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Abstract 

Objective: The aim of this study was to assess, through biological analysis, the local effects and 

osseointegration of dental implants incorporating surface micro/nanofeatures compared to 

implants of identical design without surface treatment. Background: Known to impact bone cell 

behavior, surface chemical and topography modifications target improved osseointegration and 

long-term success of dental implants. Very few studies assess the performance of implants 

presenting both micro- and nanofeatures in vivo on the animal models used in preclinical studies for 

medical device certification. Methods: Implant surfaces were characterized in terms of topography 

and surface chemical composition. After 4 weeks and 13 weeks of implantation in sheep femoral 

condyles, forty implants were evaluated through micro-computed tomography, histopathologic, and 

histomorphometric analyses. Results: No local adverse effects were observed around implants. 

Histomorphometric analyses showed significantly higher bone-to-implant contact in the coronal 

region of the surface treated implant at week 4 and week 13, respectively 79.3±11.2% and 86.4±6.7%, 

compared to the untreated implant’s 68.3±8.8% and 74.8±13%. Micro-computed tomography analyses 

revealed that healing patterns differed between coronal and apical regions, with higher coronal bone-

to-implant contact at week 13. Histopathologic results showed, at week 13, bone healing around the 

surface treated implant with undistinguishable defect margins while the untreated implant still 

presented bone condensation and traces of the initial drill defect. Conclusion: Our results suggest 

that the surface treated implant not only shows no deleterious effects on local tissues but also 

promotes faster bone healing around the implant. (word count: 241) 

Keywords : osseointegration; dental implants; surface treatment; sheep model 
 

1 Introduction 

Dental implants are commonly used for the oral rehabilitation of partially or fully edentulous 

patients. To improve osseointegration and ensure that implants remain well-integrated in bone 

long-term, researchers and manufacturers continue to develop new implant designs, altering their 

macrogeometry and modifying their surface at lower scales. Among the many surface modifications 

applied to improve initial and long-term osseointegration, the sandblasted acid-etched (SLA) 

surface treatment has been for several decades one of the most popular surface treatment on the 

market. This surface treatment provides dental implants with a microrough texture that improves 

bone apposition and biomechanical anchorage (1). Plasma spraying has also been used to obtain 

microrough titanium surfaces (2) or to generate a hydroxyapatite coating on the implant surface (3). 

However, clinical concerns were raised about reported hydroxyapatite coating resorption (4) and 

the long-term efficiency of plasma spraying was questioned (5). Current research focuses 

particularly on the combination of micro- and nanofeatures obtained, for instance, by acid-etching 

followed by oxidation in flowing synthetic air (6), or by anodization yielding titanium nanotubes at 

the implant surface (7). 

Generally speaking, it is accepted by the scientific literature that modifying the surface of 

implants in terms of chemical composition and topology affects their rate of osseointegration. In 

vivo studies demonstrated that micrometric-scale features introduced on titanium surfaces enhance 

bone-to-implant contact (BIC) 8 weeks following implantation, compared to smoother surfaces (8,9). 
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In vitro studies confirmed such observations, reporting lower numbers of osteoblasts at the 

interface between bone and rough surfaces, along with increased differentiation markers such as 

alkaline phosphatase and osteocalcin (10,11). The authors of these studies suggested that osteoblasts 

are sensitive to moderate micro-roughness, moving earlier from their proliferation phase to their 

differentiation phase, maturing faster, and rapidly starting to secrete extracellular matrix (ECM). 

On the other hand, surfaces presenting nanofeatures showed improved BIC and higher implant 

removal torque in vivo two weeks after implantation (12), as well as better adhesion of osteoblasts 

in vitro (13). It should be noted that combining microfeatures and nanofeatures generates additive 

effects at both topographic levels, in addition to a drastic increase in surface hydrophilicity (14,15). 

To our knowledge, very few in vivo studies assessed the combined influence of micro and 

nanofeatures on dental implant osseointegration, and these were only conducted either on small 

animals (16,17) or for very short periods (18). Recently, Liu et al. (2019) studied screw-shaped 

cylinders implanted for three months in osteoporotic sheep mandibulars and found higher 

biomechanical parameter values for surfaces presenting micro/nanofeatures (19). However, no 

assessment of the neo-bone formation, of fibrosis, nor of the bone texture was conducted in this 

study. Furthermore, none of these studies made a distinction between the coronal area and the 

apical area of the implant, and thus no difference in osseointegration could be observed. 

Distinguishing between the two areas would have enabled the local influence of implant design 

features to be assessed.  

The purpose of this paper is twofold: (1) to assess the performance (osseointegration and 

osteogenesis) of a dental titanium implant presenting micro/nanofeatures; (2) to provide a 

comprehensive biological analysis of the local tissue effects of such an implant. Sheep were 

implanted with dental implants of a unique design, both untreated and treated with Starsurf® 

(Selenium Medical, La Rochelle, France), a chemical surface treatment that provides 

micro/nanofeatures. A total of eight sheep were bilaterally implanted in the medial femoral condyle 

and sacrificed four weeks and thirteen weeks after implantation. In addition to surface topography 

characterization and chemical composition assessment, Bone-to-Implant Contact (BIC) was 

evaluated through histomorphometric analysis to address the primary study objective both in the 

coronal and the apical regions. Local tissue effects of the endosseous implants were evaluated 

qualitatively and semi-quantitatively through histopathologic analysis. Finally, micro-computed 

tomography analyses were conducted to provide supporting data for both types of analysis. 

 
2 Materials and method 

 
2.1 Ethical Statement 

The implantation protocol was approved by the Namsa Ethical Committee (Chasse-sur-Rhône, 

France) as part of a project authorization reviewed every five years by the French Ministry of 

Education, Higher Education and Research. The different surgical procedures and biological 

analyses were conducted by the Medical Research Organization Namsa (Chasse-sur-Rhône, France), 

in compliance with the OECD series on Good Laboratory Practice and compliance monitoring and 

FDA 21 CFR 58 on Good Laboratory Practice (GLP) for non-clinical studies. The study design was 

also based on the guidance provided in ISO 10993-6, Biological Evaluation of Medical Devices Part 6 

(2016): Tests for Local Effects after implantation. The animal study was conducted in accordance 
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with the ARRIVE guidelines (20). The relevance and use of animal selection were carefully 

established and considered. 

 

2.2 Sample size calculation 

The sample size calculation for this study was based on a power analysis (21), considering a 

level of significance at 5% (P=0.05), a study power of 80% and assuming two-tailed hypothesis tests. 

Based on scientific literature (1), an effect size of at least 23% with a maximal standard deviation of 

14% were expected for the BIC in this study. According to the calculation, a sample size of at least 

six implants per group is required. To obtain a finer statistical analysis and to avoid any adverse 

effect and unexpected event, ten implants were allocated per group as well as two reserve implants 

per group. Therefore, to study two types of implants at two time periods, forty-eight implants were 

necessary. With up to three screw-type implants per leg, eight sheep were required for the study. 

Such calculation was concomitant with qualitative and semi-quantitative evaluation of local tissue 

effect, as any level of difference was of interest in the absence of similar data in the literature. 

 

 

2.3 The implants 

Forty-eight implants commercially available and made of commercially pure titanium (cpTi, 

grade IV) were used (Fig. 1), including eight reserves similarly treated and only intended for 

replacement in case of an adverse event. The intra-osseous part of the implant has a diameter of 3.5 

mm and a length of 10 mm, one part being cylindrical (coronal area) and the other conical (apical 

area). The main thread is composed of a double fillet with a pitch of 2 mm. The conical part of the 

implant has a thread depth that increases from approximately 0.15 mm in the coronal area to 0.7 mm 

in the apical one. In the coronal area, the main thread is subdivided into two "micro" fillets of 

identical pitch. Such implant geometry is common and representative of implants currently on the 

market (22). Two configurations were tested in this study: a standard topography (REF, n=10 + 2 

reserves at both 4 weeks and 13 weeks) and a Starsurf® one (TEST, n=10 + 2 at both 4 weeks and 

13 weeks) combining micro/nanofeatures. The standard topography is obtained through 

corundum grit-blasting, while the Starsurf® topography results from a succession of mechanical and 

chemical treatments. First, implants are sandblasted using a mixture of hydroxyapatite (HA) and β-

tricalcium phosphate (β-TCP), a biocompatible material and a bone mineral constituent. In addition 

to the surface roughness and particular topography this grit-blasting process provides (23,24), 

hydroxyapatite is fully soluble in acid solutions. Therefore, subsequent acid attack by hydrochloric and 

sulfuric acid dissolves HA particles along with surface etching (25). Finally, a basic attack is 

conducted using potassium hydroxide. Both series of implants were cleaned in clean rooms, and 

sterile packaging and final gamma irradiation were applied prior to implantation. Following 

implantation, the threads were engaged in the host bone cylindrical wall obtained after drilling, 

providing primary mechanical stability. 

 

2.4 Implant surface characterization 

Under a Captair Flow 468 ISO5 laminar flow hood (AirLab), the overall topography of REF and 

TEST implants was qualitatively examined using a Phenom ProX Scanning Electron Microscope 

(ThermoFisher scientific). Micrographs at different magnifications were observed to assess the 
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topographies at different scales. Then, surface chemical composition was assessed by Energy 

Dispersive X-Ray Spectrometry (EDX). Next, roughness measurements were conducted on an Altisurf 

3D profilometer (Altimet). Areas of 200×750µm for the interspaces of threads were evaluated in both 

coronal and apical areas. The arithmetic mean deviation (Sa), root-mean-square deviation (Sq), 

maximum peak-to-valley height (Sz) and developed interfacial area ratio (Sdr) of the surface were 

extracted, constituting the main roughness parameters. Three REF and TEST implants were 

examined and measurements were performed in triplicate. Finally, REF and TEST surfaces were 

reproduced on cpTi discs to assess implant surface energy. Wettability was tested through contact 

angle measurements on a DSA25 tensiometer (Krüss). Surface free energy was assessed using the 

Owens-Rankine formulation, with three liquids, droplets of 2µl, and ten contact angle 

measurements per liquid. 

 
 

2.5 Study design and experimental animals 

 
Animal model and management 

Eight (n= 4 per time period) female Blanche du Massif Central sheep (Bergerie de la Combe aux 

Loups, France) were involved in the study. Sheep were aged from 2 to 4 years (mean=2.7 years), 

skeletally mature, and weighed from 57 to 68 kg at implantation (mean=61.25 kg). The sheep is an 

animal model identified as suitable for evaluating materials and is suggested in the ISO 10993 

standard - part 6 (2016) for intraosseous implantations. Sheep were bilaterally implanted in the medial 

femoral condyle. Sheep femurs can be implanted with up to three screw-type implants per leg, 

increasing the number of sites per implant group without increasing the number of animals. Sheep 

were randomly attributed to the two periods of implantation studied and the number of sites per 

implant group was chosen in accordance with the guidance provided in ISO 10993 standard - part6. 

One group per condyle was implanted to allow suitable evaluation of the local tissue effects and 

performance and to avoid mixed tissue response between implant groups. Husbandry, housing, and 

environment conditions were in conformity with European Directive 2010/63/EU regarding the 

protection of animals used for scientific purposes. Animals were housed at Namsa, an AAALAC 

international accredited facility registered with the French Department of Agriculture for animal 

housing, care, and investigations. They were grouped in cages identified by a card indicating the 

study number, number of animals, sex, dates of beginning and end of experimental in-life phase. 

The animal housing room temperature and relative humidity were recorded daily. The 

recommended temperature range for the room was 10 - 24◦C and the light cycle was controlled using 

an automatic timer (12 hours of light, 12 hours of dark). After the post-operative period, the sheep 

from the 13-week group were jointly housed in a farm setting (Bergerie de la Combe aux Loups, 

France), where environmental conditions were not controlled. Standard hay was provided ad libitum 

and supplemented with a commercially available pelleted sheep feed (Special Diet Services, France). 

Minerals were provided ad libitum (Sodimouton, Salins Agriculture). Drinking water was delivered 

ad libitum through species-appropriate containers or delivered through an automatic watering 

system. 
 

Animal selection and randomization 

 Only healthy and previously unused animals were selected for this study. Each animal was 
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randomly assigned to one of the two time periods. Three implants of the same configuration were 

installed per femoral condyle and each animal was implanted with both implant configurations. 

The implantation site of each implant was randomly allocated. The randomization was carried out 

electronically by an independent author involved neither in the animal selection nor in the surgical 

procedures.  

Pre-operative procedure 

On the day of surgery, pre-medication was performed by intravenous injection of a mixture of 

diazepam (Diazepam®, TVM) and butorphanol (Torphasol®, Axience). Anesthesia was induced by 

intravenous injection of propofol (Propovet®, Zoetis). Each sheep was intubated, mechanically 

ventilated, and placed on isoflurane inhalant anesthetic (IsoFlo®, Zoetis) for continued general 

anesthesia. A suitable electrolyte solution (Ringer lactate, Baxter) was administered via intravenous 

infusion during surgery. An anti-inflammatory drug (carprofen, Rimadyl®, Zoetis, subcutaneous) and a 

prophylactic antibiotic treatment (amoxicillin, Duphamox LA®, Zoetis, intramuscular) were 

administered via pre-operative injection. The surgical areas were clipped free of wool, scrubbed with 

povidone iodine (Vetedine savon®, Vetoquinol), wiped with 70% isopropyl alcohol (Savetis), painted 

with povidone iodine solution (Vetedine solution®, Vetoquinol), and draped. The sheep were placed 

in the supine position on a warmed pad. A rectal temperature probe and a rumen tube were inserted 

during surgery. Electrocardiogram (ECG), peripheral non-invasive arterial blood pressure, and oxygen 

saturation were monitored. 

 
Surgical procedure 

The surgery was performed in a dedicated operating theatre by a veterinary surgical specialist 

from Namsa, using standard aseptic techniques (Fig. 2). A cutaneous incision was made on the 

medial side of each femoral condyle. The muscles were separated using blunt dissection to access the 

femur, and the periosteum was carefully removed from the femoral epiphysis to expose the implant 

sites. For each site, four-step drilling sequences were conducted perpendicular to the bone surface 

to obtain a final hole of 3.5 mm diameter with an approximate depth of 10 mm. Each drilling step was 

performed at a maximum drilling speed of 1 200 rpm and followed by extensive rinsing with saline 

to control temperature increase at the implantation site and to remove bone debris. Following drilling, 

the implant was inserted with a maximum torque of 45 N.cm. The incision was closed by separately 

suturing the capsule, muscles, and the subcutaneous layer with absorbable thread (Ethicon® PDSTMII 

1 and Ethicon® Coated VicrylTM 2-0). The skin layer was closed with surgical staples (ApposeTM 

ULC Auto SutureTM, CovidienTM). The wounds were disinfected using an iodine solution. The legs 

were not restrained in any manner post-surgery. 
 

Post-operative and terminal procedures 

The animals were observed daily for general health and to detect mortality and morbidity. The 

implantation sites were examined daily for adverse reactions until removal of sutures. When any 

animal exhibited adverse clinical signs, it was examined and treated as needed. An intramuscular 

injection of buprenorphine (Buprecare®, Axience) was administered at the end of the surgery day, then 

daily for two days post-surgery. An anti-inflammatory drug (carprofen, Rimadyl®, Zoetis) was 

subcutaneously injected daily for five days post-surgery and an antibiotic (amoxicillin, Duphamox 

LA®, Zoetis) was intramuscularly injected every two days for eight days post-surgery. The wounds were 
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disinfected with iodine solution (Vetedine solution®, Vetoquinol) daily until two days after removal 

of surgical staples. The surgical staples were removed after complete healing (2 weeks following surgery). 

On week 4 and week 13, the designated animals were weighed and euthanized by intravenous 

injection of a lethal solution (Doléthal®, Vetoquinol). These intervals were chosen to evaluate local 

tissue effects and bone-healing performance after both a short and a midterm implantation, as 

suggested in ISO 10993 standard - part 6, for non-degradable materials. The distal femur was 

harvested and explants were fixed in 10% Neutral Buffered Formalin (NBF) for histopathologic 

analysis. If not used for replacement, reserve implant sites were harvested in the same way, fixed, 

dehydrated, embedded, and stored for potential use in subsequent analyses. The newly formed 

calcified mineralization fronts were marked by fluorescence via prior subcutaneous injections in the 

neck and the back of three fluorochromes: xylenol orange (XO), calcein green (CG), oxytetracyclin 

(OTC). These fluorochromes bind to calcium at sites of bone mineralization and, if injected at specific 

times, enable mineralization front demarcations to be distinguished. For the 4-week group, the three 

fluorochromes were respectively injected on day 5, day 15, and day 25. Injections for the 13-week 

group were performed in respectively week 4, week 8, and week 12. 

 

2.6 Micro-Computed Tomography (Micro-CT) 

 
Micro-CT preparation 

After fixation in 10% NBF (VWR), a total of forty implanted sites, one non-implanted REF article 

and one non-implanted TEST article were scanned by cone beam micro-computed tomography (µCT 

40, SCANCO, Switzerland). The specimens were placed in cylindrical holders to obtain transverse 

tomograms of the implanted article at peak kilovoltage of 70 kVp, an intensity of 114 µA, a 

resolution of 15 µm and an integration time of 900 ms. The implant and bone were separated from 

the background through segmentation performed in conjunction with a Gaussian bandpass filter, 

respectively applying lower and upper density thresholds of 330 mg/cm3 and 2275 mg/cm3 for bone 

and titanium. 

 

 
Micro-CT evaluation 

Two Volumes Of Interest (VOI) were defined (Fig. 3a). Each VOI consisted in a conical tube with 

the inner edge along the core of the article (excluding the core but including the threads) and the 

outer edge placed at a fixed distance of 1 mm from the inner edge. The upper VOI (VOI C) was placed 

in the coronal area of the article. The lower VOI (VOI A) was placed along the apical and conical 

remaining area of the article. For each VOI, Bone Volume (BV), Bone Volume/Total Volume of the 

VOI (BV/TV), Bone-to-Implant Contact (BIC), trabecular thickness (Tb.Th) and trabecular spacing 

(Tb.Sp) were computed. For each femoral condyle, Tb.Th and Tb.Sp were also computed for a 

volume of 4x4x4 mm3 of trabecular healthy bone, as a reference. The non-implanted scanned 

implants served as a baseline to help distinguish the article from the bone. 

 

2.7 Histopathology 

 
Histologic preparation 
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After fixation in 10% NBF (VWR), a total of forty implanted sites, one non-implanted REF article 

and one non-implanted TEST article were dehydrated in alcohol solutions of increasing 

concentration, cleared in xylene and embedded in polymethylmetacrylate (PMMA). For each explant 

and non-implanted article, one central longitudinal section was obtained using a microcutting and 

grinding technique (ExaktTM, approximately 40 µm thick), for a total of ten sections per group. The 

sections were left unstained for epifluorescence analysis and then stained with modified Paragon for 

qualitative and semi-quantitative histopathologic analyses as well as quantitative histomorphometric 

analysis. 

 

Histopathologic evaluation 

Prior to section staining, an epifluorescence analysis was conducted. Bone mineralization rate 

was assessed by evaluating the progression of the mineralization front at the time of the 

corresponding fluorochrome injection. Qualitative and semi-quantitative histopathologic 

evaluations of the local tissue effects at the implantation sites were conducted by an independent 

senior histopathologist from Namsa using a microscope (Nikon Eclipse E600, Nikon, France) 

coupled with a digital camera (DN 100, Nikon, France) at magnifications of x2, x4, x10, x20 and x40. 

Tissue damage, cellular inflammatory response, repair phase of inflammation, fatty infiltrate, and 

other parameters such as hemorrhage, cell degeneration, bone ingrowth, encapsulation, and bone 

healing were evaluated semi-quantitatively and graded using a scoring method suggested in the 

standard ISO 10993 – part 6. Scoring is described in Table 1. 

 

Histomorphometric evaluation 

As with histopathologic evaluation, histomorphometric analysis was conducted by an independent 

senior histopathologist Namsa, on forty modified Paragon sections. Sections were scanned (Zeiss 

AXIOSCAN Z1) and analyzed at a magnification of x20, with a color image analyzing system 

(Tribvn, France, CALOPIX 3.2.0) to perform a semi-automatic analysis. Four standardized Regions Of 

Interest (ROI C1, C2, A1, A2) were defined for each longitudinal section (Fig. 3b). Each ROI consisted 

of a rectangle with the inner edge along the core of the article (excluding the core but including the 

threads) and the outer edge placed at a fixed distance of 1 mm from the inner edge. The upper ROI 

(ROI C) was placed in the coronal area of the article. The lower ROI (ROI A) was placed along the 

apical and remaining conical area of the implant. Each zonal ROI (sum of ROI C1 and C2 and sum 

of ROI A1 and A2) of the TEST was compared to each corresponding ROI of the REF. 

 

2.8 Statistical analyses 

Minitab 19 was used to conduct statistical analyses. Student’s t-tests were used for comparisons 

of the two implants, considering a P-value below 0.05 (α = 0.05) as statistically significant. 

 
3 Results 

 
3.1 Implant surface characterization 

 
Scanning electron microscopy 
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SEM micrographs of the implant’s surface revealed significant differences between the samples’ 

topographies. While the REF surface only shows a heterogeneous microtopography (Fig. 4a and 4b), 

the TEST surface topography is entirely replaced by a homogeneous nodule-like microstructure 

(Fig. 4c). Furthermore, the nanotopography is visible as a spike-like structure (Fig. 4d). 

 

Energy-dispersive X-Ray spectrometry 

The EDX spectra revealed that both REF and TEST surfaces are mostly composed of oxygen, 

titanium and carbon (Table 2). A low concentration of aluminum was measured on the REF surface 

but none was detected on the TEST surface. 

 

Roughness measurements 

Roughness measurements revealed few differences between REF and TEST surfaces (Table 2). 

While Sa and Sq parameter values were similar from one surface to another, significant differences 

were observed for the Sz and Sdr parameters. 

 

Wettability 

Wettability measurements on the TEST surface showed significantly lower contact angles for 

every liquid compared to the REF surface (Table 2). Therefore, the TEST surface is more hydrophilic 

than the REF one, showing a contact angle with water of 8.76±3.20° while 46.51±4.44° for the REF 

surface. While surface free energy results tend to corroborate this behavior, statistical significance 

was not reached (P=0.097). 

 

3.2 Micro-CT analysis 
 

When REF and TEST implants were compared by Micro-CT analysis, no statistical difference was 

found in BIC and BV/TV (Table 3). At 4 weeks after implantation, BIC reached 65.1±10.9% for the REF 

implant in the coronal region, against 61.8±10.8% for the TEST one. At 13 weeks, BIC increased to 

74.4±10.6% for the REF implant and significantly increased to 80.6±7.4% for the TEST one. There was 

no evidence of variation in BV/TV ratio over time. Bone response in the apical region followed a 

significantly different pattern from that of the coronal region for the same period. However, neither of 

these parameters‘ values in the apical region differed significantly between implants and between time 

periods.  While no significant differences in Tb.Th were found between the REF and TEST implants at 

4 weeks, both in the coronal and in the apical regions, at 13 weeks after implantation there were 

significant differences between the implants in the apical region, reaching respectively 0.26±0.03 mm 

and 0.32±0.07 mm. A similar trend was observed in the coronal region, with respective values of 

0.32±0.03 mm and 0.37±0.06 mm, although without statistical significance (P = 0.075). In contrast, no 

differences in Tb.Sp were observed between regions or time periods. 

 

3.3 Histopathologic analysis 

Owing to an off-axis section, one REF implant was replaced by a reserve implant for histology. 

At 4 weeks (Fig. 5), qualitative analyses of explants did not reveal significant differences in impact 

on local tissue between the REF and the TEST implants. The defect generated through drilling 
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during the surgical procedure was still visible for both implants, allowing distinction between host 

bone and healing chamber, particularly in the apical region of the implant. No marked 

inflammation was observed by the histopathologist, with only a small number of macrophages and 

osteoclasts admixed with a few lymphocytes and polymorphonuclear cells. Bone marrow formation 

was observed in 4 out of 10 sites for the REF implant against 7 out of 10 sites for the TEST one. 

Combined with qualitative observations, these results indicate for both implants a marked woven 

bone neoformation, without tangible evidence of bone remodeling. Bone condensation was visible 

around the implants, especially in the coronal region. Signs of bone apposition and moderate to 

marked osteoconduction were observed, along with the marked presence of osteoblasts. In particular, 

TEST implants quickly formed a thin and continuous film of bony tissue at their surface (Fig. 5e), as 

highlighted by epifluorescent analysis (Fig. 5f). Furthermore, the latter analysis showed that for both 

implants, bone mineralization activity had already started at day 5, reaching a peak at day 15 mostly 

through bone deposition, then slightly decreased at day 25 (Table 1). At 13 weeks (Fig. 6), while no 

significant differences were noted in the semi-quantitative bone healing parameters between the 

REF implant and the TEST one, differences were observed in bone response in terms of architecture. 

Both implants showed fewer osteoblasts than the 4W group, as well as marked signs of bone 

neoformation, osseointegration, and osteoconduction. Consistent bone marrow formation was found 

and epifluorescent analysis (Fig. 6c, f) revealed continuing strong bone mineralization activity, mostly 

through bone thickening and surface apposition, at week 4 and week 8, which then slowed to a more 

moderate level at week 12 (Table 1). Nevertheless, the TEST implant showed no more bone 

condensation and with thick bone trabeculae (Fig. 6e, f). The defect margins were undistinguishable 

between host bone and neoformed bone. For the REF implant, the defect margins remained 

somewhat visible and discrete bone condensation could still be observed (Fig. 6b), despite similar 

bone remodeling rate compared to the TEST implant (Table 1; Fig. 6c). Semi-quantitative 

histopathologic results at week 4 and week 13 are compiled in Table 1. 

 

3.4 Histomorphometric analysis 

Contrary to the Micro-CT evaluation, significant differences were pointed out by histomorphometric 

analyses. Only slight variations in BIC in the apical region were visible, increasing from 63.5±9.9% 

to 66.2±14.7% for the REF implant and decreasing from 69.2±10.3% to 64.2±14.6% for the TEST 

implant between week 4 and week 13 (Fig. 7). In the coronal region, the BIC of the REF implant 

increased from 68.3±8.8% to 74.8±13% between week 4 and week 13. BIC values for the TEST 

implant were significantly higher than for the REF one at both week 4 and week 13, respectively 

79.3±11.2% and 86.4±6.7%. No implant impact on local tissue densities was observed. A significant 

decrease in fibrous tissue density was observed between week 4 and week 13 for both implants, and 

in both their coronal and apical regions. In particular, in the apical region this decrease led to 

significantly higher fibrous tissue density for the TEST implant at week 13. 

 

4 Discussion 
 

This study provides evidence that implant surface modifications have a significant impact on 

bone response in the coronal region. Several previous studies demonstrated that surface chemical 

composition modification may alter peri-implant bone response (26). In the present study, both 

implant surfaces, composed of titanium, seem to have adsorbed hydrocarbons from the exposure 

to ambient environment, explaining the presence of carbon. Moreover, traces of aluminum 
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contamination, supposedly due to the corundum grit-blasting, were detected on the REF surface. 

Such pollutants may alter the nature of bone response at the peri-implant interface. Moreover, our 

roughness measurements point to the influence of surface processing on implant topology. Indeed, 

the combination of grit-blasting and dual chemical etching resulted in a significantly lower peak-

to-valley height and developed surface interfacial area ratio, although the arithmetic mean 

deviation and root-mean-square deviation of the surface remained unaffected. It is assumed that 

while grit-blasting is responsible for topology modifications at the micrometric scale, chemical 

attacks act at lower scales, resulting in less marked differences in micro-roughness parameters. This 

is in fact corroborated by our wettability results. Depending on both the topography and chemical 

composition of the surface, the TEST contact angles for every liquid tested were significantly lower, 

therefore showing a more hydrophilic surface. Overall, these results, together with the 

histomorphometric BIC analysis, confirm previous conclusions in the scientific literature (7,14): 

surfaces incorporating features at both microscopic and nanoscopic scales generate an additive 

effect on the adhesion, proliferation, and differentiation of osteogenic cell lines, leading to increased 

de novo bone formation in vivo. While the exact mechanisms of overall bone response enhancement 

remain unclear, studies suggest that the higher surface energy resulting from incorporation of 

nanofeatures positively affects the adsorption and conformation of vitronectin and fibronectin, 

proteins responsible for osteoblast adhesion, onto the implant surface. Such adhesion appears to 

regulate the subsequent proliferation and differentiation of mesenchymal stem cells (27,28).  

 The absence of tissue deleterious response for both REF and TEST implants indicates that the 

implants’ biocompatibility was preserved despite the topography and chemical modifications in 

this study. Furthermore, mineralization activity was not affected by the TEST surface treatment. In 

a study conducted in dog jaws, Abrahamsson et al. (2004) suggested that there was an increase in 

lamellar bone formation around dental implants between 2 weeks and 4 weeks after implantation 

(29), which is similar to the peaks observed here for the REF and TEST implants 15 days after 

implantation. This same study also emphasized the presence of a front of bone deposition onto the 

implant surface. The semi-quantitative histopathologic evaluation used here suggests that the TEST 

surface treatment was not deleterious to bone mineralization activity and moreover promoted 

osteoconduction. Micro-CT evaluation demonstrated no significant difference between the REF and 

TEST implants regarding BIC and BV/TV parameters, in both coronal and apical regions. This lack 

of difference compared to the findings from histomorphometric analyses could be explained by the 

high interferences generated by titanium implants (30). These artifacts hinder measurements close 

to the surface of implants, thus decreasing the accuracy of such evaluation. Schwartz et al. (2008) 

precluded assessment by Micro-CT of bone healing at the interface due to these artifacts, as well as 

to poor acquisition resolution (9). However, our analysis highlighted different implant 

osseointegration behaviors. First, while Tb.Th in the apical region did not significantly differ 

according to implant at 4 weeks, it was significantly higher for the TEST implant at 13 weeks. A 

similar trend, although without statistical significance, was observed in the coronal region, which 

gives additional weight to this observation. It should be noted that major differences in bone healing 

were observed within a given group of implants between the coronal and the apical regions. This 

could be explained by a different implant thread design in the apical region, altering local stress 

distribution at the interface with bone (31,32) and increasing wound chamber dimensions (33), 

thereby modifying the osteogenic response to the implant (34).  

These observations need to be viewed in conjunction with the histopathologic findings. Indeed, 

while at 4 weeks REF and TEST implants induced similar bone architecture, with bone condensation 
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and presence of the initial defect margins, at 13 weeks the TEST implant induced bone  healing, 

with trabeculae recovering their connectivity and no detectable trace of the drilling for implant 

insertion. In addition, trabeculae appeared to be oriented towards the thread tips of the implant, 

where interfacial mechanical stress is significant. This is in accordance with Wolff’s law of bone 

remodeling (35), which led to the concept of "bone functional adaptation" (36), explaining the 

process of long-term osseointegration. According to this concept, mechanical load applied to living 

bone influences the structure of bone tissue over time. Increased local strain results in greater 

deposition of bone tissue while decreased strain leads to resorption of bone tissue until the original 

bone strain levels, also termed "optimum customary strain level", are restored Interestingly, similar 

patterns were observed in other in vivo studies. Perrin et al. (2002) inserted titanium dental implants 

of various topographies into Land Race pig mandibles, observing a preferential orientation and 

distribution of bone trabeculae after 10 weeks. These trabeculae were oriented perpendicular to the 

implant surface and located at the thread level of the implant (37). The authors explained this 

behavior with reference to Gross et al. (1990), who inserted titanium cylinders of differing surface 

roughness into the distal epiphysis of rabbit femurs and noted the formation of a cortical shell 

around implants with smooth surfaces, opposed to oriented trabeculae with increased surface 

roughness (38). It was suggested that surface roughness promotes bone trabecularization around 

the implant, leading to better immobilization. In an animal experiment employing porous coated 

and proximally partially porous coated femoral canine implants, Bobyn et al. (1987) noted a similar 

shell around the smooth surface, interposed with a space filled with fibrous tissue (39). Based on 

these observations, Luo et al. (1999) used computational methods to indicate that such a shell should 

resorb over time, leading to trabecularization of the bone-implant interface (40). 

Clinically, in vivo investigations report successful osseointegration of dental implants for BIC 

between 50% and 80% (41). Considering the current experimental conditions and results, it is 

therefore assumed that both REF and TEST implants would achieve long-term stability. However, 

by positively affecting coronal BIC results both at 4 weeks and 13 weeks compared to the REF 

implant, it is supposed by the authors that the surface treatment applied to the TEST implant may 

be of interest for improving osseointegration of implants in bone of poor quality such as 

osteoporotic bone (19). 

Bone healing and remodeling mechanisms are complex, and this study faced difficult choices. 

On the choice of animal model, canine and porcine models are known to provide bone healing and 

remodeling rates closer to humans than the sheep model. However, the sheep was shown to be a 

relevant model in many intraosseous implantation studies published in scientific peer-reviewed 

journals and is recognized by International Regulatory Organisms (42,43). Compared to small 

animal models, the sheep model offers the advantage of a body weight, as well as bone healing and 

remodeling patterns, more similar to the human (44). Furthermore, this model currently raises fewer 

ethical issues than models such as the dog, and is easier to handle, more amenable to intervention, 

than the porcine model (44). On the choice of implantation site, it is universally recognized that the 

intended anatomical location of dental implants, alveolar bone from the jaw, is not equivalent to 

femoral bone in its origin, method of ossification, microstructure or rate of turnover. In addition, 

obtaining data related to dental implant evaluation, such as buccal and lingual bone crest levels, 

appears impractical from the femur, which partially limits the range of analyses specifically related 

to dental implants. Nonetheless, the sheep femoral implantation model is highly standardized and 

associated with low rates of complication. The osseointegration properties of dental implants can 

be assessed with minimal variability, enabling finer comparisons of surface treatment influence 
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than with jawbone implantation (45). Histopathological analyses were performed by only one 

senior histopathologist who provided only one value per parameter and per sample.  Therefore, 

unfortunately, the reproducibility of results for the same sample at different times cannot be clearly 

supported by any reliability data. Furthermore, implant dimensions constrained the sampling to 

only one longitudinal section per explant. However, the authors are confident that the preparation 

of ten slices per group, along with the assessment of the overall peri-implant bone architecture 

through micro-CT analyses, reduced any potential bias generated by the study design. 

 

5 Conclusion 

The present pre-clinical study evaluated the biocompatibility and osseointegration of dental 

implants with different surface characteristics in sheep femoral condyles. The REF implant surface 

was obtained by grit-blasting while the TEST implant surface resulted from a succession of grit-

blasting, acid-etching, and basic-etching, the two latter inducing nanofeatures at its surface. After 4 

and 13 weeks of implantation, both implants showed good biocompatibility within their 

environment, without any deleterious local effect on the surrounding tissue. Bone apposition was 

significantly higher at both 4 and 13 weeks for the TEST implant, with thicker bone trabeculae in 

the apical region of the implant. This suggests that the presence of nanofeatures at the surface of 

TEST dental implants promoted faster bone healing. Finally, the distinction between the coronal 

and apical regions of the implant demonstrates that bone behavior differed along the implant, 

possibly due to differing implant thread geometry and the greater local stresses generated at the 

apex. 
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Figure legends 

 
Figure 1: (a) Full-Size High-Resolution SEM image of REF and TEST implant used for the study; (b) 
General implant dimensions. 

 
Figure 2: Surgery procedure for implantation. (a) Drilling at 1 200 rpm; (b) dental implant insertion 
at 45 N.cm; (c,d) implant positions on femoral condyle after completed surgery. Three sites per 
condyle are allocated for implants. 

 
Figure 3: (a) Tomogram obtained by Micro-CT tomography, presenting the different Volumes Of 
Interest (VOI A and C); (b) Representative photomicrograph used for histopathologic analysis, 
introducing four Regions Of Interest (ROI A1, A2, C1 and C2). 

Figure 4: SEM of implant surface (a,b) REF surface ; (c,d) TEST surface. The REF surface shows a 

heterogeneous microtopography while the TEST surface has a homogeneous nodule-like 

microstructure and a spike-like nanotopography. 

 
Figure 5: Photomicrograph of a (a,b,c) REF implant and (d,e,f) TEST implant, 4 weeks after 
implantation. Bone condensation is visible all around the implant, depicting the initial defect 
margins created through the surgical drilling. Signs of osseointegration are visible through woven 
bone neoformation at the surface of both REF and TEST implants. Under epifluorescence 
microscopy (c,f), calcein green (15 days) revealed bone mineralization at the surface of the TEST 
implant, where a continuous thin film of bony tissue is formed, while discrete and discontinuous 
on the REF implant (white lines). OB: old bone; OI: osseointegration; BM: bone marrow; NFB: 
Newly formed bone. 

 
Figure 6: Photomicrograph of (a,b,c) REF implant and (d,e,f) TEST implant, 13 weeks after 
implantation. While defect margins are still visible (black arrows) along with discrete bone 
condensation around the REF implant, the TEST implant showed almost invisible bone 
condensation and defect margins. Under epifluorescence microscopy (c,f), bone thickening and 
surface apposition are still observable for both implants, in xylenol orange (4 weeks) and calcein 
green (8 weeks). Oxytetracyclin (13 weeks) revealed slowing bone mineralization. OB: old bone; OI: 
osseointegration; BM: bone marrow; NFB: Newly formed bone; DM: drill margins. 

 

Figure 7: Histomorphometric analysis of BIC (%) in the coronal and apical portions of REF and TEST 
implants. * P<0.05 compared to REF group at the same time period. 

 


