
HAL Id: hal-03192526
https://hal.science/hal-03192526v1

Preprint submitted on 26 Jan 2022 (v1), last revised 17 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A tractable non-adaptative group testing method for
non-binary measurements

Emilien Joly, Bastien Mallein

To cite this version:
Emilien Joly, Bastien Mallein. A tractable non-adaptative group testing method for non-binary mea-
surements. 2022. �hal-03192526v1�

https://hal.science/hal-03192526v1
https://hal.archives-ouvertes.fr

A tractable non-adaptative group testing method for non-binary
measurements

Emilien Joly∗ Bastien Mallein†

December 8, 2021

Abstract
The original problem of group testing consists in the identification of defective items in a collection,

by applying tests on groups of items that detect the presence of at least one defective element in the
group. The aim is then to identify all defective items of the collection with as few tests as possible. This
problem is relevant in several fields, among which biology and computer sciences. In the present article
we consider that the tests applied to groups of items returns a load, measuring how defective the most
defective item of the group is. In this setting, we propose a simple non-adaptative algorithm allowing the
detection of all defective items of the collection. Items are put on an n × n grid and pools are organised
as lines, columns and diagonals of this grid. This method improves on classical group testing algorithms
using only the binary response of the test.

Group testing recently gained attraction as a potential tool to solve a shortage of COVID-19 test
kits, in particular for RT-qPCR. These tests return the viral load of the sample and the viral load varies
greatly among individuals. Therefore our model presents some of the key features of this problem. We
aim at using the extra piece of information that represents the viral load to construct a one-stage pool
testing algorithm on this idealized version. We show that under the right conditions, the total number of
tests needed to detect contaminated samples can be drastically diminished.

1 Introduction
The group testing problem consists in identifying a subset of defective items among a larger set by using
tests on pools of items answering the question “Does this pool contains at least one defective item?”. This
problem has a long history, and appeared several times in different fields of medical biology [Dor43, Tho62,
TM06, FHG+12] and computer sciences [MTT08, IKWO18, AJS19]. It has also been the subject of an
important mathematical literature, which studied optimal algorithms for the detection of defective items
with minimal use of tests, which are considered a limiting resource. Those algorithms can be divided into
two main categories:

adaptive testing: in which the choice of a pool is influenced by the previous results of tests applied to the
group;

non-adaptive testing: in which the choice of a pool does not depend on the results of previous tests.

The aim of a pool testing algorithm is to assess, as precisely as possible, the status (defective or not) of each
item, through the tests made on pools of items, while using as few tests as possible.

In general, adaptive testing allows to detect defective items with fewer tests then non-adaptive testing.
Indeed, in adaptive testing schemes, the result of previous tests are used to construct the next pool to be
tested. A more parsimonious use of tests can thus be archived using this additional information. At one
extreme of adaptive testing schemes, a search tree can be used to detect defective items with a maximal
economy of tests [CJBJ17]. In contrast, non-adaptive testing allows the possibility to massively parallelize
the procedure. As all pools can be constructed before any result is known, all tests can be performed
simultaneously, which decreases the time needed to obtain the result. Moreover, in the context of biological
testing, non-adaptive schemes decrease the risk of contamination or of decay of samples during their treatment.

It might be noted that several types of adaptive testing allow some level of parallelizing. For example,
two- or three-stages algorithms can be considered. In this situation, a first set of pools is constructed without
prior information. Using the result of testing on these pools, a second set of pools is constructed. With the

∗CIMAT, Guanajuato, Mexico, emilien.joly@cimat.mx.
†Université Sorbonne Paris Nord, LAGA, UMR 7539, F-93430, Villetaneuse, France. Member of the MODCOV19 plateform

and the GROUPOOL initiative, mallein@math.univ-paris13.fr.

1

tests made on this second set of pools, the status of each item is assessed in a two-stage algorithm, or a third
set of pools is constructed and tested in a third stage algorithm, before assessing the status of the items.

One of the first pool testing algorithms to be describe was introduced by Dorfman [Dor43], as a method
to detect syphilis in recruited US soldiers. This algorithm is the following: samples taken from individuals
are pooled together in a group, which is then tested for syphilis. If the pool turns negative, all individuals
are declared non-contaminated, while if the pool turns positive, then each individual of the pool is tested.
Note that this is a two-stage algorithm, which we refer to as Dorfman’s algorithm.

In the present article, we introduce a non-adaptive pooling scheme which uses tests on the items revealing
not only the defective groups, but also a numerical value representing the level of defectiveness of the most
defective item in a pool, comparable to the viral load in medical testing. In this scheme, items are organised
in groups of n2 elements, which are placed on a grid. Pools are organized as lines, columns and diagonals,
and an item is declared defective if two or more tests containing it are measuring the same level.

Several adaptive and non-adaptive pool testing algorithms have been described over the years, such as
matrix testing [CCK+99], smart testing [TM06], and testing based on risk estimation for items [ABB19,
BBC+20]. We refer to [AJS19] for a recent survey on this topic. To compare these algorithms to our own,
which is a variant of matrix testing, it is necessary to specify more precisely the context in which they are
used, such as the relative number of defective and non-defective items, the authorized false positive and false
negative rates, etc.

Prevalence and efficiency of pooling procedures. As stated above, the objective of pool testing is the
reduction of the number of tests used on a population of N items in order to identify the defective ones. If
an algorithm uses a total of T tests, we measure its resource-based efficiency by the quantity

E = T

N
.

This ratio measures the average number of tests used per item in this pool testing algorithm to detect the
defective ones. Therefore, the lower this ratio is, the more parsimonious the algorithm.

Observe that any reasonable algorithm of pool testing should verify E < 1, as otherwise the testing of any
item separately represents a more efficient use of resources. In the present article, we assume that a known
proportion p of items is defective. It is worth noting that in that situation, a lower bound on the efficiency of
a reasonable non-adaptive pool testing algorithm is E(p) ≥ p. Indeed, there are approximately pN defective
items among N , so if one makes less than pN tests, there is no possibility to detect the defective items if all
pools contains at least one defective. One is interested in the optimal dependency of E in the parameter p.

The optimal efficiency of the Dorfman algorithm previously described is obtained by choosing the size of
the pool depending on the value of p in such a way that it is minimal. It can be computed as follows

ED(p) = min
n∈N

1 + n(1− (1− p)n)
n

∼ 2p1/2 as p→ 0. (1.1)

Indeed, if one creates pools of n items, one test is required for the pool to detect if defective items are present
or not, and if the pool is positive (which happens with probability 1− (1− p)n), an additional one is needed
per item. The equivalent is obtained by choosing n ≈ p−1/2 as p→ 0.

Mézard et al. [MTT08] constructed asymptotically optimal non-adaptive and two-steps pool testing
algorithms, which detects asymptotically all defective items, while keeping an efficiency of

E∗(p) ∼ C∗p| log p| as p→ 0, (1.2)

for some C∗ > 0. This algorithm is based on the construction of random pools of size n ≈ cp−1 of items,
such that each item belongs to L ≈ C| log p| pools. An item is declared non-defective if it belongs to at least
one pool tested negative, is declared defective if it belongs to at least one positive pool with all the other
items being declared non-defective, and is declared ambiguous otherwise. In that situation, depending of the
value of c, C, either with high probability each defective item will belong to at least one pool of non-defective
items, and thus be identified as non-defective, or with high probability, the number of ambiguous items after
the first stage is small enough that they can be tested individually.

Pooling in the context of the COVID-19 epidemics. In the context of COVID-19, pool testing has
been massively proposed and implemented as a method to diminish the marginal cost of a test as well as
to answer local shortages of test kits, see for example [BBC+20, GRK+20, SNGYL20, BAKS+20, HSP20,
SAKH20, LSF20, GG20, MNB+20, TAN20, LPBG+20] among many others. The necessity of early detection
of contaminated individuals has been underlined many times, in particular due to the large number of
presymptomatic, asymptomatic and mildly symptomatic individuals that remain contagious and can carry

2

the diseases to vulnerable people. As a result, the demand for effective and quick testing has skyrocketed,
with the offer being limited by the number of test kits and trained medical professionals for the sampling.
The question of optimization of pool testing thus has practical consequences, as improving on the efficiency
of a testing algorithm can increase the number of individuals that can be tested with the same number of
kits.

A typical test used for the detection of contamination to SARS-COV-2 is the RT-qPCR test (or PCR test
for short), the reverse-transcriptase quantitative polymerase chain reaction. This test allows the measurement
of the number of RNA segments typical of the virus that are present in a given sample (usually, three different
RNA segments are tested simultaneously to improve on the measure), which is related to the viral load of the
sample. As the name suggest, the measure is quantitative, thus returns more than binary response (which
would be akin to a defective/not defective result in the classical pooling literature). As such, it seems that
this additional piece of information could be used to improve on the existing group testing strategies to reduce
the the number of tests needed for detection.

However, let us underline a couple of important caveats. First, the quantity measured by the PCR test
is related to the logarithm of the viral load carried in the sample, rather than the viral load itself, with
some noise on the measure [BMR20]. Therefore the exact viral load is not known, but rather its order of
magnitude. Secondly, the viral load in defective items spans a large range, of several orders of magnitude
[JMV+20]. Therefore, if two defective items with viral loads c1 and c2 are tested in the same pool, the result
of the measure will be

log(c1 + c2) ≈ max(log c1, log c2), (1.3)

as c1 and c2 will typically be of different orders of magnitude.

Informal description of our result. The aim of this article is to propose and study an algorithm that
uses the viral load of an item to improve its efficiency. We construct this algorithm on an idealized version
of the situation described above. We discuss in more details in Section 8 the adaptation of the algorithm to
the COVID scenario, pointing some of its limitations.

We introduce in this article a non-adaptative testing algorithm which is a variant of Mézard et al. pool
testing. Samples are organized on a grid of n × n, and the pools are constructed as lines, columns and
diagonals of the grid. We consider a situation in which tests do not return a binary value, but rather an
estimate of the “level of deficiency” of the most deficient item in the pool, as described in the next couple of
paragraphs. In these settings, a new Algorithm 1 can be introduced to analyse the results of the pool testing
scheme, which predicts the status of each tested item without needing extra tests.

The algorithm described below introduces the possibility to make a few mistakes in the detection of
defective items. In general, there are two sources of error. If an item is declared positive but is actually
normal, it will contribute to the number of false positives. Analogously, a declared negative that is actually
positive will contribute to the false negatives. In the rest of the paper, we deal with the control of such false
positives and negatives while aiming for the least efficiency E(p) possible. In particular, this method achieves
an efficiency

E(p) ≈ 2.08(1 + α)p(− log p) as p→ 0

with the probability of observing a false negative in the grid going to 0 as p→ 0, see Section 6.
We also analyse the efficiency of our pool testing scheme assuming that the samples can only be part of

a limited number L of pools. In this situation, the optimal efficiency our method allows, is

E(p) ≈ CLp
L−2
L−1 as p→ 0,

which is comparable to Dorfman’s method for L = 3, and improves the larger L becomes.

Defective items with load. We consider in this article some theoretical aspects of pooling strategies that
can be employed for the detection of defective items with load, in order to adapt to the PCR testing scenario
previously described. We assume here that each defective item u has a positive value xu attached that we call
its load. A non-defective item will have a load of 0. The test of a pool A of items has the effect of measuring
the value maxu∈A xu, i.e. the largest load among all items in the set A.

Observe that if the load of items belongs to {0, 1}, then we are in the settings of the classical pool testing,
and a test only detects the presence of at least a contaminated item. However, if this load can take more
values, we show that the results of several tests can be crossed to extract additional information on the items.
The load xu can be thought of as the logarithm of the viral load of an individual in PCR settings, and the
choice of measuring the maximal load of a set comes from (1.3).

We denote by p the prevalence of defective items (i.e. the proportion of defective items in the set to be
tested). We assume here that p is known (or at least adequately estimated), so it can be used to choose the

3

size and number of pools to be made1. The load associated to each item can then be written as xu = ξuZu,
where ξu is a Bernoulli random variable with parameter p representing the fact that item u is defective or
not, and Zu is an independent [0, 1]-valued random variable. In this article we will consider Zu uniformly
distributed either on [0, 1] or on {1/K, 2/K, . . . , 1} for some K ∈ N. Note that we assume that all defective
items have a positive load, but in real-world examples, there are limitations on the accuracy of the detection
and some defective items would have a load of 0. We do not try to measure these false negative as they are
present no matter the testing method used.2

The quantity K described above can be interpreted as the level of precision of the measure. The larger K
is, the easier it is to distinguish the level of two defective items with similar loads. As a result, the efficiency
attained by our algorithm will decay as K increases, and reaching optimal efficiency when K = ∞, which
corresponds to Zu uniformly distributed on [0, 1].

The model of group testing with load allows us to explore the information carried by the maximal value
of a set of items. It interpolates with the classical group testing model when K = 1, and its limit as K →∞
is a universal problem, in the sense that all atomless distribution for xu would create the same combinatorial
problem. The case K > 2 that generalizes the zero-one binary information corresponding to the healthy-
defective alternative is already present in [EM16] where the load of a pool is supposed to take the form of the
sum of the load of each individual. The closest case to our study is the one of [DH00, Chap 11.3] and [HX87]
for K = 2 with the limit that only one defective (of load 1) and one mediocre (of load 1/2) are allowed in the
sample. In essence, the linear case considered in [EM16] and some generalizations described in [AJS19, p119]
are simpler to study than the multilevel loads combined with the (non-linear) maximum load in the spirit of
(1.3). Indeed, a lot of the information is lost in only considering the maximum so that the small loads are
more likely to be hard to detect. See the results in Section 3 for precise explanations of this fact.

Organization of the paper. We propose here a very simple one-step (non-adaptive) algorithm for the
detection of defectives. This algorithm is asymptotically efficient as p → 0 while remaining simple to im-
plement and to evaluate. We describe in the next section the general form of the algorithm we study. We
then show how to optimize this algorithm assuming that each sample can only be part of a finite number
of pools in Section 5, and optimal efficiency that can be obtained by this algorithm in Section 6. We then
provide some numerical simulations to compare these asymptotic results to their finite value counterpart in
Section 7.

2 The Grid Pool Testing algorithm
In this work, we focus on a simple one-step non-adaptive algorithm. In this algorithm, items are organized
on a grid, and the pools are made of the lines, columns and the diagonals of different slopes of this grid. The
algorithm mainly focus on reconstructing the status of items from the measures made on these diagonals.
The parameters of the algorithms to optimize are the size of the grid (representing the number of items
in each pool) and the number of diagonals slopes to consider (representing the number of pools each item
belongs to).

Defining the grid. Before describing the algorithm in more details, we introduce some notation. We
assume the number of items to test to be sufficiently large that it is possible to divide them into batches of
n2 items. We describe the algorithm on a given batch.

The items are dispatched on a grid n×n, with each item being identified by its position (i, j) ∈ {1, . . . , n}2.
We write ξi,j = 1 if (i, j) is defective and ξi,j = 0 otherwise. Moreover we denote by Xi,j the load of the item
(which is 0 if the item is non-defective, or a number in (0, 1] otherwise). With the modelling of the previous
section, we note that (ξi,j , 1 ≤ i, j ≤ n) are i.i.d. B(p) random variables, with p the proportion of defective.
Conditionally on ξ, (Xi,j , 1 ≤ i, j ≤ n) are independent random variables, with Xi,j = 0 if ξi,j = 0 and Xi,j

uniformly distributed on (0, 1] or on {1/K, 2/K . . . , 1}, depending on the context.

Defining the pools. The pools used can loosely be described as the diagonals of the grid. More precisely,
we introduce the following sets of n items to construct the pools of the algorithm:

• the lines Li = {(i, k), 1 ≤ k ≤ n}, for 1 ≤ i ≤ n.
1In some cases, the true proportion p of defective items may not be directly known, but estimation of p is available. The

algorithm detailed below will still work using an upper bound for this proportion, to cost of a poorer efficiency E (see definition
below). This holds since our choice of the parameters of the algorithm is conservative.

2To take into account false positives due to the limits of the detection method, one could choose instead to consider Zu

uniform on {0, 1/K, 2/K, . . . , 1}, with ξu = 1 and Zu = 0 corresponding to undetectable defectives.

4

Figure 1: A grid with L = 3, n = 6, K = 4 and N = 36. There are 3 defective items of respective loads 0.25, 0.5 and 0.75. Each
individual belongs to 3 groups corresponding to an horizontal line, a vertical line and a diagonal of slope 1/3. In particular, the
individual with load 0.5 belongs to the pools corresponding to the bottom line, leftmost column and the diagonal of slope 1/3
pictured here. For the sake of clarity, we only show one pool corresponding to a diagonal of slope 1/3 (hence five more test are
not represented here). The blue circle represent the healthy items whereas the black crosses represent the defective items for
whom the level of defectiveness is specified.

• the columns Cj = {(k, j), 1 ≤ k ≤ n}, for 1 ≤ j ≤ n.

• the diagonals with various slopes Da
b = {(k, ak + b mod(n)), 1 ≤ k ≤ n} for 1 ≤ b ≤ n, where

a ∈ {1, . . . , n− 1}.

In an algorithm constructed such that each item is part of L pools, the pools will be taken as families of
lines, columns and diagonals with slopes smaller than L − 2. In the rest of the article we will assume this
family of pools will form a N(n2, n, L) multipool, in the terminology of [Tä20]. In other words, we need our
pools to satisfy the following three properties:

1. each pool contains exactly n items;

2. each item belongs to exactly L pools;

3. two items (i, j) and (k, l) share at most one pool in common.

While the first two properties are straightforward from the definition, the third one is not, and only holds
under some assumptions on n and L.

Lemma 2.1. The family {Lk, Ck, Da
k , 1 ≤ k ≤ n, a ≤ L− 2} is a N(n2, n, L) multipool if and only if L− 2

is smaller than the smallest prime divisor of n.

Proof. We first note that two line never cross, and that a line crosses with a column or a diagonal at exactly
one point. Therefore, to verify that {Lk, Ck, Da

k , 1 ≤ k ≤ n, a ≤ L− 2} is a multipool, it is enough to check
that no too diagonal cross at more than one place (treating columns as diagonals of line 0).

Observe that for a 6= b, two diagonals Da
k and Db

` cross at a point (i, j) such that k + ai ≡ `+ bi mod n,
i.e. such that (b− a)i ≡ `− k mod n. By the fundamental theorem of algebra, there exists a unique i ∈ [1, n]
satisfying this property if and only if (b− a) is prime with n. As |b− a| ≤ L− 2 is smaller than the smallest
prime factor of n, we deduce this is indeed the case, proving that any two pools cross at either 0 (if they have
the same slope) or 1 point.

Remark 2.2. More generally we could prove that selecting families of lines, columns and diagonals in the
n × n grid, it is possible to create a N(n2, n, L) multipool if and only if L − 2 is smaller than the smallest
prime divisor of n.

5

In practice, as long as n remains smaller than 90, there is always a prime number at distance smaller than
3 for n, hence one can consider without loss of generality grids with a prime number of lines and columns,
which allows a choice of L between 1 and n + 2. The slight restriction in the value of n is compensated by
the increase in choices for L.

In the rest of the article, we enumerate the pools as the family {Pj , j ≤ nL}, with P1, . . . Pn corresponding
to the lines, Pn+1, . . . P2n to the columns and the rest to the diagonals, in the increasing order of their
slope. For each ` ≤ nL, the effect of probing the pool P` corresponds to the action of discovering the
value V` := max(i,j)∈P`

Xi,j , the largest load among all defective items belonging to the pool. Finally, for
convenience, we denote Pi,j the set of pools associated to the item (i, j),

Pi,j = {` : (i, j) ∈ P`}.

Computation of the positives. The final step of the algorithm consists in a reconstruction of the load of
each item via the information contained in the family {V`, ` ≤ nL}. We observe immediately that if V` = 0,
then all items in the pool are non-defective, and if V` = x 6= 0, then there exists at least one item in the pool
with load equal to x.

To reconstruct the load of each item, we employ the following procedure.

1. For every item (i, j), let Vi,j = min`:(i,j)∈P`
V`.

2. If Vi,j = 0, the item (i, j) is declared negative.

3. Otherwise, we count the number of apparitions of the value Vi,j inside of the pools containing (i, j) :
Ii,j = |{` : (i, j) ∈ P` and V` = Vi,j}|.

(a) If Ii,j ≥ 2, meaning that at least two tests containing item (i, j) measured it with the same value,
the item (i, j) is declared positive.

(b) Otherwise, the item (i, j) is declared negative.

Here is the reason behind this definition. By the assumptions we made on the test, Vi,j is an upper bound
for the load Xi,j of the item. In particular, if Vi,j = 0, we label the item as non-defective. However, if Vi,j > 0
it might be that the item has been, by chance, mixed with defective items in all the tests that were made
on it. The fact that level Vi,j is attained at least twice is a much stronger indication of the defectiveness of
(i, j), as a false positive in that case would mean that it has been by chance mixed in two pools with different
defective items sharing exactly the same load, and that in all other pools, there was at least one item with
a larger load. In the asymptotic we will consider, this will not occur with large probability, and similarly if
Ii,j = 1, with high probability the item will be negative.

Remark 2.3. Observe the procedure we describe here to assess the load and status of each item is not the
most accurate. With extra care, one could gain more precision of the reconstruction, for example by checking
that each measured load in the pools has been associated to at least one item. However, the procedure
described here has the advantage of simplicity and locality: to give the status of an item, one has only
to consider the results of the tests related to this item. This makes the forthcoming computation of the
probability that an item is wrongfully characterized significantly easier, and it remains efficient enough in
the range of parameters we consider.

We sum up the complete procedure inside Algorithm 1 and a concrete toy example in Figure 1. In this
figure, the items of load 0.5 and 0.75 are both the most defective items in two of their groups, so will be
correctly identified by the algorithm. However, the tests corresponding ot the item of load 0.25 will return 0.75
(horizontal line), 0.25 (vertical line) and 0.5 (diagonal). Hence, as the smallest value 0.25 is only appearing
once, this item will falsely be identified as negative. All the non-defective items are correctly identified as
non-defective.

Efficiency and optimization. It is worth noting that the algorithmic complexity of Algorithm 1 isO(n2L).
In terms of test usage, it is easy to compute the efficiency of this algorithm as there are a total of nL pools
of n items that are tested, in an effort to detect defective elements among n2 items. The corresponding
efficiency is then

E = nL

n2 = L

n
.

In general, E depends on the value of p. To lighten the notation, we omit this dependence if the context is
clear. To complete the study of this algorithm, one then need to compute its false positives (when Ri,j = 1

6

Algorithm 1: Grid Pool Testing
Parameters: n,L,
Inputs: X = (X1, . . . , Xn2)
Store X inside the grid (Xi,j)1≤i,j≤n line by line;
Define P1, . . . , Pn as the lines, Pn+1,...,P2n as the columns and P2n+1, . . . , PnL as the diagonals;
Initialize a matrix S = (Si,j)i,j of empty lists;
for ` = 1, . . . , nL do

Compute V` = max(i,j)∈P`
Xi,j ;

Append V` to every Si,j with (i, j) ∈ P`;
end
Initialize a matrix R = (Ri,j)i,j of zeros;
for 1 ≤ i, j ≤ n do

Compute Vi,j = mins∈Si,j
s;

Compute Ii,j =
∑
s∈Si,j

1{s=Vi,j};
if Vi,j 6= 0 and Ii,j ≥ 2 then

Set Ri,j = 1;
end

end
Store the matrix R line by line into a vector (R1, . . . , Rn2);
Result: (R1, . . . , Rn2)

implying detection as defective while Xi,j = 0 so the item is non-defective) and false negatives (when Ri,j = 0
whereas Xi,j > 0) rates.

We denote by FPR (respectively FNR) the expected number of false positives and false negatives returned
by this algorithm, divided by the total number of contaminated items. These two quantities depend on the
four parameters p,K, n and L in an intricate fashion. However, note that while n and L are integer parameter
of the algorithms we can choose, p ∈ [0, 1] and K ∈ N are modelling parameters of the problem, representing
respectively the proportion of defective items and the accuracy of the test. Therefore the main goal of this
study is to optimize the efficiency E of this algorithm by choosing the optimal n(p,K) and L(p,K) in a way
that ensures that FPR and FNR both stay below fixed quantities ε and δ. Our main results are considered
under the asymptotic p → 0 of a small proportion of defective items. But as most of the computations
made are explicit before taking limits, computing the optimal value of n and L for given values p,K remains
straightforward.

Remark 2.4. Note that an item is falsely labelled as negative if it is part of at most one pool in which it
is the item with the largest load. It corresponds to items at position (i, j) such that Ii,j = 1 in the above
algorithm. Therefore, items such that Ii,j could be labelled as inconclusive and tested again in a separate
batch in a two-steps algorithm with no false negative.

3 Computation of the false negative and false positive rates
3.1 Exact calculations
In this section, we give explicit upper bounds on the false negative and false positive rates of the algorithm.
This does not take into account a possible defective measurement of the loads of the pools. The false negative
rate of the algorithm is expressed as the probability that a contaminated item is not detected at the end of the
algorithm whereas the false positive rate is the probability that a non-defective item is detected as defective.
In Algorithm 1, it is straightforward to compute the false negative/positive rates, as the reconstructed status
of an item only depend on the status of items sharing a pool with it. This algorithm being unchanged by
changing the coordinates of the grid, as on a torus, these rates do not depend on the position (i, j) of the
item in the grid. We thus only compute the false negative probability of item (1, 1), given its load. For all
x ∈ (0, 1], we set

FN(x) = P((1, 1) is declared negative |X1,1 = x),

and
FP (x) = P((1, 1) is declared positive with load x|X1,1 = 0).

7

The false negative rate FNR and the false positive rate FPR are then given by

FNR(n,L; p,K) = pE (FN(dKUe/K))

FPR(n,L; p,K) = (1− p)
K∑
k=1

FP (k/K)

with U a uniform random variable on [0, 1] and the convention that d∞Ue/∞ = U and FPR(n,L; p,∞) = 0.
We used here that a given item is defective with probability p and non-defective with probability 1− p. The
following Proposition gives two upper bounds on the false positive/negative rates.

Proposition 3.1. Set gn,p : x 7→ (1 − p(1 − x))n−1 for all x ∈ (0, 1). Then, for every k ≤ K and setting
x = k/K, it holds that

FN(x) ≤ L (1− gn,p(x))L−1 (3.1)
and that

FP (x) ≤ L(L− 1)
2

(np
K

)2
gn,p(x)2 (1− gn,p(x))L−2

. (3.2)

In particular, when K →∞, the false positive rate FPR(n,L; p,K) tends to 0.

Proof. We observe that the probability to wrongfully declare an item as negative depends on K (in the
discrete case) only through the fact that x takes its values in {1/K, 2/K . . . , 1}. This allows us to give a
unified expression for the upper bound of FN .

Given x the load of the item (1, 1), we note this item will be wrongfully declared negative in Algorithm 1
if and only if I1,1 = 1 (as V1,1 ≥ x > 0 a.s.). Decomposing according to the test in P1,1 measuring the lowest
viral load, we have

FN(x) = P(I1,1 = 1|X1,1 = x) =
∑
`∈P1,1

P(V` < min
`′ 6=`

V`′ |X1,1 = x) = LE(ϕ(V`0)|X1,1 = x),

where ϕ(y) = P(min`′ 6=`0 V`′ > y|X1,1 = x) and `0 is an arbitrary choice of a fixed element of P1,1. Note
that in this last equality we used that the elements (V`, ` ∈ P1,1) are i.i.d. conditionally on X1,1 = x thanks
to Lemma 2.1. Hence, we have ϕ(y) = P(V`0 > y|X1,1 = x)L−1. Then, using that ϕ(y) ≤ ϕ(x) for all y ≥ x,
we obtain

FN(x) ≤ LP(V`0 > x|X1,1 = x)L−1.

As in our setting, the distribution of loads is uniform, there is a proportion x of positive items with load
smaller than x. We obtain

P(V` ≤ x|X1,1 = x) = (1− p+ px)n−1 = (1− p(1− x))n−1 = gn,p(x), (3.3)

which leads to the following upper bound for the false negative rate of an item with load x,

FN(x) ≤ L (1− gn,p(x))L−1
.

We can similarly compute the false positive rate of the algorithm by computing the probability that
conditionally on (1, 1) being non-contaminated, this item is determined to be contaminated. This would
happen if and only if (1, 1) is only part of contaminated pools, and that the two pools with the lowest
measured load have the same value, that we write x. Noticing that false positive results never occur in the
infinite precision setting K = ∞, we assume here that K < ∞. Using again that we have a multipool and
that the measure of each test is independent conditionally on the value of X1,1 we obtain

FP (x) = P(I1,1 ≥ 2, V1,1 = x|X1,1 = 0)
= P(∃`1, `2 ∈ P1,1, V`1 = V`2 = x, ∀` ∈ P1,1\{`1, `2}, V` ≥ x)

≤
∑

{`1,`2}:`1 6=`2

P(V`1 = x|X1,1 = 0)P(V`2 = x|X1,1 = 0)
∏

`′∈P1,1\{`1,`2}

P(V`′ ≥ x|X1,1 = 0)

= L(L− 1)
2 P(V`0 = x|X1,1 = 0)2P(V`0 ≥ x|X1,1 = 0)L−2,

with `0 a fixed element of P1,1. By Equation (3.3), for every x of the form k/K, gn,p(x) coincide with the
cumulative distribution function of V`0 conditionally on X1,1 = 0 at x. Then, we can use the mean value
theorem to get the upper bound

P(V`0 = x|X1,1 = 0) = gn,p(x)− gn,p(x− 1/K) ≤
sup[x− 1

K ,x] g
′
n,p(u)

K
gn,p(x) ≤ np

K
(1− p(1− x))n−1.

8

We finally get
FP (x) ≤ L(L− 1)

2

(np
K

)2
gn,p(x)2 (1− gn,p(x))L−2

.

In the rest of the article, we compute the optimal efficiency under different constraints, based on the above
constructed pools, in different situations. We first consider non-adaptive strategies for detection of defective
items based on the measure of lines and columns only, then adding eventually item tests for items whose
status cannot be deduced by the first step algorithm. We then aim at optimal testing efficiency, assuming that
samples can be infinitely divided, and recover results consistent with Mézard et al [MTT08]. In Section 7, we
compare our asymptotic estimates with simulated experiments, and obtain the false positive/false negative
rates and efficiency that can be archived in real testing conditions.

4 Asymptotics of the false positive and negative rates at L fixed
In this section, we derive equivalent expressions for the upper bound of the false positive and negative rates
when the values of K and L remain fixed. We consider two asymptotic cases, when np → 0 and when
np→ λ > 0. It is implicitly assumed that n→∞ and p→ 0. In the second case, the calculations are based
on the Poisson approximation of the number of defective items in a specific pool and are consequently more
accurate than the rates in the first case.

Case np → 0. In this case, gn,p(x) can be lower bounded by gn,p(0) since it is a increasing function and
gn,p(0) ∼ e−np. Then

FNR ≤ LpE(1− gn,p(U))L−1 ≤ Lp(1− gn,p(0))L−1 ∼ Lp(np)L−1.

The false discovery rate is then upper bounded by

FPR ≤ KL(L− 1)
2

(np
K

)2
(1− gn,p(0))L−2 ∼ L(L− 1)

2K (np)L

In particular, we see that in this regime (as K and L remain fixed), the false negative rate is small with
respect to the false positive rate.

Case np→ λ > 0. In this situation, with L being fixed, we immediately obtain that the number of defective
items in each pool converges to a Poisson(λ) random variable. We consider the asymptotic behaviour of the
false positive and false negative rates obtained in this situation. We write

FNR(λ, L;K) = lim
n→∞

p−1FNR(n,L;λ/n,K) and FPR(λ, L;K) = lim
n→∞

FPR(n,L;λ/n,K),

as a function of L and the precision K.
Proposition 4.1. Under the condition np→ λ > 0, we have that

FNR(λ, L;∞) = (1 + (L− 1)e−λ)(1− e−λ)L−1,

and, for all K <∞,

FNR(λ, L;K) ≤ L(1− e−λ)L−1 and FPR(λ, L;K) ≤ λ2L(L− 1)
2K (1− e−λ)L−2

Proof. We first compute the false negative rate. From the properties of Poisson processes, we note that
the number of items in a pool with load between x and y is distributed as a Poisson random variable with
parameter λ(y − x), independently of the number of items in this pool with load smaller than x or larger
than y. In particular, for any given test `, for any y ≥ x we have

P(V` > y|X1,1 = x) = (1− e−λ(1−y)).

Using this fact, with the same computations as in Proposition 3.1, we can compute the false negative rate
of an item of load x as

FN(λ, L;K) = L
∑
y≥x

P(V`0 = y|X1,1 = x)P(V`0 > y|X1,1 = x)L−1

= Le−λ(1−x)(1− e−λ(1−x))L−1 +
K∑

y=Kx+1
e−λ(1−y/K)(1− e−λ/K)(1− e−λ(1−y/K))L−1

≤ L(1− e−λ(1−x))L−1.

9

2 4 6 8 10 12 14 16
L

0.0

0.1

0.2

0.3

0.4
FN

R
False Negative Rates

K=1
K=2
K=5
K=10
K=

2 4 6 8 10 12 14 16
L

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

FP
R

False Positive Rates
K=1
K=2
K=5
K=10
K=

2 4 6 8 10 12 14 16
L

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

FN
R

False Negative Rates in logarithmic scale
K=2
K=5
K=10
K=

2 4 6 8 10 12 14 16
L

10 5

10 4

10 3

10 2

10 1

FP
R

False Positive Rates in logarithmic scale
K=1
K=2
K=5
K=10

Figure 2: In the two plots above, we draw the upper bounds obtained in Proposition 4.1. On the left, we represented the false
negative rate upper bound as a function of L for λ = log 2 for different values of K. On the right, a similar graphic is shown for
the false positive rates upper bound with the same choices of the parameters. The two plots below show the same upper bounds
in logarithmic scale. In particular, we see the convergence of FNR(λ,L;K) towards FNR(λ,L; ∞) in the two plots on the left.

In the case K =∞ the computations can be made explicit as in that case

FN(λ, L;∞) = Le−λ(1−x)(1− e−λ(1−x))L−1 + L

∫ 1

x

λe−λ(1−y)(1− e−λ(1−y))L−1dy

= Le−λ(1−x)(1− e−λ(1−x))L−1 + (1− e−λ(1−x))L = (1 + (L− 1)e−λ(1−x))(1− e−λ(1−x))L−1.

In particular, we also obtain FN(λ, L;∞) ≤ L(1− e−λ(1−x))L−1.
Similarly, we can compute the false positive rate of a negative item in this regime. From the proof of

Proposition 3.1, we have that FP (x) ≤ L(L−1)
2

(
np
K

)2
gn,p(x)2 (1− gn,p(x))L−2 Therefore, we obtain

FPR(λ, L;K) ≤ L(L− 1)
2

λ2

K2

K∑
k=1

e−2λk/K(1− e−λk/K)L−2 ≤ λ2L(L− 1)
2K2

K∑
k=1

(1− e−λk/K)L−2.

Bounding the above quantity by λ2L(L−1)
2K (1− e−λ)L−2, we obtain the result.

From this formula, the false positive rate can be written explicitly as the probability that among L
independent copies with the above distribution, the first and second running minimum are equal. We plot
once again this function in L for different values of K.

5 Optimizing one-step testing with L fixed
In this section, we look to optimize Algorithm 1 while assuming that the number L of tests that can be made
on each item is finite. This regime is relevant in particular if a test destroys or damages a sample of the
item, so that limiting the number of tests made on each item becomes relevant. In the rest of the section L

10

is a fixed constant, and n is a number with no prime factor smaller than L− 1. In that situation Lemma 2.1
holds and we are working with multipools, so that the formulas (3.1) and (3.2) both hold.

Recall that the efficiency of the algorithm is E = L
n , therefore to improve the efficiency of the algorithm,

one has to increase the size of the grid. However, augmenting the value of n has the effect of increasing the
false positive and false negative rates. Therefore, to find the optimal efficiency of Algorithm 1, we fix ε > 0
and η > 0 as maximal values for the proportion of positive and negative items wrongfully labelled as negative
and positive respectively, and we choose n as large as possible such that

FNR(n,L; p,K) ≤ pε and FPR(n,L; p,K) ≤ (1− p)η.

As the average number of false negatives found by the algorithm is of the order n2pε, we will also consider
bounds in the regime when ε→ 0 as n→∞.

A choice of n for ε and η fixed. In this case, one has to choose n accordingly to have L(np)L−1 ≤ pε

and L(L−1)
2K (np)L ≤ η. The largest n that satisfies the first condition is

n1 = p
1

L−1−1
(ε
L

)1/(L−1)

and the largest n that satisfies the second condition is

n2 = p−1
(

2Kη
L(L− 1)

)1/L
.

We recommend to choose n as

n ∼ p−1 min
((
p
ε

L

)1/(L−1);
(2Kη
L2

)1/L
)

(5.1)

With this choice of n, the efficiency of the algorithm becomes

Eε,η(p) = pmax
((LL

pε

)1/(L−1);
(LL+2

2Kη
)1/L

)
. (5.2)

Note that these choices of values for n are driven by the results of Proposition 3.2 and hence are quite
conservative, so the efficiency obtained here is an upper bound of the true optimal efficiency of Algorithm 1.
Note that in a high precision setting (when K is large) the false positive are a minority inside the false
discovery of the algorithm, and the efficiency will depend only on p, L and ε.

We observe that the number of tests to use per item to detect defective ones with fixed false nega-
tive/positive rate becomes of order p

L−2
L−1 for small p. In particular, this dependence is better than the one

given by Dorfman algorithm when L is chosen to be larger than 4. This is a notable improvement on pool
testing with {0, 1} response, in which the known optimal asymptotic efficiency is proportional to the product
of the number of defective items and the log of the number of non-defective ones.

A choice of n for vanishing ε and η. Observe as well that in the settings we discuss, the expected
number of false negatives in a given grid will grow as εpn2 and the number of false positive as ηn2. It may
be inconvenient to let the expected number of false discovery to grow as n becomes large. To avoid a positive
proportion of items on the grid being false negatives, one could instead consider a maximal false positive rate
of ε = α/(pn2) as n→∞ and η = β/n2.

In this situation, with similar computations as above, we obtain optimal choices of

n1 =
(

α

LpL−1

)1/(L+1)
and n2 =

(
2Kβ

L(L− 1)pL

)1/(L+2)

and the associated efficiency to L and n = min(n1, n2) is

Eα,η(p) = max
(
p(L−1)/(L+1)(LL+2

α

)1/(L+1); pL/(L+2)(L(L− 1)
2Kβ

)1/(L+2)
)

This efficiency is much larger than Eε,η(p), as expected from the lower tolerance to false negatives. It behaves
as a power of p as p → 0. Remark that for L = 3, we have Eα,η(p) ∼ Cαp

1/2 as p → 0, so we recover the
similar efficiency as in Dorfman’s method for p small enough. For L = 4, the algorithm becomes more efficient
than Dorfman’s algorithm.

11

6 Optimal choice of L as a function of p

In this section, we relax the assumption that L has to be kept fixed, and aim at choosing an optimal couple
n,L so that the efficiency of the algorithm E = L/n is as small as possible, while controlling the false positive
and false negative rates. While it is not mentioned explicitly, it is assumed everywhere in this section that
L − 2 is smaller than the smallest prime factor of n, so that Lemma 2.1 can be applied. Using the growth
rate of primordial numbers and the fact that an optimal choice of L will remain finite, there will always be
a couple (n,L) satisfying the assumption of Lemma 2.1 close enough to the optimal theoretical choice, so
this condition won’t play a role in the asymptotic behaviour of the obtained efficiency.We first investigate
the case when the precision of the loads K is infinite so that the choices of n and L are only driven by the
reduction of the false negatives in the algorithm.

We take interest in the quantity

E∗ε (p) := min
{
L
n , n, L ∈ N : FNR(n,L; p,∞) ≤ εp

}
. (6.1)

In this new context, L no longer fixed, and its choice might depend on p and ε.
We recall that by Proposition 4.1 and the computations above, if np→ λ ≥ 0, we have

p−1FNR(n,L; p,∞) . L(np)L−1.

As a result we are lead to choose n and L such that L(np)L−1 ≈ ε, while minimizing the efficiency of the
algorithm E = L

n ≈ p(ε/L)1/(L−1). We thus obtain that the efficiency of the algorithm is optimal when L is
taken to minimize

L 7→ (ε/L)1/(L−1),

and n as (ε/L)1/(L−1)/p. Therefore, the optimum is attained by choosing np→ λ > 0.
To precise the computations in that situation, we use the formula given in Proposition 4.1. We observe

that as np→ λ, we have

p−1FNR(n,L; p,∞)→ FNR(λ, L;∞) = (1 + (L− 1)e−λ)(1− e−λ)L−1.

Moreover, we have E(p)/p = L
np → L/λ. As a result, we have

lim
p→0

E∗ε (p)
p

= min
{
L
λ , L ∈ N, λ > 0 : FNR(λ, L;∞) ≤ ε

}
.

As ε→ 0, the optimal is attained for λ, L such that L log(1− e−λ) = log(ε)(1 + o(1)), yielding

lim
p→0

E∗ε (p)
p

= − log ε(1 + o(1))
−λ log(1− e−λ) .

This quantity is minimal for λ = log 2.
As a consequence, as p → 0, we recommand using n ≈ (log 2)/p, and as ε → 0 L ≈ − log ε

log 2 , to obtain an
optimal efficiency behaving as

E∗ε (p) . p(− log ε)
(log 2)2 as p→ 0 then ε→ 0.

Note in particular that n is chosen depending on the value of p, while L is chosen as a function of ε in this
asymptotic regime.
Remark 6.1. As noted in Remark 2.4, Algorithm 1 could be adapted as a two-step algorithm in which every
inconclusive item is tested again individually. Note that the upper bound we use for the false negative rate
is exactly the rate of inconclusive elements (as we bound FN(x) by FN(0)). In this two-step algorithm, the
efficiency would therefore be E(2)(p) = E∗ε (p)+ε . −p log(ε)(log 2)−2+ε, which is minimal for ε = (log 2)−2p.
This two-step algorithm would thus have an efficiency asymptotically bounded by (log 2)−2p log(p) as p→ 0.
Remark 6.2. To compare our algorithm with the results obtained in [MTT08, MT11], we put ourselves in
the same settings where the probability of observing a false negative is asymptotically small as p→ 0. Given
α > 0, we fix ε = n−1−α, then the probability of observing one false negative in the grid is εn2p ≈ n−α → 0
as p→ 0. Here, the efficiency becomes

E∗ε (p) ≈ 2.08(1 + α)p(− log p) as p→ 0.

In that situation, we obtain an efficiency with a similar order of magnitude of the optimal results of [MTT08],
with a simpler (non-random) construction of the algorithm. Actually, the efficiency obtained here attains
the lower bound of the optimal efficiency predicted in [MT11] for a two-steps binary pool testing algorithm.
Therefore, the non-adaptive Algorithm 1, making use of the load value of items, archives the same efficiency
as an optimal two-stage algorithm.

12

7 Comparison of the different algorithms
In this section, we illustrate the behavior of our proposed algorithm versus the two-steps Dorfman’s algorithm
and Mézard’s optimal algorithm. We describe the choices of the parameters in the following.

• The simulations took the set {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47} of the odd prime numbers
under 50 as the possible values of n.

• The algorithm is allowed to perform tests in up to Lmax = 14 directions. In the case when n ≤ 14, we
obviously restrict the number of directions to Lmax = n− 1.

• The prevalence parameter p varies between 0.05 and 0.2 with a constant increment of 0.05.

• We made vary K inside the set {2, 5, 10, 30, 200, 500} to illustrate its influence.

• For each choice of the parameters (n,L, p,K) above, we run 200 copies Algorithm 1.
Consequently, for each choice of the set of parameters, we observe 200 copies of the output of the algorithm.
Afterwards, the matrix of results is compared to the matrix of the true matrix containing the information of
the true positive and negative items. Thanks to that, we compute the mean number (over the 200 copies)
of false positive and false negative discovered by the algorithm. Thus, we end with an estimation of the
number of false negative FN(n,L, p,K) and the number of false positive FP (n,L, p,K). The next step is to
compute the optimal value of the efficiency E as a function of p. Then, for any couple (p,K) fixed, we did
the following concrete inclusions of the conditions of Section 5.

1. We fixed η = 0.01 and we discarded all the pairs n,L such that FP (n,L, p,K) ≥ η(1− p)n2.

2. For each value of ε we considered, we discarded the pairs such that FN(n,L, p,K) ≥ εpn2.

3. Then, from all the remaining values of the pairs (n,L), we minimized the quotient E(p) = L/n.
This value E(p) as a function of p (for different values of K) is the one that we drew in the following
illustrations.

7.1 Comparing the Efficiency with well known algorithms

+

+
+

+

+

+

+
+

+

+ +

+

+ +

+
+

+

+

+

+ + + +

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparing the different algorithms for K= 5

values of p

E
(p

)

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

● ● ● ●

Dorfman
Mézard, al.
Grid eps=0.02
Grid eps=0.08
Grid eps=0.20

+
+

+

+

+

+

+

+
+

+

+

+
+

+ +

+ +

+

+

+

+

+

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparing the different algorithms for K= 30

values of p

E
(p

)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

● ● ● ●

● ● ●Dorfman
Mézard, al.
Grid eps=0.02
Grid eps=0.08
Grid eps=0.20

Figure 3: The effect of the value of K on the slope of E(p) for different values of ε

Figure 3 shows for the two different values K = 5 and K = 30, the behavior of our Efficiency curve versus
Dorfman theoretical efficiency and a simulated Mézard, al. efficiency. We drew the resulting points of E(p)
in three different colors (blue,purple,black) that correspond to the choices of ε given by (0.02, 0.08, 0.2). For
each of these ensembles of points, we also drew a simple regression line. It has to be seen that the dependence
of E on p is clearly linear and that the slope of the line is dependent on the choice of the parameter ε, as
expected. It is also interesting to see that the effect of ε is less clear when K is small since the number of
false positives is higher and then is more limitent than when K is large.

13

7.2 Showing the choices of L and n

The next three plots (in Figure 4) show the choices of the parameter L during the optimization of E for fixed
values of p and K. As before we let ε vary in between the different plots. Besides been a little unstable in
the choice of L along p, we observe that the optimal L remains bounded (hence is fairly independent from
the choice of p) and does change with a change of ε as suggested by the calculations in Section 6.

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●●

●●
●

●
●

●
●●

●

●

●

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

The optimal choice of L for K= 30 and Eps= 0.05

values of p

E
(p

)

3
4

5
6

8
6

7
5

7

10

5
7

6 6

107 6

8 8
7

9
5

9
4 4

6

4

6

●
●

●

●

●

●
●

●●

●●

●

●

●●

●

●●

●

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

The optimal choice of L for K= 30 and Eps= 0.01

values of p

E
(p

)

4
5

7

9

11

9
10

7 8

12
7

10

7

912

10

116

10

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

The optimal choice of L for K= 30 and Eps= 0.001

values of p

E
(p

)

5

8

10

9

11

8

9

12

10

12

11

10

12

6

Figure 4: Efficiency with respect to p and the associated optimal choice of the parameter L. The number displayed inside the
blue bubbles correspond to the chosen value of L in the optimization.

The last three plots (in Figure 5) are the analogs of the previous plots with the slight difference that
the displayed numbers correspond to the chosen values of n. In this case, we observe that, now, ε has no
more effect on the chosen values of n. As expected, n depends on p in a decreasing manner and validate the
calculation of Section 6. Indeed, we showed that the best choices of n allow to keep the product np more or
less constant which is the case in the simulations.

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●●

●●
●

●
●

●
●●

●

●

●

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

The optimal choice of n for K= 30 and Eps= 0.05

values of p

E
(p

)

47
47

47
43

47
29

29
19

23

29

13
17

1313

191311

1313
11

13
7

11
5 5

7

5

7

●
●

●

●

●

●
●

●●

●●

●

●

●●

●

●●

●

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

The optimal choice of n for K= 30 and Eps= 0.01

values of p

E
(p

)

47
41

43

43

43

29
29

1719

23
13

17

11

1317

13

137

11

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

The optimal choice of n for K= 30 and Eps= 0.001

values of p

E
(p

)

47

47

43

29

29

19

19

23

17

17

13

13

13

7

Figure 5: Efficiency with respect to p and the associated optimal choice of the parameter n. The number displayed inside the
blue bubbles correspond to the chosen value of n in the optimization.

Remark 7.1. As the reader may notice, the efficiency E(p) tends to skyrocket when the prevalence p exceed
values of the order p = 0.1 which makes our group testing technique almost not useful in that context. It has
to be mentioned that this effect is commonly observed in pool testing in general. As a consequence, it has to
be advised not to use pool testing if one suspect to have a prevalence of the order 10% of higher.

8 Application to the COVID-19 pandemic and open questions
The application of the present algorithm to PCR testing in the context of the COVID-19 pandemic requires
some adaptations and presents a couple of challenges. It should first be noted that the simplifications we
made in our modelling were quite important. We thus begin by discussing in more details the discrepancies
between the real-world problem and our idealized model.

Finite size of samples. In COVID-19 pool testing, the items that are tested are samples taken from
subjects, via nasal swab, saliva sample or other method. If there seems to be usually enough matter to split

14

the sample into several tests, it will not be possible to make an arbitrary large number of tests on each
sample. Therefore, optimal computations made in Section 5 might be somewhat more relevant. Additionally,
it is worth noting that combining several samples have the effect of creating a composition with the average
viral load rather than the maximal, although the fact that this viral load is spread over several orders of
magnitudes negates partially this problem as discussed in the introduction.

Noisiness in the measure. In the present article, the lack of accuracy of the testing is modelled by the
finite number of available load values {1/K, . . . , 1}. This does not immediately extends to the PCR testing,
in which the measured value can be described by a Gaussian variable centred around the actual viral load
of the sample. In that case, testing equality between two test results reduces to defining a threshold for the
difference in load value. Hence two load values are declared identical if they differ by less than this threshold
value, and are declared different otherwise. It allows to split the set of viral load measures into intervals of
fixed width, so that the two measures are considered equal if they fall into the same interval. This creates a
setting similar to the one we worked on.

We remark that this distance is smaller when the accuracy of the test is greater. Hence, low accuracy can
be modeled by a small value of K, high accuracy by a larger value of K.

Distribution of the viral load among contaminated. Concerning the distribution of the viral load
of the samples, we made here the choice of uniform distribution, which is the most favourable for this type
of algorithm. Although this is quite far from what is effectively observed [JMV+20, CRP+20], the viral
load observed among large groups of people is usually successfully approached by a mixture of two to three
Gaussian variables with standard deviations between 3 and 6, spanning over the interval [20, 40] (c.f. [BMR20,
Appendix B]). The viral loads may be considered sufficiently spread over the interval so that the algorithm
discussed above might still be relevant. The nice and explicit calculations on the choices of the parameters
would need to be adapted. They might also need to be tuned from day to day, depending of the expected
prevalence of samples on a given day, which might vary over time.

Precision limits of the PCR. As it was first noted in [Fur18], theoretical aspects of pool testing usually
assume that the quality of the test does not depend on the size of the pool. However, this is rarely the case
in real-world applications, and it is indeed not the case for the present application. In particular, we show in
[BMR20] that pooling has an impact on the measurement of samples with small viral loads, due to a dilution
effect. In our toy model, this could be taken into account by specifying that in pools of size n, items with
load smaller than cn are treated as non-defective items, for some increasing function cn. This has the effect
of decreasing the value of the optimal choice for n, in order to detect enough contaminated individuals with
small viral load. However, the computations in this case being very dependent on the function cn, we choose
not to include it in the present work.

Random outcome of a pooled test. Finally, we assumed that each test of the pools is performed with
no other error than the one inherent to the PCR itself. It is probably an oversimplification in this case, as
pool testing implies important manipulations of the samples, with possible additional errors involved. For
example, forgetting to collect one individual in a pool, contaminating a pool with a sample that should
not belong to it, etc. Those human errors would create noise on the measures of the pools and so would
deteriorate the information given to our algorithm. Therefore, it would need to be adapted to this situation,
in order not to characterize as negative a sample measured at high values in all but one pool, for example.
There is also the issue of systemic bias in PCR, as most machines only allow the measure of the relative viral
load rather than an absolute value. As our algorithm only consider relative loads, this is not generally an
issue for our method, when the algorithm is performed on a single machine.

Potential extensions. The algorithm presented here has the advantage of being simple to implement
and easy to solve, even by hand. However, more precise algorithms might be employed with the help of
automation for the creation of samples and measure of results. It would therefore be interesting to create
more precise algorithms for PCR-type pool testing. A relevant generalization could be to collect and use
additional information on the subjects. We can imagine that, throughout interviews, some individuals might
be identified as being more likely to be contaminated, while others could be simply routinely tested. It is
probably more efficient to tests the former in smaller pools and the latter in larger ones.

An other project of interest might be the deconvolution of pools created by Dorfman’s algorithm. More
precisely, in the algorithm, instead of testing individually every member of a group detected as contaminated,
it might be interesting to test several samples from different positive pools in a two-stage deconvolution that
might represent a further economy of tests on Dorfman’s algorithm. Choosing the right pools to pair together,

15

as well as the number of positive pools to be de-convoluted at the same time might be an interesting expansion
on the current work.

Acknowledgements.

We wish to thank members of MODCOV-19 platform of the CNRS for support, in particular Françoise Praz
and Florence Débarre who gave us numerous helpful comments, in particular on the biological aspects of
PCR. We also thank the members of the Groupool initiative for helpful discussions at the earlier stages of
this project on group testing.

References
[ABB19] H. Aprahamian, D. R. Bish, and E. K Bish. Optimal Risk-Based Group Testing. Management

Science, 65(9):4365–4384, sep 2019.

[AJS19] M. Aldridge, O. Johnson, and J. Scarlett. Group Testing: An Information Theory Perspective.
Foundations and Trends in Communications and Information Theory, 15(3-4):196–392, 2019.

[BAKS+20] Roni Ben-Ami, Agnes Klochendler, Matan Seidel, Tal Sido, Ori Gurel-Gurevich, Moran Yas-
sour, Eran Meshorer, Gil Benedek, Irit Fogel, Esther Oiknine-Djian, Asaf Gertler, Zeev Rot-
stein, Bruno Lavi, Yuval Dor, Dana G Wolf, Maayan Salton, and Yotam Drier. Large-scale
implementation of pooled RNA-extraction and RT-PCR for SARS-CoV-2 detection. medRxiv,
2020.

[BBC+20] M. Beunardeau, É Brier, N Cartier, A. Connolly, N. Courant, R. Géraud-Stewart, D. Naccache,
and O. Yifrach-Stav. Optimal Covid-19 Pool Testing with a priori Information. arXiv:2005.02940,
2020.

[BMR20] Vincent Brault, Bastien Mallein, and Jean-Francois Rupprecht. Group testing as a strategy for
the epidemiologic monitoring of COVID-19. arXiv:2005.06776, 2020.

[CCK+99] M. A. Chateauneuf, C. J. Colbourn, D. L. Kreher, E. R. Lamken, and D. C. Torney. Pooling,
lattice square, and union jack designs. Annals of Combinatorics, 3(1):27–35, March 1999.

[CJBJ17] S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi. Efficient algorithms for noisy group testing.
IEEE Transactions on Information Theory, 63(4):2113–2136, 2017.

[CRP+20] Jorge J Cabrera, Sonia Rey, Sonia Perez, Lucia Martinez-Lamas, Olaia Cores-Calvo, Julio Torres,
Jacobo Porteiro, Julio Garcia-Comesana, and Benito J Regueiro. Pooling For SARS-COV-2
Control In Care Institutions. medRxiv, 2020.

[DH00] Ding-Zhu Du and Frank K. Hwang. Combinatorial group testing and its applications. 2nd ed.
Singapore: World Scientific, 2nd ed. edition, 2000.

[Dor43] Robert Dorfman. The Detection of Defective Members of Large Populations. The Annals of
Mathematical Statistics, 1943.

[EM16] Amin Emad and Olgica Milenkovic. Code construction and decoding algorithms for semi-
quantitative group testing with nonuniform thresholds. IEEE Trans. Inf. Theory, 62(4):1674–
1687, 2016.

[FHG+12] Sasan R. Fereidouni, Timm C. Harder, Nicolas Gaidet, Mario Ziller, Bernd Hoffmann, Saliha
Hammoumi, Anja Globig, and Elke Starick. Saving resources: Avian influenza surveillance using
pooled swab samples and reduced reaction volumes in real-time RT-PCR. Journal of Virological
Methods, 186(1):119–125, 2012.

[Fur18] T. Furon. The illusion of group testing. [Research Report] RR-9164, Inria Rennes Bretagne
Atlantique, pages 1–19, 2018.

[GG20] Christian Gollier and Olivier Gossner. Group Testing against Covid-19. Covid Economics,
(2):32–42, 2020.

16

[GRK+20] Sabyasachi Ghosh, Ajit Rajwade, Srikar Krishna, Nikhil Gopalkrishnan, Thomas E. Schaus,
Anirudh Chakravarthy, Sriram Varahan, Vidhya Appu, Raunak Ramakrishnan, Shashank Ch,
Mohit Jindal, Vadhir Bhupathi, Aditya Gupta, Abhinav Jain, Rishi Agarwal, Shreya Pathak,
Mohammed Ali Rehan, Sarthak Consul, Yash Gupta, Nimay Gupta, Pratyush Agarwal, Ritika
Goyal, Vinay Sagar, Uma Ramakrishnan, Sandeep Krishna, Peng Yin, Dasaradhi Palakodeti,
and Manoj Gopalkrishnan. Tapestry: A Single-Round Smart Pooling Technique for COVID-19
Testing. medRxiv, 2020.

[HSP20] Catherine A. Hogan, Malaya K. Sahoo, and Benjamin A. Pinsky. Sample Pooling as a Strategy
to Detect Community Transmission of SARS-CoV-2. JAMA, 323(19):1967, may 2020.

[HX87] F. K. Hwang and Y. H. Xu. Group testing to identify one defective and one mediocre item. J.
Stat. Plann. Inference, 17:367–373, 1987.

[IKWO18] H. A. Inan, P. Kairouz, M. Wootters, and A. Ozgur. On the Optimality of the Kautz-Singleton
Construction in Probabilistic Group Testing, 2018.

[JMV+20] Terry C Jones, Barbara Mühlemann, Talitha Veith, Guido Biele, Marta Zuchowski, Jörg Hoff-
mann, Angela Stein, Anke Edelmann, Victor Max Corman, and Christian Drosten. An analysis
of SARS-CoV-2 viral load by patient age. medRxiv, page 2020.06.08.20125484, 2020.

[LPBG+20] Stefan Lohse, Thorsten Pfuhl, Barbara Berkó-Göttel, Jürgen Rissland, Tobias Geißler, Barbara
Gärtner, Sören L Becker, Sophie Schneitler, and Sigrun Smola. Pooling of samples for testing
for SARS-CoV-2 in asymptomatic people. The Lancet Infectious Diseases, 3099(20), apr 2020.

[LSF20] Marc Lipsitch, David L. Swerdlow, and Lyn Finelli. Sample Pooling as a Strategy to Detect
Community Transmission of SARS-CoV-2. New England Journal of Medicine, 382(13):1194–
1196, mar 2020.

[MNB+20] Leon Mutesa, Pacifique Ndishimye, Yvan Butera, Annette Uwineza, Robert Rutayisire, Emile
Musoni, Nadine Rujeni, Thierry Nyatanyi, Edouard Ntagwabira, Muhammed Semakula, Clarisse
Musanabaganwa, Daniel Nyamwasa, Maurice Ndashimye, Eva Ujeneza, Ivan Emile Mwikarago,
Claude Mambo Muvunyi, Jean Baptiste Mazarati, Sabin Nsanzimana, Neil Turok, and Wilfred
Ndifon. A strategy for finding people infected with SARS-CoV-2: optimizing pooled testing at
low prevalence. arXiv, April 2020.

[MT11] M. Mézard and C. Toninelli. Group Testing With Random Pools: Optimal Two-Stage Algo-
rithms. IEEE Transactions on Information Theory, 57(3):1736 – 1745, 2011.

[MTT08] M. Mézard, M. Tarzia, and C. Toninelli. Group testing with random pools: Phase transitions
and optimal strategy. Journal of Statistical Physics, 131(5):783–801, 2008.

[SAKH20] Nasa Sinnott-Armstrong, Daniel Klein, and Brendan Hickey. Evaluation of Group Testing for
SARS-CoV-2 RNA. medRxiv, 2020.

[SNGYL20] Haran Shani-Narkiss, Omri David Gilday, Nadav Yayon, and Itamar Daniel Landau. Efficient
and Practical Sample Pooling for High-Throughput PCR Diagnosis of COVID-19. medRxiv,
2020.

[TAN20] Ignacio Torres, Eliseo Albert, and David Navarro. Pooling of Nasopharyngeal Swab Specimens
for SARS-CoV-2 detection by RT-PCR. Journal of Medical Virology, page 25971, may 2020.

[Tho62] Keith H. Thompson. Estimation of the Proportion of Vectors in a Natural Population of Insects.
Biometrics, 18(4):568, dec 1962.

[TM06] N. Thierry-Mieg. Pooling in systems biology becomes smart. Nature Methods, 3(3):161–162, mar
2006.

[Tä20] Matthias Täufer. Rapid, large-scale, and effective detection of COVID-19 via non-adaptive
testing. Journal of Theoretical Biology, 506:110450, 2020.

17

	Introduction
	The Grid Pool Testing algorithm
	Computation of the false negative and false positive rates
	Exact calculations

	Asymptotics of the false positive and negative rates at L fixed
	Optimizing one-step testing with L fixed
	Optimal choice of L as a function of p
	Comparison of the different algorithms
	Comparing the Efficiency with well known algorithms
	Showing the choices of L and n

	Application to the COVID-19 pandemic and open questions

