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ABSTRACT: This paper concerns the predictive maintenance (PM), which is in increasing use in many fields. It pro-

poses the use of a non-destructive testing technique, namely ultrasonic guided waves, in order to reinforce the PM of a 

given installation. To achieve PM, various sensors are required to collect data, which are needed as inputs of predictive 

models. These sensors are employed to monitor the health (said also in other words degradation) of the installation to be 

maintained in operation. In this study two models based on EDM-ARIMA and neural network are built and applied on 

data collected on a tube via the ultrasonic guided waves. Residual useful life of the structure is provided in different cases.  
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1 INTRODUCTION 

The rise of digitalization and industry 4.0 promises an op-

timization of industrial production based on data. Numer-

ous players in industrial analytics guarantee to effectively 

tackle issues just by gathering and analyzing data. Lately, 

more and more data is acquired and more and more ana-

lytical tools become available [1]. 

 

Nowadays, mastering the operation of industrial systems 

represents a big challenge for maintenance operators, 

since these systems are more and more complex with tech-

nological development. Therefore, many companies are 

now implementing predictive maintenance strategies 

which is a proactive approach that aims to anticipate faults 

and breakdowns of an industrial system, based on moni-

toring modules, diagnosis, prognosis and decision support 

in the form of an intervention calendar. 

 

In terms of predictive maintenance, the last stage of the 

Structural Health Monitoring (SHM) process, which is the 

prognostics, is used to anticipate the evolution of the de-

fect or degradation in the future. A SHM system is defined 

as an integrated part of the structure to be monitored and 

should ideally be able to detect, locate and evaluate dam-

age in the structure, estimate its severity and monitor its 

evolution with time. The utilization of SHM will result in 

(i) diminished basic load by changing design principles; 

(ii) decreased maintenance expenses; and (iii) expanded 

accessibility, however it is recognized at the same time 

that SHM technologies will be presented only if they have 

direct financial advantages. Major design aspects that 

govern any SHM system are (i) changes of the monitored 

physical properties due to damage; (ii) transducer–struc-

ture interaction to reliably measure the expected  

 

 

 

changes with the required resolution; and (iii) signal pro-

cessing and analysis tools to extract the required infor-

mation on structural integrity [2]. 

 

Prognostics essentially attempt to anticipate how much 

time remains before a fault or failure will happen, giving 

the current state of the asset. In other words, prognostics 

are based on predicting the residual useful life (RUL) of a 

system based on condition monitoring of the asset and 

subsequent analysis of the information and data collected 

for a given task occurrence. In many situations, the com-

plexity of the systems observed does not allow to derive 

robust and precise prognosis models. However, historical 

data that capture the life signal behavior of measured sig-

nals or extracted features from the incipient fault stage to 

equipment failure are often available. In such cases, data-

driven methods that model how such signals and features 

evolve can be utilized to generate predictions of RUL. 

 

Data collection of physical factors (temperature, vibra-

tion, etc.) can be achieved using vibration analysis, ther-

mography etc. [3]. 

 

In the present work, data were collected using Ultrasonic 

Guided Wave (UGW). UGW are mechanical waves, at 

frequencies over the scope of human perceptible frequen-

cies that propagate along a stretched structure while 

guided by its limits [4], its use to the field of preventive 

maintenance is in persistent increment. Today, UGW is 

assuming a significant economic position, particularly in 

the fields where the wellbeing of people is of higher sig-

nificance than financial cost (i.e.: aeronautics, trains ...). 

They have been generally used to assess the trustworthi-

ness of engineering structures, because they are capable 

to spread over significant separations and fantastic af-

fectability to the nearness of deformities in the prolifera-

tion way [5]. Furthermore, they contain rich information 
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regarding the mechanical properties along their path of 

propagation and possess high sensitivity to changes in ma-

terial and geometric in homogeneities due to damage. 

UGW is applied as an active as well as passive monitoring 

techniques [6], where the latter is comparable to an auton-

omous acoustic emission measurement system. But the 

majority of GW SHM systems in development use active 

transducers to excite specific stress wave modes to inter-

rogate the component. 

The prognostics rely on the approach of projection meth-

ods, which projects the current level of degradation in the 

future. It’s essentially about a time series prediction prob-

lem. Many approaches are proposed for time series fore-

casting like: Artificial Neural Network (ANN), exponen-

tial smoothing model (ETS), Auto Regressive Integrated 

Moving Average (ARIMA), machine learning, Support 

vector Regression (SVR), etc. [7, 8, 9, 10]. 

 

In this study, we focus on two approaches. The first one 

is a hybrid approach called Empirical Mode Decomposi-

tion-ARIMA (EMD-ARIMA), since EMD is suitable for 

nonlinear non-stationary data [11, 12]. EMD is used to de-

compose the original data into components in order to re-

duce the difficulty to realize the high-precision predic-

tions, and ARIMA predicts components respectively [13]. 

The second one is a statistical approach, mainly used in 

machine learning, called Auto-Regressive Neural Net-

works (ARNNET). Its concept is inspired from the bio-

logical neural network of the central nervous system. Neu-

ral Networks are better used to estimate functions based 

on a huge volume of training data. These are capable of 

modelling complex and non-linear functions [23]. 

 

The remainder of the paper is organized as follows. The 

next section provides some basic theoretical aspects of 

EMD-ARIMA and ARNNET. Section 3 describes the da-

tasets used in the study and discusses the methodology 

used in the time series modeling and forecasting. The re-

sults obtained in this study are presented in section 4. 

2 MATHEMATICAL MODEL 

2.1 EMD-ARIMA Models 

In this section we will discuss a hybrid EMD-ARIMA 

method of prediction. The computational framework of 

this method is given in Figure 1. As shown in Figure 1, 

the method consists in: (a) using the EMD to decompose 

the original time data into components with different fea-

tures (sub-layers); (b) applying ARIMA models to each 

sub-layer and adopt the built models to forecast and (c) 

summarize the predictions of the sub-layers to get the fi-

nal prediction for the original data [13].  

2.1.1 EMD 

 

EMD is an adaptive time series decomposition technique 

based on Hilbert-Huang transformation (HHT), which is 

suitable for nonlinear non-stationary data [11]. EMD can 

decompose the original data into a series of components 

with different frequencies, namely, intrinsic mode func-

tion (IMF) [12] using the equation as follows:  

𝑋(𝑡) =  ∑ 𝐶𝑖(𝑡) + 𝑅(𝑡)

𝑛

𝑖=1

                   (1) 

Where{𝐶𝑖(𝑡)}, (i=1...n) is the IMFs in different decompo-

sitions, {R (t)} is the residue and n is the number of IMF’s. 

The computational steps of the EMD are given as follows: 

 

Step 1:  Identify all the local extrema (maxima and min-

ima) of series {X (t)}. 

Step 2: Connect all the local maxima by a cubic spline to 

generate its upper envelop {Xup(t)}, and all the local min-

ima to obtain the lower envelop {Xlow(t)}. 

Step 3: Calculate the mean envelop {M(t)} as follows: 

𝑀(𝑡) =
[𝑋𝑢𝑝(𝑡) + 𝑋𝑙𝑜𝑤(𝑡)]

2
              (2) 

 

Step 4: Extract the details as follows: 

𝑍(𝑡) = 𝑋(𝑡) − 𝑀(𝑡)                             (3) 

Step 5: Check whether {Z(t)} is an IMF: (a) if it is  then 

set C(t)=Z(t) and set X(t)= R(t)= X(t) - C(t) ; (b) if not, 

replace {X(t)} with {Z(t)} then repeat the steps 2-4 until 

the termination criterion is satisfied. The equation of the 

termination condition can be represented as follows: 

∑
[𝑍𝑗−1(𝑡) − 𝑍𝑗(𝑡)]²

[𝑍𝑗−1(𝑡)]²

𝑚

𝑡=1

≤ 𝜹                   (4) 

(j=1, 2..., t=1,2,…,m) 

Where “m” is the number of the data points, “𝜹” is the 

terminated parameter, and “j” is the time of iterative cal-

culation. 

Step 6: Repeat steps 1-5 until all IMFs are found [13]. 
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Figure 1. Framework of EMD-ARIMA models. 
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2.1.2 ARIMA 

 

Once all IMFs are found, we apply ARIMA model to each 

IMF to fit the time series. An ARIMA model uses auto-

regressive moving average (ARMA) model to fit station-

ary time series. When the time series are non-stationary, 

they must be converted into stationary series by difference 

transformation before using ARMA for modeling. This is 

what “I” in ARIMA refers to; integrated. The difference 

transformation can be divided into the order difference 

transformation and the periodic difference transformation. 

The first-order difference transformation is: 

∇𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = (1 − 𝐵)𝑌𝑡                                   (5) 

where, ∇ is the difference operator, 𝑌𝑖 value, B is the back-

shift operator. 

Occasionally, the differenced data won’t appear to be sta-

tionary and it is necessary to difference the data a second 

time to obtain a stationary series, and the second-order 

difference transformation is: 

∇2𝑌𝑡 = ∇Y𝑡 − ∇𝑌𝑡−1 = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2              (6) 

The periodic difference transformation is as follow: 

∇𝑠𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−𝑠                                                           (7) 

where, ∇𝑠 is the periodic difference operator and s is the 

number of periods. 

 

When the differentiated series is stationary, we can use 

ARIMA model and it can be formulated as follows [14]: 

𝜑(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝑒𝑡                                          (8)  

 

Where,𝜑(𝐵) = 1 − 𝜑1𝐵 − ⋯ − 𝜑𝑝𝐵𝑝, 𝜃(𝐵) = 1 −

𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞 , 𝜑𝑖(i=1..p) and 𝜃𝑖(i=1..q) are the model 

parameters that are estimated using the autocorrelation 

function (ACF) and the partial autocorrelation function 

(PACF); at is the error; p and q are the autoregressive 

and the moving average order, respectively and d is the 

order of differentiation [15]. 

 

2.2 Auto-Regressive Neural Networks 

In this section we will introduce the Auto-Regressive 

Neural Network model. It is a network of multiple nodes 

working in parallel as shown in Figure 2. The inputs are 

combined through a linear function defined by : 

𝑧𝑗 = 𝑔 (∑ 𝑦𝑖𝑤𝑖𝑗 − 𝛽𝑗

𝑖

)                        (9) 

Where 𝑧𝑗 is the output of the jth node, 𝑦𝑖  is the ith input, 𝛽𝑗 

is the bias of the jth node, 𝑤𝑖𝑗  is the ith weight in the jth 

node. 

The result of the combination is then passed through the 

non-linear sigmoid activation function g() which trans-

forms the input to the node to an output which in turn acts 

as an input for the nodes in the next layer. The activation 

function is given by [16, 17] : 

𝑔(𝑥) =
1

1 + 𝑒−𝑥
                       (10) 

3 DATA SET AND METHODOLOGY 

3.1 Data set 

Our study aims to predict the RUL of tubular structures in 

order to schedule predictive maintenance, so we are 

brought to predict the evolution of the degradation indica-

tor (DI) over time. The datasets used in this study are two 

time series of the degradation indicator for two mode of 

propagation of UGW in pipes which are torsional and 

flexural. The dataset contains 1059 observations for each 

the torsional and flexural modes. This degradation indica-

tor was established over the collected UGW signals bas-

ing on singular value decomposition of the matrix of ref-

erence signals acquired from the pipe. The time series’ 

plot of the datasets is shown in Figure 3. 

Figure 3. Degradation indicator for torsional and flexural 

mode. Each signal is normalized by its maxima. 

Input 

Layer 
Hidden Layers Output 

Layer 
Figure 2. Neural Network architecture of three input 

nodes, two hidden layers and one node output layer. 
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3.2 Methodology 

3.2.1 EMD-ARIMA  

 

Mainly, ARIMA’s forecasting task is selecting the appro-

priate model order, which is the value of p, d and q. In this 

study, the following steps are used to identify the model 

used for the prediction: 

Step 1: As explained in section 2, we adopt the Empirical 

Mode Decomposition (EMD) to decompose the degrada-

tion indicator samples into Intrinsic Mode Functions 

(IMFs). Figure 4 is an example of data decomposition into 

IMFs. 

 

Step 2: In the step of model identification, all of the de-

composed degradation indicator has their stationarity 

checked to decide the “d” value in ARIMA (p, d, q).           

If an IMF has been found non-stationary, a difference will 

be executed for this IMF. In this study, in order to check 

the stationarity of time series we compare the p-values of 

the series by applying the Augmented Dickey Fuller 

test (ADF Test). If the p-value, using the function is lower 

than 0.05, means the time series is stationary and vice 

versa [18, 19]. 

 

Step 3: We compute and examine the Autocorrelation 

function (ACF) and partial autocorrelation function 

(PACF) of each IMF to decide whether to include an 

Auto-Regressive (AR) component or Mobile Average 

(MA) one or both [20]. 

 

Step 4: In order to obtain the model and predict the data 

for each IMF, we split the data into two parts, which are 

training data and validation data. For the torsional mode, 

we consider the first 910 data as training data. The remain-

ing data is used as validation data. On the other side, for 

the flexural mode, we consider the first 950 data as train-

ing data and the other 109 data as validation data. For pre-

diction accuracy, the Root Mean Squared Error (RMSE) 

is introduced to appraise and compare the different simu-

lation results. The RMSE is calculated using the following 

equation. 

      𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑛+𝑖 − �̂�𝑛(𝑖))²𝑁

𝑖=1

𝑁
                   (11)         

Where N denotes the length of the validation data, 𝑥𝑛+𝑖 

denotes the i-th actual value of validation data, �̂�𝑛(𝑖) de-

notes the i-th forecast. It is worth noting that, p, q and d 

may be also selected via an information criterion such as 

the Akaike information criterion (AIC) calculated as fol-

low [21]: 

𝐴𝐼𝐶 =  −2 log(𝐿) + 2𝑘                                    (12) 

Where L is the likelihood of the model and k is the total 

number of parameters and initial states that have been es-

timated. This criterion is used to measure the goodness of 

fit and determine the choice of optimal lags in the model. 

A negative value of AIC means that the model is well built 

[22]. 

Step 5: Once the model is chosen for each IMF, we sum 

all the forecasted data using ARIMA and compare it to the 

actual values of the validation data.  

Step 6: We set a threshold of the degradation indicator and 

determine at what time the forecasted values reach it. 

Figure3. EMD results of the original data of the tor-

sional mode. Each IMF is normalized by its maxima. 

Figure 4. IMF's of the Torsional mode. 
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3.2.2 ARNNET 

 

The effective execution of a Neural Network is reliant on 

proper training of the network with large training sets. In 

the process of training, the algorithm learns to adjust the 

weights and bias associated with each connection. In this 

paper we consider the notation NNAR (p, k) to indicate 

that in the model there are p lagged inputs and k nodes in 

the hidden layer [23-24]. The steps followed to build the 

neural network model are the following: 

Step 1: Determine the order of auto-regression (p) for the 

dataset. In Figure 5, PACF plot is drawn for the dataset. 

The abscissa represents the lags and the ordinate repre-

sents the partial autocorrelation values for the correspon-

ding lags. We search for the last signifiant spike. In our 

case, the value of p is 19 and 25 consecutively for Torsio-

nal and Flexural data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: Data has been partitioned into training and valida-

tion data. We used the same partition as the one used for 

EMD-ARIMA method. 

 

Step 3: Build the ARNNET of the data using the function 

“nnetar” in R. 

Step 4: We set a threshold of the degradation indicator and 

determine at what time the forecasted values reach it. 

4 RESULTS AND DISCUSSION 

The results of the EMD of the original degradation indi-

cator for the torsional mode is given in Figure 4. From 

Figure 4, it can be seen that the time series have been con-

verted successfully seven IMFs and a residue for the tor-

sional mode. Concerning the flexural mode, the time se-

ries was decomposed into eight IMFs and a residue. 

 

The accuracy of some of the estimated results of the tested 

ARIMA models applied for each IMF prediction as well 

as their AIC is given in Table 1 and 2. The model with 

minimum AIC is often the best model for forecasting. 

Table1. Accuracies and AIC of some tested models for the 

flexural mode. 

 Table 2. Accuracies and AIC of some tested models for 

the torsional mode. 
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Figure 5. PACF of the Torsional and Flexural data. 
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The accuracy of the estimated results of the chosen 

ARIMA model applied for each IMF for both torsional 

and flexural mode is highlighted also in Table 1 and 2. 

For the torsional mode, if the original data is not decom-

posed and we apply ARIMA models, the suitable model 

turns out to be ARIMA (4, 1, 2) with AIC= 545.62 and 

RMS= 3.17. For our data, the RMSE value using EMD-

ARIMA is equal to 1.26, which is 60% lower than the 

RMSE given by applying ARIMA directly.  

Same as the flexural mode, if we apply ARIMA directly 

without decomposing the data, the suitable ARIMA 

model is ARIMA (4, 2, 2) with AIC=-2255.66 and RMS= 

1.21. For our data, the RMSE value using EMD-ARIMA 

is equal to 0.514, which is 57.5% lower than the RMSE 

given by applying ARIMA directly. This result shows that 

EMD-ARIMA is better than ARIMA which is not surpris-

ing since it decreases the forecast difficulty by treating 

each IMF at once. 

 

 

Producing estimates of confidence interval is also an im-

portant aspect. We also evaluated the performance of the 

different ARIMA models in producing forecast intervals. 

Table 3 and 4 shows the confidence intervals at 95% of 

some of the tested ARIMA models comparing to the ac-

tual values. From table 3, we can note that the suitable 

ARIMA model for the torsional mode comes generally 

with the tighter confidence interval. However, from Table 

4, we can note that the suitable ARIMA model for the 

flexural mode comes generally with the larger confidence 

interval. 

 

 

 

 

 

 

 

As mentioned in section 3.2, the last step is to fix a thresh-

old of the degradation indicator and see when it is reached. 

In our case, the threshold is fixed to the highest value 

reached by the original data, which is 1.1387e-13 for the 

torsional mode, and 3.037e-14 for the flexural mode. Ac-

cording to the forecasted results using the chosen model, 

these values are reached at day 157 for the torsional mode 

and the day 147 for the flexural mode, from the start of 

the test. Based on the original data, the actual value should 

be 141 days for both modes. We note that there is a 16- 

and 6-days gap consecutively for the torsional and flex-

ural mode. In Figure 6 and 7, the original curve is repre-

sented in black, the curve in light blue represents the fore-

casted data with the chosen model. The dark blue and the 

green curve are simultaneously the prediction of one of 

the tested models and the prediction using directly 

ARIMA on the original data.  

 

 ARIMA  

(p, d, q)  

Confidence interval 

Lower Upper 

IMF1 (5,0,1) -0.04154 0.11242                 

(5,0,4) -0.04677 0.107095 

(5,0,3) -0.04007 0.114003 

IMF2 (4,0,1) -0.17893 0.068152 

(4,0,4) -0.16497 0.08301 

(5,0,2) -0.16589 0.08245 

IMF3 (1,0,0) -0.10084 0.06239 

(2,0,0) -0.09453 0.05671 

(1,0,1) -0.10925 0.05398 

IMF4 (1,0,0) -0.08257 -0.00178 

(3,0,0) -0.03191 0.0452 

(2,0,0) -0.0419 0.0389 

IMF5 (0,0,0) 0.00066 0.10155 

(1,0,0) 0.15285 0.25356 

IMF6 (0,0,0) 0.04237 0.16025 

(1,0,0) 0.01697 0.13482 

IMF7 (0,2,0) -0.38933 -0.3034 

Residue (0,2,0) -0.29946 -0.2391 

Table 3. Confidence intervals for the torsional mode. 

 ARIMA 

(p, d, q) 

Confidence interval 
Lower Upper 

IMF1 (3, 1, 5) 0.00066 0.06237 

(2, 1, 4) -0.0033 0.0583 

IMF2 (5, 0, 3) -0.0559 0.02183 

(4, 0, 4) -0.0551 0.02261 

(3, 0, 2) -0.0551 0.02263 

IMF3 (4, 0, 3) -0.0125 0.02645 

(2, 0, 3) -0.0132 0.02684 

(5, 0, 3) -0.0126 0.02641 

IMF4 (1, 0, 0) -0.0366 0.0217 

(1, 0, 1) -0.0366 0.0217 

IMF5 (0, 0, 0) -0.012 0.0682 

IMF6 (0, 0, 0) -0.0374 0.0215 

(0, 0, 1) -0.0382 0.0203 

(0, 0, 2) -0.0374 0.0215 

IMF7 (0, 0, 0) -0.121 -0.0648 

(0, 0, 1) -0.3 -0.244 

IMF8 (0, 2, 0) -0.0801 -0.06 

(0, 2, 1) -0.0784 -0.0586 

(1, 2, 3) 0.033 0.051 

Residue (0, 2, 0) -0.0102 -0.008 

(0, 2, 1) -0.0097 -0.00753 

(0, 2, 2) -0.0102 -0.00803 

Table 4. Confidence Intervals for the flexural mode. 

Figure 6. Examples of forecasted data for torsional mode. 

Normalized by the maxima of the original data. 
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 For the same threshold, we adopt the ARNNET to predict 

the RUL. According to the forecasted results, this value is 

reached at day 137 for the Flexural mode which is 4 days 

before the actual value. However, the forecasted values of 

the Torsional data didn’t reach the threshold. 

 The RMSE of the forecasted data is 0.11 and 0.148 con-

secutively for Torsional and Flexural mode. 

In Figure 8 and 9, the original curve is represented in 

black and the curve in green represents the forecasted data 

using ARNNET method. 

 

The tables 5 and 6 summarize the values of the residual 

life as well as the RUL found in this research for both tor-

sional and flexural mode. We can conclude that EMD-

ARIMA provides better results than ARIMA for both 

modes. 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 

Accurate residual useful life forecasting can have a great 

impact on risk management and predictive maintenance. 

The purpose of this work is to adopt and compare two 

methods of time series prediction. The EMD-ARIMA and 

the ARNNET model were used to predict the residual use-

ful life of tubular products and test its accuracy. The data 

provided in this study are the evolution of the degradation 

indicator of a torsional and flexural mode over time. How 

to effectively model these series and how to improve the 

quality of forecasts are the outstanding questions. 

As one of the most popular forecasting methods, ARIMA 

turns out to be less effective than the hybrid method 

EMD-ARIMA. EMD-ARIMA decomposes the time se-

ries into IMFs and treats each IMF independently in order 

to reduce the forecasting complexity.  

The hybrid method forecast is able to follow the pattern 

of the real data better than the ARIMA model but with a 

certain gap. It shows that the hybrid methodology could 

significantly increase the forecast accuracy. 

 

 

Flexural 

mode 

Actual 

Value 

Chosen 

EMD-

ARIMA 

Tested 

EMD-

ARIMA 

ARIMA 

(4,2,2) 
NNETAR 

RMSE  0.126 0.16 0.317 0.11 

RUL 141 147 152 ϕ ϕ 

Table 5. Residual life and RMSE for the torsional mode. 

Torsional 

mode 

Actual 

value 

Chosen 

EMD-

ARIMA 

Tested 

EMD-

ARIMA 

ARIMA 

(4,1,2) 
NNETAR 

RMSE  0.514 0.73 1.21 0.148 

RUL 141 157 157 ϕ 137 

Table 6. Residual life and RMSE for the flexural mode. 

Figure 7. Examples of forecasted data for flexural mode. 

Normalized by the maxima of the original data. 

Figure 9. Forecasted data of the Torsional mode using 

ARNNET. 

Figure 8. Forecasted data of the Flexural mode using 

ARNNET. 
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The ARNNET is computationally more intensive than the 

EMD-ARIMA as it has to estimate the weight and bias 

corresponding to each node, to come up with better results 

only for the Flexural mode. However, the ARNNET did 

fit a good model to the torsional data. 
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