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Abstract Automated lip reading from videos re-

quires lip segmentation. Threshold-based segmentation

is straightforward, but it is rarely used. This study pro-

poses a histogram threshold based on the feedback of

shape information. Both good and bad lip segmenta-

tion examples were used to train an ε-support vec-

tor regression model to infer the segmentation accu-

racy from the region shape. The histogram thresh-

old was optimised to minimise the segmentation error.

The proposed method was tested on 895 images from

112 subjects using the AR Face Database. The pro-

posed method, implemented in simple segmentation al-

gorithms, reduced segmentation errors by 23.1%.
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1 Introduction

The shape and movement of human lips convey valu-

able visual information for automatic lip reading, emo-

tion recognition, biometric speaker identification, and

virtual face animation. Extraction of accurate visual in-

formation from the lips typically involves three stages:

face detection; location of the region of interest; and lip

segmentation.

Recent lip segmentation techniques employed ma-

chine learning and deep learning, demonstrating seg-

mentation accuracies around 98% [1–4]. Deep learning

methods are inherently computationally intensive, com-

pared to colour-based segmentation. The low complex-

ity of colour-based segmentation has resulted in a re-

newed interest [5].

Colour-based segmentation techniques alone are

prone to false contour detection, due to low chromatic

and luminance contrast between lips and skin [6].

Model-based segmentation techniques use previous

knowledge of lip shape to construct a lip model by it-

eratively matching to an image and minimising a cost

function. While usually invariant to translation, rota-

tion, scale, and illumination, these techniques remain

susceptible to variations in speaker appearance [7, 8].

Optimisation is also computationally expensive and it

is affected by real-time performance [9].

Hybrid segmentation techniques combine elements

from colour- and model-based categories [9]. They at-

tempt to reduce the computational burden of model-

based techniques by first obtaining a rough estimate
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using colour-based techniques, and then fitting a lip

shape model (LSM) [10].

This study proposes a a hybrid algorithm, referred

to as shape-based adaptive thresholding (SAT). SAT

acts as an extension to colour-based lip segmentation.

The new algorithm constructs a model for the segmen-

tation errors, rather than for the lip contours, and em-

ploys support vector regression (SVR) that uses this

model to guide threshold selection.

2 Methods

The algorithm consists of two stages, both of which

were implemented using MATLAB R© (The MathWorks,

Inc., Natick, MA, USA). The first stage is a one-time

pre-training, displayed in Figure 1. The training is per-

formed on a set of segmented-lips image pairs. One im-

age in the pair contains the lips contours estimated by

a colour-based lip-segmentation algorithm. The second

image contains the ground-truth lips contours, which

is usually a manually-marked outline. All images are

binary, where the mouth region is white. The train-

ing produces a mapping of the image-pairs unto a seg-

mentation errors graph. The graph includes a user-

selected boundary line that separates the successful-

segmentations region from the unsuccessful one. The

second stage is an optimisation process, shown in Fig-

ure 2. Its inputs are the segmentation errors graph

that was trained at stage 1 and a binary image af-

ter colour-based lip-segmentation. The algorithm in-

fers the segmentation error of the input image using

the segmentation-errors graph. If the segmentation er-

ror resides in the successful-segmentations region, the

lips-contour estimation is accepted. If the segmentation

error resides in the successful-segmentations region, the

algorithm searches for a new threshold. The optimisa-

tion process iteratively employs the new threshold in

the colour-based segmentation, infers the segmentation

error, and searches for a minimum error.

2.1 Training of the segmentation error model

During stage 1, augmentation was employed by per-

forming the threshold-based segmentation four times

for each image in the training set. The four runs used

four different thresholds and thus provided a larger

training set and a wider range of performance. Each

image was paired with a ground truth image for the

lips contour. All images were coded into binary im-

ages containing the lip region in white and the skin

region in black. A segmentation error was calculated

for each input pair, between the threshold-estimated

image and its ground truth image. The segmentation

error values for the training set pairs were divided into

three classes of perfect, good and bad segmentation re-

gions. The threshold value between these regions could

be arbitrarily set. The abels attached to the threshold-

estimated images were “perfect”, “good” and “bad”.

Fourteen geometric features are extracted from the

threshold-estimated images. Feature normalisation was

performed to account for size and distance attribute

which may be dependant on the physical characteris-

tics of the subject, the proximity to the camera, and the

zoom of the camera. These attributes were normalised

using reference quantities. The features and their nor-

malisation references are listed in Table 1. All features

were centred and scaled by calculating their z-score.

Linear discriminant analysis was used to reduce the fea-

Table 1 Features extracted from each IMAGE and

their corresponding normalisation references.

Mouth shape feature Reference

Area IMAGE area
Perimeter IMAGE perimeter
Centroid horizontal axis IMAGE width
Centroid vertical axis IMAGE height
Major axis length IMAGE diagonal
Minor axis length IMAGE diagonal
Bounding box horizontal axis IMAGE width
Bounding box vertical axis IMAGE height
Width IMAGE width
Height IMAGE height
Distance transform mean IMAGE diagonal
Distance transform STD IMAGE diagonal
Eccentricity centre of IMAGE
Orientation horizontal line

ture set from the three classes into two eigenvectors.

An ε-SVR model was trained on the datasets of

2-dimensional eigenvectors to estimate the segmenta-

tion error [11]. A radial basis function kernel was used,

as well as the LIBSVM library [12]. To prevent over-

fitting of the model to the training data, a 10-fold

cross-validation was performed, using the mean square

error measure. The model parameters C and γ were

optimised using a grid search approach with cross-

validation [13].

2.2 Adaptive thresholding

The second stage was performed to optimise the seg-

mentation thresholds. The input photos were subjected

to colour-based thresholding. Feature extraction and

reduction was performed on each image, after which
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Fig. 1 Algorithm stage 1: Training of the segmentation error model.

Fig. 2 Algorithm stage 2: Adaptive thresholding.

segmentation errors (SE) were inferred using the seg-

mentation error model from stage 1. The inferred SE

were compared to a segmentation criterion. If the in-

ferred SE was lower than the SE criterion boundary,

the candidate region was accepted and became the out-

put segmentation. If the inferred SE was above the SE

criterion boundary, the candidate segmentation was re-

jected and the thresholding was redone.

An optimisation objective function was defined by

the thresholding and all subsequent image-processing

steps performed during this stage. The objective func-

tion was minimised using Direct Search. A set of points

was polled around a current threshold [14]. If and only

if the poll was successful, i.e., the objective function

had a new value less than the previous step, the cur-

rent threshold would replace the previous.

2.3 Evaluation

We used automatic histogram thresholding for the

colour-based segmentation [10], which employed Otsu’s

discriminant, a nonparametric and unsupervised max-

imisation of the separability of the lip-pixels and non-lip

pixels [15]. The dataset to train and test our algorithm

included 895 images of 112 different subjects, from the

AR Face Database [16] and their corresponding ground-

truth images [17]. The ground truth had been obtained

from manual markings of the lip contours by three inde-

pendent human judges [17]. The markings of the outer

lip contours included 20 points, while the markings of

the inner lip contours included only 8. In this study, we

concentrated on the outer lip markings. The markings

of the outer lips were interpolated and coded into a bi-

nary image similar to the outputs of the thresholding

algorithm.

The 112 database subjects were randomly divided

into two groups: 60% in the training group, and 40% in

the test group. The training dataset included 544 im-

ages and the test dataset included 351 images, from the

subjects in the training group and test group, respec-

tively.

The performance of the algorithm was evaluated

using two analyses: SE interference performance and

threshold optimisation performance. SE inference per-

formance examined the reliability of the SE model, the

output of stage 1. The accuracy of identifying poor seg-

mentations for different criteria was quantified using re-

ceiver operating characteristic (ROC) curves. The ROC

curves depicted the true positive (correctly accepted)

segmentations rate vs. the false positive (incorrectly ac-

cepted) rate of the images in the test set. The true pos-

itive rate is defined as TP/(TP+FN), the false positive

rate by FP/(TN+FP), in which FN is the number of

lip pixels classified as skin pixels, FP is the number of

skin pixels classified as lip pixels, TN is the number of

skin pixels classified as skin pixels, TP is the number

of lip pixels classified as lip pixels. Precision and recall

were computed for each criterion.
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Threshold optimisation performance examined the

accuracy of the adaptive threshold. The criterion that

produced the best trade-off between precision and recall

was selected and employed. The algorithm performance

was quantified for the 351 test images using two metrics:

the segmentation error

SE =
FP + FN

2 × (TP + FN)
× 100% (1)

and the overlap

OL =
2 × TP

TP + TN + FP + FN
× 100%. (2)

SE yields the difference, in number of pixels, be-

tween the actual and ground-truth images, relative to

the number of lip pixels in the ground-truth area [16].

OL is the percentage overlap between the segmented

lip region and ground-truth lip contour. Perfect lip seg-

mentation thus returns OL = 100% and SE = 0%.

3 Results and Discussion

Figure 3 illustrates the optimisation process. This ex-

Fig. 3 An example of SE inferred and corresponding

thresholds used, for 17 consecutive polls. Two successful

polls are highlighted by a green ◦. The contours com-

puted after segmentation of polls 1–10 are represented

by green lines, superimposed on the original lip photo.

ample was chosen since the image is a challenging one,

with facial hair, low contrast between lips and skin, and

low illumination. The initial threshold segmentation at

poll 1 had an SE of 44.8% and an inferred SE of 26.1%,

qualifying it for optimisation according to the segmen-

tation integrity criterion. At poll 2, the threshold was

increased from 0.31 to 0.56, which resulted in the ex-

clusion of part of the mouth after segmentation. This

stringent threshold resulted in a high number of false

negative lip pixels. The inferred SE improved decreased

from 26.1% at poll 1 to 19.8%, corresponding to a suc-

cessful poll. At poll 3, the threshold decreases back to

0.31, the inferred SE increased from 19.8% to 26.1%,

indicating an unsuccessful poll. At poll 4, the threshold

was set at 0.435, and the inferred SE dropped to 3.49%,

corresponding to a successful poll. The segmentation

image of poll (4) closely follows the lower lip contour

and has minor deviations from the upper lip contour.

From poll 5 on, the inferred SE of 3.49% from poll 4 did

not decrease; thus the threshold of 0.435 was selected

as final threshold value. The actual SE at poll (4) is

8.5%, which indicates a decrease of 81% compared to

the initial SE of 44.8%

Figure 4 shows four typical examples of photos that

were selected for optimisation and decreased their SE

after the optimised threshold selection. The optimised

threshold visibly shows better matches of the outer lip

contours than colour-based segmentation alone.

Fig. 4 Four typical examples of color-based segmenta-

tion (a) and optimised segmentation using the segmen-

tation error model (b). The contours computed after

segmentation are represented by green lines, superim-

posed on the original lip photos.

Figure 5 presents the ROC of the performance of

all test images in stage 1 and three subsets thereof.

The area under curve of 0.86 of all data demonstrates
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good performance. True positive rates of 0.7 and less

were correlated to low false positive rates of 0.2 and

less. The subsets depict higher true positive rates cor-

relating to these low positive rates. A tradeoff integrity

Fig. 5 ROC curves of all test images in stage 1 (a) and

of three subsets of test images (b). The blue line rep-

resents all test images (AOC=0.86), the red line rep-

resents test images with SE between 10% and 15%

(AOC=0.83), the yellow line represents test images

with SE between 15% and 20% (AOC=0.87), and the

purple line represents test images with SE greater than

20% (AOC=1.00).

criterion of 10% resulted in the performance depicted

in the confusion matrix of Table 2. The matrix reveals

that the SE inference failed to accept 28.4% of the im-

ages and accepted only 2.35% of the images that needed

to be optimised. These properties are reflected in the

performance metrics for this matrix, of 88.3% recall and

37.9% precision.

Table 2 SE inference confusion matrix of an SE deci-
sion boundary of 10%.

Inferred pass Inferred fail

Actual pass 51.9% 28.4%
Actual fail 2.3% 17.4%

The performance of the algorithm compared to

colour-based thresholding alone is presented in Table 3.

The table shows that without exception, the algorithm

decreased SE and increased OL compared to colour-

based segmentation alone. Especially the regimes of

SE<5% and OL>95% demonstrate a drastic increase

of the number images after running the algorithm.

The average SE of the baseline algorithm was re-

duced by 15.1% for the entire test set, and by 23.1%

for the subset of images that were selected for opti-

misation by the segmentation integrity criterion. The

difference stems from the fact that the full test set

contains images that need no optimisation and their

Table 3 Cumulative frequency table containing SE cu-

mulative distribution values and OL cumulative distri-

bution values.

SE range Thresholded (%) Optimised (%)

< 5% 11.3 27.4
< 10% 61.0 73.8
< 15% 86.3 90.5
< 20% 92.9 96.4

OL range Thresholded (%) Optimised (%)

> 95% 8.9 24.4
> 90% 56.0 75.0
> 85% 82.7 90.5
> 80% 91.1 95.8

SE therefore did not change. A trade-off is involved in

selecting the segmentation integrity criteria. The 10%

criterion used in this study provided a recall of 88.3%,

indicating a miss rate of 11.7%. This resulted in poor

segmentations that did not continue to the optimisation

stage, and hence did not improve by the optimisation.

This miss-detection impacted the average accuracy of

our algorithm. The partial ROC curves imply that the

very poor segmentations, SE of 20% or more reidenti-

fied better than the moderately-poor segmentations of

15% and less. The precision of the acceptance criteria

yielded that 37.9% of the images selected for optimisa-

tion actually need optimisation. This low precision does

not necessarily reduce the accuracy of the algorithm,

since unnecessary optimisations may even improve seg-

mentation accuracy. The low precision does, however,

incur a computational cost due to good segmentations

undergoing unnecessary optimisation.

Our examples hint that our algorithm may be par-

ticularly efficient for images that present challenging

conditions: facial hair, low contrast between lips and

skin, and inconsistent illumination.

The proposed algorithm can be grouped under the

hybrid colour-based and shape-based segmentation al-

gorithms. The segmentation error model and the in-

ferred segmentation error computation essentially use

shape features. Comparison to previous hybrid segmen-

tation and to machine learning lip segmentation al-

gorithms is challenging. Different algorithms were em-

ployed on different image datasets, used different pre-

processing and in some cases used different performance

metrics. The average SE and OL of our algorithm for

the subset of images selected for optimisation were

6.50% and 93.5%, respectively. These values are higher

than the results of the hybrid approach published in

[9] of 14.0% and 87.2%, respectively, and the results

published in [6] of 8.40% and 90.80%, respectively.
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The algorithm proposed in this study selected a new

threshold for a colour-based discrimination of the lips

from the skin area through minimisation of segmenta-

tion error. It trained a segmentation error model from a

training set of labelled images and provides an inferred

segmentation error for unlabelled images. A segmenta-

tion integrity criterion was imposed on the inferred SE

and either accepted the colour-based segmentation or

proceeded to new threshold selection. The current study

evaluated the algorithm’s performance in comparison to

colour-based segmentation alone. Our algorithm might

thus serve as an extension to any colour-based segmen-

tation method.

4 Conclusions

An algorithm was designed to improve the segmenta-

tion accuracy of colour-based lip segmentation. The re-

sults portrayed a significant improvement in both seg-

mentation error and overlap. It has been proven effec-

tive in challenging mouth image conditions including

facial hair obscuring the lips, and low contrast between

the lips and skin. The simplicity of the algorithm might

enable fast computing for real-time applications.
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