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Abstract 

Treament plans for Parkinson’s disease are based on a disease stage scale, which is generally 

determined using a manual, observational procedure.  Automated, sensor based 

discrimination saves labour and cost in clinical settings and may offer augmented stage 

determination accuracy. Previous automated devices were either cumbersome or costly and 

were not suitable for individuals who cannot walk without support. 

Since 2017, a device has been available that successfully detects Parkinson’s disease and 

operates for people who cannot walk without support.  In the present study, the suitability of 

this device for automated discrimination of Parkinson’s disease stages is tested. The device 

consists of a walking frame fitted with sensors to simultaneously support walking and 

monitor patient gait. Sixty-five Parkinson’s disease patients in HYstages 1 to 4 and twenty-

four heathy controls were subjected to supported timed up and go (TUG) tests, while using 

the walking frame. The walking trajectory, velocity, acceleration and force were recorded by 

the device throughout the tests. These physical parameters were converted into symptomic 

spatio-temporal quanitities that are conventionaly used in Parksinon’s disease gait 

assessment.  
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An ANOVA Test extended by a confidence interval analysis indicated statistically significant 

seperability between HYstages for the following spatio-temporal quantities: TUG time 

(p<0.001), straight like walking time (p<0.001), turning time (p<0.001) and step count 

(p<0.001). A negative correlation was obtained for mean step velocity (p<0.001) and mean 

step length (p<0.001). Moreover, correlations were established between these, as well as 

additional spatio-temporal quanitities, and disease duration, levodopa dose, motor fluctuation, 

dyskinesia and the mobile part of the unified Parkinson’s disease rating scale.   

We have proven that stage discrimination of Parkinson’s disease can be automated, even to 

patients who cannot support themselves. A similar method might be successfully applied to 

other gait disorders. 

Introduction 

The most common rating scales in Parkinson’s disease are the Unified Parkinson 

Disease Rating Scale (UPDRS) and the Hoehn and Yahr (HY) staging (1).  The HY 5-stages 

scale is the shorter of the two and primarily describes the progression of motor PD (2). This 

scale is based on the scenario that the motor symptoms of PD begin on one side of the body 

and then become bilateral, where compromise of balance/gait comes last. The HYscale thus 

grades PD progression, starting with a unilateral dysfunction (stage 1), following bilateral 

involvement, initially without postural instability (stage 2), then postural instability develops 

(stage 3) until physical independence is lost (stage 4) and at terminal stage (stage 5) the 

patients become wheelchair bound or bedridden. The HYscale is weighted heavily toward 

postural instability, and does not sufficiently capture impairments or disability from other 

motor features of PD, such as manual dysfunction or tremor (3). However, where gait 

disorders are examined, this scale can provide a disease stage description.   

The staging of the HYscale involves subjective assessment of the examining physician  it 

may lead to inter-rater , and even to intra-rater variability (4). Particularly, bias has been 

observed in the discrimination between stage 2 and 3 due to different skills and interpretation 

between different physicians . The inherent characteristics of the scale as categorical  instead 
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of numerical: The scores are not interval scales, hence distances between values on these 

scales are not quantified. The scale is non-linear in its description of progression between 

stages;  i.e. a Stage 1 PD subject who develops postural instability before developing bilateral 

signs must be rated as Stage 3, having never been Stage 2, additionaly limits its capability on 

providing quantitative information. Last, but not least, the examination process involved in 

HYstage determination takes a considerable time of clinicians and other healthcare 

professionals and hence is extensive and expensive. This reduces the accessibility and 

affordability of this assessment to many patients. 

The motor part of the Unified PD rating scale (mUPDRS) is a continuous numerical scale. 

This sclae offers a more elaborate range of symptoms compared the Hoehn and Yahr (HY), 

and can complement the assessment of gait disorders (5). However, mUPDRS still shares the 

limiations of the HYin its non linear unquantified intervals between scores,as well as its 

length, labour and cost, and probable bias  (1).    

The timed up and go (TUG) test,  is an assessment tool, often coupled with the clinical HY to 

quantify the gait disorder in a shorter and simpler process.   Initially introduced to assess 

functional mobility in the elderly (6) and in subjects during rehabilitation (7), this test has 

been proven instrumental for Parkinon’s disease stage evaluation. In the standard TUG, the 

subject is instructed to stand up from a chair, walk 3 meters, turn back, walk 3 meters and sit 

down on the chair. Test completion time is measured with a stopwatch. This test has a 

potential to provide an objective measure of disease severity. The procedure still requires, 

however, the attention of a supervisor  and relies on manual stopwatch manipulation. 

Moreover, as TUG measures only completion time, it does not quantify its different 

segments, like straight line and turning time which may provide a more complete gait 

chatacterization (8).  

In view of the aforementioned limitations in prevalent PD severity scales, automated 

assessment tools were proposed. Automated assessments are inherently more objective and 

quantitative have the potentioal to aid in quantifying Parkinsons’s stage diagnosis and add to 

both accuracy and efficiency of the assessment process.  
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Quantitative sensor-based methods were suggested in former studies to quantitatively asses gait 

disorders in Parkinson’s disease. Many of these methods use the  TUG protocol, capture the 

subject’s motion and  provide quantitative models that discriminate PD subjects’ gait from 

healthy control subjects’ gait (9) (10). The sensors used by these methods are either strapped 

on the patients body, (11, 12)  or  implemented as wearable sensors (13), or are fitted in walkway 

systems which measure the pressure exerted by the patients' foot as they walk (14, 15) . A 

drawback of the first two methods is their complexity, expense and time demands. 

Additionally, these devices are often cumbersome and uncomfortable to wear, thereby 

negatively affecting the user's experience, especially for motor impaired persons (16, 17). The 

walkway systems offer high accuracy and lower costs but require large physical space and 

dedicated environment. All three methods are inappropriate for an assessment of severe cases 

of PD, when the patient requires a walking aid  (16).  

Previous sensor-based gait data acquisition methods extracted complex and abstract 

mathematical features from the sensors’ outputs used machine learning tools for feature 

selection and discrimination. These computational analysis studies often used combinations 

of features, which could not be readily separated (i.e. using the principal component analysis) 

and interpreted (18-20). This limits the usage of these methods for clinical use and for 

providing clinical insight into gait disorders in PD.    

Previous sensor-based measurements of gait were used to discriminate PD patients from 

controls or to detect a specific symptom in PD gait, ie. Dyskinesia (21, 22). Their analysis, 

however, aimed to distinguish between normal and impaired gait (23, 24) and did not attempt 

to assess disease severity or stage. One of the challenges involved in disease stage assessment 

is that statistical analysis methods can provide significance difference in terms of p-value, but 

this value  is not indicative of the magnitude of differences between the different groups, nor 

does it quantify the amount of overlap between the groups. 

The current study addresses all th aforementioned limitations. The data is acquired by an exo-
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body walking frame, fitted with sensors to monitor patient gait and support walking 

concurrently. This device offers a solution to the disadvantages of both strapped-on and walkway 

methods. Particularly, being a walking aid makes this device suitable for assessments of severe 

stage of the disease, ie HY4. Preliminary results have shown that this device can provide  

accurate discrimination of PD patients and control subjects (16). The measurements analysis 

in the current study considered only features which could be observed and related to the 

physical properties of the movement, and thus may provide an insight into the condition 

studied. Extended statistical analyses were employed to quantify these measurements’ 

capability to discriminate the five  HY stages of PD. Due to the inherent limitations of the 

HY scale, the automated analysis results were also tested for correlations with the mUPDRS 

and with complementary clinical data on the patients and their treatment. 

 

Methods 

Population 

Sixty six consecutive patients diagnosed with idiopathic PD according to the UK bank 

criteria, attending a Movement Disorders Institute at a tertiary Medical Center were recruited 

for the study. This patients cohort included stages 1 to 4 of the HY scale. Twenty four 

Healthy age-matched control subjects (HC, also designated as stage 0 of the HY scale) were 

recruited from the pool of hospital staff, patients' (unrelated) family members, caregivers or 

accompanying friends that arrived at the clinic. The exclusion criteria were: PD patients with 

additional neurologic disorders or any other disorder potentially affecting gait, patients after 

neurosurgical intervention for PD (such as deep brain stimulation and thalamotomy), patients 

with balance or gait disorder not related to PD, and patients with musculoskeletal problems 

causing gait impairment. The study was approved by the local institutional review board of 

the Sheba Medical Center (Ethics number: 3036-16-SMC). All subjects signed an informed 

consent form. Ethics approval for re-use of data was obtained from the University of the 

Witwatersrand, Human Research Ethics Committee, clearance number is M180202.  
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Instrumentation 

The instrumented walker is an off-the shelve aluminum walker frame fitted with an 

instrumentation kit. The kit includes two force sensors  underneath the hand grips that measure 

the grip force, two digital encoders on the walker’s front wheels that measure the position and 

velocity of the walker and a tri-axial accelerometer in the control box of the walker.  An 

embedded microcontroller (Arduino Nano V3) in the control box  executes the commands 

and control functionality and acquires the data at a sampling rate of 21.5 Hz. The data is written 

to a secured digital (SD) card in the form of a CSV file (16). This data consists of the 

trajectory, velocity, acceleration and force signals, which were recorded by the 

sensors throughout the subjects’ walking experiment. The parameters computed from 

this data include the following spatio-temporal parameters: step count, mean step 

time, mean step length, mean step velocity, mean acceleration, standard deviation 

(STD) of step time, STD of step length, STD of step velocity, STD of acceleration, 

total timed up and go (TUG) time, total walk time, total turn time and cadence. The 

force sensors provided force, force difference between right and left force sensors and 

the correlation between right and left force sensors. 

Protocol 

The study was approved by the local institutional review board and all subjects signed an 

informed consent form. Each patient underwent a full neurological examination  and was 

rated using part III (motor examination) of the Unified PD rating scale (UPDRS, yielding a 

m-UPDRS score)  and the Hoehn and Yahr (HY) stage was determined. The presence of 

motor fluctuations and dyskinesia were specifically assessed and noted.     

All subjects underwent a TUG test while holding the instrumented walker: Subjects sat 

comfortably on a chair with no armrest and then spontaeously held on to the instrumented 

walker and stood up. The subjects then (holding the walker) walked at their natural speed 

straight ahead towards a cone positioned on the floor (3 meters away from the start line), 
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turned around the cone, walked back and then sat back down on the chair (still holding the 

walker). If a subject failed to perform the procedure correctly (e.g., due to poor understanding 

of the task or distraction), that trial was discarded and immediately repeated.  

 

Data collection 

Clinical data 

HYstage, motor UPDRS score and the presence of motor fluctuations or dyskinesia were 

assessed and logged. Complementing clinical data including  age at PD onset, disease 

duration and use of L-dihydroxyphenylalanine-(L-DOPA) in the medication regimen. Age 

and gender data were logged for all subjects.  

 

Extracting features from the signals 

Data analysis was performed on all the signals captured by the walkers' sensors. The 

preprocessing of the signals included noise and artifact removal, segmentation of the walking 

into strides in the straight-line walking and turning, and footfall detection (25). The signals 

were compressed into a set of mathematical variables, which represent the spatio-tempral 

parameters of gait, ie mean step time, mean step velocity. All these variables have been used 

in previous sensor-based studies on gait, and are easily interpreted into clinician observation 

of gait.  

Statistical analysis 

The study population represented 5 groups: PD patients according to HYstages  1-4  and 

healthy controls, which may be referred to as HY0, respecting the hierarchical order between 

groups. The analysis aimed to determine the importance of each feature extracted from the 

signals, in terms of its discrimination performance of the five groups.  
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The first task in this analysis was to find the features which provide the highest differences 

between the groups: HYstages 0 to 4. The Kruskal Wallis (“one-way ANOVA on ranks”) test 

was used to check for significant difference (p-value ≤ 0.05) between the five  groups, for 

each variable, where the variables included both the  demographic and clinical variables and 

the instrumented walker features.  

A flaw in the ANOVA analysis methods is that the their p-value is not indicative of the 

magnitude of the differences between the groups, nor does it indicate an overlap between the 

groups. The analysis was refined, using Confidence Intervals (CIs), to estimate the 

probability that the range of values for a specific feature in one group  does not overlap with 

the ranges of that feature in the other groups (26). Plotting the Confidence Intervals can 

provide a clear visual display of the overlaps and hence of the differences between multiple 

groups.  

The  difference between each pair of groups is based on the overlap of the two Confidence 

Intervals belonging to two groups and is calculated as follows: an overlap greater than 50% 

corresponds to no statistical significance of difference; less than 50% corresponds to a 95% 

statistical significance of difference and no overlap corresponds to a 99% statistical 

significance of the difference (27).   

Graphs of the CIs were plotted to illustrate the statistical differences between feature value 

ranges in the different HYgroups, and CI overlaps computed  

Both p-values and CI-overlap values were used as metrics to determine the importance of 

each feature exctracted from the walker signals. A ranking of the features according to these 

two measure was performed. The ranking indicates which features are most informative in 

providing HYgroup separability. 

https://www.statisticshowto.datasciencecentral.com/what-is-statistical-significance/
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Lastly, Pearson’s correlation was employed to map the correlations between all pairs of 

instrumented-walker features and demographic/clinical variables. This correlation data and 

the corresponding p-values and significance (P<0.05) were listed in a concluding table. 

Results 

The demographic and clinical characteristics of the study population are provided in Table 1. 

The demographic and/or clinical variables of the healthy controls (HYstage 0) and of the 

patients - HYstages 1 to 4 - are presented in the first five columns, respecvtively. The last 

column provides the p-values of the Kruskal Wallis test for each characteristic, for the five 

groups (HYstages 0 to 4). The table conveys that age, disease duration,  and the prevalence of 

L-dopa treatment and Motor fluctuations significantly increase with HYstage.  

Table 2 lists the features extracted from the instrumented walker signals in the 3 meter TUG 

test, in a format similar to Table 1: Mean and Standard deviation of the extracted features are 

presented, for the five HYgroups. The sixth displays the p-values of the Kruskal Wallis test 

for each feature, for the five groups (HYstages 0 to 4). 

Table 3 presents the pair-wise CI overlap percentages for the first six gait features in Table 2. 

Zero overlaps, corresponding to a 99% statistical significance of the difference are marked by 

two asterisks. Overlaps of less than 50%, corresponding to a 95% statistical significance of 

difference, are marked by one asterisk. All other entries have overlaps larger than 50%, 

corresponding to statistically insignificant ifference.  

The first three rows of table 3 indicate no statistical difference between the controls (HY 

stage 0) and HYstages 1 and 2 groups. The subsequent rows in the table demonstrate a 95% 

to 99% statistically significant difference between all other pairs of HYgroups, for all 

features.  

 A visual display of the CI analysis is presented in Figure 2. The six graphs in the figure 

correspond to the six features in Table 3.  The overlap or lack of overlap between groups can 
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be observed in this graphical representation, as well as the range of values for each feature 

and for each group. These figure conveys that the controls -HYstage 0 - and HYstage 1 

patients have a higher step velocity and a greater step length, lower step count, slower 

straight-line walking, shorter turning time and shorter total TUG time. HY stages 2,3 and 4 

demonstrate increasingly lower step velocity, smaller step length, higher step count and 

higher mean straight-line walking, turning and total TUG time in all six graphs of Figure 2. 

Patients with HYstage 4 differ significantly in all gait features from all other groups. 

Table 4 presents the correlations between the pairs of demographic/clinical variables, 

including the HYstage and the mUPDRS, and the gait features. The rows in the table are the 

demographic and clinical variables and the columns are the instrumented-walker features. 

Each cell contains the Peasrson’s correlation coefficient and p-value for a pair of 

demographic/clinical and instrumented-walker feature. Statistical significance is marked in 

bold numbers.  

PD duration is inversely correlated with mean step length (p=0.04) and mean step velocity 

(p=0.02) and is correlated with mean step count (p=0.03), TUG time (p=0.03) and TUG 

turning time (p=0.03). Mean TUG straight line walking time is not correlated to PD duration. 

TUG time, mean step count, mean step length and mean step velocity, show correlations to 

Levodopa dose, which are similar to the correlations of these features to PD duration:  

Levodopa dose is correlated with step count (p=0.03), TUG time (p=0.03) and inversely 

correlated with mean step velocity (p=0.005) and mean step length (p=0.008). Mean TUG 

straight line walking time is correlated to Levodopa dose (p=0.03), while mean TUG turning 

time was not. Dyskinesias are correlated with mean step length only (p=0.05). The mean of 

force difference between right and left force sensors is correlated with levodopa dose 

(p=0.006) and with motor fluctuations (p=0.03). 

Age was correlated with TUG time (0.006) and mean TUG straight line walking time 

(p=0.003). 
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From the two PD rating scales, mUPDRS is correlated with TUG straight line walking time 

(p=0.02) and with step count (p=0.03) and was inversely correlated with cadence (p=0.005), 

while HYstage is correlated with turning time (p<0.001), step count (p<0.001), TUG time 

(p<0.001) and walking time (p<0.001) and is inversely correlated with mean step velocity 

(p<0.001), and mean step length (p<0.001). 

 

Discussion  

The method proposed in this study provided automated discrimination of  five HY stage in 

PD, where previous studies aimed to distinguish between normal and impaired gait or to 

detect a specific symptom in PD gait, ie. Dyskinesia (21-24) and were not applied for disease 

severity or stage assessment. Importantly, the gait characteristics which were used in this five-

classes discrimination provide an easily-imterpretable, quantitative insight into gait change 

with disease progression. A modified HY scale was introduced by Hoehn and Yahr, which 

included contain additional “mid-scale” values of 1.5 and 2.5 (28). A five-stage scale is, 

however, still widely used in clinical practice. The experiment in the study included a ground 

truth of clinicians’ HY stage determination. This was conducted as a part of the regular 

clinical assessment during the patients’ visit at the hospital, as described in the Methods 

section. This shorter scale was thus the one used for the the study, aiming at a preliminary 

feasibility of multi-class discrimination.   

The discrimination between the healthy controls and the four HY stages, as provided by the 

gait features, was quantified using two statistical methods: The traditional correlation and p-

value and an augmented confidence intervals analysis. 

The correlations and p-values analysis indicated seven gait features which were significantly 

correlated to the HY stage (Table 2). This analysis could provide, however, only mean and 

standard deviation values of these gait features for the different HY groups. Moreover, the p-
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values are not indicative of the magnitude of the differences between the different HY groups, 

nor does it quantify the amount of overlap between the groups.  

The confidence intervals analysis method manifested both the range of gait feature values in 

each HY group and the amount of overlap between these groups (fig. 2 and Table 3). 

Additionally, the confidence intervals can be portrayed in a graph (fig. 2) and provide an 

intuitive, “at a glance” illustration of the differences between the groups, and of the 

discrimination power of each gait feature. Table 3 highlights the features that provided no 

overlap, reflecting 99% significance of difference, between the HY groups, and features that 

provided overlaps of less than 50%, reflecting 95% significance of difference between the 

groups. This analysis conveys that HY stages 3 and 4 were significantly different from each 

other and from the earlier stages (HY 1 and 2) and from the healthy controls, according to all 

six gait features. Not all the features were able to significantly discriminate the earlier stages, 

HY 1, 2, and the healthy controls. This information was not apparent in Table 2, where only 

p-values were computed, provided only average discrimination statistics. This highlights the 

importance of looking beyond p-values in discrimination problems of multiple classes.  

 As its widespread usage and prolific literature convey, the HY scale effectively identify and 

discriminate the stages of PD. The PD patients’ cohort in this study were labeled and grouped 

by their HY stage. The four groups (stages 1 to 4) were significantly different in terms of age, 

disease duration and L-dopa treatment prevalence (Table 1).  Similar to previous literature, 

however, the patients’ data in this study does not convey significant correlation of the HY 

grouping to clinically observed symptoms such as Motor fluctuations and Dyskinesia (29, 

30).     

The gait data acquired by the walker-mounted sensors provided insight into the features that 

could characterize observed symptoms and clinical information of the patients. Table 4 

portrays correlations between the sensor-acquired features and the clinical data, incorporating 

also the motor part of the UPDRS, Levodopa usage and dose, motor fluctuations and 

Dyskinesia. Each one of the six features that were indicated in Tables 2 and 3 were correlated 
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with some, but not all, of the clinical data: The total TUG time was correlated to subject age, 

PD duration, Levodopa dose, in addition to the strong correlation to the HY stage that was 

indicated in the previous analysis. These findings corroborate the efficacy of the TUG time in 

PD progression, as well as imply the ability of the walker-mounted sensors to accurately 

capture it automatically. The TUG walking trajectory incorporates, however, both straight 

line and turning walking phases. The separation of these two parts of the TUG and their 

quantification by the straight line walking time and turning time features yields additional 

information: the straight line walking time is significantly correlated with age and Levodopa 

dose whereas turning time is significantly correlated with PD duration. This finding may 

imply that the straight line walking time within the TUG is affected more by age and 

medication whereas turning time is more indicative on disease progression, as manifested in a 

patient’s gait. 

The sensor-acquired data enables a measurement and computation of step length, step count 

and step velocity statistics. PD duration is correlated with all three features.  

The m-UPDRS was correlated only with the straight line walking and the step count features. 

It was noted in previous studies (1) that these two scales, the HY amd m-UPDRS are not well 

correlated. The results corroborate this findings. 

Unlike previous studies (18-20), the current analysis considered only features which could be 

observed and related to the physical properties of the movement, and thus may provide an 

insight into the condition studied. Additionally this study focused an analysis of each gait 

feature separately. Each one of the features was separately considered and its relevance and 

contribution to the  discrimination of the five HYstages was quantified. This analysis 

therefore simplified the interpretation and makes it more useful clinically.  Table 4 shows, 

however, that additional features, such as cadence and imbalance in pressure on the walker’s 

handle sensors may be also manifested in PD progression. These features, however, do not 

show significant correlation to HY. Previous studies have indicated an enhanced performance 

of sensor-based gait features, when all features were jointly analyzed using machine learning. 
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An analysis of the full feature*-set will be performed when a larger sample is collected.  

All the above observations and interpretation are limited by the relatively small number of 

subjects, need to be validated by on a larger cohort. Particularly, more patients from HY 

stages 1 and 4 are needed to provide a balance dataset. The study is a preliminary one and the 

first to attempt to perform a 5-stage discrimination of PD using the automated frame method. 

Two statistical analysis methods were implemented in order to show which of the features 

measure by the device are adequate to imply a significant discrimination between the stages. 

The results in this preliminary study indicate a potential to provide insights into the 

manifestation of gait features in PD progression. In addition, the analysis method of 

confidence intervals overlaps employed in this study is indicated as a reliable and useful 

metric to convey discrimination between multiple groups.  

The present analysis was undertaken to provide insight into the manifestations of gait 

characteristics in PD stages. In this analysis we deviate from the use of complex 

features and machine learning (7, 9-16, 18-20, 22-24) and, with an integrated team of 

expert neurologists and engineers, investigate the task of discriminating 5-stages of 

PD severity, using only clinically-interpretable features (1-5) and explanatory 

statistical analysis (26, 27).  

This approach differs from earlier ones by the following traits: 1) Only features that 

could be clinically interpreted and used to characterize the symptoms observed by 

clinical experts were included in the analysis. 2) Among these features were 

parameters from turning segment of the walking test, whereas most previous sensor-

based methods focused on straight-line walking. 3) Each of these features was 

individually examined using statistical analysis and 4) This statistical analysis 

employed in addition to the traditionally-used one-way ANOVA, an extended 
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statistical analysis of confidence-intervals to better suit the more complex problem of 

multiple groups - the 5 Hoehn and Yahr stages . 

The results indicate that six of the gait parameters were able to provide a statistically 

significant discrimination of HY stages, as well as value ranges for each of the stages, 

as conveyed by Table 3 and Figure 2. Two of the parameters had 95%-99% in their 

discrimination between all the pairs of PD stages, one yielded 95%-99% 

discrimination significance for all pairs except the pair of HC and HY1, and the other 

three yielded 95%-99% discrimination significance for all pairs except HC-HY1, HC-

HY2 and HY1-HY2. All six parameters were affirmed by the healthcare professionals 

as relevant to their clinical observations of gait and to their manifestation in the 

observation-based determination of the HY stage. Moreover, the discrimination of HC 

from the first stages of the disease, based on gait only, was clinically observed as 

challenging using traditional observation methods (1-4).     

Our method thus quantifies gait parameters which are routinely observed by 

healthcare professionals in clinical procedures, and the relationship between disease 

progression and the degradation in this gait parameters values and thus provides an 

improved insight into PD manifestation in gait compared to the aforementioned 

studies.  

The prediction power of the six gait features that provided the strongest 

discrimination between all PD stage groups will be further explored and generalized 

in future studies employing larger cohorts of patients.   

Therefore, although the data size is small, the results convey high statistical 

significance, implying that the recorded gait parameters and their correlation with HY 
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stages can be used for the discrimination/prediction of HY stages in PD. These results 

should be validated on a larger cohort of patients. Our findings, however, provide a 

clinical value of these gait parameters, which is superior to other previously reported 

methods by introducing only clinically-interpretable parameters, explainable 

statistical analysis and a capability to discriminate 5 stages of disease severity.  

Conclusion 

The feasibility of PD stage discrimination by a simple and low cost walker-mounted sensors 

method may offer a potential in rapid, labor-saving screening in the follow up of PD patients, 

both in clinics and remotely . This automated method can update the patient status on a 

regular basis and provide warning of deterioration.  
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Figure 1: An illustration of the exo-body instrumented walker. The location of the 

encoders in the wheels, the pressure sensors in the hand grips and the accelerometer 

in the control box are marked on the figure.  
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Figure 2: Confidence Interval graphs of six instrumented gait features, for the five 

different HYgroups. 
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Table 1: Demographic and clinical characteristics of the five HYGroups 

and p-values representing the Kruskal-Wallis analyses of the 5 groups.  

 

  

 
HY0 

(control) 
HY1 HY2 HY3 HY4 p-value 

Number of subjects 24 7 23 29 6  

Males (%) 10 (42) 5 (71) 17 (74) 19 (66) 3 (50) 0.270 

Age in years 62.2 ± 13.3 59.4 ± 13.8 65.3 ± 10.3 70.0 ± 8.1 76.3± 6.5 0.001 

Disease duration (years) NA 3.1 ± 2.1 8.2±4.4 8.8±4.4 11.8±5.0 0.003 

L-dopa treated (%) NA 2 (29) 14 (61) 26 (90) 5 (83) 0.003 
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Table 2: Mean and Standard deviation of the features extracted in the instrumented 

walker 3 meter TUG test. The first five columns provide Mean ± Standard deviation 

values for the five HYgroups and the sixth displays the computed ANOVA p-value 

of the difference between the groups’ means.  

Abbr

eviat

ion: s 

= 

seco

nds; 

std = 

stand

ard 

devia

tion; 

m = 

mete

r; 

m/s 

= 

mete

r per 

seco

nd; 

N= 

Newt

ons 

  

 HY0 

(control) 

HY1 HY2 HY3 HY4 p-value 

Total TUG 

time (s) 

12.7 ± 4.2 11.7 ± 4.5 12.6 ± 4.0 19.9 ± 7.0 26.1 ± 12.8 <0.001 

Straight-

line walking 

time (s) 

8.7 ± 3.7 8.6 ± 4.2 11.0 ± 3.9 13.3 ± 5.6 17.9 ± 10.9 <0.001 

Turning 

Time (s) 

4.9 ± 2.4 3.2 ± 0.7 3.9 ± 1.3 7.2 ± 2.0 8.9 ± 3.7 <0.001 

Mean step 

length (m) 

0.5 ± 0.1 0.5 ± 0.2 0.4 ± 0.1 0.3 ± 0.1 0.2 ±0.06 <0.001 

Mean step 

count (n) 

14.0 ± 5.8 15.0 ± 6.3 17.0 ± 6.6 22.0 ± 10.0 47.0 ± 18.2 <0.001 

Mean step 

velocity 

(m/s) 

0.6 ± 0.2 0.7 ± 0.2 0.5 ± 0.15 0.4 ± 0.1 0.3 ± 0.09 <0.001 

Step length 

variability 

(m) 

0.7 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 0.8 ± 0.3 0.6 ± 0.2 0.03 

Mean 

acceleration 

(m/s
2
) 

0.03 ± 0.05 0.03 ± 0.04 0.03 ± 0.03 0.01 ± 0.03 0.01 ± 0.02 0.73 

Step 

velocity 

variability  

(m/s) 

0.3 ± 0.09 0.2 ± 0.06 0.3 ± 0.08 0.3 ± 0.09 0.3 ± 2.0 0.32 

Step time 

(s) 

0.7 ± 0.1 0.6 ± 0.02 0.7 ± 0.3 0.7 ± 0.07 0.7 ± 0.02 0.46 

Step time 

variability 

(s) 

0.3 ± 0.2 0.2 ± 0.03 0.4 ± 0.3 0.3 ± 0.2 0.4 ± 0.05 0.51 

Cadence  

(step/sec) 

100.7 ± 9.6 107.1 ± 9.9 100.0 ± 8.8 98.2 ± 7.2 18.5 ± 3.1 0.25 

Force 

sensor 

asymmetry  

(N) 

30.1 ± 16.8 23.8 ± 6.0 32.8 ± 16.1 28.0 ± 17.8 23.8 ± 20.6 0.58 

Force 

sensor 

asymmetry 

variability 

(N) 

0.9 ± 0.2 0.9 ± 0.2 0.8 ± 0.2 0.9 ± 0.20 1.0 ± 0.1 0.305 
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Table 3:  The overlap of Confidence Interval (CI), in percentage, for the Hoehn and Yahr 

(HY) and healthy controls (HC) group pairs. Overlaps of less than 50% are marked by one 

asterisk and reflect 95% significance of difference between the groups. No overlap (0%) 

reflect 99% significance of difference between the groups. 

 

 

 

 

 

 

  
          Feature      

Group Pair 

Turning 

Time (s) 

Step 

Velocity 

(m/s) 

Step 

Length 

(m) 

Straight 

Line 

walk 

time (s) 

Step 

count 

TUG 

time (s) 

HC -   HY1   0** 19* 73 96 84 46 

HC -   HY2   21* 28* 36* 83 77 92 

HY1 - HY2   0** 0** 8* 75 91 71 

HC  -  HY3   0** 0** 0** 0** 0** 0** 

HC   - HY4   0** 0** 0** 0** 0** 0** 

HY1 - HY3   0** 0** 0** 0** 0** 0** 

HY 1- HY4   0** 0** 0** 0** 0** 0** 

HY 2- HY3   0** 0** 0** 31* 13* 0** 

HY 2- HY4   0** 0** 0** 0** 0** 0** 

HY 3- HY4   33* 0** 0** 0** 0** 0** 
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Abbreviations: TUG – timed up & go; HC – healthy controls; HY – Hoehn and Yahr stage 

 Overlap corresponds to a 95% statistical significance of difference  

**   Overlap corresponds to a 99% statistical significance of difference 
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Table 4: Pearson’s correlation r-values and p-values (in parenthesis) between sensor-acquired gait 

features extracted from the 3m TUG, and clinical data and observations.  Statistically significant values 

(95% confidence) are marked in bold font.  † The straight-line walking time is the time taken to 

complete the TUG excluding turning time. 
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S
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p
 t
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e
 v

a
r
ia

b
il

it
y

 (
s)

 

M
e
a

n
 s

te
p

 t
im

e
 (

s)
 

Age  0,349 

(0,006) 

0,378 

(0,003) 

0,214 

(0,10) 

-0,155 

(0,23) 

0,201 

(0,12) 

-0,126 

(0,33) 

-0,03 

(0,82) 

0,001 

(0,99) 

0.03 

(0.79) 

-0,082 

(0,53) 

0,056 

(0,67) 

0.067 

(0.54) 

0,078 

(0,55) 

-0,002 

(0,99) 

PD 

Duratio

n  

0,274 

(0,03) 

0,196 

(0,13) 
0,275 

(0,03) 

-0,264 

(0,04) 

0,376 

(0,003) 

-0,3  

(0,02) 

-0,113 

(0,39) 

0,153 

(0,24) 

0.15 

(0.24) 

-0,027 

(0,84) 

0,121 

(0,35) 

-0.03 

(0.76) 

0,12 

(0,36) 

0,092 

(0,48) 

L-dopa 

dose 

0,275 

(0,03) 

0,28 

(0,03) 

0,187 

(0,15) 

-0,337 

(0,008) 

0,274 

(0,03) 

-0,354 

(0,005) 

-0,16 

(0,22) 

0,193 

(0,14) 

0.34 

(0.006) 

0,055 

(0,67) 

0,026 

(0,84) 

-0.15 

(0.22) 

-0,021 

(0,87) 

-0,062 

(0,64) 

m-

UPDRS 

0,291 

(0,09) 
0,381 

(0,02) 

0,246 

(0,15) 

-0,101 

(0,56) 
0,37 

(0,03) 

-0,114 

(0,51) 
-0,468 

(0,005) 

0,231 

(0,18) 

0.24 

(0.17) 

0,13 

(0,46) 

0,156 

(0,37) 

-0.14 

(0.44) 

0,169 

(0,33) 

0,226 

(0,19) 

HY 

stage 

0,597 

(<0.001) 

0,525 

(<0.001) 

0,495 

(<0.001) 

-0,575 

(<0.001) 

0,504 

(<0.001) 

-0,632 

(<0.001) 

-0,291 

(0,20) 

0,187 

(0,15) 

0.04 

(0.71) 

0,245 

(0,06) 

0,238 

(0,06) 

0.11 

(0.29) 

0,173 

(0,18) 

0,068 

(0,60) 

Abbreviations: TUG = Timed Up and Go; PD = Parkinson’s disease;  m-UPDRS = motor Unified 

Parkinson’s disease Rating Scale. 

 


