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Automated Stage Discrimination of 
Parkinson’s Disease
Vered Aharonson1,2,*, Nabeel Seedat1, Simon Israeli-Korn3, Sharon Hassin-Baer3,4, Michiel Postema1  
and Gilad Yahalom3,4

Introduction
The most common rating scales in 
Parkinson’s disease (PD) are the Unified 
Parkinson Disease Rating Scale (UPDRS) 
and Hoehn and Yahr (HY) staging [1]. The 
HY 5-stages scale is the shorter of the two 
and primarily describes the progression of 
motor symptoms of PD [2]. This scale is 
based on the scenario that the motor symp-
toms of PD begin on one side of the body 
and then become bilateral, where compro-
mise of balance/gait comes last. The HY 
scale thus grades PD progression, starting 
with a unilateral dysfunction (stage 1), 
following bilateral involvement, initially 
without postural instability (stage 2), then 
postural instability develops (stage 3) until 
physical independence is lost (stage  4), 
and at the terminal stage (stage  5) the 

patients become wheelchair bound or bed-
ridden. The HY scale is weighted heavily 
toward postural instability, and does not 
sufficiently capture impairments or dis-
ability from other motor features of PD, 
such as manual dysfunction or tremor [3]. 
However, where gait disorders are exam-
ined, this scale can provide a disease stage 
description.

The staging of the HY scale involves 
subjective assessment of the examin-
ing physician. It may lead to inter-rater, 
and even to intra-rater variability [4]. 
Particularly, bias has been observed in the 
discrimination between stage 2 and 3 due to 
different skills and interpretation between 
different physicians. The inherent charac-
teristics of the scale as categorical instead 
of numerical: The scores are not interval 
scales, hence distances between values on 
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Abstract

Background: Treatment plans for Parkinson’s disease (PD) are based on a disease stage scale, which is 
generally determined using a manual, observational procedure. Automated, sensor-based discrimination 
saves labor and costs in clinical settings and may offer augmented stage determination accuracy. Previous 
automated devices were either cumbersome or costly and were not suitable for individuals who cannot walk 
without support.

Methods: Since 2017, a device has been available that successfully detects PD and operates for people who 
cannot walk without support. In the present study, the suitability of this device for automated discrimination 
of PD stages was tested. The device consists of a walking frame fitted with sensors to simultaneously support 
walking and monitor patient gait. Sixty-five PD patients in Hoehn and Yahr (HY) stages 1 to 4 and 24 healthy 
controls were subjected to supported Timed Up and Go (TUG) tests, while using the walking frame. The 
walking trajectory, velocity, acceleration and force were recorded by the device throughout the tests. These 
physical parameters were converted into symptomatic spatiotemporal quantities that are conventionally used 
in PD gait assessment.

Results: An analysis of variance (ANOVA) test extended by a confidence interval (CI) analysis indicated 
statistically significant separability between HY stages for the following spatiotemporal quantities: TUG 
time (p < 0.001), straight line walking time (p < 0.001), turning time (p < 0.001), and step count (p < 0.001). 
A negative correlation was obtained for mean step velocity (p < 0.001) and mean step length (p < 0.001). 
Moreover, correlations were established between these, as well as additional spatiotemporal quantities, and 
disease duration, L-dihydroxyphenylalanine-(L-DOPA) dose, motor fluctuation, dyskinesia and the mobile 
part of the Unified Parkinson Disease Rating Scale (UPDRS).

Conclusions: We have proven that stage discrimination of PD can be automated, even to patients who cannot 
support themselves. A similar method might be successfully applied to other gait disorders.

Keywords

5-class discrimination, confidence interval analysis, Hoehn and Yahr stages, Parkinson’s disease Gait 
characteristics, walker-mounted sensors.
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these scales are not quantified. The scale is non-linear in its 
description of progression between stages; i.e., a stage 1 PD 
subject who develops postural instability before develop-
ing bilateral signs must be rated as stage 3, having never 
been stage 2, additionally limits its capability on providing 
quantitative information. Last, but not least, the examination 
process involved in HY stage determination takes a consid-
erable amount of clinicians’ and other healthcare profession-
als’ time and hence is extensive and expensive. This reduces 
the accessibility and affordability of this assessment to many 
patients.

The motor part of the UPDRS (mUPDRS) is a continuous 
numerical scale. This scale offers a more elaborate range of 
symptoms compared to the HY scale, and can complement 
the assessment of gait disorders [5]. However, mUPDRS 
still shares the limitations of the HY scale in its non-linear 
unquantified intervals between scores, as well as its length, 
labor and cost, and probable bias [1].

The Timed Up and Go (TUG) test, is an assessment 
tool, often coupled with the clinical HY scale to quantify 
the gait disorder in a shorter and simpler process. Initially 
introduced to assess functional mobility in the elderly [6] 
and in subjects during rehabilitation [7], this test has been 
proven instrumental for PD stage evaluation. In the standard 
TUG test, the subject is instructed to stand up from a chair, 
walk 3 m, turn back, walk 3 m, and sit down on the chair. 
Test completion time is measured with a stopwatch. This test 
has a potential to provide an objective measure of disease 
severity. However, the procedure still requires, the attention 
of a supervisor and relies on manipulation of a manual stop-
watch. Moreover, as the TUG test measures only completion 
time, it does not quantify its different segments, like walking 
in a straight line and turning time which may provide a more 
complete gait characterization [8].

In view of the aforementioned limitations in prevalent 
PD severity scales, automated assessment tools were pro-
posed. Automated assessments are inherently more objec-
tive and quantitative have the potential to aid in quantifying 
Parkinson’s stage diagnosis and add to both the accuracy and 
efficiency of the assessment process.

Quantitative sensor-based methods were suggested in 
former studies to quantitatively asses gait disorders in PD. 
Many of these methods use the TUG test protocol, capture 
the subject’s motion and provide quantitative models that 
discriminate PD subjects’ gait from healthy control (HC) 
subjects’ gait [9, 10]. The sensors used by these methods are 
either strapped on the patient’s body [11, 12] or implemented 
as wearable sensors [13], or are fitted in walkway systems 
which measure the pressure exerted by the patient’s foot as 
they walk [14, 15]. A drawback of the first two methods is 
their complexity, expense, and time demands. Additionally, 
these devices are often cumbersome and uncomfortable to 
wear, thereby negatively affecting the user’s experience, 
especially for motor impaired persons [16, 17]. The walk-
way systems offer high accuracy and lower costs but require 
large physical space and a dedicated environment. All three 
methods are inappropriate for an assessment of severe cases 
of PD, when the patient requires a walking aid [16].

Previous sensor-based gait data acquisition methods to 
extract complex and abstract mathematical features from 

the sensors’ outputs used machine learning tools for feature 
selection and discrimination. These computational analysis 
studies often used a combination of features, which could 
not be readily separated (i.e., using the principal component 
analysis) and interpreted [18–20]. This limits the usage of 
these methods for clinical use and for providing clinical 
insight into gait disorders in PD.

Previous sensor-based measurements of gait were used to 
discriminate PD patients from controls or to detect a specific 
symptom in PD gait, i.e., dyskinesia [21, 22]. Their analysis, 
however, aimed to distinguish between normal and impaired 
gait [23, 24] and did not attempt to assess disease severity 
or stage. One of the challenges involved in disease stage 
assessment is that statistical analysis methods can provide 
significance difference in terms of p-value, but this value is 
not indicative of the magnitude of differences between the 
different groups, nor does it quantify the amount of overlap 
between the groups.

The current study addresses all the aforementioned limita-
tions. The data was acquired by an exo-body walking frame, 
fitted with sensors to monitor patient gait and support walking 
concurrently. This device offers a solution to the disadvantages 
of both strapped-on and walkway methods. Particularly, being 
a walking aid makes this device suitable for assessments of the 
severe stage of the disease, i.e., HY4. Preliminary results have 
shown that this device can provide accurate discrimination 
of PD patients and control subjects [16]. The measurements 
analysis in the current study considered only features which 
could be observed and related to the physical properties of 
the movement, and thus may provide an insight into the con-
dition studied. Extended statistical analyses were employed 
to quantify these measurements’ capability to discriminate the 
five HY stages of PD. Due to the inherent limitations of the 
HY scale, the automated analysis results were also tested for 
correlations with the mUPDRS and with complementary clin-
ical data on the patients and their treatment.

Methods

Population

Sixty-six consecutive patients diagnosed with idiopathic PD 
according to the UK Bank criteria, attending a movement dis-
orders institute at a tertiary medical center were recruited for 
the study. This patient cohort included stages 1 to 4 of the HY 
scale. Twenty-four healthy age-matched control subjects (HC, 
also designated as stage 0 of the HY scale) were recruited 
from the pool of hospital staff, patients’ (unrelated) family 
members, caregivers or accompanying friends that arrived 
at the clinic. The exclusion criteria were: PD patients with 
additional neurologic disorders or any other disorder poten-
tially affecting gait, patients who had had neurosurgical inter-
vention for PD (such as deep brain stimulation and thalam-
otomy), patients with balance or gait disorder not related to 
PD, and patients with musculoskeletal problems causing gait 
impairment. The study was approved by the local institutional 
review board (IRB) of the Sheba Medical Center (Ethics num-
ber: 3036-16-SMC). All subjects signed an informed consent 
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form. Ethical approval for re-use of data was obtained from 
the University of the Witwatersrand, Human Research Ethics 
Committee, clearance number is M180202.

Instrumentation

The instrumented walker is an off-the shelve aluminum walker 
frame fitted with an instrumentation kit. The kit includes two 
force sensors underneath the hand grips that measure the grip 
force, two digital encoders on the walker’s front wheels that 
measure the position and velocity of the walker and a tri-ax-
ial accelerometer in the control box of the walker (illustrated 
in Figure 1 and described in details in [16]). An embedded 
microcontroller (Arduino Nano V3) in the control box exe-
cutes the commands and control functionality and acquires 
the data at a sampling rate of 21.5 Hz. The data is written to 
a secured digital (SD) card in the form of a CSV file [16]. 
This data consists of the trajectory, velocity, acceleration, and 
force signals, which were recorded by the sensors throughout 
the subjects’ walking experiment. The parameters computed 
from this data include the following spatiotemporal para-
meters: step count, mean step time, mean step length, mean 
step velocity, mean acceleration, standard deviation (STD) of 
step time, STD of step length, STD of step velocity, STD of 
acceleration, total TUG time, total walk time, total turn time, 
and cadence. The force sensors provided force, force differ-
ence between right and left force sensors and the correlation 
between right and left force sensors.

Protocol

The study was approved by the local IRB and all subjects 
signed an informed consent form. Each patient underwent 
a full neurological examination and was rated using part III 
(motor examination) of the UPDRS, yielding an mUPDRS 
score and the HY stage was determined. The presence of 
motor fluctuations and dyskinesia were specifically assessed 
and noted.

All subjects underwent a TUG test while holding the 
instrumented walker: Subjects sat comfortably on a chair 
with no armrest and then spontaneously held on to the instru-
mented walker and stood up. The subjects then (holding the 
walker) walked at their natural speed straight ahead towards 
a cone positioned on the floor (3 m away from the start line), 
turned around the cone, walked back and then sat back down 
on the chair (still holding the walker). If a subject failed to 
perform the procedure correctly (e.g., due to poor under-
standing of the task or distraction), that trial was discarded 
and immediately repeated.

Data collection

Clinical data

The HY stage, mUPDRS score and the presence of motor 
fluctuations or dyskinesia were assessed and logged. 
Complementing clinical data including age at PD onset, 
disease duration and use of L-dihydroxyphenylalanine- 
(L-DOPA) in the medication regimen. Age and gender data 
were logged for all subjects.

Extracting features from the signals

Data analysis was performed on all the signals captured 
by the walkers’ sensors. The preprocessing of the signals 
included noise and artifact removal, segmentation of the 
walking into strides in straight-line walking and turning, and 
footfall detection [25]. The signals were compressed into 
a set of mathematical variables, which represent the spa-
tiotemporal parameters of gait, i.e., mean step time, mean 
step velocity. All these variables have been used in previous 
sensor-based studies on gait, and are easily interpreted into 
clinician observation of gait.

Statistical analysis

The study population represented five groups: PD patients 
according to HY stages 1–4 and HCs, which may be referred 
to as HY 0, respecting the hierarchical order between groups. 
The analysis aimed to determine the importance of each fea-
ture extracted from the signals, in terms of its discrimination 
performance of the five groups.

The first task in this analysis was to find the features 
which provide the highest differences between the groups: 
HY stages 0–4. The Kruskal–Wallis [one-way analysis of 
variance (ANOVA) on ranks] test was used to check for 
significant difference (p-value ≤ 0.05) between the five 
groups, for each variable, where the variables included both 
the demographic and clinical variables and the instrumented 
walker features.

A flaw in the ANOVA analysis methods is that their 
p-value is not indicative of the magnitude of the differences 
between the groups, nor does it indicate an overlap between 
the groups. The analysis was refined, using confidence 

Figure 1  An illustration of the exo-body instrumented walker. The 
location of the encoders in the wheels, the pressure sensors in the 
hand grips and the accelerometer in the control box are marked on 
the figure [16].
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intervals (CIs), to estimate the probability that the range 
of values for a specific feature in one group does not over-
lap with the ranges of that feature in the other groups [26]. 
Plotting the CIs can provide a clear visual display of the 
overlaps and hence of the differences between multiple 
groups.

The difference between each pair of groups is based on the 
overlap of the two CIs belonging to two groups and is calcu-
lated as follows: an overlap greater than 50% corresponds to 
no statistical significance of difference; less than 50% corre-
sponds to a 95% statistical significance of difference and no 
overlap corresponds to a 99% statistical significance of the 
difference [27].

Graphs of the CIs were plotted to illustrate the statistical 
differences between feature value ranges in the different HY 
groups, and CI overlaps computed.

Both p-values and CI-overlap values were used as met-
rics to determine the importance of each feature extracted 
from the walker signals. A ranking of the features according 
to these two measure was performed. The ranking indicates 
which features are the most informative in providing HY 
group separability.

Lastly, Pearson’s correlation was employed to map the 
correlations between all pairs of instrumented-walker fea-
tures and demographic/clinical variables. This correlation 
data and the corresponding p-values and significance 
(p < 0.05) were listed in a concluding table.

Results

The demographic and clinical characteristics of the study 
population are provided in Table 1. The demographic 
and/or clinical variables of the HCs (HY stage 0) and of 
the patients – HY stages 1–4 – are presented in the first 
five columns, respectively. The last column provides the 
p-values of the Kruskal–Wallis test for each characteristic, 
for the five groups (HY stages 0–4). The table conveys that 
age, disease duration, and the prevalence of L-DOPA treat-
ment and motor fluctuations significantly increase with HY 
stage.

Table 2 lists the features extracted from the instrumented 
walker signals in the 3 m TUG test, in a format similar 
to Table 1: mean and STD of the extracted features are 
presented, for the five HY groups. The sixth displays the 
p-values of the Kruskal–Wallis test for each feature, for the 
five groups (HY stages 0–4).

Table 3 presents the pairwise CI overlap percentages for 
the first six gait features in Table 2. Zero overlaps, corre-
sponding to a 99% statistical significance of the difference 
are marked by two asterisks. Overlaps of less than 50%, cor-
responding to a 95% statistical significance of difference, 
are marked by one asterisk. All other entries have overlaps 
larger than 50%, corresponding to statistically insignificant 
difference.

Table 1  Demographic and Clinical Characteristics of the Five HY Groups and p-Values Representing the Kruskal–Wallis 
Analyses of the Five Groups

  HY0 (control)   HY1   HY2   HY3   HY4   p-Value
Number of subjects   24   7   23   29   6  
Males (%)   10 (42)   5 (71)   17 (74)   19 (66)   3 (50)   0.270
Age in years   62.2 ± 13.3   59.4 ± 13.8   65.3 ± 10.3   70.0 ± 8.1   76.3 ± 6.5   0.001
Disease duration (years)   NA   3.1 ± 2.1   8.2 ± 4.4   8.8 ± 4.4   11.8 ± 5.0   0.003
L-DOPA treated (%)   NA   2 (29)   14 (61)   26 (90)   5 (83)   0.003

HY: Hoehn and Yahr scale; L-DOPA: L-dihydroxyphenylalanine. Bold value denote statistical significance of 95% or more.

Table 2  Mean and STD of the Features Extracted in the Instrumented Walker 3 m TUG Test. The First Five Columns 
Provide Mean ± STD Values for the Five HY Groups and the Sixth Displays the Computed ANOVA p-Value of the Difference 
Between the Groups’ Means

  HY0 (Control)   HY1   HY2   HY3   HY4   p-Value
Total TUG time (s)   12.7 ± 4.2   11.7 ± 4.5   12.6 ± 4.0   19.9 ± 7.0   26.1 ± 12.8   <0.001
Straight-line walking time (s)   8.7 ± 3.7   8.6 ± 4.2   11.0 ± 3.9   13.3 ± 5.6   17.9 ± 10.9   <0.001
Turning time (s)   4.9 ± 2.4   3.2 ± 0.7   3.9 ± 1.3   7.2 ± 2.0   8.9 ± 3.7   <0.001
Mean step length (m)   0.5 ± 0.1   0.5 ± 0.2   0.4 ± 0.1   0.3 ± 0.1   0.2 ±0.06   <0.001
Mean step count (n)   14.0 ± 5.8   15.0 ± 6.3   17.0 ± 6.6   22.0 ± 10.0   47.0 ± 18.2   <0.001
Mean step velocity (m/s)   0.6 ± 0.2   0.7 ± 0.2   0.5 ± 0.15   0.4 ± 0.1   0.3 ± 0.09   <0.001
Step length variability (m)   0.7 ± 0.3   0.6 ± 0.2   0.6 ± 0.2   0.8 ± 0.3   0.6 ± 0.2   0.03
Mean acceleration (m/s2)   0.03 ± 0.05   0.03 ± 0.04   0.03 ± 0.03   0.01 ± 0.03   0.01 ± 0.02   0.73
Step velocity variability (m/s)   0.3 ± 0.09   0.2 ± 0.06   0.3 ± 0.08   0.3 ± 0.09   0.3 ± 2.0   0.32
Step time (s)   0.7 ± 0.1   0.6 ± 0.02   0.7 ± 0.3   0.7 ± 0.07   0.7 ± 0.02   0.46
Step time variability (s)   0.3 ± 0.2   0.2 ± 0.03   0.4 ± 0.3   0.3 ± 0.2   0.4 ± 0.05   0.51
Cadence (step/s)   100.7 ± 9.6   107.1 ± 9.9   100.0 ± 8.8   98.2 ± 7.2   18.5 ± 3.1   0.25
Force sensor asymmetry (N)   30.1 ± 16.8   23.8 ± 6.0   32.8 ± 16.1   28.0 ± 17.8   23.8 ± 20.6   0.58
Force sensor asymmetry variability (N)   0.9 ± 0.2   0.9 ± 0.2   0.8 ± 0.2   0.9 ± 0.20   1.0 ± 0.1   0.305

HY: Hoehn and Yahr scale; N: Newtons; STD: standard deviation; TUG: Timed Up and Go test. Bold value denote statistical significance of 
95% or more.
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The first three rows of Table 3 indicate no statistical dif-
ference between the controls (HY stage 0) and HY stages 1 
and 2 groups. The subsequent rows in the table demonstrate 
a 95% to 99% statistically significant difference between all 
other pairs of HY groups, for all features.

A visual display of the CI analysis is presented in 
Figure 2. The six graphs in the figure correspond to the 
six features in Table 3. The overlap or lack of overlap 
between groups can be observed in this graphical rep-
resentation, as well as the range of values for each fea-
ture and for each group. These figures convey that the 
controls – HY stage 0 – and HY stage 1 patients have 
a higher step velocity and a greater step length, lower 
step count, slower straight-line walking, shorter turning 
time and shorter total TUG time. HY stages 2, 3 and 4 
demonstrate increasingly lower step velocity, smaller step 
length, higher step count, and higher mean straight-line 
walking, turning, and total TUG time in all six graphs of 

Figure 2. Patients with HY stage 4 differ significantly in 
all gait features from all other groups.

Table 4 presents the correlations between the pairs of 
demographic/clinical variables, including the HY stage and 
the mUPDRS, and the gait features. The rows in the table 
are the demographic and clinical variables and the columns 
are the instrumented-walker features. Each cell contains 
the Pearson’s correlation coefficient and p-value for a pair 
of demographic/clinical and instrumented-walker features. 
Statistical significance is marked in bold numbers.

PD duration is inversely correlated with mean step length 
(p = 0.04) and mean step velocity (p = 0.02) and is corre-
lated with mean step count (p = 0.03), TUG time (p = 0.03) 
and TUG turning time (p = 0.03). Mean TUG straight line 
walking time is not correlated to PD duration. TUG time, 
mean step count, mean step length and mean step velocity, 
show correlations to L-DOPA dose, which are similar to the 
correlations of these features to PD duration: L-DOPA dose 

Table 3  The Overlap of CI, in Percentage, for the HY and HC Group Pairs. Overlaps of Less Than 50% are Marked by One 
Asterisk and Reflect 95% Significance of Difference Between the Groups. No Overlap (0%) Reflects 99% Significance of 
Difference Between the Groups

Group 
Pair

 
 

Feature
Turning Time (s)   Step Velocity (m/s)   Step Length (m) Straight Line Walk Time (s)   Step Count   TUG Time (s)

HC–HY1   0**   19*   73 96   84   46
HC–HY2   21*   28*   36* 83   77   92
HY1–HY2   0**   0**   8* 75   91   71
HC–HY3   0**   0**   0** 0**   0**   0**
HC–HY4   0**   0**   0** 0**   0**   0**
HY1–HY3   0**   0**   0** 0**   0**   0**
HY1–HY4   0**   0**   0** 0**   0**   0**
HY2-HY3   0**   0**   0** 31*   13*   0**
HY2–HY4   0**   0**   0** 0**   0**   0**
HY3–HY4   33*   0**   0** 0**   0**   0**

CI: confidence interval; HC: healthy controls; HY: Hoehn and Yahr stage; TUG: Timed Up and go test. *Overlap corresponds to a 95% 
statistical significance of difference. **Overlap corresponds to a 99% statistical significance of difference.

Figure 2  CI graphs of six instrumented gait features, for the five different HY groups. CI: confidence interval; HY: Hoehn and Yahr scale.
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is correlated with step count (p = 0.03), TUG time (p = 0.03) 
and inversely correlated with mean step velocity (p = 0.005) 
and mean step length (p = 0.008). Mean TUG straight line 
walking time is correlated to L-DOPA dose (p = 0.03), while 
mean TUG turning time was not. Dyskinesias are correlated 
with mean step length only (p = 0.05). The mean of force 
difference between right and left force sensors is correlated 
with L-DOPA dose (p = 0.006) and with motor fluctuations 
(p = 0.03).

Age was correlated with TUG time (0.006) and mean 
TUG straight line walking time (p = 0.003).

From the two PD rating scales, mUPDRS is correlated 
with TUG straight line walking time (p = 0.02) and with step 
count (p = 0.03) and was inversely correlated with cadence 
(p = 0.005), while HY stage is correlated with turning time 
(p < 0.001), step count (p < 0.001), TUG time (p < 0.001) 
and walking time (p < 0.001) and is inversely correlated 
with mean step velocity (p < 0.001), and mean step length 
(p < 0.001).

Discussion

The method proposed in this study provided automated dis-
crimination of the five HY stages in PD, where previous 
studies aimed to distinguish between normal and impaired 
gait or to detect a specific symptom in PD gait, i.e., dys-
kinesia [21–24] and were not applied for disease severity 
or stage assessment. Importantly, the gait characteristics 
which were used in these five classes of discrimination pro-
vide an easily-interpretable, quantitative insight into gait 
change with disease progression. A modified HY scale was 
introduced by Hoehn and Yahr, which included additional 
“mid-scale” values of 1.5 and 2.5 [28]. The experiment in 
this study was conducted in a hospital where a five-stage 
HY scale is employed. This scale was therefore used as the 
ground truth in our analysis. The discrimination between 
the HCs and the four HY stages, as provided by the gait 
features, was quantified using two statistical methods: The 
traditional correlation and p-value and an augmented CI 
analysis.

The correlations and p-values analysis indicated seven 
gait features which were significantly correlated to the HY 
stage (Table 2). However, this analysis could provide only 
mean and STD values of these gait features for the differ-
ent HY groups. Moreover, the p-values are not indicative of 
the magnitude of the differences between the different HY 
groups, nor does it quantify the amount of overlap between 
the groups.

The CI analysis method manifested both the range of gait 
feature values in each HY group and the amount of overlap 
between these groups (Figure 2 and Table 3). Additionally, 
the CIs can be portrayed in a graph (Figure 2) and pro-
vide an intuitive, “at a glance” illustration of the differences 
between the groups, and of the discrimination power of 
each gait feature. Table 3 highlights the features that pro-
vided no overlap, reflecting 99% significance of difference, 
between the HY groups, and features that provided overlaps 
of less than 50%, reflecting 95% significance of difference Ta
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between the groups. This analysis conveys that HY stages 3 
and 4 were significantly different from each other and from 
the earlier stages (HY1 and 2) and from the HCs, accord-
ing to all six gait features. Not all the features were able 
to significantly discriminate the earlier stages, HY1, 2, and 
the HCs. This information was not apparent in Table 2, 
where only p-values were computed, provided only aver-
age discrimination statistics. This highlights the importance 
of looking beyond p-values in discrimination problems of 
multiple classes.

As its widespread usage and the prolific literature con-
vey, the HY scale effectively identifies and discriminates 
the stages of PD. The PD patients’ cohort in this study were 
labeled and grouped by their HY stage. The four groups 
(stages 1–4) were significantly different in terms of age, dis-
ease duration and L-DOPA treatment prevalence (Table 1). 
Similar to previous studies, however, the patients’ data in 
this study does not convey significant correlation of the HY 
grouping to clinically observed symptoms such as motor 
fluctuations and dyskinesia [29, 30].

The gait data acquired by the walker-mounted sensors 
provided insight into the features that could characterize 
observed symptoms and clinical information of the patients. 
Table 4 portrays correlations between the sensor-acquired 
features and the clinical data, also incorporating the motor 
part of the UPDRS, L-DOPA usage and dose, motor fluc-
tuations, and dyskinesia. Each one of the six features that 
were indicated in Tables 2 and 3 were correlated with some, 
but not all, of the clinical data: The total TUG time was 
correlated to subject’s age, PD duration, L-DOPA dose, in 
addition to the strong correlation to the HY stage that was 
indicated in the previous analysis. These findings corrob-
orate the efficacy of the TUG time in PD progression, as 
well as imply the ability of the walker-mounted sensors 
to accurately capture it automatically. However, the TUG 
walking trajectory incorporates both straight line and turn-
ing walking phases. The separation of these two parts of the 
TUG and their quantification by the straight line walking 
time and turning time features yields additional informa-
tion: the straight line walking time is significantly corre-
lated with age and L-DOPA dose whereas turning time is 
significantly correlated with PD duration. This finding may 
imply that the straight line walking time within the TUG is 
affected more by age and medication whereas turning time 
is more indicative of disease progression, as manifested in 
a patient’s gait.

The sensor-acquired data enables a measurement and 
computation of step length, step count, and step velocity sta-
tistics. PD duration is correlated with all three features.

The mUPDRS was correlated only with the straight line 
walking and the step count features. It was noted in previous 
studies [1] that these two scales, the HY and mUPDRS are 
not well correlated. The results corroborate this findings.

Unlike previous studies [18–20], the current analysis con-
sidered only features which could be observed and related 
to the physical properties of the movement, and thus may 
provide an insight into the condition studied. Additionally, 
this study focused an analysis of each gait feature sepa-
rately. Each one of the features was considered separately 
and its relevance and contribution to the discrimination of 

the five HY stages was quantified. This analysis therefore 
simplified the interpretation and makes it more useful clin-
ically. Table 4 shows, however, that additional features, 
such as cadence and imbalance in pressure on the walker’s 
handle sensors may be also manifested in PD progression. 
These features, however, do not show significant correla-
tion to the HY stage. Previous studies have indicated an 
enhanced performance of sensor-based gait features, when 
all features were jointly analyzed using machine learning. 
An analysis of the full feature-set will be performed when 
a larger sample is collected.

All these observations and interpretation are limited by 
the relatively small number of subjects, and need to be val-
idated by a larger cohort. Particularly, more patients from 
HY stages 1 and 4 are needed to provide a balanced dataset. 
The study is a preliminary one and the first to attempt to 
perform a 5-stage discrimination of PD using the automated 
frame method. Two statistical analysis methods were imple-
mented in order to show which of the features measured by 
the device are adequate to imply a significant discrimina-
tion between the stages. The results in this preliminary study 
indicate a potential to provide insights into the manifestation 
of gait features in PD progression. In addition, the analysis 
method of CIs overlaps employed in this study is indicated 
as a reliable and useful metric to convey discrimination 
between multiple groups.

The present analysis was undertaken to provide insight 
into the manifestations of gait characteristics in PD stages. 
In this analysis we deviate from the use of complex features 
and machine learning [7, 9–15, 18–20, 22–24] and, with an 
integrated team of expert neurologists and engineers, inves-
tigated the task of discriminating the five stages of PD sever-
ity, using only clinically-interpretable features [1–5] and 
explanatory statistical analysis [26, 27].

This approach differs from earlier ones by the following 
traits: 1) Only features that could be clinically interpreted 
and used to characterize the symptoms observed by clini-
cal experts were included in the analysis. 2) Among these 
features were parameters from the turning segment of the 
walking test, whereas most previous sensor-based meth-
ods focused on straight line walking. 3) Each of these fea-
tures was individually examined using statistical analysis, 
and 4)  this statistical analysis employed in addition to the 
traditionally-used one-way ANOVA, an extended statistical 
analysis of CIs to better suit the more complex problem of 
multiple groups – the 5 HY stages.

The results indicate that six of the gait parameters were 
able to provide a statistically significant discrimination of 
HY stages, as well as value ranges for each of the stages, as 
conveyed by Table 3 and Figure 2. Two of the parameters 
had 95%–99% in their discrimination between all the pairs 
of the PD stages, one yielded 95%–99% discrimination 
significance for all pairs except the pair of HC and HY1, 
and the other three yielded 95%–99% discrimination signif-
icance for all pairs except HC–HY1, HC–HY2 and HY1–
HY2. All six parameters were affirmed by the healthcare 
professionals as relevant to their clinical observations of gait 
and to their manifestation in the observation-based determi-
nation of the HY stage. Moreover, the discrimination of HC 
from the first stages of the disease, based on gait only, was 
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clinically observed as challenging using traditional observa-
tion methods [1–4].

Our method thus quantifies gait parameters which are rou-
tinely observed by healthcare professionals in clinical pro-
cedures, and the relationship between disease progression 
and the degradation in this gait parameters values and thus 
provides an improved insight into PD manifestation in gait 
compared to the aforementioned studies.

The prediction power of the six gait features that provided 
the strongest discrimination between all PD stage groups 
will be further explored and generalized in future studies 
employing larger cohorts of patients.

Therefore, although the data size is small, the results 
convey high statistical significance, implying that the 
recorded gait parameters and their correlation with HY 
stages can be used for the discrimination/prediction of 
HY stages in PD. These results should be validated on a 
larger cohort of patients. Our findings, however, provide 
a clinical value of these gait parameters, which is superior 
to other previously reported methods by introducing only 
clinically-interpretable parameters, explainable statistical 

analysis and a capability to discriminate five stages of dis-
ease severity.

Conclusion

The feasibility of PD stage discrimination by a simple 
and low-cost walker-mounted sensors method may offer a 
potential in rapid, labor-saving screening in the follow-up 
of PD patients, both in clinics and remotely. This automated 
method can update the patient status on a regular basis and 
provide warning of deterioration.
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