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Chapter 13

Comparative Methods for Reconstructing Ancient Genome
Organization

Yoann Anselmetti, Nina Luhmann, Sèverine Bérard, Eric Tannier,
and Cedric Chauve

Abstract

Comparative genomics considers the detection of similarities and differences between extant genomes, and,
based on more or less formalized hypotheses regarding the involved evolutionary processes, inferring
ancestral states explaining the similarities and an evolutionary history explaining the differences. In this
chapter, we focus on the reconstruction of the organization of ancient genomes into chromosomes. We
review different methodological approaches and software, applied to a wide range of datasets from different
kingdoms of life and at different evolutionary depths. We discuss relations with genome assembly, and
potential approaches to validate computational predictions on ancient genomes that are almost always only
accessible through these predictions.

Key words Comparative genomics, Paleogenomics, Ancient genomes, Ancestral genomes

1 Introduction

Rearrangements were the first discovered genome mutations [1],
long before the discovery of the molecular structure of DNA.
Molecular evolutionary studies started with the reconstruction of
the organization of ancient Drosophila chromosomes, from the
comparison of extant ones [2]. However, it took almost 30 more
years before the formal introduction of paleogenetics, as the field of
reconstructing ancient genes [3]. Since then, the development of
sequencing technologies and the availability of sequenced genomes
has led to the introduction of paleogenomics, a field that aims at
reconstructing ancient whole genomes using computational meth-
ods. The term paleogenomics can be understood in two ways:
ancient genome sequencing [4], or the computational reconstruc-
tion of ancestral genome features, given extant sequences, off-
spring, and relatives [5]. We take it in the latter meaning, though
we highlight several links between both interpretations.
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Despite its early start as a molecular evolution problem,
paleogenomics is still in its infancy. Whereas evolution by substitu-
tions has been studied extensively from the 1960s, and has now well
established mathematical and computational foundations, evolu-
tion by genome scale events such as rearrangements looks almost
like a fallow field. Two reasons can be invoked. First, rearrangement
studies require having fully assembled genomes, and genome
assembly is still an extremely challenging problem, resulting in a
small number of available genomes, compared to gene sequences
for example. Second, the state space of sequence evolution is very
small (4 possible nucleotides or 20 possible amino acids per ances-
tral locus), leading to computational problems that are much easier
than the rearrangement ones, which work on the basically infinite
discrete space of possible chromosomal organizations (gene orders
for example). However, none of these reasons is biological, and
recent progresses in technology and methodology are susceptible
to quickly change this situation.

There have been tremendous methodological developments
over the last 10–15 years. Standard and principled computational
methods are now able to propose reconstructions of the organiza-
tion of ancestral genomes over all kingdoms of life: mammals [6, 7],
insects [8, 9], fungi [10], plants such as monocotyledons [11–13]
(reviewed in [14]) and dicotyledons [13–16], bacteria
[17–19]. Prospective ad hoc methods have attempted the recon-
struction of more ancient animal proto karyotypes: amniotes
[20–22], bony fishes [23–25], vertebrates [20, 21, 26], chordates
[27], or even eumetazoa [28].

Here, we review some of the existing methods for reconstruct-
ing ancient gene orders, focusing on their methodological princi-
ples, strengths, and weaknesses. We detail the data preprocessing
steps that are necessary to use these methods. We finally review the
available software and give an insight on the possible validations of
ancestral genomes.

2 Preliminaries: Material and Preprocessing

The starting material of comparative paleogenomics is composed of
extant genome sequences and assemblies. These are often available
in public databases such as Ensembl and the UCSC Genome
Browser [29, 30]. A genome assembly is a set of linear or circular
DNA sequences (we refer the reader to [31] for a recent review on
genome assembly). Depending on the combination of the proper-
ties of the sequenced genomes (repeats in particular), the sequenc-
ing technology, and the assembly algorithm, the assembled
sequences can be at various levels of completion, from full chromo-
somes (in which case the genome is said to be fully assembled) to
scaffolds or contigs (fragmented assembly); for the sake of
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exposition, we use here the term chromosome for an assembled
contiguous DNA sequence. The fragmentation of extant genome
assemblies has a significant impact on the quality of reconstructed
ancestral genomes, which will be discussed in Subheading 3.4.

To reconstruct the organization of ancient genomes from the
comparison of extant ones, it is first necessary to define sets of
markers on extant genomes, that is, DNA segments defined by
their coordinates on the genomes (chromosome or scaffold or
contig, start position, end position, reading direction). Markers
are clustered into families with the desired property that two mar-
kers in the same family are homologous over their whole length,
and two markers from a different family show no or limited
homology.

Gene families, available in some databases [29, 32], are good
candidates for being markers, though intersecting genes and partial
homologies can be a problem for certain methods. Markers can also
be obtained by constructing synteny blocks from whole genome
multiple alignments [33], Chapter 11, or by segmenting genomes
according to pairwise alignments [34], or searching ultra-conserved
elements (UCEs) [35] or virtual probes [36]. These methods are
useful for example when considering genomes that exhibit low
gene density.

Whether the considered markers are genes or other genomic
markers, the identification of genomic marker families is both a
fundamental initial step toward reconstructing ancestral genomes
and a challenging computational biology problem, with links to
sequence clustering, whole genome alignment, and phylogenetics,
among others. There is currently no standard method or tool that is
universally used andmany applied works rely on ad hoc methods for
this important preprocessing step.

Depending on combinatorial properties of the algorithms used
to infer ancient genome organization from the comparison of
extant genomes, several restrictions might need to be applied on
families of genomic markers. Most methods require that no two
markers overlap on a genome, as this might induce some ambiguity
regarding their relative order along their chromosome. Other
methods might also require that every genome contains at most
one marker per family (unique markers) or at least one marker per
family (universal markers), or both (unique and universal markers).
Enforcing such constraints requires extra preprocessing of an initial
marker set. Nevertheless, we consider now that we have obtained,
for a set of extant genomes of interest, a dataset of genomic mar-
kers, that will serve as input to reconstruct the organization of one
or several ancient genomes.

Eventually, a comparative approach requires phylogenetic
information relating one or several ancestral species of interest to
a set of extant species whose genome data are available. This infor-
mation can range from a fully resolved species phylogeny with branch
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lengths [6, 7], to a partition of the extant species in three
non-empty groups that define a single ancestral species (two groups
of descendant species and one group of outgroup species). So in the
extreme case of considering a single ancestral species, a minimal
dataset is composed of genome information for a set of three extant
species, composed of two species whose last common ancestor is
the ancestral species of interest and one outgroup [37].

3 Ancestral Reconstruction Methods

All methods consider a genome as a set of circular or linear order-
ings of markers, representing chromosomes or chromosomal seg-
ments. This implies that the exact markers’ physical coordinates are
transformed into a relative ordering of markers. It induces a loss of
information which can have an influence on the result [38] but it is
universally used. Then methods differ in their strategies: either they
model the evolution of these arrangements of markers by evolu-
tionary events such as duplications, losses, rearrangements, or they
model the evolution of more local syntenic features/characters
such as the physical proximity of sets of markers. In the following,
we call adjacency (resp. interval) a pair of (resp. a set of at least
three) markers that either occur contiguously along an extant
genome or are assumed to occur contiguously along an ancestral
genome.

The first strategy (evolution of whole genomes) quickly leads to
computational tractability issues. The second strategy (evolution of
local syntenic characters such as adjacencies and intervals) benefits
from a standard evolutionary toolbox modeling the evolution of
presence or absence of a character, and tractability issues are post-
poned to a final linearization step where local characters are assem-
bled into chromosome scale arrangements of markers.
Linearization procedures then benefit from standard algorithms
originating from algorithms for computing physical maps of extant
genomes [39].

3.1 Whole Genome

Evolution

We first describe the approach that considers the evolution of
genomes seen as sets of linear or circular orders of markers, i.e.,
roughly permutations that can possibly be separated into several
chromosomes. Evolutionary events like inversions, translocations,
transpositions, fissions, and fusions, all subsumed in the now stan-
dard Double Cut and Join (DCJ) model [40], are susceptible to
alter these genomes. The reconstruction of ancestral genomes then
aims, given marker orders representing extant genomes at the leaves
of a species phylogeny, at assigning marker orders for all ancestral
nodes, maximizing a mathematical criterion according to the cho-
sen evolutionary model. Most of the time this criterion is the
parsimony score, which is the minimum number of events
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transforming a permutation into another [41], also called the
distance, although some methods consider a likelihood criterion.

For most rearrangement models that do not include duplica-
tions, the distance between two genomes can be computed effi-
ciently. But even the simplest non-pairwise ancestral genome
reconstruction problem, the median problem reconstructing a
genome minimizing the distance in a tree with only three leaves,
is already NP hard [42]. Adding duplications makes all problems
hard even for the comparison of two genomes [41]. Hence, with
duplications considered, reconstructing rearrangement events that
happened along the branches of a tree is not tractable either.

Heuristics for the ancestral genome reconstruction problem
usually follow the strategy of assigning an initial genome arrange-
ment to each internal node of the tree and then iteratively refining
the solution by solving the median problem for internal nodes until
no further improvement in the overall tree distance can be
achieved. The implementation of GASTS [43] improves over pre-
vious methods applying this strategy by trying to find a good initial
arrangement avoiding local optima. Using adequate subgraphs for
heuristic assignment of the median, this method can handle multi
chromosomal data with unique and universal markers. Another
approach is based on the Pathgroup data structure [44] storing
partially completed cycles in a breakpoint graph [41] for each
branch in the phylogeny. Graphs are greedily completed and even-
tually form genomes at all internal nodes. This solution can be used
as an initialization prior to local iterative improvements based on
the median again using the Pathgroup approach. An interesting
property of Pathgroup is that it can handle whole genome duplica-
tions. The method MGRA [45] on the other hand relies on a
multiple breakpoint graph combining all extant genome organiza-
tions into one structure. MGRA then searches for breaks in agree-
ment with the species tree structure transforming the breakpoint
graph into an identity breakpoint graph. While MGRA requires
unique and universal markers, it has recently been extended to
handle unequal marker content [46]. More complex models of
evolution have been considered, which include duplications for
example [47, 48], but are tractable only under some specific condi-
tion, such as the hypothesis that rearrangement breakpoints are not
re-used [47].

Some methods adopt a probabilistic point of view, like Badger
[49], a software using Bayesian analysis under a model where
circular genomes can evolve by reversals. It samples phylogenetic
trees and rearrangement scenarios from the joint posterior distri-
bution under this model by MCMC implementing different pro-
posal methods in the Metropolis–Hastings algorithm. It is a similar
local search to the heuristic on the minimization problem, but
instead of giving a single solution without guarantee as an output,
it provides a sample of solutions from a mathematically grounded
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distribution. However, it faces the same tractability issues
concerning the convergence time.

Finally, a simpler rearrangement distance is the Single-Cut-or-
Join (SCJ) distance [50] that models cuts and joins of adjacencies.
With this model the ancestral reconstruction becomes tractable.
Ancestral genomes that minimize the SCJ distance can be com-
puted efficiently using a variant of the Fitch algorithm [51] in
polynomial time; however, constraints required to ensure linear or
circular ancestral marker orders result in mostly fragmented ances-
tral genomes. In [52], a Gibbs sampler for sampling rearrangement
scenarios under the SCJ model has been described. It starts with an
optimal fragmented scenario obtained as described above and then
explores the space of co-optima by repeatedly changing the scenar-
ios of single adjacencies.

3.2 Genomes as Sets

of Adjacencies

and Intervals: Mapping

Approaches

The linear or circular orders of markers can be seen as sets of
adjacencies and intervals, instead of permutations. Then each adja-
cency or interval can be considered independently, as a separate
syntenic feature, which evolves within the larger context of whole
genomes. This independence assumption allows computing quickly
ancestral states for adjacencies and intervals. The main problem is
that the collection of ancestral adjacencies and intervals is not
guaranteed to be compatible with a linear or circular ordering.

We describe here a family of approaches that focus on a single-
ancestral genome and consist of two main steps, which are inspired
by the methods initially developed to compute physical maps of
extant genomes:

1. Genomes of related extant species are compared to detect
common local syntenic features, such as marker adjacencies or
intervals, that are then considered candidate ancestral features
for the ancestral genome of interest. Common features are not
necessarily conserved from an ancestor due to convergent evo-
lution or assembly errors for example, so this method generates
false positives. In some methods, each local syntenic feature is
weighted, according to its pattern of presence/absence in
extant species genomes, to represent a confidence measure in
the hypothesis it is indeed an ancestral syntenic feature.

2. A maximum weight subset of the potentially ancestral local
syntenic features (detected in the first step) is selected that is
compatible with the genome structure of the considered ances-
tral species (linear/circular chromosomes, ancestral copy num-
ber of markers, etc.) and is then assembled into a more detailed
ancestral genome map.

The case of unique markers: The initial applications [6, 7] of these
physical mapping principles to ancestral genome organization
reconstruction considered unique markers, i.e., markers that are
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assumed to occur once and exactly once in the ancestral genome of
interest.

In several methods [7, 10, 22, 53] step 1, the detection of
common adjacencies and intervals and the inference of ancestral
adjacencies and intervals, is implemented using a Dollo parsimony
principle: any group of markers that are colocalized in two genomes
of extant species whose evolutionary path in the species phylogeny
contains the ancestral species of interest is deemed to be a potential
ancestral syntenic feature. Here by colocalized we mean that the
group of markers occur contiguously in both extant genomes
regardless of their relative orders but without any other marker
occurring in between; so the marker content of both occurrences
of the colocalized group of markers in the extant genomes is
identical while the marker orders can differ. Groups of two markers
are adjacencies, while groups of more than two markers are inter-
vals. Variations on the principle outlined above can be considered,
such as relaxing the Dollo parsimony criterion or considering only
adjacencies (see [6] for example) or considering probabilistic infer-
ence of ancestral adjacencies [54, 55].

Given a set of local ancestral syntenic groups, the second step
aims at selecting a maximum weight subset of these groups that is
compatible with the considered genome structure and does not
contain any syntenic conflict, defined as a marker that is deemed
adjacent to more than two other markers. Several methods such as
Infercars [6] and MLGO [54] consider only marker adjacencies;
these adjacencies define a graph whose vertices are markers and
weighted edges represent adjacencies, and aim at computing a
maximal set of weighted adjacencies that form a set of paths, each
such path being then a linear order of markers called a Contiguous
Ancestral Region (CAR). This problem is equivalent to a Traveling
Salesman Problem (TSP) and is NP hard. It is addressed in [6]
through a greedy heuristic and in [54] using a standard TSP solver.
However, as shown in [56], if the linearity of CARs is relaxed and
circular CARs are allowed, the optimization problem of selecting a
maximum weight subset of adjacencies that forms a mix of linear
and circular CARs is tractable and can be solved by reduction to a
Maximum Weight Matching (MWM) problem.

When intervals are considered in addition to adjacencies, ances-
tral adjacencies and intervals can be encoded by a binary matrix, in
the same way as hybridization experiments are encoded by binary
matrices in physical mapping algorithms. The problem of extracting
a conflict free maximum weight subset of adjacencies is then NP
hard in all cases, i.e., even if a mix of circular and linear CARs is
allowed. Traditionally, it is solved using either greedy heuristics or
branch and bound algorithms (ensuring an optimal solution when
they terminate). Moreover, when intervals are considered, CARs
might not be completely defined and are represented using a PQ
tree data structure that has been widely used in physical mapping
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algorithms [39] and is related to the classical combinatorial concept
of Consecutive Ones Property (C1P) (see [7] and references there).
The software ANGES [53] and ROCOCO [57] are, so far, the only
ancestral genome reconstruction methods that consider intervals of
markers and encode CARs using PQ trees.

Last, when markers are assumed to be unique in the ancestral
genome of interest but are subject to insertion or loss during
evolution, the model of common adjacencies and intervals might
be too stringent. In this case, the notions of gapped adjacencies and
intervals were introduced that allows for some flexibility in the
definition of conserved group of markers. However, this implies
also that the C1P model is too stringent and needs to be relaxed
into a gapped C1P model, in which optimization problems are NP
hard [58, 59].

These approaches have been used on various datasets, including
mammalian genomes [6, 7, 60], the amniote ancestor [22], fungi
genomes [10], insect genomes [8], plant genomes [12, 16].

Non-unique markers. If markers exhibit varying copy numbers
in extant genomes, they cannot be assumed to all occur once and
only once in the considered ancestral genome. The first issue is
then, for a given marker, to infer its ancestral copy numbers. This is
a classical evolutionary genomics problem, for example to infer the
gene content of an extinct genome. Given a model of gains and
losses of markers, it is possible to compute a more likely ancestral
content [61, 62], or content that minimizes the number of gains
and losses [63], by a Dynamic Programming (DP) algorithm fol-
lowing the general pattern of the Sankoff-Rousseau
algorithm [64].

Once copy numbers of ancestral markers, or bounds on such
copy numbers, have been obtained, the two-steps approach out-
lined in the previous paragraphs can be applied: first, local syntenies
(adjacencies and intervals) are detected using similar notions of
adjacencies and intervals (we refer the reader to [65] for an overview
of interval models when duplicated markers can occur) and are
weighted according to their conservation pattern, and, in a second
step, a maximumweight subset of local syntenies is computed that is
compatible with the marker copy numbers. This second problem is
known as the C1P with multiplicity (mC1P) and has been shown to
be NP hard in general; the only tractable case requires considering
only adjacencies and allowing an unbounded number of circular
CARs [56, 66]. Moreover, when markers have a copy number
higher than one and only adjacencies are considered, a conflict free
set of adjacencies does not define unambiguously a set of CARs; this
issue is similar to the well-identified problem of determining the
location and context of repeats in genome assembly [67]. This issue
can be addressed, at least partially, by considering intervals framed
by non-repeats (repeat spanning intervals) as described in
[68, 69]. Finally, when variation of copy numbers can be attributed

350 Yoann Anselmetti et al.



toWhole-GenomeDuplications (WGD), specificmethods based on
a combination of gapped adjacencies and TSP algorithms have been
proposed and applied to fungi and plant data [70].

3.3 Adjacency

Evolution along Gene

Phylogenies

We now discuss a variant of the approach described in the previous
section, which still considers genomes as sets of adjacencies
between markers, but assumes that evolutionary scenarios for
marker families are also available and focuses on all ancestral gen-
omes of the species phylogeny at once. Due to its similarity with
traditional character-based phylogenetics, we rely on the standard
phylogenetic vocabulary and call genomic markers genes. To sum-
marize this approach, ancestral adjacencies are inferred, as previ-
ously, but using an optimization criterion and the available gene
phylogenies both as a guide and a constraint.

Input: gene trees and adjacencies: This phylogeny-based approach
requires as main input a fully binary rooted species phylogeny, and
reconciled phylogenies for all gene families. This means that for all
gene families, a rooted and annotated phylogenetic tree is required,
depicting the whole history of the marker in ancestral and extant
species in terms of speciations (S), duplications (D), transfers (T),
or losses (L), where a transfer is the event of a species acquiring a
genomic segment from another species (horizontal/lateral trans-
fer). These reconciled gene trees can be obtained by several meth-
ods and software, depending on the set of evolutionary events one
wants to consider (DTL or DL only), on the models and methods
(parsimony or probabilistic approaches, joint or sequential recon-
struction of the tree topology and reconciliation) [71–73]. Some
databases also provide gene trees or reconciled gene trees
[29, 32]. A reconciliation yields a presence pattern of ancestral
genes in ancestral species. The leaves of these trees are the extant
genes, and its internal nodes and events define ancestral genes.

The other information needed by the methods is the list of the
gene adjacencies in the extant genomes. As defined above, we
usually consider that two genes are adjacent if there is no other
gene in that dataset between them, although here again relaxed
notions of adjacencies can be considered.

Adjacency evolution: As genes and species, gene adjacencies also
evolve. They can be gained, lost, duplicated, and transferred for
example. The core element of the phylogeny-based methods we
describe in this section is to infer the evolution of these adjacencies
along the gene phylogenies, which themselves evolve within the
species phylogeny. This leads to the inference of adjacencies between
ancestral genes, i.e., ancestral adjacencies, and thus provides ele-
ments of the organization of genes in ancestral species. The cur-
rently available methods compute an evolutionary history of the
adjacencies by either minimizing a discrete parsimony criterion or
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maximizing a likelihood within a probabilistic framework. Themain
difficulty in such methods is to infer adjacencies evolution scenarios
that are consistent with the evolutionary history of the considered
genes, encoded in their respective reconciled gene trees (see Fig. 1).
The result of this approach, which considers each adjacency inde-
pendently of all other adjacencies (like in the methods described in
Subheading 3.2 but unlike those in Subheading 3.1), is a set of
ancestral adjacencies for each ancestral species. As it is not guaran-
teed that these adjacencies are compatible with a linear structure,
linearization methods such as [56] or global evolution methods
such as [74] can be applied to infer valid ancestral gene arrange-
ments, for each individual ancestor. This approach was followed in
DupCAR [75], which imposes some constraints on the gene trees,
and in the family of DeCo algorithms that we describe below.

DeCo algorithm family: The inference of adjacency histories is
computed by Dynamic Programming techniques, implementing
the rules of transmission of an adjacency from an ancestor to a
descendant. As in the previous methods, at any point, a rearrange-
ment can break or form an adjacency. But in addition, when a gene
undergoes an event (Birth, Duplication, Loss, Transfer), an adja-
cency that has this gene as extremity necessarily changes: it can be
gained, lost, duplicated, or transferred according to the evolution-
ary pattern of its extremities. The algorithm proceeds in three steps.
A first step is to group adjacencies that may share a common
ancestor in classes. Then, each class is examined independently
using a DP algorithm that generalizes the Sankoff–Fitch parsimony

Adjacency creation

Gene loss

Adjacency
transfer

Adjacency
break

Gene duplicationDouble gene
duplication

a0

a1 a2 a3 a4 a5

Fig. 1 Propagation of adjacencies (red) along gene phylogenies (black and blue) reconciled with a species
phylogeny (green). This figure represents the evolutionary history of five extant adjacencies a1 to a5 sharing a
common ancestor a0 in agreement with the history of the genes present at their extremities. The double gene
duplication on the left side induces an adjacency duplication, whereas the single-gene duplication on the right
side does not. Events such as gene losses or rearrangements make adjacencies lost or broken
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algorithms on binary alphabets; here the binary character is the
presence or absence of an adjacency that evolves along pairs of
reconciled gene phylogenies. Last, a backtrack step infers an unam-
biguous parsimonious evolutionary scenario for each adjacency.

This principle has been first implemented in parsimony when
gene trees are reconciled in a duplication/loss model [76]. Follow-
ing this initial model, several extensions have been proposed, which
we outline briefly now. DeCoLT is an extension of DeCo that
allows modeling the lateral transfers of genes between species, a
frequent evolutionary event in bacterial evolution [18]. Two prob-
abilistic extensions were recently introduced: in [9], the optimiza-
tion criterion is a maximum likelihood criterion, while DeClone
[77] implements a probabilistic approach to parsimony by allowing
sampling evolutionary scenarios according to a Boltzmann-Gibbs
probability distribution. Last, Art DeCo [78] has been introduced
to handle fragmented extant genome assemblies (see the next sec-
tion). DeCo and its variants all run in polynomial time allowing
using them on large-scale datasets such as 69 eukaryotic genomes
[76, 79].

3.4 Handling

Fragmented Extant

Genomes

Ideally, to reconstruct an accurate and complete organization of
one (or several) ancestral genome(s) with a comparative approach,
one would like to rely on the complete chromosomal organization
of the considered related extant genomes. However, currently,
most genome assemblies are incomplete and can even be highly
fragmented1. This fact is due to the prevalence of sequencing
technologies producing short and accurate reads that do not
allow assembling repeated regions [67]. Recent improvements in
sequencing technologies (for example long read sequencing proto-
cols), as well as advances in processing methods (for example hybrid
assemblies [80, 81] and gap closing methods [82–84]), make it
possible to obtain the complete genome organization of microbial
genomes [85]; however, the problem of genome assembly is still
hard for large eukaryotic genomes [86].

Fragmented extant genome assemblies are characterized by the
fact that chromosomes are split into several contigs or scaffolds,
whose relative order and orientation is not known. This missing
information on order and orientation of these scaffolds might hide
conserved syntenies such as marker adjacencies, which leads to
similarly fragmented ancestral genome organization. One can see
the problem of reconstructing the organization of ancestral gen-
omes as similar to genome mapping or scaffolding problems, in
which case ancestral genome reconstruction and extant genome
assembly can be considered a unique problem that consists in
ordering genomic markers whether ancient or extant. The

1 see the GOLD database for example https://gold.jgi.doe.gov/statistics.
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algorithmic similarity between these two problems has been
remarked [87] by noting a similarity between the breakpoint
graph [41], used for the reconstruction of gene order in ancestral
genomes, and the de Bruijn graph [88], used in genome assembly.
This observation has led to the recent development of approaches
aiming at improving extant genome assembly in an evolutionary
framework that reconstructs jointly ancient genome organization.

This similarity was first exploited by Munoz et al. [89], to give
an order and an orientation to scaffolds by contig fusion with the
construction of the breakpoint graph of a reference genome and a
target genome to assemble. The concept was taken further by
Aganezov et al. [90]. They considered several related extant gen-
omes (possibly at various levels of fragmentation) and applied
simultaneous co-scaffolding of all extant genomes, under the
hypothesis that fragmentation breakpoints are not the same (i.e.,
between the same markers) in all species and conserved syntenies
can thus be detected, although with a weaker conservation signal.
The core of their method is an extension of the classical breakpoint
graph to more than two genomes [45, 46] and follows the parsi-
mony principle on permutations (see Subheading 3.1). In conse-
quence the method is limited to a small number of species (less than
10) and does not handle duplications.

Another alternative is an extension of the DeCo algorithm (see
Subheading 3.3), called Art DeCo [77]. The method scaffolds
several fragmented-related genomes by reconstructing gene adja-
cencies evolution. The method is based on a parsimony principle
that considers gains and breaks of adjacencies, but also the cost of
creating scaffolding adjacencies in extant genomes but is applied
independently to each adjacency, thus avoiding the computational
tractability issue of a parsimony approach on permutations. Art
DeCo can handle a large number of species (several dozens) as
well as gene duplications. The linearization issue however propa-
gates to extant genomes: neither extant nor ancestral genomes are
guaranteed to be compatible with a linear or circular structure, and
linearization algorithms are needed as a post process.

3.5 Using

Ancient DNA

In addition to extant genomes, ancient DNA (aDNA) extracted
from archaeological or paleontological remains can provide direct
evidence about the contents and structure of an ancient genome.
Early works using aDNA concentrated on mitochondrial DNA not
older than a few 1000 years, recovered for example from quagga
[91], extinct moa [92], cave bears [93], or Neanderthal
[94]. Later, advances in sequencing technologies and in aDNA
recovery protocols [95] opened the way to the sequencing of
nuclear aDNA in even older samples of bacteria like Yersinia pestis
[96, 97] or mammals like the extinct woolly mammoth [98] or
ancient horses [99].

354 Yoann Anselmetti et al.



However due to postmortem DNA decay and degradation by
nucleases, only short fragments of aDNA can be recovered. Subse-
quently, the retrieved sequences are usually aligned to references
and variants are identified keeping aDNA damage patterns in mind,
precluding the analysis of more complex rearrangements between
the ancient and extant genomes [100]. While a contig assembly
based on such data can be expected to be quite fragmented, classical
scaffolding approaches can often not be applied to aDNA data, due
to the nature of the aDNA capture process for example. Hence,
comparative phylogenetic methods following principles similar to
the ancestral reconstruction methods described above have to be
used to order and orient the obtained contigs. Combining aDNA
sequencing data with comparative methods is therefore useful in
two ways: scaffolding of a fragmented aDNA assembly while
improving the reconstruction of other, probably older ancient
genomes in the phylogeny. We outline this approach below.

Given sets of contigs from aDNA assemblies assigned to inter-
nal nodes of the species phylogeny, one first needs to define a
common set of markers between the ancient contigs and extant
genome sequences. Each family of markers should then consist of at
least one ancient contig fragment and its occurrences in several
extant genomes. An iterative segmentation approach based on
mappings of ancient contigs to extant genomes is described in
FPSAC [69] although other fragmentation or synteny blocks con-
struction algorithms can also be applied [34, 101].

Once marker families have been obtained using aDNA and
extant DNA data, the methods outlined in the previous sections
can be applied directly. For example, the FPSAC method [69]
computes copy numbers for markers using discrete parsimony,
infers potential ancestral adjacencies using the Dollo parsimony
principle, linearizes these adjacencies using the MWM algorithm
introduced in [56], and clears ambiguities due to repeated markers
using the algorithms of [68]. Moreover, as the set of markers is
likely not covering the whole ancient genome, gaps between adja-
cent markers in scaffolds need to be filled. In FPSAC, the
corresponding extant gaps are identified and their sequences are
aligned. Then, for each column of the alignment, the parsimonious
ancestral state is reconstructed with the Fitch algorithm [51]. This
approach has been successfully applied to a set of aDNA contigs
from the human pathogen Yersinia pestis, which was obtained from
remains of victims of the Black Death pandemic in the fourteenth
century [102].

3.6 Software We review in Table 1 below the main existing software implement-
ing the principles described in the previous sections.

3.7 Validation Validation is a constant concern in evolutionary studies. Different
hypotheses, different methods, and different types of data may lead
to different results [103], and their quality is difficult to quantify.
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Predictions concern events that can be up to 4 billion years old, and
no DNA molecule is preserved, even in exceptional conditions,
more than 1 million years. And even for the rare cases when ancient
DNA is available, it is often not for ancestral genomes, and assem-
bly issues make it hard to use it for validation purposes (see Sub-
heading 3.5).

Theoretical considerations about the models and methods can
help to assess the validity of the results. Agreement with widely
accepted biological hypotheses, statistical consistency, computa-
tional complexity, clarity, and validity of the underlying hypotheses
have to be discussed [104]. For example, a majority of the methods
presented in this chapter are based on parsimony, which assumes
that the possibility of convergence or reversion is negligible, while
all statistical studies tended to show that it was not the case
[105]. Models have to find a good balance between realism, con-
sistency, and complexity. An important feature of a methodology is
whether it is able to provide several alternative equivalent solutions

Table 1
Main methods publicly available for ancient genome reconstruction

Name

Adjacencies
Intervals
Permutations

Parsimony (Pa)
Probabilistic (Pr)

Insertions
and losses Duplications Transfers

Exploration
of alternative
solutions
and/or support
of solutions

ANGES A/I Pa Y N N Y

FPSAC A/I Pa Y Y N N

DeCo* A Pa/Pr Y Y Y Y

DupCAR A Pa Y Y N N

ROCOCO A/I Pa N N N N

MGRA2 P Pa Y N N N

MGLO A Pr Y Y N N

Badger P Pr N N N Y

GASTS P Pa N N N Y

Pathgroup P Pa N N N N

Infercars A Pa N N N Y

Col. 1 records the name of the method. Col. 2 indicates which type of method it implements, either genomes as

permutations (Subheading 3.1), or genomes as sets of adjacencies and intervals (Subheadings 3.2 and 3.3). Col. 3 records

if it uses a parsimony assumption or a probabilistic approach. Col. 4 indicates if the method allows unequal marker
content in extant and ancestral species. Col. 5 indicates if the underlying evolution model considers gene duplication.

Col. 6 indicates if the underlying evolution model considers gene transfers. Col. 7 indicate if alternative solutions can be

provided (through sampling for example) or if there is a measure of support for features of the provided solution.

References of the listed methods: ANGES [53], FPSAC [69], DeCo and variants [9, 18, 76–78], DupCAR [75],
ROCOCO [57], MGRA2 [45, 46], MGLO [54], Badger [49], GASTS [43], Pathgroup [44], infercars [6]
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[43] (most of the time an optimal or a likely solution is not unique),
or better, a sampling of possible solutions according to a likelihood
[49]. At least, if this is not possible, statistical supports of local
features such as ancestral adjacencies can provide a robustness [77]
(see Col. 7 in Table 1).

Though it is not possible to travel in time, nor to replay the tape
of evolution [106], it is possible to experimentally generate some
lineages and test reconstruction methods on them [107, 108]. It
has been realized for ancestral sequence reconstruction purposes,
but it is very expensive, time consuming, and usually generates easy
instances where all methods perform equally well. It has never been
done for chromosome organization, although some experiments
could theoretically be used as benchmarks [109].

Another validation technique is to compare the results with
similar ones produced by independent data and techniques. For
example, molecular evolutionary studies can compare their results
with fossil data [110, 111]. Bioinformatics ancestral genome recon-
structions have, for example, been compared with reconstructions
from cytogenetics data [103]. But as for ancient sequences, each
kind of protocol has caveats, and none can be considered as the
truth.

The main validation tool remains simulation. Genome evolu-
tion can be simulated in silico for a much higher number of gen-
erations than in experimental evolution, at a lower cost. There are at
least two issues that need to be considered for the simulation,
where no general consensus exists: the set of operations applied,
and the parameters (e.g., relative frequencies) of the different
operations, if more than one type is used. Moreover, they are
often designed by the team developing the inference method, and
even if they are designed to be used by another team for inference
[112, 113], they originate from a community interested in proving
the validity of inference methods and are based on similar models
that underly the reconstruction methods. Situations where the
teams developing the inference methods and testing them are
separated from the start are very rare [114] and, in their current
state, existing testing schemes are not complex enough to be used
for ancestral genome organization reconstruction yet. Neverthe-
less, this is likely an important aspect of ancient genome recon-
struction methods that needs to be developed.

4 Conclusion—a Short User Guide

There has been an important effort, mostly over the last 10 years, in
the development of computational methods for the reconstruction
of ancestral genome organizations. Choosing a method among the
many that are available requires considering several variables, such
as the nature of available data, evolutionary properties of the con-
sidered lineages, computational infrastructures.
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If a dataset is large (more than ~10 species), or if it contains
many duplications that are deemed important to consider, it is
better to look at methods that consider genomes as sets of adja-
cencies or intervals rather than permutations. The latter is appro-
priate for a small number of small genomes, provided duplicate
markers can be ignored and a reasonable amount of computing
power is available. In that case probabilistic methods as Badger
should be preferred, because it proposes a sample of solutions
based on grounded statistical principles, instead of a unique solu-
tion of a heuristic, but it is the most computationally intensive.

In all other cases, in our opinion, a local approach with adja-
cencies and intervals should be favored. If duplicates can be ignored
(unique markers), ANGES is the most flexible tool, which allows
retrieving most information (common intervals in addition to adja-
cencies). Otherwise, assuming duplicated markers are important
and need to be considered, if good gene or marker phylogenies
are available, the DeCo method and its variants are a natural choice
providing the most comprehensive evolutionary scenarios. The
choice of the variant depends if lateral transfers are considered, or
the considered genomes are poorly assembled. In the absence of
good reliable gene phylogenies, MGLO and FPSAC (used without
aDNA data) are the only available methods.
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74. Luhmann N, Thévenin A, Ouangraoua A et al
(2016) The SCJ small parsimony problem for
weighted gene adjacencies. In: Bioinformatics
research and applications. Springer, Berlin
Heidelberg

75. Ma J, Ratan A, Raney BJ et al (2008) DUP-
CAR: reconstructing contiguous ancestral
regions with duplications. J Comput Biol
15:1007–1027

76. Bérard S, Gallien C, Boussau B et al (2012)
Evolution of gene neighborhoods within
reconciled phylogenies. Bioinformatics 28:
i382–i388

77. Chauve C, Ponty Y, Zanetti J (2015) Evolu-
tion of genes neighborhood within reconciled
phylogenies: an ensemble approach. BMC
Bioinformatics 16(Suppl 19):S6

78. Anselmetti Y, Berry V, Chauve C et al (2015)
Ancestral gene synteny reconstruction
improves extant species scaffolding. BMC
Genomics 16(Suppl 10):S11

79. Duchemin W, Anselmetti Y, Patterson M et al
(2017) DeCoSTAR: reconstructing the
ancestral organization of genes or genomes
using reconciled phylogenies. Genome Biol
Evol 9:1312–1319

80. Koren S, Schatz MC, Walenz BP et al (2012)
Hybrid error correction and de novo assembly
of single–molecule sequencing reads. Nat
Biotechnol 30:693–700

81. Antipov D, Korobeynikov A, McLean JS et al
(2015) hybridSPAdes: an algorithm for
hybrid assembly of short and long reads. Bio-
informatics 32:1009–1015

82. Paulino D, Warren RL, Vandervalk BP et al
(2015) Sealer: a scalable gap–closing applica-
tion for finishing draft genomes. BMC Bioin-
formatics 16:230

83. Salmela L, Sahlin K, M€akinen V et al (2016)
Gap filling as exact path length problem. J
Comput Biol 23:347–361

84. English AC, Richards S, Han Y et al (2012)
Mind the gap: upgrading genomes with
Pacific biosciences RS long read sequencing
technology. PLoS One 7:e47768

85. Koren S, Phillippy AM (2015) One chromo-
some, one contig: complete microbial gen-
omes from long–read sequencing and
assembly. Curr Opin Microbiol 23:110–120

86. Rhoads A, Au KF (2015) PacBio sequencing
and its applications. Genomics Proteomics
Bioinformatics 13:278–289

87. Lin Y, Nurk S, Pevzner PA (2014) What is the
difference between the breakpoint graph and
the de Bruijn graph? BMC Genomics 15
(Suppl 6):S6

88. Compeau PEC, Pevzner PA, Tesler G (2011)
How to apply de Bruijn graphs to genome
assembly. Nat Biotechnol 29:987–991
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