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Abstract. We study a knowledge logic that assumes that to each set of agents,
an indiscernibility relation is associated and the agents decide the membership of
objects or states up to this indiscernibility relation. Its language contains a family of
relative knowledge operators. We prove the decidability of the satisfiability problem,
we show its EXPTIME-completeness and as a side-effect we define a complete
Hilbert-style axiomatization.

Key-words: modal logic, relative knowledge operator, decidability,
complexity, Hilbert-style axiomatization.

1. Introduction

In several logical analyses of reasoning about knowledge, it is assumed
that the knowledge of the agents depends on a degree of certainty with
which they grasp objects from a given domain (see e.g. (Orlo89)). Sev-
eral knowledge logics based on this assumption use classes of semanti-
cal structures inherited from Pawlak’s rough set theory (Paw81) and
some of them are investigated in (Orlo89). Some of these structures
have features from Kripke-style semantics for logics of knowledge (see
e.g. (HM92)), but also from information systemsin (Paw81) and from
Aumann’s structures (Aum76). For instance, in (Orlo89), semantical
structures of the form (OB, AGT, (inda)acagr) are introduced where
OB is a set of objects, AGT is a set of agents and (inda)acacr is
a family of equivalence relations over OB such that (o,0") € ind, iff
the objects o and o' cannot be distinguished by the set A of agents.
It is also required that indy = OB x OB and for any A, A" C AGT,
indgya = tndy Nindy . These conditions come from the way the fami-
ly (inda)acacr can be constructed from information systems (Paw81).
Each relation ind, is called an indiscernibility relation. Unlike Kripke-
style semantics for logics of knowledge, OB is not a set of knowledge
states. In (Orlo89), for each set A C AGT of agents, a knowledge oper-
ator K(A) : P(OB) — P(OB) is defined such that for any X C OB,

(%) K(A)(X)E {o€ OB :indy(0) C X}U{o € OB :indy(0) C (OB\X)}
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K(A)(X) represents the set of objects in OB for which the set A
of agents can decide whether they belong to X. Since the structure
(OB, AGT, (ind 4) acagr) is obviously a Kripke-style structure and since
it can be easily related to Aumann’s structures (Aum?76), it is not sur-
prising that the knowledge operator K(A) is similar to those intro-
duced in (Aum76) in the event-based approach of knowledge (see also
(FHMV95)). Indeed in (x), X can be seen as an event (Aum76) where-

as Aumann’s knowledge operator is defined by K,(A4)(X) < {0 € OB :
inda(0) € X}. Moreover, each operator K(A) also corresponds to the
operator A in logics of non-contingency' (see e.g. (MR66; Hum95;
Kuh95)). The family (K(A))acacr of knowledge operators associat-
ed to the structure (OB, AGT, (inda) ac agr) Will be central in the rest
of the paper.

The logic defined by Ewa Ortowska in (Orlo89) (section 6) admits in
its language a family of knowledge operators K (A) where A is a Boolean
expression (interpreted as a set of agents). As expected, the knowledge
operator K (A) is interpreted by K(A) where A is the interpretation of
A. In the rest of the paper, this logic is called LKO. The main goal of
the present work is to answer the following open questions:

1. What is the computational complexity of the satisfiability problem for
LKO?

2. How to define an adequate Hilbert-style system (called herein ) for
LKO?

Actually, we show that the satisfiability problem is EXPTIME-
complete and the definition of -, is inspired by the completeness proof
of the system for S5 given in (Bal97). In order to prove these results,
we will define faithful translations between LKO and SBB’U, an auxiliary
logic extending the knowledge logic S52 (HM92). Although the S52-
satisfiability problem (n > 2) is known to be PSPACE-complete, we
show that the satisfiability problem for S5B’U is EXPTIME-complete.
The lower bound is a mere consequence of more general results from
(Hem96) and the introduction of the universal operator [U] -see e.g.
(GP92)- can be seen as the main cause for this jump in the complex-
ity classes. The upper bound is obtained by adapting arguments from
(Pra79) where the satisfiability problem for the Propositional Dynamic
Logic PDL is shown to be in EXPTIME. A complete Hilbert-style
system? k., is also defined for S5B’U by extending the system for the
knowledge logic S52 and by slightly adapting the copying construction
used in the completeness proof from (Bal97) (see also (Vak91)). The

! The author thanks Lloyd Humberstone for pointing him to these works.

2 ’aux’ is sometimes used instead of S52’U.
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translation from LKO into SBBVU takes advantage of the existence of
normal forms for Boolean terms following developments from (Lem65;
Kon97). This is sufficient® to define Fj, of which the axioms and
inference rules mimic those of F,,,. Axiomatization of LKO has been
open until now although some fragments have already been axioma-
tized (see e.g. (MR68; Val88; Dem97)). Although the translation may
exponentially increase the length of formulae, we will show that the
satisfiability problem for LKO is in EXPTIME by observing that the
translation increases linearly the number of subformulae -the full argu-
ments are given in the paper. In order to show the lower complexity
bound of LKO-satisfiability, we define a polynomial-time transforma-
tion from S5B’U—Satisﬁability into LKO-satisfiability. Some of the trans-
lations involved in the paper are instances of those defined in (DG9S8)
and apart from the results proved herein, we wish to point out the close
relationships between LKO and S527U.

The rest of the paper is structured as follows. In Section 2, we recall
the definition of the logic with knowled%e operators LKO. In Section
3, we introduce the auxiliary logic S50, we prove the EXPTIME-
completeness of the satisfiability problem and provide a complete Hilbert-
style system F,,,. In Section 4, we define faithful translations between
LKO and S587U and we show why the satisfiability problem for LKO
is EXPTIME-complete. In Section 5, we define a Hilbert-style sys-
tem k., for LKO and we show its completeness with respect to the
LKO-validity by translating deductions in I, into deductions in F,.

2. A logic with knowledge operators: LKO

The set of primitive symbols of the modal language L;;,, is composed of a
set For, = {p, q, . ..} of propositional variables, the classical connectives
-, A (negation and conjunction), and the countably infinite set {/(A) :
A € P} of unary modal operators where the set of agent expressions P
is the smallest set containing a countably infinite set P, = {Cy,Cs,...}
of constants and it is closed under the Boolean operators N, U, —. The
formation rules of the set Fory, of Iko-formulae are those of the classical
propositional calculus plus the rule: if F € Fory, and A € P, then
K (A)F € Fory,. We use the connectives V, =, < as abbreviations with
their standard meaning. For any syntactic category X and any syntactic
object 0, we write X(0) to denote the set composed of elements of X
occurring in 0. Moreover for any syntactic object 0, we write |0] to

? Philippe Balbiani has communicated to the author the possibility of proving
the soundness and completeness of Fzo by adapting some arguments from (Ba197)
without translation.
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denote its length (or size), i.e., the number of symbol occurrences in 0.
For instance Fory(p V —q) = {p,q} and |p V =q| = 4. A P-valuation m
is a map m : P — P(Ag) such that Ag is a non-empty set and for any
Al-, A2 S P7

— m(A; NAy) =m(A) Nm(Ay) ;
—m(A Uly) = m(h;) Um(Ay);
— m(—4,) = Ag\ m(4,).

For any A,B € P we write A =1 (resp. A C B, A = B) when for any
P-valuation m, m(&) = @ (resp. m(A) € m(B), m(A) = m(B)). Both
relations = and C are known to be decidable.

DEFINITION 2.1.An lko-frame F is a structure F = (OB, Ay, (Rg)ocag)
such that OB is a non-empty set of objects, Ag is a non-empty set of
agents and (Rg)gcay is a family of equivalence relations over OB such
that for any Q,Q" C Ag¢, Rougr = Rg N Rg and Ry = OB x OB.
An lko-model M is a structure M = (OB, Ag, (Rg)gcag, ™) such
that F = (OB, Ag,(Rg)gcay) is an lko-frame and m is a mapping
m : ForgUP — P(OB)UP(Ag) such that for any p € Forg, m(p) C OB
and the restriction of m to P is a P-valuation. We say that the lko-model

M is based on F. v

Intuitively, in an lko-frame (0,0') € Rg means that the objects
o and o cannot be distinguished by the set ) of agents. Let M =
(OB, Ag, (Rg)gcag, m) be an lko-model. As usual, we say that a for-
mula F is satisfied by the object o € OB in M (written M, o = F) when
the following conditions are satisfied.

—M,o=p & 0 m(p), for any p € Fory;
— M,o=-F & not M,0=F;
- M,0EFAG E M,0E=Fand M,o0l}=G;

£
- M,oE K(A)F & either for any o € R, (0), M, o' E=F or for any
o' € R, (0), M,o = —F.

We omit the standard definitions of satisfiability for the other logical

def

operators. The standard necessity operator [A] can be defined by [A]JF =
F A K(A)F. Observe that,

{0€ OB : M,ol= K(A)F} = K(m(a)({o€ OB : M, 0= F})

def

A formula F is true in an lko-model M (written M | F) < for
any o € OB, M,o | F. An lko-formula F is true in an lko-frame F

final-jol1i98.tex; 11/09/1998; 14:51; no v.; p.4



A logic with relative knowledge operators 5

(written F = F) & F is true in every lko-model based on F. An
lko-formula F is said to be LKO-valid 45 F is true in any lko-model.
An lko formula F is said to be LKO-satisfiable & there exist an lko-
model M = (OB, Ag, (Rg)gcag. m) and o € OB such that M, o |=F.
Observe that K(A)p < [Alp V [A]-p is LKO-valid and it is therefore
irrelevant? whether in the language the primitive knowledge operators
are of the form [A] or K(A) (see e.g. (Cre88)). In the sequel, we prefer
to keep the operators K (A) since they are faithful to the original for-
mulation in (Orlo89) and they correspond to the knowledge operators
in (Hin62) where K (A)p is interpreted by ”the agents A know whether
the proposition p holds”.

3. The logic 552,U
In this section, we shall define the logic S5S’U, we propose a complete
Hilbert-style axiomatization and we show the decidability of the sat-
isfiability problem and its EXPTIME-completeness. In Section 4, we
shall define a transformation from the LKO-satisfiability into the S58’U—
satisfiability and a polynomial-time transformation from the S5D‘ru—sa—
tisfiability into the LKO-satisfiability. It is worth observing that although
550U has the status of an auziliary logic (since our initial motivation
consists in better understanding the knowledge logic LKO defined in
(Or1o89)), the results for 550U are crucial for understanding LKO. In
this paper, we defend the thesis that S5B’U and LKO are very similar.

3.1. DEFINITION

The set of primitive symbols of the modal language L,,, is composed
of the set Fory, the classical connectives =, A, and the family {[a] : a €
MU{U}} of unary modal operators where Mis the smallest set containing
a countably infinite set My = {cg, cy,...} of modal constants and M is
closed under the binary intersection operator N. The formation rules of
the set Forg,, of S5 -formulae are those of the classical propositional
calculus plus the rule: if F € For,,, and a € MU{U}, then [a]F € For,,,.
As usual, by definition (a)F = —[a]-F. [U] will be interpreted as the
universal operator (see e.g (GP92)).

1 1t is true for the expressive power but also for the complexity class of the
satisfiability problems since the relations of the models are reflexive and the universal
operator is in the language.

final-jol1i98.tex; 11/09/1998; 14:51; no v.; p.5



6 Stéphane Demri

DeFINITION 3.1.A standard (resp. non-standard) 550U frame is a struc-
ture (W, (Ra)aemuquy) such that W is a non-empty set of states and
(Ra)aeMuuy is a family of equivalence relations over W such that

— Ry=W X W (resp. for any a € M, Ra C Ry);
— for any a,b € M; Ry p = Ra N Ry (resp. Ryop € RaN Ry);
— for any a,b € M such that My(a) = My(b), Ra = Rp.-

A standard (resp. non-standard) S5B'U-m0del./\/l = (W, (Ra)acMuuy m)
is a structure such that (W, (Ra)acp) is a standard (resp. non-standard)
S58’U—fra,me and m is a mapping m : For, — P(W). We say that the
standard (resp. the non-standard) S5B’U—model M is based on the stan-
dard (resp. non-standard) S50 Y-frame (W, (Ra)aeMuquy)- \%

When interpreted by non-standard S58)I'T—models7 a modal expres-
sion a € M can be equivalently represented by Mg(a) (this is due to
the third point of Definition 3.1). Let M = (W, (Ra)acMyquy, m) be a
non-standard 5'5[‘0’U—m0de]7 w € W and F be an S58’U—f0rmula,. The
satisfiability relation = is defined as for the Tko-models except for the
following condition (which is standard in the Kripke-style semantics):
M,w = [aF & for any v’ € Ra(w), M,w' |= F. The notions of
552’U—s:aLtisﬁability7 AS’5[J'U—Vleidity7 ... are defined similarly to those for
LKO. S5B’U—validity and S5B’U—satisﬁability are defined with the class
of standard S58’U—m0dels although we shall see that it is equivalent
to the notion defined with the class of non-standard S527U—models. In
Definition 3.2 below, a notion of a partial S587U—m0del is introduced
in order to simplify further developments about the complexity of the
S587U—satisﬁability problem.

DEFINITION 3.2.Let X C MU {U} and § # Y C For,. A (X,Y)-partial
550V model is a structure M = (W, (Ra)ae xuquy, m) such that W is
a non-empty set, m is a map m : Y — P(W) and (Ra)acxuuy is a
family of equivalence relations on W such that for any a € X, R C Ry
and for any a,b € X if My(b) C My(a), then Ry C Ryp. v

The relation = can be easily extended to the class of partial S581U—
models provided the S58*U—f0rmulae contain the adequate modal expres-
sions and propositional variables.

ProrosIiTION 3.3.Let F be an S5B’U—f0rmula. F is satisfiable in a non-
standard S50U-model iff F is satisfiable in a (M(F),For,(F))-partial
550U-model.

final-jol1i98.tex; 11/09/1998; 14:51; no v.; p.6



A logic with relative knowledge operators 7

Proor: Let M = (W, (Ra) acmu Uy m) be a non-standard 557U-model,
w € W such that M, w = F. Let M’ = (W, (Ra) acM(F)uquy, ') be the
(M(F), For, (F))-partial $52U-model such that m’ is the restriction of m
to For,(F). It is easy to show that M’ , w = F.

Now assume that M" = (W, (Ra)acuF)uuy, m') is a (M(F), Fory (F))-
partial S5B'U—model such that for some w € W, M’,w EF. Let M be
the non-standard SBB'U—mode] (W, (Ra)aeMuquy, m) built as follows: for

def def

any a € M(F) U {U}, Rg = R} and for any p € Fory(F), m(p) = m/(p).
So obviously M, w |= F is guaranteed. Let us fix the other values of the
structure M so that M is a non-standard $57U-model.

— for any p € Fory \ Foro(F), m(p) & W (arbitrary value);

def

— for any a € M such that My(a) N M (F) =0, Ra = Ry;

— for any a € M such that My(a) C My(F) and none of the previous cases
hold,

def

Ra = Ry N{|{Ry :b € M(F), Mo(b) C Mo(a)}

— for any a € M such that My(a) N My(F) = {ci,...,cn} (n > 1) and
def

Mo(a) € Mo(F), Ra = Rc,n. .nc,-

For instance with the definition above, for any a € M such that there is
b € M(F) with My(a) = My(b), we have Ry = Ry . 1t is a routine task to
check that for any a € M, Ry C Ry and for any a,b € M, My(b) C My(a)
implies Ra C Ry -different cases have to be distinguished according
to the definition of (Ra)aeMu{U}' This leads to the fact that M is a

non-standard S5[) U_model. Q.E.D.

In the forthcoming constructions, partial S5B’U—m0dels will be built
instead of non-standard S5B’U—models.

3.2. A cOMPLETE HILBERT-STYLE SYSTEM

By F4us we understand the smallest set of S58*U—f0rmulae that satisfies
the following conditions:
(PC) F 4y contains every tautology of the classical propositional calculus;

(MP) by is closed under modus ponens, i.e. {F,F = G} Ck,,, implies
G E'_auz;

(SUB) ke is closed under uniform substitution, i.e F €k, implies F[p +
G] €F 4y, where F[p + G] is obtained from F by simultaneously substi-
tuting every occurrence of the propositional variable p by G;

final-jol1i98.tex; 11/09/1998; 14:51; no v.; p.7
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) Fuus is closed under necessitation, i.e F €, implies [a]F €k, for
any a € MU {U};

Faue contains every formula of the form

[a](p = q) A[a]p = [a]q for any a € MU {U};
[a]p = p for any a € MU {U};
(2)p = [a](a)p for any a € MU {U};
[a]p V [b]p = [a Nb]p for any a,b € M;
[Ulp = [a]p for any a € N;

([an (&' T/Ia”)]p < [(ana)na’lp) A(lanalp < [ Nalp) for any
a,a’;a” € M.

)
)
)
)
)
)

Faur is a slight extension of the Hilbert-style system for S52 (see
e.g. (Bal97)) where some axioms have been added in order to take
into account the universal operator [U] and a countably infinite set M
of modal constants. In a standard way, we define the notions of theo-
remhood (written t,,,) and deducibility in .. Observe that (N) and
(AC') can be replaced by [a]p = [b]p when My(a) C My(b) while preserv-
ing the set of theorems. We indifferently write ,,, F or F €, and
we shall also consider |, as an Hilbert-style system in some obvi-
ous way from the definition of the set by, of S57 U formulae. This
will be also true for the other forthcoming systems. It is easy to show
that if .., F, then F is valid in all non-standard 55” -models. Using
the copying technlque from (Vak91; Bal97) we can show the following
result:

ProposiTiON 3.4.For any S5B*U—formula F,Fis S587U—Valid iff Foue F

Observe that the use of the copying technique is crucial in the proof
of Proposition 3.4 since the canonical model of -, is not a standard
S5B’U—m0de]. Using arguments similar to those used in (Bal97), one can
show that b, F iff Fis S5B’U—Valid iff F is valid in all non-standard
557 U-models.

3.3. DECIDABILITY OF THE LOGIC S5[}U

Let us show that the satisfiability problem for S5B’U is decidable by
using a filtration-like construction. Let F be an S5B'U—f0rmula. We write
I'r to denote the set T'g = sub(F), where sub(F) is the set of subformulae
of F. Let I‘E be the set T'g U{=G : G € T'g}. The cardinality of FE is
at most 2 X card(sub(F)) < 2 x |F|. Let M® = (W¢, (Rg)acmoquy, m°)
be the canonical model for k. (see e.g. (Mak66)). As usual, for any

final-jol1i98.tex; 11/09/1998; 14:51; no v.; p.8



A logic with relative knowledge operators 9

subset X of For and any a € MU {U}, we write [a] X to denote the set
{G:[a]G € X}. W€ is the set of all mazimally +-,,,-consistent sets, for

def

any a € MU {U} and any X,Y € W¢, XR{Y < [a]X C Y. Moreover
def

for any p € Fory, X € m°(p) & p € X. It is a routine task to check
that M€ is a non-standard S57" U.model. As a consequence,

1. for any a € MU{U} and any X,Y € W¢, X RgY implies [a]X = [a]Y;
2. for any a € M, and any X, Y € W¢ X RgY implies for any b € MU {U},
Mo(b) C M(a) implies X RyY
For each X € W<, we write | X| to denote the set XOFE (X is a mawi-
mally b4 .-consistent set of S5B’U—formulae). Let ./\/l%- be the structure
(wie (Réc)aeM(F)u{U}7 m’¢) such that

car +
— W (X] X € We) (card(WFe) < 27 UF),
— for any | X|,|Y| € W/e, |X|RfC\Y| & forany [UG € [, M, X |= [U]a

iff M, Y = [U]G (or, equivalently, [U]| X =[U]|Y]);

— for any |X|,|Y| € W/, for any a € M(F) |X|RL|Y| & |X|R Y]
and for any b € M(I'g) such that My(b) C My(a) and any [b]G € ['f,
M, X = [b]Giff MY = [b]G (or, equivalently, [b]| X| = [0]|Y]);

— mf° : Fory(F) — P(W7°) and for any p € Fory(F), m/°(p) = {|X|:
X € m*(p),p € I'r} (or equivalently m/(p) = {|X|:p € |X[}).

It is a routine task to check that M%-C is a (M(F),Fory(F))-partial
S5B’U—model and for any G € FE, and any X € W, Ge X iff M*, X =
G (Truth Lemma) iff Mg, |X| = Giff G € |[X] (Mg is actually a I'g-
filtration of M¢). Indeed one can show,

1. for any a € M(F) U {U}, (X,Y) € Rg implies (|X|,|Y|) € RL (by easy
verification);

2. for any | X|,|Y]| € W/e if (| X|,|Y]) € RY and M, X |= [a]G for some
[a]G € Tg, then MY = G (by easy verification);

3. and, finally, for any G € FE and any X € W, M X E G iff
ML |X]| E @ (by induction on the size of G).

So for any S5B’U—f0rmulae F, Fis S5B’U—satisﬁable iff F is satisfiable
in a (M(F),For,(F))-partial $57U-model (by Proposition 3.3) iff F is
satisfiable in Mg. Since W/e is finite and card(W/¢) < QZXCMd(s“b(F))),
the validity problem (and the satisfiability problem) of the logic S5B7U
is decidable.

final-jol1i98.tex; 11/09/1998; 14:51; no v.; p.9
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3.4. EXPTIME-COMPLETE SATISFIABILITY PROBLEM

By applying Theorem 5.1 in (Hem96), the S58*U—satisﬁability problem
can be shown to be EXPTIME-hard: it is sufficient to consider the
sublanguage of S50V with the three modal operators [U], [co] and [c,].
Let us show that the S5B’U—Satisﬁability is in EXPTIME, that is, it
can be solved in deterministic exponential time in the length of the
tested formula. To do so, we shall apply a technique used in (HM92)
to show that the satisfiability problem for the knowledge logic S5¢ is
in EXPTIME (originally due to Vaughan Pratt (Pra79)).

Let F be an S5B'U—formula and define I'g and FE as in Section 3.3.
The set W/ of the non-standard model Mg is actually the greatest
set of maximal F,,,-consistent subsets of FE, that is for any X € W/e,

. X CTf (strict inclusion);

. for any G € I'g, {G,-G} € X;

. for any G € T'g, {G, G} N X # 0;

.if =G € X, then G € X

Lif Gy A Gy € X then {Gy,G.} C X;

Lif =(Gy A Gy) € X, then {—Gy, =G} N X # 0;

.if =[a]G € X, then there is Y € W/¢ such that =G € Y, [U]X = [U]Y

and for any b € M(F) such that My(b) C My(a), [b]X = [b]Y;

.if [a]G € X then G € X.

A set X of S5D’U—formulae is said to be mazimally propositionally con-
sistent with respect to I‘E if X satisfies conditions (1)-(6) above. So F
is S587U—satisﬁable iff F is satisfiable in Mg iff there is a maximal .-
consistent subset X of FE such that F € X. Hence for any set X that
are maximally propositionally consistent with respect to I't, if X does
not satisfy one of conditions (7)-(8) then the $57U-formula AGex G is
not §50U-satisfiable.

ProrosiTion 3.5.The satisfiability problem for S5[}U isin EXPTIME,
i.e. there is deterministic Turing machine dtm and there is a polyno-

mial p(n) such that for any S57U-formulae F, dtm(F) is "yes” if F is

S5B’U—sa,tisﬁa,ble, otherwise dtm(F) is "no” and dtm(F) is computed in

deterministic time 22(FD,

Observe that the complexity class EXPTIME is independent of
machine model and EXPTIME is closed under polynomial trans-
formations ("many-one” reductions) -see e.g. (Joh90). The proof of
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Proposition 3.5 follows the main lines of Theorem 6.20 in (HM92)

with adequate modifications in order to deal with S5B’U. It can be
viewed as a partial construction of W/¢ (F being the tested formu-

la) that runs in exponential-time in |F|. Actually it even runs in time
pi(|F|) +2p2cardsub ) for some polynomials py(n) and ps(n). This fea-

ture will be of great importance to show that LKO-satisfiability is in
EXPTIME.

PROOF: Let F be an $57U-formula. We shall either construct a (M(F), Fory(F))-
partial S58*U—model satisfying F or prove that none exists.

Let M(F) = {ai,...,a,} (we arbitrarily order the modal expressions
occurring in F) and let M = (M; ;)i je1, .n}xq1,...n} be the matrix such
that for any ¢,7 € {1,...,n}, M;; LT M, (a;) € Mg(a;) otherwise
M, ; 1. M can be built in deterministic polynomial-time in |F| and
there is a simple representation of M such that for any i,j € {1,...,n},
the value M, ; can be found in the matrix in deterministic polynomial-
time in card(sub(F)) (n < card(sub(F))). When dealing with F, we
replace in the computations a; by ¢ and we consult M when necessary.

Let W!(F) be the set of all the sets that are maximally proposition-
ally consistent with respect to FE. The set W!(F) contains less than

2" TF) sots and Wit C W(F). WL(F) can be built in deterministic
exponential-time in card(sub(F)). We define a sequence of structures
M = (W, (RY) acmFyouy, m), for j € w with WH(F) = W' > W2 >
W? > ... (D is the strict set inclusion). Suppose we have defined Wi,
Then define (Rja)aeM(F)u{U} and m? as follows:

def

— for any p € Fory(F), X € m’(p) & p € X;

def

~ XRjY & [UX =[u]Y;

def

— for any a € M(F) XRLY & [U]X = [U]Y and for any b € M(T'g) such
that My(b) C My(a), [b]X = [b]Y.

A set X € W/ is consistent & (if =[a]G € X then then there is
Y € WY such that =G € Y, [U]X = [U]Y and for any b € M(F) such that
My(b) C My(a), [b]X = [b]Y) and X satisfies (8).

If every set in W/ is consistent and F € X for some X € W/ then
return ”yes” (F is SSS’U—satisﬁable). If there is no consistent state X €
Wi such that F € X then return "no” (F is not 557 U-satisfiable).
Otherwise let W% be the set of all consistent sets in W7 and continue
the construction. .\

Since W7+l C W/ (strict inclusion) and W! has at most 9% ) gl
ments, this construction terminates after at most exponentially many
stages. Computing which sets of W/ are consistent can be done in deter-
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12 Stéphane Demri

ministic polynomial-time in card(¥W7) which is at most exponential in

card(sub(F)). Observe that at each stage we only need to compute the

relations R} for a € M(I'p) U {U} in order to determine which are the

consistent sets of W/ and the cardinality of M(I'g) U {U} is linear in

card(sub(F)). Thus the whole construction can be done in determin-

istic exponential-time in card(sub(F)) plus the time to compute the
_.n} that is polynomial in |F|.

One can show that M7 is a (M(F), For,(F))-partial S5B’U—m0del and
by induction on the structure of the formulae that if all the sets in
Wi are consistent then M7, X = Giff G € X for any X € W/ and any
G € I'p. By way of example in the induction step assume M/, X £ [a]G.
So there is Y € W7 such that (X,Y) € R4 and M/|Y | —G. By
induction hypothesis, =G € ¥ (since -G € FE) and by definition of R,
[a]X = [a]Y. Suppose [a]G € X. Hence [a]G € YV, by (8) G € Y which
leads to a contradiction. Similarly assume M/, X = [a]G and suppose
[a]c ¢ X. By (2)-(3), —[a]G € X and since X is consistent in W,
there is Y € W/ such that =G € Y, [U]X = [U]Y and for any b € N(F)
such that My(b) C My(a), [b]X = [b]Y. So (X,Y) € Ry, MI)Y E G
and by induction hypothesis G € Y which leads to a contradiction. It
follows that F is SBB’U—satisﬁable when there is X in such a set W/
(all its elements are consistent) such that F € X. Furthermore, if there
are no consistent sets X € WY such that F € X then F is not S5B*U—
satisfiable. Indeed W/¢ C W/ and F is not S58*U—satisﬁable iff there is
no X € W/¢ such that F € X. This concludes the correctness of the
algorithm. Q.E.D.

matrix (M; ;)i jeq1, .0} x{1

4. Decidability and complexity for LKO-satisfiability

In Section 3, we have studied the computational complexity of the
S5B’U—satisﬁability problem because the knowledge logic LKO happens
to be similar to S527U. Indeed in this section we shall define a trans-
formation from LKO-satisfiability into S5B’U—satisﬁability that entails
that LKO-satisfiability is in EXPTIME.

Let F be an lko-formula. Without any loss of generality, one can
assume that if card(Py(F)) = n then Po(F) = {Cy,...,C,}, Po(F) con-
tains the n first constants in the enumeration of the countably infinite
set Pg. Indeed LKO-satisfiability and LKO-validity are not sensitive to
the renaming of constants. When F does not contain any constants from
Py, F is LKO-valid iff F is S5B’U—Valid iff F is valid in the Propositional
Calculus. So assume in the sequel n > 1, that is Py(F) # 0.
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For any integer k € {0,...,2"—1} we write A} to denote the Boolean

expression (also called component) Ay N ...N A, where for any i €
{1,...,n}, & = ¢ if bit;(k) = 0 (bit;(k) denotes the th bit in the
def

binary representation of k) otherwise 4; = —C;. It is standard to prove
that for any P-valuation m : P — P(Ag), for any k £ k' € {0,...,2" —
1}, m(Ap)Nm(A;) = 0 and, U{m(4;) : k € {0,...,2"—1}} = Ag.In the
realm of information logics derived from rough set theory, components
have been also used in (Kon97) to define various proof systems.

For any agent expression A € P such that Py(A) C {Cy,...,C,} either
A =1 or there is a unique non-empty set ¥ = {A7,..., A7 } such that
A = A7 U...UA]. Let A € P occurring in F such that A #1 and
A=4A; U...UA4;. The normal form® of A, written N (4), is merely the

def

expression A7 U...UA; . If A =1 then N(A) = C;N—C;. We write IV (F) to
denote the formula obtained from F by substituting each occurrence of
A by N(A). N(F) is unique modulo the associativity and commutativity
of U and N and there exists an effective procedure to compute N (F). It
is a routine task to check that F < N (F) is LKO-valid. Without any loss
of generality, we can assume that My contains the stock {cg,...,con_1}
of distinct modal constants. We define a mapping ¢ from the set of
lko-formulae into the set of S58’U—formulae such that g(F) = gp(N(F))
where g is defined as follows:

— for any p € Forg, gp(p) = p ; 9p(=G) = ~gp(G);

- g]/_-'.‘(Fl NFy) = gi:‘(Fl) A gi:'(Fz)i,

— gp(K (A, U...UA})G) = [c;, N...Ncy]gp(G) V [ci, N... N ]gg(6);

— gp(K(C1 N —€1)6) = [Ulgg(G) V [U]-gp(G).
In the definition of gg, each component A} is associated to the modal
constant ¢, and therefore the main idea of the translation consists in
viewing the components as constants. That is why the subscript g in

gg is used. However, observe that in order to define gi we only need to
know that card(Py(F)) = n. For instance,

g(K(C2 N Co)p A K(C2 N =Co)q) = ([eolp V [co]=p) A ([U]q V [U]q)
ProprosITION 4.1.F is LKO-satisfiable iff g(F) is 550 Usatisfiable.

Since g(=F) < —g(F) is 557 U-valid, Proposition 4.1 also entails that
F is LKO-valid iff ¢(F) is 557 U-valid.
PRrROOF: First assume that F is LKO-satisfiable. So there exist an lko-
model M = (OB, Ag, (Rg)gcag,m) and o € OB such that M,o =

5 N computes precisely the canonical disjunctive normal form for the Proposi-
tional Calculus (see e.g. (Lem65))
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14 Stéphane Demri

N (F). Let M’ be the standard $57-U-model (OB, (Ra)aeMuuy s ') such
that,

def

—forany k € {0,...,2" — 1}, R, = R, 4:);

— for any ¢ € My \ {co,...,Con_1}, R & R, (arbitrary value);
~ for any a € M, Ry = Ncem,(a) Re and Ry £ OB x OB;

— for any p € Forg, m/(p) & m(p).

It is a routine task to check that M’, 0 |= ¢(F) holds.

Now assume that ¢(F) is S5B*U—satisﬁable. So there exist a stan-
dard $57U-model M’ = (W', (Ra) aeMuquy, m') and w € W' such that
M wE g(F). Let Xy, ..., X, be finite sets and x ¢ X; U...UX, with
forany k € {0,...,2"—1},YiN...NY, # 0 where Y] LX; if bit; (k) =0
otherwise Y; & (X1 U...UX, U{*x})\ X;. One can always build such
sets satisfying the conditions below:

L.ocard(X;U...UX, U{x}) =2";
2. for any i € {1,...,n}, card(X;) = 2"~*
3. for any k € {0,...,2" =1}, Y1 N...NY, is a singleton.

For example, we can build the X;’s in the following way: X;U...UX, C
{0,...,2" — 2} and for any i € {1,...,n}, for any k € {0,...,2" — 2},
k€ X; iff bit;(k) = 0 (2" — 1 can therefore play the réle of the element
%). Let M = (W', Ag, (Rg)gcag, m) be the lko-model such that

def

- Ag= X, U...UX, U{x}

— the restriction of m to For, is m/;

def

— for any i € {1,...,n}, m(C;) = X;. The interpretation of the other
constants is not constrained until the restriction of m to P is a P-
valuation, which is always possible;

— Ry E W' x W'
—forany k € {0,...,2" =1}, for the unique x € Y1N...NY,, R “ R,
where V; & X if bit;(k) = 0 otherwise Y; ' Ag \ Xi;

def

— for any @ C Ag such that card(Q) > 2, Rg = (,cq R4z (finite
intersection).

One can check that the definition of M is correct and M is an lko-
model. In order to check whether M, w = N(F) holds it is sufficient to
satisfy that for any k € {0,...,2" — 1}, R p+) = R,
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Ry = { Ry o € m(A7)}
=M{Rpy:zem(din...N4,)}
(A; = C; if bit; (k) = 0 otherwise A, = —C;)
Iﬂ{R{x} X E Ylﬂ...ﬂYn}
(Y: = X, if bit;(k) = 0 otherwise Y; = Ag \ X)
=R, (card(Yin...NnY,) =1)

Q.E.D.

CoROLLARY 4.2.(1) The validity problem for the logic LKO is decid-
able. (2) For any F € Fory,, F is LKO-satisfiable iff F is satisfiable in
some lko-model (OB, Ag,...) such that Ag is finite and card(Ag) <
26(17‘d(Pu(F)).

Decidability of LKO-satisfiability has been open until now. As far
as LKO-satisfiability is concerned, it is worth observing that we can
restrict ourselves to the set of lko-models having a finite set of agents.
For the sake of comparison, all the knowledge logics studied in (HM92)
involve a finite set of agents in the language. In the rest of this section,
we shall present another feature that is common to LKO and to the
logics studied in (HM92), namely LKO-satisfiability is EXPTIME-
complete.

In (DGY8), various similar translations are defined between infor-
mation logics and (combinatory) dynamic logics in order to estab-
lish decidability results for information logics. Observe that for any
SSB’U—formulae F there is an lko-formula G such that G is LKO-valid
iff Fis SSDU—valid. Actually G can be computed by an effective proce-
dure called g5'. Indeed, let F be an $57Y-formula such that My(F) =
{co,...,cx}. Without any loss of generality one can assume that if
card(My(F)) = K + 1 then My(F) = {co,...,cx}, Mo(F) contains the
K + 1 first constants in the enumeration of the countably infinite
set My. Indeed S5B’U—satisﬁability and SBB’U—Validity are not sensitive
to the renaming of modal constants. Let n be the smallest natural
number such that 2" — 1 > K. Take n agent constants from Py, say
Y ={Cy,...,C,}. If My(F) = 0 then we just consider Y = {C, }. For any
k€ {0,...,2" — 1} we define the agent expression A5 = A, N ...N 4,
where for any s € {1,...,n}, A, L, if bit,(k) = 0 otherwise A, < _q,.
We define the mapping ¢gy' : MU {U} U For,,, — P UFory, in the fol-
lowing way:

— for any k € {0,...,2" — 1}, gy ' (ci) = A};
— for any ¢ € My \ {co,...,Can_1}, gy ' (c) = C, (arbitrary value);
~ gv'(anb) = gy'(a) Ugy'(b); g5 (U) = €. N —Cy;

final-jol1i98.tex; 11/09/1998; 14:51; no v.; p.15



16 Stéphane Demri

— for any p € Fory, gv'(p) = p;
— v (GAH) =gy (6) A gy (H) 5 9y (-6) = =gy (0);
= 9v'([a]6) = v (6) A K {9y (2)) gy (G)-

It is easy to see that N(gy'(F)) = g5 (F) and g(g5'(F)) is S50Y-
valid iff F is S50 U-valid since p A ([a]p V [a]-p) < [a]p is 550 V-valid.
Hence Fis $50Y-valid iff g(g5 ' (F)) is §50 U-valid iff g7 ' (F) is LKO-valid
(by Proposition 4.1).

ProrosiTiON 4.3.The LKO-satisfiability problem is EXPTIME-complete.

PROOF: Since gy (F) (F is an $57U-formula) cannot be computed in
polynomial-time in |F| -two occurrences of gy'(G) in the recursive def-
inition of gy'([a]G)-, we shall define a variant of gy '(F) that uses the
renaming of subformulae so that we could conclude that the satisfia-
bility problem for LKO is EXPTIME-hard. Let us consider the map
gyiis defined as gy' except for the following condition: gy, ([2]G) =
pg A K (g9v::,(a))pg where pg is a new propositional variable and add
(PG, 9yii:(G)) to the set Renaming. Let us compute F' such that F' is
LKO-satisfiable iff g'(F) is LKO-satisfiable and F’ is computed in
deterministic polynomial-time. First initialize Renaming to the emp-
ty set. For any G € sub(F), compute gy.;,(G) (possibly by updating
Renaming). Observe that for any G € sub(F), gy;;,(G) can be comput-
ed in polynomial-time in |G| and Renaming is also of polynomial size
in |F| at the end of the procedure above. The whole procedure can
be computed in deterministic polynomial-time in |F|. Using standard
arguments for the renaming of subformulae one can show that g3 '(F)

is LKO-satisfiable iff 7/ &'

9veis (F) A\ (Pe < gy (G)AK (CiN=Cy) (pg < 971:.(G))
(PG,g;;S(G))eRenaming

is LKO-satisfiable, F/ being computed in deterministic polynomial-time.
So there is a polynomial-time transformation from S5V -satisfiability
into LKO-satisfiability.

In order to prove the upper bound, take any lko-formula F. N (F)
(FD for some polynomial p(n)
(use of Boolean truth-tables to compute the normal forms of all A €
P(F)). Moreover card(sub(F)) = card(sub(N (F))), card(sub(g(F))) <
3 X card(sub(F)) and one can show that there is a polynomial p'(n)
such that |¢(F)| < 20" (IFD),

Hence deciding whether ¢(F) is S5B’U—satisﬁable can be solved in
deterministic time 2°(FD 4 p, (20" (FD) 4 gp2(8xeard(subF)) which is bound-

ed by 2¢0F) for some polynomial q(n) -see Section 3.4. Q.E.D.

can be computed in deterministic time 27
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A logic with relative knowledge operators 17

For the sake of comparison, the satisfiability problems for the Propo-
sitional Dynamic Logic PDL and for the knowledge logic S55 (n > 1)
are also EXPTIME-complete.

5. Hilbert-style axiomatization for LKO

In this section, as a side-effect of the results from the previous sec-
tions we define the Hilbert-style calculus F, for LKO and we show
its completeness with respect to LKO-validity by using ¢, g7' and the
system k... By Fi, we understand the smallest set of lko-formulae
that satisfies the following conditions:

1. ko is closed under modus ponens, uniform substitution and F, con-
tains every tautology of the classical propositional calculus;

2. bk, is closed under necessitation, i.e F €k, implies K (A)F €k, for
any A € P;

3. lko contains every formula of the form:

(") K(A)p = K(A")p when A C A’
(K)FAK(&)pAK(A)(p = q) = K(A)g;
( 5) K(A)(K(A)p = p);

EqK) K(&)p & K(&)—p;

(U’) PAK(A)p = K(A;)p when 4, =1.

Although the Boolean Modal Logic BML defined in (GP90) admits
Boolean terms as modal indices in its language, in BML these terms are
interpreted by binary relations unlike LKO. However, in the definition
of b, (M) also corresponds to an axiom schema from the axioma-
tization of BML defined in (GP90). Moreover, by deleting (U’) from
the definition of F, the set of theorems remains unchanged but it is
introduced to emphasize the correspondence with k.

ProposiTiON 5.1.If b, F then F is LKO-valid.

ProOOF: By an easy verification. Q.E.D.

The proof of Proposition 5.2 below can be easily obtained from sim-
ilar statements in (MR68; Dem97).

ProrosiTioN 5.2, If by, F < F' then by, G < G where G’ is obtained
from G by simultaneously replacing some occurrences of F by F'.

2. For any A € P, ., K(A)(pA K(A)p).
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18 Stéphane Demri

Another useful result is stated in Proposition 5.3 below.

PropPosITION 5.3.Let F be an lko-formula (see the notations of Section
4) and gy' be the mapping with Y = Py (F).

L by gy (9(F)) < F;

2. For any S527U—f0rmulae G, H, g7 (G[p « H]) = g5 (G)[p « gy (H)].

Proor: (1) By Proposition 5.2(1) and the axiom schema (N'), Fy,
F < N(F). However, g7 '(¢(F)) = g;l(g’F(N(F))) = «a(N(F)) where
« : Fory,, — Fory, is defined as follows:

— for any p € Forg, a(p) =p ;
— a(=G) = =a(G); a(Gr A Gs) = a(G) A a(Ga);
— a(K(8)G) = (K(A)—a(G) A—a(G) V (K(&)a(G) A a(G)).
Since Fp, (K(A)—p A —p)V (K(A)p Ap) <& K(&)p, by induction and

Proposition 5.2(1) k., a(N(F)) < N(F). Hence Fy, g5 ' (g(F)) < F.
(2) By induction on the size of G. Q.E.D.

We can now present the main result that entails the completeness
of k., with respect to LKO-validity.

PROPOSITION 5.4.1f b4y, g(F) then b, F.

PRrROOF: Let (Gy,...,Gx) be a deduction of ¢(F) in Fuu. (Gx = g(F)).
We show that for any i € {1,..., K}, Fi, gy (G;) with Y = Py(F). By
manipulation at the propositional level, and since k., gy (g(F)) & F,
we get i, F. The proof is by induction on K

Base case: Gy is an axiom of gy,

1. If G, is a tautology of the propositional calculus then obviously 4, G
and gy'(G)) = G,.
2. If G is of the form ([a](p = q) A [a]p) = [a]q then gy'(Gy) is equal to

(p=dAK(gy'(a)lp=a) ApAK(gy'(a))(p) = aA K(gv"(a))(a)

By (K'), buo K(gy'(2))(p = @) AP A K(gy'(2))(p) = K(gy ' (2))(q)
and by, (p = a) Ap = q. By manipulation at the propositional level
we get Fu, gy ' (Gr).

3. If Gy is of the form [a]p = p then gy'(G,) = K(gy'(a))pAp = p which
can be derived in ky, by an easy manipulation at the propositional
level.
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4. If Gy is of the form (a)p = [a](a)p then gy'(G)) = =G = =G A
K(gy'(a))(—=G) where G = (=p A K(gy*(a))—p). By Proposition 5.2(2)
and by considering the substitution rule, ., K(gy'(2))(-pAK (95" (a))—p).
By (EqK) and Proposition 5.2(1), b, K(gy'(a))(—G). By manipula-
tion at the propositional level we get ., gy (Gy).

5. We omit the details of the cases when G; is an instance of (N), (U) or
(AC) since they present no extra difficulties.

Induction step: In case G;;; is an axiom, see the treatment of the base
case. Now assume G,y; is computed from an inference rule of k.

1. G;41 is obtained from G; by the substitution rule. So G;1; = G;[p « GJ.
Since j < 14, by induction hypothesis, Fu, g5'(G;). By Proposition
5.3(2), 9y (Giy1) = 97 (Gj)[p ¢ g5 ()] and therefore -y, g5 (Giy1) by
applying the substitution rule on g3'(G;) with p + g5 (G).

2. We omit the details of the cases when G, is obtained from the neces-

sitation rule or the modus ponens rule since they present no extra
difficulties.

Q.E.D.

ProrositioN 5.5.If F is LKO-valid then F, F.

Proor: F is LKO-valid implies ¢(F) is S5S’U—Valid, which implies F .
¢(F). By Proposition 5.4, by, F. Q.E.D.

As a conclusion, for any lko-formula F, b, Fiff F is LKO-valid.

6. Concluding remarks

In this paper we have shown that the satisfiability problem for LKO
is EXPTIME-complete and we have defined a sound and complete
Hilbert-style system for it. In (Orlo89), the logic LKO’ has been also
introduced where the lko’-models are like the lko-models except that
the relations are only reflexive and symmetric. According to (Orlo89)
(p. 571) the axiomatization of LKO' seems to be more complicated
since the indiscernibility relations are not necessarily transitive. By
using constructions similar to those in the present paper, the system
Figor that consists in by, except that (T5) is replaced by

(B)p= K(A)(pV-K(A)p) forany A€ P
(T5U) K(A)(K(A)p = p) for any A=1
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20 Stéphane Demri

is sound and complete for LKO’. This problem has been open until now
(Orlo89). Decidability of LKO’ can also be established as well as the
EXPTIME-completeness of the satisfiability problem.
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