Polymorph of
 2-[(2-hydroxyethyl)iminiomethyl]phenolato- κ Odioxido2-[(2-oxidoethyl)iminomethyl]phenolato$\kappa 3 \mathrm{O}, \mathrm{N}, \mathrm{O}$ 'molybdenum(VI)

Dominique Agustin, Jean-Claude Daran, Rinaldo Poli

To cite this version:

Dominique Agustin, Jean-Claude Daran, Rinaldo Poli. Polymorph of 2-[(2-hydroxyethyl)iminiomethyl]phenolato- κ Odioxido2-[(2-oxidoethyl)iminomethyl] phenolato$\kappa 3 \mathrm{O}, \mathrm{N}, \mathrm{O}$ 'molybdenum(VI). Acta Crystallographica Section C: Crystal Structure Communications [1968-2013], 2008, 64 (2), pp.m101-m104. 10.1107/S0108270108000127 . hal-03192652

HAL Id: hal-03192652

https://hal.science/hal-03192652

Submitted on 8 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Polymorph of $\{2-[(2-h y d r o x y e t h y l)$-iminiomethyl]phenolato-кO\}dioxido-\{2-[(2-oxidoethyl)iminomethyl]-phenolato-к3O,N,O'\}molybdenum(VI)

Dominique Agustin, ${ }^{\text {a }}$ Jean-Claude Daran ${ }^{\text {b* }}$ and Rinaldo Poli ${ }^{\text {b }}$
 - Institut Universitaire de Technologie A Paul, Sabatier, Département de Chimie, Av. Georges Pompidou, 81104 Castres Cedex, France, and ${ }^{\text {b }}$ Laboratoire de Chimie de Coordination, UPR 8241 du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France Correspondence email: daran@lcc-toulouse.fr

Abstract

A second polymorphic form (form I) of the previously reported Dioxo-(N-salicylidene-2-aminoethanolato-N, O, O^{\prime})-((2N -hydroxyethyliminomethyl) phenolato-O)-molybdenum(VI) (form II), $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{MoN}_{2} \mathrm{O}_{6}$, is presented. The title polymorph structure differs from the previously reported by the fact that the asymmetric unit contains three molecules linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These trimeric units are further linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a chain parallel to the $\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]$ direction. As for the previous polymorph, each molecule is built up from an $\mathrm{MoO}_{2}{ }^{2+}$ cation surrounded by a three-coordinating ONO ligand $\left(\mathbf{O}^{-(-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathbf{O}^{-(}\right)$and weakly coordinated by a second zwitterionic ligand $\mathbf{O}^{(-)} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}^{(+)} \mathrm{HC}_{2} \mathrm{H}_{4} \mathrm{OH}$. All complexes are chiral with the absolute configuration at the Mo being C, or A. The main difference between the two polymorphs results from the alternance of the chirality at Mo within the chain.

1. Introduction

2. Experimental

2.1. Synthesis and crystallization

Less than two equivalents of $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}(0.3 \mathrm{~mL}, 4.97 \mathrm{mmol})$ were added to an ethanol solution (10 mL) of one equivalentof $\mathrm{MoO}_{2}(\mathrm{sal})_{2}(0.92 \mathrm{~g}, 2.48 \mathrm{mmol})$ previously synthesized following a literature procedure (Yamanouchi \& Yamada, 1974). The mixture was maintained under reflux for 30 minutes. The white precipitate that formed was separated. The solution is subsequently cooled to room temperature and was left standing in air. Evaporation of the filtrate gave air-stable yellow crystals of the title compound, $\mathrm{Mo}(\mathrm{O})_{2}\left(1.2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NC}_{2} \mathrm{H}_{4}-\mathrm{O}\right)(1.2-$
$\left.\mathrm{O}^{(-)} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}^{(+)} \mathrm{HC}_{2} \mathrm{H}_{4} \mathrm{OH}\right)^{*}$ The IR spectrum in KBr pellets of the yellow crystals showed no visible difference with the compound synthesized earlier (Głowiak et al., 2003)

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) or $0.97 \AA$ (methylene) and O $-\mathrm{H}=0.84 \AA$ with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.
The two polymorphs have the same $\mathrm{P} \overline{1}$ space group but no relation between them could be found, moreover the simulated powder patterns using PLATON (Spek, 2003) are different (Fig. 5).

3. Results and discussion

Molybdenum oxo-complexes bearing polydentate ligands are known to be efficient epoxidation catalysts (Bruno et al., 2006, Herrmann et al., 2002, Martos-Calvente et al., 2004, Most et al., 2002, Valente et al., 2001, Wong et al., 1998,

Zhao et al., 2003, Zhou et al., 2004, Sobczak \& Ziolkowski, 2003). Thus, since we were interested to investigate the catalytic activity of $\mathrm{Mo}(\mathrm{VI})$ complexes linked to tridentate ligands, we have synthesized and structurally characterized the title compound (I).
Reaction of $\mathrm{MoO}_{2}(\mathrm{sal})_{2}$ with ethanolamine $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ under the described conditions (Głowiak et al., 2003) led to a new polymorphic crystalline structure of $\mathrm{Mo}(\mathrm{O})_{2}\left(1,2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{O}\right)\left(1,2-\mathrm{O}^{(-)} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}^{(+)} \mathrm{HC}_{2} \mathrm{H}_{4} \mathrm{OH}\right)$ with three crystallographically independent molecules per unit cell. The two polymorphs crystallize in triclinic $\mathrm{P} \overline{1}$ space group with different cell parameters $\left[(\mathbf{I}) \mathrm{a}=10.096 \AA, \mathrm{~b}=13.565 \AA, \mathrm{c}=21.879 \AA, \alpha=81.68^{\circ}, \beta=86.40^{\circ}, \gamma=71.41^{\circ}, \mathrm{V}=\right.$ $2810.9 \AA^{3}, \mathrm{Z}=6$; (II) (Głowiak et al., 2003) $\mathrm{a}=8.483 \AA, \mathrm{~b}=10.187 \AA, \mathrm{c}=11.034 \AA, \alpha=105.26^{\circ}, \beta=95.29^{\circ}, \gamma=$ $\left.\left.95.10^{\circ}, \mathrm{V}=909.6 \AA^{3}, \mathrm{Z}=2\right)\right]$.
For both (I) and (II) the molecule is based on a $\mathrm{MoO}_{2}{ }^{2+}$ cation surrounded by a doubly charged anionic ONO tridentate ligand $\left(\mathbf{O}^{(-)} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathbf{N C H}_{2} \mathrm{CH}_{2} \mathbf{O}^{(-)}\right)$and weakly O-coordinated to a zwitterionic ligand $\mathbf{O}^{(-)} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}^{=}=\mathrm{N}^{(+)} \mathrm{HC}_{2} \mathrm{H}_{4} \mathrm{OH}$ (Fig. 1). The zwitterionic form is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the $\mathrm{N}^{(+)} \mathrm{H}$ group and the O atom within the same ligand linked to the Mo. A second weak interaction may be noted between the same $\mathrm{N}^{(+)} \mathrm{H}$ and one of the O atom of the tridentate ligand ($\mathrm{O} 13, \mathrm{O} 23$ or O 33 , Table 1).
All the crystallographically independent complexes are chiral at the Mo, and the absolute configuration of each Mo could be determined to be C (clockwise) or A (anticlockwise) (Fig. 2) using the official nomenclature rules for such compounds (Brown et al., 1975; Hartung et al., 2006).
The title polymorph structure (I) differs from structure (II) by the fact that the asymmetric unit of (I) contains three molecules linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) involving the hydroxyl O atom of the zwitterionic ligand of one molecule to an oxo O atom attached to Mo atom of another molecule. These trimeric units are further linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of the same type to form a chain parallel to the $\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]$ direction (Fig. 3).
Although the chirality is different for each molecule, they have roughly the same conformation. Indeed an overlay analyses calculated using the structure matching software (Watkin et al., 2003; Collins et al., 2006) shows that the three molecules could be superimposed (Fig. 4, Table 2). A similar overlay analyses of the two polymorphs indicates that the largest deviation occured for the dangling hydroxyl O atom (Fig. 4) not coordinated to the molybdenum atom and involved in hydrogen bonding which is not surprising owing to the different packings observed in both isomers.
However it is worth to point out that in compound (II), the chain is formed from complexes having the same configuration C (or A) whereas in the title compound (I) the chain is built up from trimeric units linked by translation to form infinite (C, A, C) $\left.)_{n}[\text { or (A,C,A) })_{n}\right]$ chains (Fig. 2).
As observed in polymorph (II), there are also intramolecular hydrogen bonds between the dangling NH (N12, N22 or N32) group of the monodentate ligand and the O atom $(\mathrm{O} 15, \mathrm{O} 25$ or O 35) within the same ligand. Moreover the position of the dangling $\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ chain over the chelating ligand is certainly induced by a second weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction involving one of the O atom $(\mathrm{O} 13, \mathrm{O} 23$ or O 33) of the tridentate ligand (Table 1).

4. Synthesis and crystallization

Less than two equivalents of $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}(0.3 \mathrm{~mL}, 4.97 \mathrm{mmol})$ were added to an ethanol solution (10 mL) of one equivalentof $\mathrm{MoO}_{2}(\mathrm{sal})_{2}(0.92 \mathrm{~g}, 2.48 \mathrm{mmol})$ previously synthesized following a literature procedure (Yamanouchi \& Yamada, 1974). The mixture was maintained under reflux for 30 minutes. The white precipitate that formed was separated. The solution is subsequently cooled to room temperature and was left standing in air. Evaporation of the filtrate gave air-stable yellow crystals of the title compound, $\mathrm{Mo}(\mathrm{O})_{2}\left(1.2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NC}_{2} \mathrm{H}_{4}-\mathrm{O}\right)(1.2-$
$\left.\mathrm{O}^{(-)} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}^{(+)} \mathrm{HC}_{2} \mathrm{H}_{4} \mathrm{OH}\right)^{*}$ The IR spectrum in KBr pellets of the yellow crystals showed no visible difference with the compound synthesized earlier (Głowiak et al., 2003)

5. Refinement

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) or $0.97 \AA$ (methylene) and $\mathrm{O}-\mathrm{H}=0.84 \AA$ with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.
The two polymorphs have the same $\mathrm{P} \overline{1}$ space group but no relation between them could be found, moreover the simulated powder patterns using PLATON (Spek, 2003) are different (Fig. 5).

Table 1

Experimental details
Crystal data

Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{MoN}_{2} \mathrm{O}_{6}$
M_{r}	456.30
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	180
$a, b, c(\AA)$	10.0953 (5), 13.5645 (8), 21.8864 (14)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	81.731 (5), 86.437 (5), 71.422 (5)
$V\left(\AA^{3}\right)$	2810.9 (3)
Z	6
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.74
Crystal size (mm)	$0.76 \times 0.33 \times 0.27$

Data collection
Diffractometer Oxford-Diffraction XCALIBUR
Absorption correction Multi-scan
CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
$\begin{array}{ll}T_{\min }, T_{\max } & 0.762,0.834 \\ \text { No. of measured, } & 24992,13842,10817\end{array}$
independent and
observed $[I>2 \sigma(I)]$
reflections
$R_{\text {int }} \quad 0.026$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) \quad 0.667$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S 0.039,0.105,1.15$
No. of reflections 13844
No. of parameters 733
H -atom treatment $\quad \mathrm{H}$-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right) \quad 1.02,-1.10$

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-III (Burnett \& Johnson, 1996);ORTEP-3 for Windows (Farrugia, 1997); CAMERON (Pearce et al., 2000); PLATON (Spek, 2003), WinGX publication routines (Farrugia, 1999).

Table 2

Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for (I)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O16-H1 \cdots O22	0.84	1.96	2.748 (4)	156
$\mathrm{O} 26-\mathrm{H} 2 \cdots \mathrm{O} 32$	0.84	1.90	2.719 (4)	164
O36-H3 $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.84	1.89	2.714 (4)	169
N12-H12 \cdots O15	0.88	1.92	2.599 (4)	133
$\mathrm{N} 12-\mathrm{H} 12 \cdots \mathrm{O} 13$	0.88	2.35	3.165 (4)	153
N22-H22 ${ }^{\text {- }}$ O25	0.88	1.90	2.577 (4)	132
N22-H22 ${ }^{\text {- }}$ O23	0.88	2.41	3.230 (4)	155
N32-H32 $\cdots 35$	0.88	1.94	2.609 (4)	132
N32-H32 ${ }^{\text {- }}$ O33	0.88	2.32	3.124 (4)	153

Symmetry code: (i) $x-1, y+1, z+1$.

Table 3

Table 2 Structure matching between the three independent molecules and between the two polymorphs.
A is the structure matching between Molecules 1 and 2 in the Title structure

B is the structure matching between Molecules 1 and 3 in the Title structure

C is the structure matching between Molecules 2 and 3 in the Title structure

D is the structure matching between the two polymorphs

Overlay	RMS position (\AA)	RMS bond (\AA)	RMS torsion $\left({ }^{\circ}\right)$
A	0.1459	0.0071	2.8944
B	0.1084	0.0085	3.7916
C	0.1702	0.0089	5.2911
D	0.182	0.783	9.806

Acknowledgements

The authors thank Dr David Watkin from the "Chemical Crystallography laboratory" in Oxford for his efficient help with the calculation of the structure matchings.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brown, M. F., Cook, B. R. \& Sloan, T. E. (1975). Inorg. Chem., 14, 1273-1278.
Bruno, S. M., Monteiro, B., Balula, M. S., Pedro, F. M., Abrantes, M., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Kuehn, F. E. \& Goncalves, I. S. (2006). J. Mol. Catal. A: Chem., 260, 11-18.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U. S.

Collins, A., Cooper, R. I. \& Watkin, D. J. (2006). J. Appl. Cryst. 39, 842-849.

Farrugia, L. J. (1997). ORTEP-3 for Windows, J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Głowiak, T., Jerzykiewicz, L., Sobczak, J. M. \& Ziółkowski, J. J. (2003). Inorg. Chim. Acta, 356, 387-392.
Hartung, J., Greb, M., Svoboda, I. \& Fuess, H. (2006). Acta Cryst. E62, m275-m277.
Herrmann, W. A., Fischer, R. W., Groarke, M. \& Kuhn, F. E. (2002). Synth. Meth. Organomet. Inorg. Chem., 10, 127-148. Editor: Herrmann, W. A. ,Thieme, Stuttgart, Germany

Martos-Calvente, R., De La Pena O'Shea, V. A., Campos-Martin, J. M., Fierro, J. L. G. \& Gutierrez-Puebla, E. (2004). J. Mol. Catal. A: Chem., 214, 269-272.

Most, K., Koepke, S., Dall'Antonia, F. \& Moesch-Zanetti, N. C. (2002). Chem. Commun., 1676-1677.
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.
Pearce, L., Prout, C. K. \& Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sobczak, J. M. \& Ziolkowski, J. J. (2003). Applied Catalysis A-general, 248, 261-268.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Valente, A. A., Goncalves, I. S., Lopes, A. D., Rodriguez-Borges, J. E., Pillinger, M., Romao, C. C., Rocha, J. \& Garcia-Mera, X. (2001). New J. Chem., 25, 959-963.

Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper, R. I. (2003). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.
Wong, Y.-L., Yan, C., Edith, S. H., Yang, Q., Mak, T. C. W. \& Ng, D. K. P. (1998). J. Chem. Soc., Dalton Trans, 3057-3064.

Yamanouchi, K. \& Yamada, S. (1974). Inorg. Chim. Acta, 9, 83-86.
Zhao, J., Zhou, X., Santos, A. M., Herdtweck, E., Romao, C. C. \& Kuehn, F. E. (2003). Dalton Trans., 19, 3736-3742.
Zhou, X., Zhao, J., Santos, A. M. \& Kuehn, F. E. (2004). Z. Naturforsch., B: Chem. Sci., 59, 1223-1228.
Figure 1
Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Figure 2

Fig. 2. Scheme showing the two enantiomers with the priority numbers used to define the absolute configuration shown as indices.

Figure 3

Fig. 3. Partial packing view of compound (I), showing the formation of chains along [-1 1111$]$ built from hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.

Figure 4

Fig. 4. Overlays of the different molecules within the Title compound \mathbf{A}, \mathbf{B} and \mathbf{C} and an overlay of the two polymorphs D.

Figure 5
Fig. 5 View of the simulated powder patterns for both polymorph (I) and (II).

Fig. 1

C

Fig. 2

Fig. 3

(A)

(B)

Fig. 4

Fig. 5

