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Every Finitely Reducible Logic has the Finite Model
Property with Respect to the Class of &-Formulae *

Stéphane Demri  Ewa Orlowska

December 19th, 1998

Abstract

In this paper a unified framework for dealing with a broad fam-
ily of propositional multimodal logics is developed. The key tools for
presentation of the logics are the notions of closure relation operation
and monotonous relation operation. The two classes of logics: FiRe-
logics (finitely reducible logics) and LaFiRe-logics (FiRe-logics with local
agreement of accessibility relations) are introduced within the proposed
framework. Further classes of logics can be handled indirectly by means
of suitable translations. It is shown that the logics from these classes
have the finite model property with respect to the class of G-formulae,
i.e. each O-formula has a £-model iff it has a finite £-model. Roughly
speaking, a O-formulais logically equivalent to a formulain negative nor-
mal form without occurrences of modal operators with necessity force.
In the proof we introduce a substantial modification of Claudio Cerrato’s
filtration technique that has been originally designed for graded modal
logics. The main core of the proof consists in building adequate restric-
tions of models while preserving the semantics of the operators used to
build terms indexing the modal operators.

Key words: multi-modal logic, epistemic logic, dynamic logic, information

logics, algebras of relations, finite model property, filtration

1 Introduction

Over the past years a significant amount of research has been invested in
the development of modal logics for various computer science applications:
knowledge representation, program verification, temporal reasoning, reason-
ing with incomplete information, modeling concurrency, etc. Usually, these
logics differ from the standard modal logics in that they are multimodal and
moreover, an algebraic structure is assumed in the families of accessibility re-
lations in their models (see e.g. [2, 3, 7, 11, 12, 13, 18, 16, 22]). The finite

model property (fmp) of a logic is one of the most important conditions of its
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by the Centre National de la Recherche Scientifique (C.N.R.S.), the Polish Department of
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applicability. In the paper a class of multimodal logics, referred to as finitely
reducible logics (FiRe-logics), is defined and characterized. The class includes
many applied logics mentioned above. Each FiRe-logic possesses fmp with
respect to the family of O-formulae. A formal framework is elaborated that
enables us to uniformly present the known fmp results as particular cases in
the class of FiRe-logics, and to obtain new fmp results that have been open
problems until now. For finitely axiomatizable logics our results imply their
decidability. Two general methods of proving fmp are presented: a direct
method which provides a proof that a logic is in the class of FiRe-logics, or
an indirect method that establishes reducibility of the logic to a FiRe-logic.
The direct method is inspired by the proof technique presented in [5].

The paper is structured as follows. In Section 2, we define the relation
operations used in the sequel. Several examples are given showing the range
of our definitions. In Section 3, the notions concerning logics are defined.
In Section 4, the class of finitely reducible logics is defined using the notions
of the previous sections. In Section 5, we present various logics from the
literature being in that class and we give some results that enable us to build
new finitely reducible logics from existing ones. In Section 6, we prove that
every finitely reducible logic has the finite model property with respect to the
class of O-formulae. In Section 7, we define a new class of logics such that the
relations indexed by modal constants satisfy (in some way to be specified) the
local agreement condition [15]. We prove that every logic of that new class
has also the finite model property with respect to the class of O-formulae.
Section 8 is devoted to concluding remarks.

This paper is an expanded and updated version of [9, 10].

2 Relation operations

For any set U, P(U) denotes the power set of U. For any binary relation R
on the set U, for all u € U, R(u) is equal to {v € U : (u,v) € R}. We write
Domp (resp. Ranpg) to denote the domain (resp. the codomain or range) of

the binary relation R.

DEFINITION 2.1. A relation operation ¢ maps any set U to a mapping ¢(U) :
PU x U)* = P(U x U). The natural number n is called the arity of ¢ (also
written ar(¢)). \Y

The class of relation operations is written OR. A typical example of
relation operation is the union operation U such that for all sets U, for all
binary relations Ry, Ry on U, U(U)(Ry, R2) = {(z,y) € Ux U : either (z,y) €
Ry or (z,y) € Ry} (also written Ry U Ry). In the rest of the paper ¢(U) is
written ¢ when the underlying set U is clear from the context. Let ¢, ¢’ be



two relation operations of arity n. We write ¢ C ¢’ iff for all sets U and

Ri,....R, CUxU, $(U)(Ry,...,Ry) € ¢'(U)(Ry,...,Ry).

DEFINITION 2.2, A relation operation ¢ (of arity n) is said to be monotonous
iff for any U and for any relations Ry,...,R,, R € P(U x U), for all i €
{1,...,n},if R; C R then

¢(U)(R1, ooy Rz, Riy Riga,y - .,Rn) - ¢(U)(Rl, e Ric1, Ry Riqq, .. .,Rn)
A\

Let ¢ and ¢’ be relation operations such that ar(¢’) = 1 and ar(¢) = n.
The composition relation operation ¢ o ¢ is defined by: for all sets U and for
all binary relations on U, Ry,..., R, CU x U,

¢po ¢/(U) (Rh LR Rn) = ¢/(U) (d)(U) (Rh - '7Rn))

Observe that if ¢ and ¢’ are monotonous then ¢ o ¢’ is monotonous. For any
relation operations ¢, ..., ¢, such that (...(¢10¢2)0...) 0@, is well-defined
(...(¢1o ) 0...) 0 d, may be written ¢102...¢,. The class of monotonous
relation operations ¢ such that for all sets U, U’ and all Ry,..., R, CU x U

if U C U, then ¢(U)(Ry,...,Rn) € ¢(U')(Ry,. .., Ry)

is denoted by MOR. When ¢ € MOR, ¢ is said to be strongly monotonous.
Standard strongly monotonous relation operations can be found in Figure 2.
An example of non monotonous relation operation is the complement relation

operation — defined by —(U)(R) = {(x,y) € U : (z,y) ¢ R}.

DEeFINITION 2.3. A closure relation operation C is a relation operation of arity

1 such that for all sets U and all R C U x U,
(1) RCCU)(R),
(2) forall 9 £ U C U, C(UYCU)(R)N (U xU")) =CU)R)N (U x U'),

(3) C is monotonous.

Any closure relation operation C, satisfies:
VUYR C U x U, C(U)(C(U)(R)) = C(U)(R)

It is immediate by taking in Definition 2.3(2), U’ = U. The class of
closure relation operations is denoted by COR. Examples of closure relation
operations can be found in Figure 1. For instance, a binary relation R is
Euclidean! iff C*((Domp U Rang))(R) = R (see also Proposition 2.4 below).

Yor all x,y, 2, if (z,y) € R and (x,2) € R then (y,2) € R.



ProrosiTION 2.1. For any C € COR, C is strongly monotonous, that is for
any set U, RC U x U and U C U’, we have C(U)(R) C C(U")(R).

ProoF: By Definition 2.3(1), R C C(U’)(R) since R C U'xU’'. As R C UxU,
R CCU"Y(R)NU x U and by Definition 2.3(3) C(U)(R) C C(U)(C(U")(R)N
U x U) -monotonicity. By Definition 2.3(2), C(U)(R) C C(U)(R)NnU x U.
Hence C(U)(R) C C(U")(R). Q.E.D.

Observe that there exist relation operations satifying the conditions (1)
and (2) in Definition 2.3 without being monotonous. Consider the unary
relation operation ¢ such that for any set U, R C U x U, if R is rectangular?
then ¢(U)(R) = R otherwise ¢(U)(R) = U x U. It is easy to show that
¢ satisfies the conditions (1) and (2) in Definition 2.3. However, consider
R=1{(1,2),(1,4),(3,2)} and R = RU{(3,4)}. We have ¢({1,2,3,4})(R) =
{1,2,3,4} x {1,2,3,4} whereas ¢({1,2,3,4})(R’) = {1,3} x {2,4} (and R is
a proper subset of R'). So ¢ is not monotonous.

In the sequel, by ¢ monotonous, we mean ¢ € MOR (i.e. ¢ is strongly
monotonous) unless otherwise stated.

Let C be a closure relation operation. A binary relation R is said to be
C-closed iff C(Domp U Rang)(R) = R. A family R of binary relations is said
to be C-definable iff for all binary relations R, R € R iff R is C-closed. A set
R of binary relations is said to be closed under restrictions, iff for all R € R,
for all § £ U’ C (Domp U Rang), RN (U' x U') € R.

ProrosiTioN 2.2. If the family of binary relations R is C-definable for some

closure relation operation C then,

(1) for any binary relation R, there exists R’ € R such that R C R’ and
(Dompr U Rang) = (Domp/ U Rangy).

(2) R is closed under restrictions.

Proor: (1) Take a binary relation R. By Definition 2.3(1), R C C(Domp U
Rang)(R). Since C(R) = C(C(R)) and R is C-definable then C(R) € R and
(Dome(py U Rang(ry) = (Domp U Rang).

(2) Take R € R and § # U' C (Domp U Rang). By Definition 2.3(2),
CUNCWYR)NWU xUY)) =CU)R)NU" xU") =R with U = (Rang U
Domp). Since (Domp U Rang) C U’ and by Definition 2.3(1),

R' C C((Domp U Rang/))(R') C C(U")(R)

Since R" = C(U")(R’) then C((Domp U Rang/))(R') = R’. R being C-
definable, C(U)(R) = R. Hence RN (U'NU’') € R. Q.E.D.

2A relation R over U is rectangulariff there exist U', U" C U such that R = U’ x U".



ProPoOSITION 2.3. For any closure relation operation C there is a unique C-
definable set of relations. This set is equal to {C(U)(R) : Iset U,AR C UxU}.

ProoF: Let R = C(U)(R). We show that C((Domp'URang/))(R') = R'. We
write U’ to denote (Domp: U Ranpg). Since R' C U’ x U’ then C(U")(R') =
C(UNY(R'NU'"xU"). Hence by Definition 2.3(2),C(U")(R') = R'NU'xU' = R'.
Q.E.D.

In the sequel we shall use families of binary relations definable by some
closure relation operation in order to define the classes of models characterizing

the multi-modal logics that are in the scope of this paper.

PROPOSITION 2.4. (1) The set of serial® (resp. atomic?, weakly dense®, discrete®)
relations is not C-definable for any closure relation operation C.

(2) The set of reflexive (resp. symmetrical, transitive, equivalence, Euclidean,
rectangular, quadratic’, ideal®) relations is C"-definable (resp. C*-definable,
C!-definable, C"s!-definable, C¢-definable, CL ¥ -definable, CL*L-definable, Cid-dom._
definable).

Proor: (1) This statement can be proved by noting that the class of serial
(resp. atomic, weakly dense, discrete) relations is not closed under restrictions.
Proposition 2.2 entails the desired result.

(2) By way of example we show that the family of Euclidean relations, say, R¢,
is C¢-definable. Take some binary relation R. First assume R € R°. Assume
there exist zy,...,Zn, Y1,...,Ym such that n > 2, m > 2, z; = y, for all
ie{l,...,n—1}, (zj,2,41) € Rand forall i € {1,...,m—1}, (y;,yi4+1) € R.
Without any loss of generality assume n < m. By induction on k, it can be
shown that for all £ € {2,...,n}, (zx,yx) € R (R is Euclidean). Then, by
induction on &', it can be also shown that for all &' € {n,...,m}, (¢, yr) € R.
Hence (2,,,ym) € R and by definition of C¢, C¢((DomgrURang))(R) = R (R is
C-closed). Now assume C°((Dompr U Rang))(R) = R. It means in particular
that {(22,y2) : 21,91 € (Domp U Rang), ©1 = y1, (21,22) € R, (Y1,¥2) €
R} C R. Hence R € R°. Q.E.D.

Another way for proving Proposition 2.4(1) is to use Los-Tarski preserva-

tion theorem for first-order logic (fol) -see e.g. [6]. Let Ay, be a closed formula

?A relation R over U is serial iff for all & € U, there is y € U such that (z,y) € R.

4 A relation R over U is atomic iff for all € U, there is y € U such that (z,y) € R and
forall z € U if (y,2) € R then z = y.

A relation R over U is weakly dense iff for all =,y € U, if (z,y) € R then there is u € U
such that (z,u) € R and (u,y) € R.

SA relation R over U is discreteiff for all z,y € U, if (z,y) € R then there is z € U such
that (z,z) € R and there is no u € U such that (z,u) € R and (u, z) € R.

TA relation R over U is quadratic iff there exists U' C U such that R=U' x U'.

8 A relation R over U is ideal iff there exists U’ C U such that R = U’ x U.



C Definition of C(U)(R)
ct R
cr RU{(z,x) :z €U}
cur RU{(z,z): (w,y) € R}
cer RU{(y,y) : (z,y) ER}
[ {(#,y) : either (z,y) € Ror (y,v) € R}
C? {(z,y) : Jz1,...,@n such that n > 2,51 = w,on=yand Vi € {1,...,n — 1}, (w;,xi41) € R}
ce Ru{(z,y) : 3&1,...,&n,41,...,ym such that n > 2,m > 2,1 = 41,00 = @, ym = v,
vie{l,...,n— 1w, wiy1) € R,Vi€{1,...,m — 1}(y;, yi+1) € R}
ces C°C*(R)
cer cTC*(R)
crs c*c™(R)
ot C'CT(R)
Crst csctcr(R)
v UxU
crxr Dompg x (Dompg U Rang)
cLxt (Domp URang) X Rang
cLxL (Domp U Rang) X (Domg U Rang)
chxi Domp x Rang
¢rd.dom Dompg x U
crd.-ran U x Rang

Figure 1: Examples of closure relation operations

of first-order logic such that Ay, has no function symbol and the only predi-
cate symbols occurring in Ay, are the equality symbol = and R (both binary).
We can assume without any loss of generality that the only logical connectives
are A, V,. A class R of binary relations is said to be Ay.-definable iff for all

binary relations R over W,
R S R iff ((DOmR U RanR), R) ':f()l Af{)l

A closure relation operation C is said to be first-order definable iff there is
a closed first-order formula Af,; such that the unique C-definable class R
of binary relations is At -definable. Let R be a C-definable class for some
closure relation operation C. If R is Af,-definable for some non-valid first-
order formula Af,; then R is A’fol—deﬁnable for some universal formula A/fol by
the Los-Tarski preservation theorem. A'fol is of the form Va, Va,...Vay A’f’ol
where k > 0, x1,...,2; are distinct variables and A.’;Ol is a quantifier-free
formula. Indeed by the Submodel Preservation Theorem, Ay, is preserved by
taking submodels iff 4 is logically equivalent to a universal formula. Since
R is closed under restrictions then Ay is preserved by taking submodels.
Moreover, by Proposition 2.2, there is a positive occurrence of the predicate
symbol R in A}ol' For suppose otherwise and take R ¢ R. Then ((Domp U
Ranp), R) Wro Vg Vag .. Vag A'}ﬁol and there exist wy,...,w; € W such
that ((Dompg U Rang), R) =ju _‘A’fol [¥1 ¢+ wi,...,0; < wg] and ﬂA’f’ol
is logically equivalent to some formula /\ISiSn(\/ISJSM L; ;) in conjunctive
normal form where each L;; has one of the following forms: z=y, —(z=y),
R(z,y). Hence, for all R C R’ C (DompURang) X (DompURang), ((DompU

6



Ranpg), R') =ju _‘Alfol [z1 ¢ w1, ..., 25 < wg] and ((DomgpURang), R') o
Vay Vao ... Vay A/flolv which is in contradiction with Proposition 2.2(1) -it is
even possible that R does not occur in A’f’ol. Hence for all classes R of binary
relations Ay, -definable for some non-valid first-order formula A;,; in prenex
normal form, if either A, is not universal or Ay, does not contain a positive
occurrence of the predicate symbol R then there is no closure relation operation
C such that the class R is C-definable. For instance, although the class of
irreflexive relations is closed under restrictions, it is not C-definable for any
closure relation operation C.

From a given collection of monotonous relation operations (resp. closure
relation operations), it is possible to define new monotonous relation oper-
ations (resp. closure relation operations). By way of example, consider the
mapping t. : COR — OR such that for all C € COR, for all sets U and
RCUXU,

tC)U)(R) = [ J{C(CHRN(CF x €)1 € U}

where C'F is the set {2} U{y € U : 3 C*(R)—path between z and y}. For any

¢ (arity) Definition of ¢(U)(Ry, ..., Ry,)
U (2) {(z,y) : either (z,y) € Ry or (z,y) € Ry}
N (2) {(z,y): (2,y) € Ry and (z,y) € Ry}
u* (2) UC™ (R, R3)
i (2) {(z,y): 3z, (z,2) € Ry and (z,y) € Ry}
| (2) | {(z,y): either (z,y) € Ry or (z,y) € Ry, and Ry(x) x Ry(y) # 0}

Figure 2: Examples of monotonous relation operations

set Uy RCR CUXxUandaxeU,
o CRECCE RN (CExCEyC R n(CE xCEY,
o Uperr BN (CEx CEYy=R, {CF .2 € U} is a partition of U.
ProrositioN 2.5. For any C € COR,
(1) forany set U, RCU x U,z € U, CF = C;C(C)(U)(R)7

(2) for any set U, R C R C U x U, t.(C)(U)(R) C t.(C)(U)(R") (mono-
tonicity),

(3) forany set U, RCU x U, R Ct.(C)(U)(R),

(4) t.(C) is a closure relation operation.

For instance, the family of difunctional® relations is tc(CLXL/)—deﬁnable.
Moreover, although ¢.(C") = C" we have t.(v) = C"*".

?A relation R over the set U is difunctional iff for all # € U, there exist C' and C/?
subsets of CF such that RN (Cf X Cf) =it x o2,



The relation operations involve in the definition of the FiRe-logics shall
be monotonous and most of them are also finitely reducible in the sense of
Definition 2.4 below.

DEFINITION 2.4. A relation operation ¢ (with n = ar(¢)) is said to be finitely
reducible iff for any set U, Ry,..., R, CU x U,

o if (z,y) € ¢(U)(R1,...,Ry)
e then there is a finite set U' C U and there exist R},..., R, C U’ x U’
such that

- (z,y) € (U (RY, ..., R)) and,
—forallie{l,...,n}, RRCR,NU xU'.

3 Multi-modal logics

The various relation operations and C-definable sets of binary relations defined
in Section 2 shall be used to define classes of modal frames. In the forthcoming
sections, we shall show how the properties of the relation operations induce
properties of logics characterized by modal frames involving those operations.
We believe that the relationships between relation operations and logics are
the main original part of the present work. Before defining the (semantical)
notion of logic we shall use, some (rather standard) preliminary definitions
are needed.

A (propositional) modal language L is determined by four sets which are

supposed to be pairwise disjoint:

e a non-empty countable set Fy of propositional variables,

e a non-empty countable set My of modal constants,

a countable set OP of propositional operators,

e and a countable set OM of modal operators (which can be empty).

The set M of modal expressions is the smallest set that satisfies the following
conditions: My C M and if & is any n-ary modal operator and ag,...,a,_1 € M
then $(ag,...,a,-1) € M. The set Fy, of L-formulae is the smallest set that
satisfies the following conditions: Fg C Fy, if © is any n-ary propositional
operator and Ay, ..., A, € Ff then ©(Ay,...,A,) € Fr and if a € Mand A € F[,
then {[a]A,(a)A} C Fr, -for the sake of simplicity [a] and (a) are also called
modal operators. We assume throughout the paper that any modal language
used in the sequel satisfies the following conditions: Fy is a fixed countable

set of propositional variables and the propositional operators are the unary



- (negation) and the binary A (conjunction) and Vv (disjunction). For any
syntactic category X, and for any syntactic object 0 we write X(0) to denote
the set composed of elements of X occurring in 0. For example Fy (&) is the
set of subformulas of A.

Let L be a modal language. We write mw(A) to denote the modal weight
of A, i.e. the number of occurrences of modal operators in A -of the form [a]
or (a). We also write md(4) to denote the modal degree of A, i.e. the maximal
number of modal operators that appear in front of a propositional variable in
A. We write M(A) to denote the set {a € M: J[a]B € F[(4) or 3(a)B € F1,(4)}.
Let t,,s be the mapping F;, — Fy, such that:

® tuns (7(a)A) = [a]tnns (7A); trng (H[a]A) = (a)tuns(—A),

® Tonf

We write Ff (resp. F[) to denote the set of formulae A such that t,, s (A)
does not contain any necessity modal operator (of the form [a]) (resp. t,,s(A)
does not contain any possibility modal operator). The formulae of Ff (resp.
FE) are said to be O-formulae (resp. O-formulae). The mapping t,,f can be
viewed as a procedure transforming any formula into a formula in negative
normal form (nnf). Tt is easy to show that A € Ff (resp. A € FE) iff =4 € FE

(resp. A € Ff). The set of O-formulae has numerous interesting properties

(see e.g. [1]).

As usual, by an L-model we understand a triple (U, {Ra : a € M}, V) such
that

e U is a non-empty set,

e for all a € M, Ra is a binary relation on U and,

e V is a mapping Fo — P(U).
The set of L-models is written Mody,. Let M = (U,{Ra :a € M}, V) be an
L-model. As usual, we say that a formula A is satisfied by the object w € U in
M (written M, u = A) when the following conditions are satisfied.

e M,uEpiff ue V(p), forall p € Fy,

o M,uE -4 iff not M, u = A,

e M,uE AABIff M,ul A and M, u = B,



e M,u = AVB iff either M, u = A or M, u |= B,
e M, u k= [a]Aiff for all v € Ra(u), M,v [E 4,
e M,u k= (a)A iff there is v € Ra(u) such that M, v = A.

As usual, the modal operators (a) and [a] are not independent, each of
them can be defined in terms of the other. Moreover, M,u = A iff M,u E
tuns(8) for any A € Fr. In the sequel, when it is possible, only the operators
of the form (a) are used. A formula A is said to be true in the L-model
M= (U{Ra:acM},V)iffforall ue U, M,u [ A.

By a logic £, we understand a triple!® (L, S, =) such that L is a modal
language, § C Mod, and =, is the restriction of = to the sets & and L
(satisfiability relation). For all models M € §, M is said to be a model for L.
An L-formula A is said to be L-valid iff A is true in all L-models of §. An L-
formula A is said to be L-satisfiable iff there is M = (U,{R,:a € M},V) € S,
u € U such that M,u =z A. A logic £ = (L, S, =) has the finite model
property with respect to the set X C Fp, iff for every L-satisfiable formula
A € X, there exist M = (U,{Ra:a €M}, V) €S, w € U such that U is finite
and M, w =, A. We shall use in the sequel the following notion of translation

between two logics.

DerINITION 3.1. A translation from £q = (Ly, 81, =1) to L3 = (L2, Sz, =2) is
a computable mapping ¢ : Ff, — Fr,, such that

(1) forall A € Fr,, t(—A) = —t(A),

(2) for all My = (U {RL :a € M4;},V) € 8, there is My = (U, {R2 :
a € My}, V) € S such that () forall A € F,, u € U, My, u = Aiff
Moy, u = t(A).

(3) for all My = (U, {R% :a € My},V) € Sy, there is My = (U,{RL :a ¢
M}, V) € Sy such that (x).

The translation ¢ is said to be O-preserving iff for all A € Fp , A € Ffl iff
>
t(A) EFL . \Y4

Such translations are semantically stronger than the ones usually found in

the literature which is shown in the proposition below.

PROPOSITION 3.1. Assume there is a translation ¢ (in the sense of Definition
3.1) from £; to Ly. Then,

(1) For all Ly-formulae 4,

(a) Ais Ly-valid iff £(4) is Ly-valid.

Tt is also possible to define a logic in terms of frames (structures of the form (U, {Ra :
a € M})) but the definition of logic used in the paper shall be sufficient for our needs.

10



(b) Ais Ly-satisfiable iff ¢(4) is Ly-satisfiable.

(2) If L3 has the finite model property with respect to X (resp. a decidable
validity problem, a decidable satisfiability problem) then L£; has the
finite model property with respect to {A € F, : 3B € X,#(A) = B} (resp.
a decidable validity problem, a decidable satisfiability problem).

4 Finitely reducible logics

In this section we apply the formal framework developed in Section 2 to define
classes of modal logics. We show that a broad family of logics can be uniformly
presented within this framework.

An operator interpretation function T for the language L such that OM # (),
is a mapping Z : OM — MOR such that the arities of Z($) and ¢ are equal
for all @ € OM. If OM = @, by definition the unique operator interpretation
function T for L is the empty set. For a given language L, and an operator
interpretation function Z, the family {Rg4 : a € M} of binary relations over a

set U is said to respect T iff
forallay,...,a, € M,®" € OM, Rgn(a,, . a,) = Z(B")(U)(Ra,,- -, Ra,)

Observe that if Z = () then every L-model respects Z. A family {Rj3 : a € M}
respecting 7 is completely determined by the family {R¢ : c € My} and U. By
extension, we say that the L-model (U,{Ra : a € M}, V) respects 7 iff {Ra :
a € M} respects Z. For a given language L, and an operator interpretation
function 7, we write ./\/lodf to denote the set of L-models respecting Z. For
a given language L and a mapping C : Mg — COR, we write Modi to denote
the set of L-models M = (U,{Ra :a € M}, V) such that

for all ¢ € My, C(c)(U)(Rc) = Re.

As a consequence, for all ¢ € My, C(c)((Domp. U Ranr.))(Rc) = Rc. We
use the symbol € both for this mapping and for any member of COR because
for each ¢, C(c) € COR.

Let M = (U, {Ra : a € U},V) be an L-model respecting Z. It can be
shown that for all a € M, a’ € M(a), b,b’ € M such that b is obtained from
the modal expression a by replacing a given occurrence of a’ in a by b’ and
Rar € Ry, we have Rg C Ryp. This is due to the monotonicity of the relation
operations in {Z(&) : & € OM} when OM # (.

We shall introduce a particular class of logics, the FiRe-logics. First, some

preliminary definitions are needed.
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DEFINTTION 4.1. A logic £ = (L, S, =) is said to be a preFiRe-logiciff there
exist an operator interpretation function Z for L and a mapping C : My - COR
such that S; = ./\/lodf N Modi. \Y

An example of preFiRe-logic is the propositional dynamic logic PDL (see,
e.g. [20]) that can be seen as a structure <L,./\/l0di N Modf, =ppr) with
oM = {*,U, 0}, My is a countable set of program constants, C : My — {C'},
I(*)=C"" I(o) =; and Z(U) = U. It is of particular interest to notice that
the canonical model for PDL (see [21]) does not belong to Modf N Modf .

DEerFINITION 4.2. For a given modal language L, and an operator interpreta-
tion function Z, the L-model M = (U, {Ra : a € M}, V) respecting Z is said to
be well-founded with respect to T iff for all x,y € U, a € Msuch that (z,y) € Ra

there exist a finite subset {z,y} € X2, C U and a family {P, : b € M} of

a

=y respecting 7 such that

binary relations over X

(1) (x,y) € Pa and
(2) for all c € Mp(a), Pc C Rec.

\Y

DEFINITION 4.3. A preFiRe-logic £ = (L,S¢, [E.) is said to be a FiRe-logic
(finitely reducible logic) iff every L-model in S; is well-founded with respect
to 7. \%

The condition of well-foundness states that for each model of the logic, if
(x,y) € Ra then there exist a finite subset X of worlds and a family {P, : b €
M} of binary relations over X respecting Z such that for each modal constant c
occuring in a, Pc C Rc¢. In short, everytime (z,y) € Ra holds, we can select
a finite number of worlds and arrows in order to preserve this relationship in

the reduced model. Observe that we do not necessarily require that
for all ¢’ € M, C(c’)(ng)(PC/) = Peo.

Indeed, once {F, : b € M} exists, the unique family {P}; :b € M} respecting Z
such that for all ¢ € My(a) P¢ = C(c)(X2,)(P) also satisfies: (1) (z,y) € Py
and (2) for all ¢ € My(a), P C Rc. The constraints for the modal constants
in the definition of PreFire-logics do not interfer with the well-foundness of
the models but they allow to capture a larger class of logics. The logic PDL
previously mentioned is a FiRe-logic (see in Section 5 a formal proof of this

fact).

ProposITION 4.1. If the preFiRe-logic (L, Modfﬂ./\/lodc, E.) is a FiRe-logic
then for all ' : My — COR, (L, Modf N ModS', =) is also a FiRe-logic.
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Although it is obvious that every FiRe-logic is a preFiRe-logic, it is not
straightforward to see that there are preFiRe-logics that are not FiRe-logics.
Consider the relation operation ¢ defined as follows: for any set U, R C
UxU, ¢2(U)(R) = {(z,y) € R : 3 an infinite R-path between 2 and y
without cycles}. For example ¢°°(Re)(<) =< (resp. ¢*°(w)(<) = () where Re
is the set of real numbers (resp. w is the set of natural numbers) and < is the
usual strict greater-than relation. Moreover, for any finite set U, R C U x U,
¢ (U)(R) = 0. 1t is easy to show that ¢>° is monotonous

Now consider the language Lo such that My = {1}, OM = {op} and the
operator interpretation function Zg : {op} — {¢>°}. We shall show that the
preFiRe-logic Lo = (Lo, Modf‘; ﬂ./\/lodio, Er,) is not a FiRe-logic with C(1) =
C'. Actually, take the Lg-model (Re,{Ra : a € M}, V) such that R4 =< and
for all p € Fo, V(p) = 0. It is clear that (0,1) € Rop(1y = Zo(op)(Re)(R1) =
¢*°(Re)(<). However, for any finite subset {0,1} C X(ill)(l) C Re and for
any relation Py C X(ill)(l) X Xgll)(l)7 (0,1) ¢ ¢(X)(X§IIJ(1))(P1) = (). Hence
(Re,{Ra : a € M}, V) is not well-founded with respect to Zy and Ly is not a
FiRe-logic although it is a preFiRe-logic.

5 Some properties of FiRe-logics

The class of well-founded models can be partly characterized by properties of
monotonous relation operations involved in the operator interpretation func-
tions. Proposition 5.1 below relates Definition 4.2 with Definition 2.4: a suf-
ficient condition for the well-foundedness of models is to admit only finitely

reducible monotonous relation operations.

ProposiTION 5.1. Let £ = (L,Modf N ./\/lodi, Ec) be a preFiRe-logic. If
{Z(®) : @ € OM} contains only finitely reducible relation operations then £ is
a FiRe-logic.

ProOF: Let M = (U,{Ra:a € M},V) be an L-model and z,y € U. We show
by structural induction on a that if (z,y) € Ra then there exists a family
{ra:a € M} over a finite set X C U, respecting Z, such that for all c € My(a),
re € Re and (z,y) € ra.

Base case: assume (2,y) € R¢ for some ¢ € Mg. Define for all ¢/ € M,
re = {(z,y)} and X ={z,y}. Let {ra:a € M} be the unique family over X
respecting Z that extends {r¢/ : c’ € Mp}.

Induction step: assume (v,y) € Rg(a,,..a,) With n = ar(Z(&)). Hence
(,y) € Z(®)(U)(Ray:---, Ra,). Since Z() is finitely reducible there ex-
ists a finite set U’ C U, Ry,..., R, C U’ x U’ such that

o (z,y) e Z(@)(U")(Ry,-.., Ry) and,

13



e forallie{l,...,n}, R, C Ra,.

We write U;eqq, oy B0 = {(z1,91), .-+, (T, y) } (U’ is finite) and we write
I to denote the set T = {(i,j):¢ € {1,...,n},7€{1,...,m},(2;,y;) € R;}.
By induction hypothesis, for (i,j) € I, there exists a family {r%j :b € M}
over a finite set U; ; C U respecting Z such that for all c € My(a;), r&’ C Re
and (z;,y;) € rgf. Define X = (I{U;; : {,7)y € I}) U U’ and for all ¢ € My,
re = U{réj : (t,7y € I}. Let {rp : b € M} be the unique family over X
respecting 7 that extends {rc : ¢ € My}. By way of example, we show that
(2,y) € ra. By structural induction on a, one can show that for (i,7) € I,
ri? C ra. Hence for ig € {1,...,n},
R, < |J r?; C ra,
(i0,5)el

Since Z() is strongly monotonous,
Z(@®) (U (R, ..., Ry) CZ(®)(X)( Ry, ..., Ry) CZ(®)(X)(ray,.--,7a,)
So (z,y) € ra. Q.E.D.

The converse of Proposition 5.1 is an open problem. The following propo-

sition can be easily proved.

ProrosiTioN 5.2. The following operations are finitely reducible relation op-
erations: {627 Cr’7 er7 Cs7 Ct7 Car’ 667 u,n,:, H v, Cid.dom7 Cid.ran’ Cl><L7 CLXl7 CLXL7 CLXL’}‘

Proposition 5.2 is restricted to a given class of monotonous relation oper-
ations although a natural question arises: how to define new finitely reducible
monotonous relation operations from a basic set of monotonous relation oper-
ations? This is the purpose of Proposition 5.3. Before stating it, a preliminary

definition is needed.

DEFINITION 5.1. Let L (resp. L') be a modal language and Z (resp. Z') be
an operator interpretation function on L (resp. on L'). We say that Z' is less
expressive than I iff there exists a 1-1 mapping ¢ : Mj — My and an extending

mapping t : M — M such that
o forall a € M, My(t(a)) = {t(c) : c € My(a)},
e for any family {Rga : a € M} of binary relations over U respecting 7 and

{R% : a € W'} of binary relations over U respecting Z’ such that for all
c € My, Re = Ry(c), we have for all a € M, Ry = Ry(a).
\Y
With such a definition we have the possibility to express that a monotonous
relation operation can be defined from other relation operations by means of

the interpretations of the languages L and L’. The relation ”less expressive

than” is transitive.
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ProPoSITION 5.3. Let L (resp. L’) be a modal language and Z (resp. Z') be
an operator interpretation function on L (resp. on L') such that every L-model
respecting 7 is well-founded with respect to Z and 7’ is less expressive than
Z. Then,

(1) every L'-model respecting Z’ is well-founded with respect to Z’,

(2) For any C : M) — COR, every logic (L', ModZ, N /\/lodi,7 ) is a FiRe-

logic.

PRrRoOF: (1) Let {Rj : a € W'} be a family of binary relations over U respecting
7'. Define the unique family {R g4 : a € M} of binary relations over U respecting
7 such that for all ¢ € My, R¢ = R;_l(c).

So for all a € W, Ry = Rya)- Assume (z,y) € Ry. By hypothesis,

o (7,y) € Ryq) and,
o {Ra:acM}is well-founded with respect to Z.

So there is a family {ry, : b € M} over {z,y} C Xf;g;) C U, respecting 7 such
that

® (z,y) € rya) and,

e forall ¢’ € My(t(a)), rer € Rer.

Define the family {r}, : b € M'} respecting Z' such that for all ¢ € Mg, re = ryc)
and take X2 = X;(j). It follows that ry = rya) (Z' is less expressive than
Z) and for all ¢’ € My(a), ror = rycr) € Ryery = R

(2) Direct consequence of (1) (see Definition 4.2 and Proposition 4.1). Q.E.D.

Let ® be a non-empty countable subset of MOR and £ = <L,M0df N
Modi, E¢) be a preFiRe-logic for some C : Mg — COR and for some operator
interpretation function Z such that {Z(®) : & € OM} C ®. £ is said to be
a ®-logic. A ®-logic £ = <L,./\/lodf N Mod$ , l=¢) is ®-complete iff {Z(®) :
® € 0M} = &. A preFiRe-logic £ = (L', Mod%, N Modi,, E’) is said to be ®-
composed for some & C MOR iff there is a ®-logic £ = (L, ./\/lodf NModf | =)

such that Z’ is less expressive than Z.

PrOPOSITION 5.4. For any non-empty countable subset ® of MOR, thereis a

®-complete logic being a FiRe-logic iff every ®-composed logic is a FiRe-logic.

PrOOF: Since ® is non-empty if every ®-composed logic is an FiRe-logic,
in particular every ®-complete logic satisfies this property. Since there is a
$-complete logic (simply take one modal operator for each element of @), one

way is proved. Now assume there is a ®-complete logic being a FiRe-logic,

say L = (L, ./\/lodf N Modt , ). For any ®-composed logic, £’ = (L', Mod%, N
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./\/lodil,7 E’), there is a ®-logic £” = <L"7M0d€,l, N ./\/ladil,l,7 E") such that 7'
is less expressive than Z”. Since 7" is less expressive than Z ({Z"(®) : @ €
OM"} CH{Z(P) : & € OM} = ]), by transitivity Z' is less expressive than Z. By

Proposition 5.3, £’ is a FiRe-logic. Q.E.D.

By Proposition 5.4, we have therefore defined a process of introducing new

FiRe-logics.

COROLLARY 5.5. Let ®g be the set below

{Ci, C'r’ er’ Car’ CS, Ct7 Ce’ u,n,;, H7 v, Cid.dom’ Cid.ran’ CIXL, CLXI, CLXL., CLXL’}
Every ®g-composed preFiRe-logic is a FiRe-logic.

By a FiRe-reducible logic, we understand a logic £ such that there exist
a FiRe-logic £’ and a translation from £ to £’. Consider the logic £’ =
(L', 8’ ') such that, M) = {1,2,3}, OM' = (), and for all M = (U,{Ra:a €
M}, V) e Modp, M € S"iff

e R4 is Euclidean,
e Ry is symmetric and,
e Rz =Rq1NRy.

It can be easily shown that £’ is FiRe-reducible although not being a preFiRe-
logic. Consider the preFiRe-logic £ = (L,Modf N Mod$ , [=¢) such that
My = {1,2}, OM = {inter}, C(1) = C% C(2) = C® and Z(inter) =N. Lis a
FiRe-logic by Proposition 5.4. Let ¢ : F;» — Fr, be the mapping, homomorphic
for the propositional operators A, V, = such that t({1)A) = (1)¢(4), t((2)A) =
(2)t(A) and t((3)A) = (1 inter 2)¢(A). It is straightforward that ¢ is a <-
preserving translation, in the sense of Definition 3.1, from £’ to L.

In the forthcoming sections we shall show that every FiRe-reducible logic
with a O-preserving translation (and a fortiori every FiRe-logic) and every
LaFiRe-reducible logic with a <-preserving translation (and a fortiori every
LaFiRe-logic) -see Definition 7.1- has the finite model property with respect to
the set of O-formulae. Figure 3 presents logics belonging to one of the classes
previously defined (the references are given in order to provide a reader with
useful pointers to the literature although they are not supposed to contain the
original utterance of the logics).

In figure 3, the logic PDL with intersection does not admit the operator
199

6 Finite model property with respect to Ff

Throughout this section £ is a FiRe-logic <L,./\/l0df N Mod¢ , =) for some
operator interpretation function Z and for some mapping C : My — COR. The
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Name Extended name Reference Class
S4+4S5 14 FiRe-logic
S4+deontic 14 FiRe-reducible
PDL Propositional Dynamic Logic 21 FiRe-logic
PDL+4N PDL with intersection [7] FiRe-logic
DAL Data Analysis Logic 12 FiRe-logic
DALLA DAL with Local Agreement 15 LaFiRe-logic
K5, Multi K5 [4] FiRe-logic
Ty, S4yn, S5y, simple multimodal logics 16 FiRe-logic
TS, 845, S5¢ multimodal logics with common knowledge 16 FiRe-reducible
TP S4D S50 | multimodal logics with distributed knowledge 16 FiRe-reducible
S445 23 FiRe-reducible
LA-logics logics with local agreement [8] LaFiRe-reducible

Figure 3: Some known logics from the literature

main goal of this section is to show that £ has the finite model property with
respect to Ff To do so, we prove that when an £-model M’ satisfies A € F,,
we can build a finite £-model M* from M’ that satisfies A. The construction

of M* uses a significant variant of the technique introduced in [5].

DEFINITION 6.1. Let A € Fr. The set LS(A) of formulae is the smallest set
satisfying: (1) A € LS(A), (2) if B€ LS(A) and B=CAC or B=CV ' then
{C,¢’'} C LS(A) and if B € LS(A) and B = =C then C € LS(A). The sets of
formulae P(A), M(A) and I(A) are defined as follows:

e P(A)=FoNLS(a),

e M(A) ={(a)B:(a)Bc LS(4)},

e /(A)={B:{(a)Be LS(4)}.

v

For any set I' C Fr,, P(T'), LS(T"), M(T") and I(T") are defined in the natural
way. For instance P(I') = Uy P(A). Now assume that M’ v |= A for some
AeF,, M = (U ,{Ry:aeM},V')is an L-model, v € U’ and m = md(4).

Now we set:

LSo = LS(A), Py = P(A), Mo = M(A), Io = I(A)
LSiy1 = LS(Ii), Pegr = P(Ii), My = M (1), Ty = I(Iy)

The modal degree of LS; decreases by 1 at each step. So after m steps
md(LS,) =0 and M,, = I, = 0. Given w € U’, we define M (w) = [J{M; :
J€{0,...,m}}. For all a € M(4), we partition Ry (w) according to the values
of the formulae in {B: (a)B € M(w)}, i.e. Yu, v’ € Ri(w), u =, a v iff

VBe {C:(a)Cce M(w)}, M',ul=Biff M’ v =B
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The equivalence class of u € RL(w) with respect to the relation =, 5 is
denoted by |u|y,a. Since {B: (a)B € M (w)} is finite, {|u|y,a : v € Ro(w)} is

finite and
Card({|u|w,a VS R'a(w)}) < 2card(M(w)) < 20ard(mw(A))

We define the reduction’! of {RYy : a € M}, namely {RZ : ¢ € Mg}, as
follows. For all w € U', b € M(4), Y € {Jul,p : v € Ry(w)}, take any z € ¥
(the representative element of the class V). By definition (w,x) € Ry. Since

L is a FiRe-logic, there exist a finite subset {w, 2} C X,B@. C U’ and a family

{ry (D) o ¢ M} over XB@, respecting Z such that

o (w,z) € rg"u’x’b) and,

(wz’b)

e for all c’ € My(b), 7 CRe

For all c € My(A), we define

RE = U{r(cw’x’b) : Jw € U’,3b € M(A) such that c € My(b),
Y e {luf,p:u € Ry(w)}, x repr. elt. of Y}

For all ¢ € Mg\ Mg(&), R¢ = 0 (arbitrary value). Now we build the model M*
as follows. First Uy = {v}. Then,

Uy = U{XBI :b € M(A), u € Ry (v),x repr. elt. of |uf,p}
Uil = U{Xw, LW €UL D EN(R),u€ Ry(w'),z repr. elt. of |ul,, 1}

= x>, LW EUN 1,0 €N(A),u € Ry(w'),xrepr. elt. of |ul,/p}.
and U* = {U; :i€{0,...,m}}.
Let M* = (U*,{R% :a € M}, V*) be the L-model such that
o forall ¢ € My, Rz = C(c)(U*)(RENU* x U*),
e for all & € OM (of arity n), a1,...,a, €N,

R, .an = O U) (R, - Ra,)

e forall p € Fo, V*(p) = V'(p) N U™.

U~ is finite but it may not exist a computable map ¢ : F|, — w such that
card(U*) < g(B). Tt is easy to check that M* is really an L-model. The
idea of using different closure operations while keeping a unique schema for

building M* was also used in [5] for graded modal logics.

'We use the term ’reduction’ since for all a € M, Ra(w) C Ra(w).
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PropPoOSITION 6.1. If there is C € Ff such that t,,;(C) = A then for all
t€40,...,m}, forall we U, for all B € (LS; U P, UM;), if M',w = B then

M*,w = B.

ProOF: The proof is by induction on ¢. By definition, for all w € U*, p € Fy,
M w = pifft M* w = p. Hence M/, w |= —p iff M* w = —p.

Base case: assume w € U},. The set LS, is composed of Boolean combina-
tions of propositional variables from P,, where the occurrences of — appear
only in front of propositional variables. It follows that for all B € LS,, U P,,,
M’ w E B iff M*, w = B. Moreover M,,, = I, = 0.

Induction step: assume w € U (i < m) and M',w = (a)B with (a)B € M.
There is w’ € Rj(w) such that M’ w’ = B. Let w” be the representative
element of |w'|, a. So w” € Uf ;. Consider the unique family {ry, : b € M}
over Ucel"lo(a)(Domr(CW»W”:a) U Ranréw,w“,a)) respecting Z such that

e for all ¢ € My(a), rc = T(men’a)’

e forall c € My \ My(a), rc = 0.
By construction,

o forall c € My(a), rc C X2 ,x X2 ,CU* xU,
o (w,w") € ra,

° raﬂU*XU*:raﬁX{iw”><XfU1

1
YW

Since by construction, for all ¢ € My(a), r¢ € R¢ then re C RENU*XU* C RE
(remember C(c) is a closure relation operation). By monotonocity of the
relation operations and closure operations, ra C RY. So (w,w”) € R5. By the
induction hypothesis, M*, w"” |= B since M, w" E B (" =, a w'), B € Ly
and w" € Uz, |. Hence M*,w |= (a)B. Since every formula in LS; is a Boolean
combination of formulae from M; U P; (with the symbol — occurring only in

front of propositional variables), the proof is completed. Q.E.D.
Hence M*,v |= Asince v € Uy and A € LS. It is worth observing that the
applied technique is a hybrid construction based on filtration and restriction.

COROLLARY 6.2. L has the finite model property with respect to Fy.

PDL with intersection (admitting the operator ’?’) has not the finite
model property [17]. Because of the operator ?’, this logic is not a FiRe-logic.
However PDL with intersection and converse but without ’?” is a FiRe-logic
and has not the finite model property. Indeed, the formula A below is only

satisfiable in infinite models:
A=[c((c)(pV —p) A=(cc” Nc™ (c™H)*)(p V —p))
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Hence it is not possible to extend Corollary 6.2 to the set Fy and it is an
open problem to characterize the conditions under which Corollary 6.2 can be
extended to Fr,. Although no finite axiomatization of £ is assumed, a partial
decidability result can be established when the finite sets involved in the well-
foundedness of models have a bounded cardinality depending on the modal

expressions.

ProrosiTION 6.3. Let £ be a FiRe-logic such that (x) there exists a com-
putable mapping bound : M — w such that for all £-models (U,{Ra : a €
M}, V), for all a € M, the set Xaiy in the condition of well-foundness satisfies
card(X2,) < bound(a). Then the validity problem for £ restricted to F{ is
decidable.

o1tmahy) 4
a—1

bound(a)) x 2°4(mw(A) gince for all 0 < i < m — 1,

Under the hypothesis of Proposition 6.3, card(U*) < where

a= (Eaeﬂ(A)

Ufyy < UF %8, g (297408 5 pound(a))

acM(4)

COROLLARY 6.4. Let ®; be the set below
{Ci’ er7 CQT, C?"7 Cs7 u,n,;, ||7 v, Cid.dom’ Cidman’ CZXL, CL><Z1 CL)(L7 CLXL'}

Any composed ®-logic has the finite model property with respect to Ff and
the validity problem restricted to FE is decidable.

7 Class of LaFiRe-logics

We introduce a third class of logics in Definition 7.1 that contains logics from
the literature (see for instance [15]). Unlike the FiRe-logics, the peculiarity of
the class is the interdependence of the modal operators indexed by constants.

Let L be a modal language and lo be a set of linear'? orders over Mg. The set
.Modf of L-models is defined as the set of L-models M = (U,{Ra:a € M}, V)
such that for all u € U, there is 1> € lo such that for all ¢,c’ € My, if c > ¢’
then Re(u) C Rer(u).

DeriNITION 7.1. A logic £ = (L, S¢, Er) is said to be a LaFiRe-logic iff there
exist an operator interpretation function Z, a mapping C : My — COR and a

set lo(L) of linear orders over My such that

(1) Sz = ModE n Mody™ 1 Mods,

(2) every L-model in S; is well-founded with respect to Z,

12A binary relation > over U is said to be linear iff > is reflexive, transitive, totally
connected (for all z,y € U either (x,y) € > or (y,x) € >) and antisymmetric (for all
z,y €U if (z,y) € > and (y, ) € > then z = y).
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(3) for all c,c’ € My, for all > € lo(L), if c > ¢’ then C(c) C C(c').

\Y

The notion of LaFiRe-reducible logics (some examples can be found in [8])
is defined as for the FiRe-reducible logics. Binary relations R and R’ on a set
U are said to be in local agreement (LA) iff

for all uw € U either R(u) C R'(u) or R'(u) C R(u) [15].

It is easy to show that for any LaFiRe-logic £ = (L, S, r), for any model
M = (U,{Ra : a € M},V) € &, for all a,b € My, Ra and Ry, are in local
agreement. Various logics from the literature can be translated into LalFiRe-
logics (see for instance [15, 19]) whereas S5 is a LaFiRe-logic.

In the rest of this section £ denotes an LaFiRe-logic (we use the notations
from Definition 7.1). Now assume that M’,v = A for some L-formula A,
M' = (U {RG:a €M}, V') is amodel for £, v € U and m = md(A).

The construction of the family {R{ : ¢ € My} is modified as follows. As
done in Section 6, for all w € U', b € M(A), Y € {|ul, 1 : u € Ry (w)}, take any
v € Y (the representative element of the class V). By definition (w,z) € Ry,
Since every L-model is well-founded with respect to Z, there exist a finite
subset {w,z} C XB@ C U and a family {ry : b’ € M} over XBJ, respecting 7
such that (w,z) € ry, and for all ¢ € My(b), rc € RE. For all c € My(4), we
define

RE = U™ 3w € U7, 3b € i(a), 3¢ € Mo(b),
Y € {|uf,p:u € Ry(w)}, = repr. elt. of ¥, and RE,(w) C Re(w)}

For all w € U’ there exists a linear order > € lo(L) such that Mg(4) =
{ei,senty e bcyand foralli € {1,...,n — 1}, Re, (w) € Re,,, (w).
By construction, for all 1 < i < j < n, RE, (w) C R’C'](w). For all ¢ € My, we
fix R¢(w) = RE, (w). In the construction of the model M* = (U*,{R} :a €
M}, V*), U* is defined as in Section 6 and

e forall c € My, RE = C(c)(UM)(RENU* x U*)

o forall & € OM (arity n), a1,...,a, € M, R* =Z(@)(U")(Ra,,---»Ra,),

B(a1,.8n)
e forall p € Fy, V*(p) = V'(p)NU*.

M* is indeed a model for L. The only condition that requires some work is
the restricted local agreement condition. By definition, there exists >, € lo(L)
such that for all c,c’ € My, if c >, ¢’ then R¢(v) € Rer(v). Hence if c >, ¢’
then RE = RY,, C(c) C C(c) and therefore RE C RE,. So for all u € U*, for
all ¢, ¢’ € Mo, if c >, ¢ then RE(u) € R (u). As in Proposition 6.1, if there
isCe¢ Ff such that t,,,7(C) = A then for all i € {0,..., m}, for all w € U}, for
all B e (LS; U P, U M), if M';w =B then M*, w = B.
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CoROLLARY 7.1. Let £ be an LaFiRe-logic satisfying (%) of Proposition 6.3.
Then, £ has the finite model property with respect to Ff and the validity
problem restricted to FE is decidable.

8 Concluding remarks

In the paper we have defined classes of multi-modal logics that contain nu-
merous logics from the literature. They are characterized by closure relation
operations, monotonous closure relation operations and finitely reducible re-
lation operations. The classes contain knowledge logics, dynamic logics and
also various information logics (see for instance [12]).

For each logic of the classes we have proved the finite model property
with respect to the class of O-formulae using a substantial variant of Cer-
rato’s filtration technique. Although the class of $-formulae plays a special
role in modal logic theory, it is an open problem whether, for instance, every
FiRe-logic such that all the relation operations involved in the semantics are
first-order definable closure relation operations, has a decidable satisfiability
problem. Moreover, there is at least one FiRe-logic without the finite model

property: PDL with intersection, converse but without the test operator ’7’.

Acknowledgments The authors thank the referee for many valuable sug-

gestions and corrections about the previous version of the paper.
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