gradient Search and Levenberg-Marquardt Optimization (LMO). The proposed techniques are used to reach the mentioned objective with consideration to real power line transmission loss. They are adapted to IEEE 9-bus 3-unit test system and simulated via MATLAB environment. The results reveal that LMO generates superior and efficient solutions.

INTRODUCTION

Since the electrical power system of most of the countries mainly consists of thermal plants, the conventional ED is an important task for energy management which deals with power mismatch, fuel cost economy and transmission losses reduction. The ED problem is solved traditionally using mathematical programming based on optimization techniques such as lambda Iteration method [START_REF] Susheel Kumar Dewangan | A Traditional Approach to Solve Economic Load Dispatch Problem Considering the Generator Constraints[END_REF], gradient search [START_REF] Wood | Power Generation, Operation, and Control[END_REF], Interior point method [START_REF] Prateek | Enhanced lambda iteration algorithm for the solution of large-scale economic dispatch problem[END_REF]), Newton's method [START_REF] Dogra | Economic Load Dispatch Problem and Mat lab Programming of Different Methods[END_REF], and Dynamic Programming method [START_REF] Liang | A zoom feature for a dynamic programming solution to economic dispatch including transmission losses[END_REF]. Classical methods have some advantages such as their optimality that is mathematically proven [START_REF] Xia | Optimal dynamic economic dispatch of generation: A review[END_REF],they can be applied to large scale problems [START_REF] Bansal | Optimization Methods for Electric Power Systems: An Overview[END_REF] and they have no problem-specific parameters to specify [START_REF] Parvez Mahdi | A holistic review on optimization strategies for combined economic emission dispatch problem[END_REF]. This paper intents to enhance the resolution of a traditional lossy economic active power dispatch via the two conventional optimization techniques; Gradient Search and Levenberg-Marquardt Optimization. The rest of this paper is organized as follows; Section 2 introduces the traditional ED mathematical formulation along with the Lagrange function. Section 3 presents the Gradient Search technique applied for the proposed system. Section 4 presents the Levenberg-Marquardt Algorithm. Section 5 elaborates a comparison to discuss the convergence behavior between the Gradient method and LMO. Section 6 highlights the main conclusion.

PROBLEM FORMULATION

The ED is defined as a static constrained mono-objective optimization problem that minimizes the total power cost while satisfying a specific power demand (including the transmission losses) and respecting the power limits of the generators. It is mathematically formulated as follows [START_REF] Xia | Optimal dynamic economic dispatch of generation: A review[END_REF].

Cost objective function

The main objective of the conventional ED is to minimize the fuel cost to ensure optimal output of generated power while satisfying the operational constraints. 

i i i i i i i F Pg a Pg b Pg c = + + (2) 
,,

i i i
a b c : cost coefficients of the th i generating unit MOSIM'20 -November 12-14, 2020 -Agadir -Morocco

Problem constraints

The objective cost function ( 1) is subject to the following equality and inequality constraints.

Power balance constraint

The total generation power must satisfy the demand and the transmission losses.

0

Ng i i Pg Pd Pl - -=  (3) 
Where Pd : total power demand in MW Pl : transmission lines network power losses in MW The transmission lines network power loss Pl could be calculated by solving the Power Flow problem. The objective of a power flow study is to calculate the voltages (magnitude and angle) for a given load, generation, and network condition. Once voltages are known for all buses, line flows and losses can be calculated [START_REF] Albadi | Power Flow Analysis[END_REF]. The total real power losses can be calculated using the total net injected real power at all buses using the following relation [START_REF] Ciornei | Recent methodologies and approaches for the economic dispatch of generation in power systems[END_REF])
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Where Nl : the number of the transmission lines k g : conductance of the th k line that connects bus i to bus j i V : the voltage magnitudes at bus i .

i  : the voltage angles at bus i .

Real power operating limit constraint

The power generation of each unit should be between its minimum and maximum limits in order to guarantee a stable operation. 

Lagrange function

The above constrained optimization problem can be converted into an unconstrained problem using the Lagrange function [START_REF] Wood | Power Generation, Operation, and Control[END_REF] which is given by: 1
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Where  is the Lagrangian multiplier.

Necessary conditions for the optimization problem are:

() 0 i i i dF L Pg dPg  = =  (7) 1 0 Ng i i L Pd Pl Pg  =  = -- =   (8)
Where () i i dF dPg is called the incremental cost, it represents the increase of the supplementary cost of a generating unit.

GRADIENT SEARCH

The gradient method is based on the construction of a progression k x that approaches to the minimum. Sup- pose to start with a random initial value 0

x , and estab- lish the gradient progression using the next relation:

1 '( ) k k k x x f x  + = + (9) 
Where:

 is a chosen positive constant value that helps to ad- just the speed of the convergence of the algorithm.

k is the number of iterations.

For the ED problem L Pg  = then the problem can be solved by finding the solution of the Gradient vector which is expressed as follows:
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The initial values of the generated power i Pg and the Lagrange multiplier  are calculated with the use of the relations ( 7) and ( 8):
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Gradient Search Algorithm

Step 1: Read given data cost coefficients ( ,, 

min i i Pg Pg = if min i i Pg Pg  Set max i i Pg Pg = if max i i

Pg Pg 

Step 5: Calculate the power mismatch

1 g N i i Pg Pg Pd Pl =  = - -  (13) 
Step 7:

If Pg   (where 
is the convergence criteria, set to 0.01

 =

), then stop calculation and move to

Step 11 with the obtained optimal value. Otherwise, go to the next step.

Step 8: Calculate the gradient vector L 

Step 9: Calculate Step 10: Repeat the procedure from Step 4

1 k i Pg + and 1 k  + using (9) 1 k k i i Pg Pg L  + = - (14) 1 kk L    + = - ( 
Step 11: Calculate the cost function with the optimal values of i Pg and 

The Gradient Search algorithm is illustrated in the following flowchart: 

LEVENBERG-MARQUARDT OPTIMIZATION

Levenberg-Marquardt Optimization [START_REF] Marquardt | An Algorithm for Least-Squares Estimation of Nonlinear Parameters[END_REF]) is a combination of the directions of the algorithms Gauss-Newton and Gradient descent. It is capable of finding a solution even if it started far from the minimum [START_REF] Hagan | Training feedforward networks with the Marquardt algorithm[END_REF] . LMO is faster than several numerical techniques such as Lambda iteration method, interior point method [START_REF] Daniel | Dynamic Economic Load Dispatch using Levenberg Marquardt Algorithm[END_REF]. Suppose that we have a function that we aim to minimize ()

Vx with the respect of the parameters vector x where Newton's update for this vector is as follows [START_REF] Dogra | Economic Load Dispatch Problem and Mat lab Programming of Different Methods[END_REF] : ( ) ( ) ( )
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Where () Jx is the Jacobian matrix: 
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The gauss-newton method assumed that ( ) 0 Sx ,so the update equation becomes:

1 1 [ ( ) ( )] ( ) ( ) T T k k x x J x J x J x e x - + =- (22) 
The Levenberg-Marquardt modification to the Gauss-Newton method is:

1 1 [ ( ) ( ) ] ( ) ( ) T T k k k x x J x J x I J x e x  - + = - + (23) 1 1 [ ( ) ] ( ) k k k x x H x V x  - + = - +  (24)
The Important of this algorithm is k  is divid- ed by 10.

Notice that when  is large the algorithm becomes steepest Gradient descent (with step Up), while for small  the algorithm becomes Gauss-Newton. The Mar- quardt-Levenberg algorithm can be considered a trust region modification to Gauss-Newton [START_REF] Battiti | First-and second-order methods for learning between steepest descent and Newton's method[END_REF].

For the ED problem [ , ]

i x Pg  = and ( ) ( , ) i V x L Pg  = 4.1 Levenberg-Marquardt Algorithm
Step 1: Read given data cost coefficients ( ,, i i i a b c ), power demand d P and power limits ( min , max i i

Pg Pg )

Step 2: Calculate the power losses Pl

Step 3: Set the initial values of the Lagrangian multiplier 0  , the active generated power 0 i

Pg the Levenberg- Marquardt characteristic 0



Step 4: Calculate the Langrange function ( , )

i L Pg  for each unit

Step 5: Calculate the Jacobian matrix

1 2 1 1 1 1 1 1 1 1 2 2 2 2 ... ... ( , ) . . . . . . ... . . . . . . 
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Step 6: Calculate the Hessian Matrix ( ) ( ) ( )

T i i i H Pg J Pg J Pg = (26)
Step7: Update the power generation i Pg and  follow- ing the equation ( 20)

( 1) ( ) ( 1) ( ) 
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Step8: Calculate the new value of 1 ( , )

k i L Pg  + for each generating unit Step9: Update of the characteristic  If 1 kk LL +  set *10  = else if 1 k k LL + set 10   = Step10: Check generation limits for each unit Set min ii Pg Pg = if min i i Pg Pg  Set max i i Pg Pg = if max i i

Pg Pg 

Step 11: Calculate the power mismatch Pg  using (13).

Step 12: If Pg   (where  is the convergence criteria, set to 0.01

 =

), then stop the calculation and move to Step 14. Otherwise go to the next step. 

RESULTS AND DISCUSSIONS

In this part we present the results of applying the Gradient Search and the LMO separately for the static ED using a quadratic cost function. The network considered is the IEEE.9 Bus system called WSCC 3 machines (also known as P.M Anderson 9 Bus). It consists of 9 buses, 3 generators, 3 power trans-formers, 6 lines and 3 loads. The load demand to be met by the 3 units is 315MW. As a first step, the power flow analysis problem was solved using the generators and transmission lines data which is taken from [START_REF] Anderson | Stability Simulation Of Wind Turbine Systems[END_REF]. Results show that the total active power loss is 4.6410MW, which makes the total active power load set at 319.6410MW. We note that LMO provides optimal power generation while it is faster (fewer iterations) and less costly than the Gradient search. However, the Gradient search could give optimal results but it requires more computational time.

As mentioned above the two optimizations techniques were applied for a specific instance of active power load which is 315MW.

In order to test the performance of the proposed method we changed the load at different buses randomly in wide range. For each load the power flow was ran and the power losses was calculated. Some of the simulations results are represented in Table 3. 

Pd = 130[MW]

CONCLUSION

We have presented in this paper a comparison between two classical optimization techniques for solving the conventional ED with convex cost function. The proposed techniques were applied to the IEEE.9 bus system with consideration of the transmission lines power loss. LMO has been shown to be more effective than Gradient Search in terms of precision and computation time.

Since the Gradient Search is uncapable of solving the non-convex ED problem (with Valve Point Effects consideration), the LMO can be applied for such a problem and be compared to other classical and heuristic techniques.
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  Calculate the power losses Pl Step 3: Calculate the initial values of the Lagrangian multiplier 0 and the initial values of the active generated power 0 i Pg Step 4: Check generation limits for each unit Set

Figure 1 :

 1 Figure 1: Flowchart of gradient search for the ED

Figure 2 :

 2 Figure 2: Flowchart of LMO for the ED

Table 3 :

 3 Test performance of Gradient search and LMO

			Gradient	LMO
			Search	
	1 Pg [MW]	31.3098	31.2377
	2 Pg [MW]	62.5172	62.7785
	3 Pg [MW]	44.5649	44.3768
		opt	11.8082	23.6875
	Iterations number 1061	2
	Total Cost [$]	2.0445e+03	2.0444e+03