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FINITE STATE N-AGENT AND MEAN FIELD CONTROL

PROBLEMS∗,∗∗

Alekos Cecchin***

Abstract. We examine mean field control problems on a finite state space, in continuous time and
over a finite time horizon. We characterize the value function of the mean field control problem as
the unique viscosity solution of a Hamilton-Jacobi-Bellman equation in the simplex. In absence of any
convexity assumption, we exploit this characterization to prove convergence, as N grows, of the value
functions of the centralized N -agent optimal control problem to the limit mean field control problem
value function, with a convergence rate of order 1√

N
. Then, assuming convexity, we show that the limit

value function is smooth and establish propagation of chaos, i.e. convergence of the N -agent optimal
trajectories to the unique limiting optimal trajectory, with an explicit rate.
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1. Introduction

Mean field control problems (MFCP), also called control of McKean-Vlasov equations, can be interpreted
as limit of cooperative N -agent games, as the number of players tends to infinity. Such agents have a common
cost to minimize and the minimizers are also called Pareto equilibria; alternatively, we could think of a social
planner that minimizes an average cost.

We investigate N -agent optimization and mean field control problems in continuous time over a finite
time horizon, with dynamics belonging to a finite state space {1, . . . , d}. More precisely, the N agents
X = (X1, . . . , XN ) follow the dynamics

P(Xk
t+h = j|Xt = x) = Qxk,j(t, βk(t,x), µNx )h+ o(h),
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2 A. CECCHIN

where µN is the empirical measure and the controls (here in feedback form) β = (β1, . . . , βN ) are chosen in
order to minimize the common cost

JN (β) :=
1

N

N∑
k=1

E

[∫ T

0

f(t,Xk
t , βk(t,Xt), µ

N
t )dt+ g(Xk

T , µ
N
T )

]
.

Assuming that controls depend only on the empirical measure, the usual propagation of chaos arguments suggest
that the limit of this N -agent optimization, as N grows, consists in a single player which evolves according to

P(Xt+h = j|Xt = i) = Qi,j(t, α
i(t),Law(Xt))h+ o(h)

and aims at minimizing

J(α) := E

[∫ T

0

f(t,Xt, α(t,Xt),Law(Xt))dt+ g(XT ,Law(XT ))

]
.

Our goal is to study in detail the N -agent optimization and the mean field control problem and thus prove
convergence of the former to the latter, the main result being to provide an explicit convergence rate.

Such problems are studied so far mainly for continuous state space and diffusion-based dynamics. In such
situation, the limiting MFCP can be analyzed in two different ways, by considering either open-loop or (Marko-
vian) feedback controls. In the first case, a version of the Pontryagin principle is derived in [11], which leads
to study a forward-backward system of (Itô-type) SDEs of McKean-Vlasov type. While the case of feedback
controls is analyzed in [34, 35], where the MFCP is reformulated in a deterministic way as the optimal control
of the Fokker-Planck equation, which permits to derive a dynamic programming principle and then a Hamilton-
Jacobi-Bellman (HJB) equation for the value function, written in the Wasserstain space of probability measures.
See also [5, 31] for previous ideas in this direction and [4, 21] for more general versions of the dynamic pro-
gramming principle. We refer to Chapter 6 of [12] for a comparison of the two approaches. Mean field control
problems arise also in the study of potential mean field games, see e.g. [6, 10], where it is shown that the mean
field game system represents the necessary conditions for optimality of a suitable mean filed control problem.

The question of convergence of the N -agent optimization to the MFCP, still in the diffusion setting, has been
analyzed mainly in two ways. The first consists in showing that the set of (relaxed open-loop) optimizers of the
N -agent optimization is precompact and then that the limit points are supported on optimizers of the MFCP.
We remark that the optimizer is non-unique in general, but is unique under additional convexity assumptions;
we return to this point below. This strategy is employed first in [29], then in [25] for deterministic dynamics and,
more recently, in [22] for more general dynamics with a common noise and in [20] for problems with interaction
also through the law of the control. Clearly, a convergence rate for the convergence of the value functions can not
be proved using compactness arguments. The other way is to prove convergence via the system of FBSDEs, in
case the limit solution is unique. In [11], the value functions are shown to converge, with a suitable convergence
rate, assuming that the cost f is convex in (a, x,m) and g is convex in (x,m); see also Section 6.1.3 of [13].
Moreover, a propagation of chaos property is also proved, i.e. the prelimit (unique) optimal trajectories are
shown to converge to the (unique) limit optimal trajectory, with a convergence rate (actually, such result is
not stated in this way, but can be immediately derived from the proof of Theorem 6.1 therein). More recently,
this method has been applied to problems with interaction through the law of the control in [32]. In both
cases, as a consequence of the convergence of the value functions, an optimal control for the MFCP is shown
to be εN -optimal for the N -agent optimization, with limN εN = 0, with the same limitations just explained (no
convergence rate in the first case and convexity required in the second).

Here, in the finite state setting, we first analyze the MFCP with feedback controls. We rewrite it as a
deterministic control problem for the Fokker-Planck equation and show that its value function V is the unique
viscosity solution of the corresponding HJB equation, stated in the d-dimensional simplex. Then we examine
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the convergence problem: we stress that convergence can be understood both in terms of value functions and
of optimal trajectories. Our main result is to show that the value function V N of the N -agent optimization
converges to V , with a convergence rate of order 1/

√
N , in absence of any convexity assumption. As explained

above, a result of this type is not available for diffusion-based models. As a consequence of this convergence,
we also prove that any optimal control for the MFCP is C√

N
-optimal for the N -agent optimization. A similar

result is proved also in [27] with different methods and without interpreting the prelimit model as a N -agent
optimization; see Remark 2.12 for the details. In the discrete time setting, the MFCP and the related convergence
of the N agent are investigated in full generality in [33].

Our main novelty consists in the method of the proof of the main result, which is different with respect to the
two explained above and we believe can be of interest. This is based on the viscosity solution characterization
of V : indeed, we will see that the ODE satisfied by V N can be seen as a finite difference scheme for the HJB
equation satisfied by V . Notably, V is not differentiable as we do not assume any convexity of the costs, neither
in a nor in m. Finite difference schemes for viscosity solutions have been investigated by many authors in the
last decades. Being impossible to give a complete bibliography on the subject, we would like to mention two
papers which inspired our proof of convergence and that established, in particular, a rate of convergence. The
first is [8], which studied a semidiscrete approximation scheme for the HJB equation of infinite horizon control
problem with discount; see also the book ([1], Sect. VI.1). While the second is [38], which analyzed a finite
difference scheme for a general time-dependent Hamilton-Jacobi equation; see also [18].

We also study the propagation of chaos property for the optimal trajectories, in case the limit is unique.
If the value function V is sufficiently smooth, i.e. in C1,1, then the MFCP is uniquely solvable and we prove
that the prelimit (unique) optimal empirical measures converge to the limit deterministic optimal flow, with a
suitable convergence rate. We give also sufficient conditions for which V ∈ C1,1: these are the standard convexity
assumptions. We remark that also these smoothness and propagation of chaos results seem to be new in the
study of MFCP. Moreover, it is worth saying that we do not treat here neither problems with a common noise
nor with interaction through the law of the control; these are left to future work.

Finally, we mention that convergence results have been obtained also for the opposite regime of mean field
games. In that case, players are non-cooperative in the prelimit N -player game and the notion of optimality is
that of Nash equilibrium, which highly depends on the set of admissible startegies that is considered. This makes
the convergence analysis more difficult, expecially in case limiting mean field game solutions are non-unique;
some references are [9, 19, 23, 28, 30] for diffusion-based models and [2, 3, 14, 17, 26] for finite state space.

The rest of the paper is organized as follows. In Section 2, we collect our main results: after introducing
the notations and assumptions that will be in force, we define properly the N -agent optimization and show the
equivalence with the mean field formulation, then we present the MFCP with its well-posedness result (Thm. 2.9)
and thus we state the convergence theorems. In Section 3, we examine the MFCP and prove first well-posedness
of viscosity solutions and then, under additional convexity assunptions, well-posedness of classical solutions.
Notably, we establish a comparison principle (Thm. 3.4) for viscosity solutions on the interior of the simplex –
without boundary conditions, by exploiting the invariance of the domain–, which is a new result in the theory.
Finally, Section 4 contains the proofs of the convergence results (Thms. 2.10 and 2.13): first the convergence of
the value functions via viscosity solutions and then, assuming V ∈ C1,1, the propagation of chaos property.

2. Main results

2.1. Notation

We denote JdK = {1, . . . , d} and let

Sd :=

{
(m1, . . . ,md) ∈ Rd : mi ≥ 0 ∀i ∈ JdK,

d∑
i=1

mi = 1

}
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be the (d− 1)-dimensional simplex, endowed with the euclidean norm | · | in Rd. We denote by 〈·, ·〉 the scalar
product in Rd and, for a matrix (Qi,j)i,j∈JdK, we let Qi,• be the row i. We denote the elements of the simplex
by m, while µ denotes processes with values in the simplex.

The simplex can be viewed as a subset of Rd−1, by expressing the last coordinate as md = 1 −
∑d−1
j=1 mj :

denote then

Ŝd :=

{
(x1, . . . , xd−1) ∈ Rd−1 : xj ≥ 0 ∀j = 1, . . . , d− 1,

d−1∑
j=1

xj ≤ 1

}
.

We express the simplex using the particular local chart (m1, . . . ,md−1,md) = (x1, . . . , xd−1, 1−
∑d−1
j=1 xj). Let

Int(Ŝd) be the interior of Ŝd in Rd−1; when we refer to the interior of simplex, denoted by Int(Sd), we mean

the image of Int(Ŝd) under the above chart. via the above local chart, a function v defined on the simplex is

equivalently written as a function v̂ defined on Ŝd. Thus we say that v ∈ C1(Sd) if v̂ ∈ C1(Ŝd), meaning that

v̂ ∈ C1(Int(Ŝd)) with derivatives that extend continuously up to the boundary. In the interior of the simplex,
derivatives are allowed only along directions (δj − δi)i,j∈JdK, which are denoted as ∂mj−miv(m); we define the
vector

Div(m) := (∂mj−mi
v(m))j∈JdK.

Note that this is indeed a vector in Rd−1 since Di
iv(m) = 0. The derivatives of v̂ : Ŝd → R are denoted by

Dxv̂(x) = (∂xj v̂(x))d−1
j=1 , with the obvious identity ∂xj v̂(x) = ∂mj−md

v(m), ∀j ∈ Jd − 1K, if x represents m in

local chart. Let C1,1(Sd) be the set of v ∈ C1(Sd) whose derivative Dxv̂ is Lipschitz-continuous, globally in Sd.
For x = (x1, . . . , xN ) ∈ JdKN , denote the empirical measure

µNx :=
1

N

N∑
k=1

δxk
, that is µNx [i] =

1

N

N∑
k=1

1{xk=i}, i ∈ JdK. (2.1)

It takes values in the discretized simplex SNd := Sd ∩ 1
NNd. We also denote the N -discretized derivative DN,iv =

(DN,i
j v)j∈JdK of a function v : Sd → R, with

DN,i
j v(m) := N

[
v

(
m+

1

N
(δj − δi)

)
− v(m)

]
; (2.2)

while for a function u : JdKN → R we denote by ∆ku ∈ Rd the vector of differences, that is, ∆ku(x)[j] =
u([x−k, j])− u(x), whereas, for x ∈ JdKN and j ∈ JdK, [x−k, j] denotes the vector in JdKN such that [x−k, j]l ={
xl if l 6= k

j if l = k.

2.2. Assumptions

Let Qi,j : [0, T ] × Sd × A → [0,+∞) be the transition rate, f i : [0, T ] × A × Sd → R the running cost and
gi : Sd → R the terminal cost, where i ∈ JdK represents the state. Let F : [0, T ]×Ad × Sd → R and G : Sd → R
be defined by

F (t, a1, . . . , ad,m) :=
∑
i∈JdK

mif
i(t, ai,m), G(m) =

∑
i∈JdK

mig
i(m). (2.3)
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We provide three sets of assumptions. The first is the weakest and gives convergence of the value functions,
with a convergence rate. Note in particular that we don’t assume convexity, neither in a, nor in m.

Assumption A. (A1) The action space (A,d) is a compact metric space.
(A2) The transition rate Qi,j is continuous on [0, T ] × A × Sd (thus uniformly continuous and bounded) and

Lipschitz-continuous in (t,m), uniformly in a:

|Qi,j(t, a,m)−Qi,j(s, a, p)| ≤ C(|t− s|+ |m− p|). (2.4)

(A3) The functions F is continuous on [0, T ]×Ad × Sd and

|F (t, a,m)− F (s, a,m)| ≤ C(|t− s|+ |m− p|), (2.5)

|G(m)−G(p)| ≤ C|m− p|. (2.6)

We denote then, for z ∈ Rd such that zi = 0, a ∈ A and m ∈ Sd, the pre-Hamiltonian

Hi(t, a,m, z) := −〈Qi,•(t, a,m), z〉 − f i(t, a,m) (2.7)

and the Hamiltonian

Hi(t,m, z) := max
a∈A
Hi(t, a,m, z). (2.8)

Note that
∑
imiH

i is Lipschitz-continuous in (t,m, z) if A holds.
The second assumption is a linear-convex assumption, very common in control theory, which, together with

existence of classical solution to the limiting problem, gives convergence of the optimal trajectories.

Assumption B. Assumption A holds and, in addition:

(B1) A = [0,M ]d.
(B2) The transition rate is Qi,j(t,m, a) = aj .
(B3) The running cost f is continuously differentiable in A, ∇af is Lipschitz-continuous with respect to m, and

f is uniformly convex in A, i.e. there exists λ > 0 such that

f i(t, b,m) ≥ f i(t, a,m) + 〈∇af(t, a,m), (b− a)〉+ λ|b− a|2. (2.9)

Under this assumption, thanks to Proposition 1 in [26], there exists a unique maximizer of H, which we
denote by a∗(t, i,m, z), and, further, a∗ is Lipschitz continuous with respect to m and z, i.e.

|a∗(t, i,m, z)− a∗(t, i, p, w)| ≤ C(|m− p|+ |z − w|). (2.10)

We will consider feedback controls α : [0, T ]× JdK→ A (or equivalently α : [0, T ]→ Ad), thus, when (B1) holds,
we denote αi,j(t) := αj(t, i).

The last is a convexity assumption in the couple (α,m) that is needed to prove smoothness of the value
function of the MFCP.

Assumption C. Assumption B holds and, in addition:

(C1) F (·, a, ·) ∈ C1,1([0, T ]× Sd), uniformly in a, and G ∈ C1,1(Sd).
(C2) The function

[0, T ]× [0,+∞)d×d × Int(Sd) 3 (t, w,m)→
∑
i

mif
i

(
t,
(wi,j
mi

)
j 6=i

,m

)
∈ R
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is convex in (w,m) and G is convex in m.

Assumption (C2) may seem strange at this stage, but will be clarified in Section 3.2.

Remark 2.1. The reader will notice that not all of the conditions of Assumption A (Lipschitz-continuity in
(t,m)) are necessary in all the statements in which A is assumed. The same is true also for Assumption B. We
choose to make only three Assumptions for the sake of definiteness. We stress again that the main differences
among the three assumptions are that in A nothing is convex, while in B we assume convexity in a and in C in
(a,m).

We remark that A allows to treat also the case of directed graphs, in which some transitions are forbidden: if
E = {e1, . . . , ed} is the set of nodes and E+(ei), for each i ∈ JdK, is the subset of E \ {ei} of nodes ej for which
there exists a directed edge from ei to ej , then the transition matrix Q is required to satisfy Qi,j(t, a,m) = 0
whenever ej /∈ E+(ei).

We also remark that we do not assume that f splits in a function of (i, a) plus a function of (i,m), as it
would be in the case of potential mean field games which are described in Section 3.3.

We conclude this part with a natural example for which B and/or C are satisfied.

Example 2.2. As a natural running cost for which (2.9) holds, we could take

f i(t, α,m) :=
1

2

∑
j 6=i

α2
i,j + f i0(m). (2.11)

In this case, we get

Hi(t,m, z) =
∑
j 6=i

{
−a∗(−zj)zj −

1

2
|a∗(−zj)|2

}
− f i0(m), a∗j (t, i, z) = a∗(−zj),

where, for r ∈ R, a∗(r) :=


0 r ≤ 0

r 0 ≤ r ≤M
M r ≥M

.

In fact, we remark that our Assumptions B and C are more general since they allow for a running cost which
does not split as in (2.11). If f is as in (2.11), then (C2) is satisfied if the function m→

∑
imif

i
0(m) is convex;

indeed, one can easily verify that the function (w,m)→
∑
i

∑
j 6=i

w2
i,j

mi
is convex in (w,m).

2.3. N-agent optimization

Consider N players, X = (X1, . . . , XN ), such that Xi
t ∈ JdK, evolving in continuous time over a finite horizon

T . Agents can choose controls β = (β1, . . . , βN ) in feedback form, i.e. any βk is a measurable function of time
and state of all players: βk : [0, T ]× JdKN → A. The dynamics is given as a Markov chain such that

P(Xk
t+h = j|Xt = x) = Qxk,j(t, βk(t,x), µNx )h+ o(h), (2.12)

for j 6= xk, as h→ 0+. Agents are cooperative and aim at minimizing the common cost

JN (β) :=
1

N

N∑
k=1

E

[∫ T

0

f(t,Xk
t , βk(t,Xt), µ

N
t )dt+ g(Xk

T , µ
N
T )

]
. (2.13)
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The cost coefficients f and g depend on the empirical measure

µNt =
1

N

N∑
k=1

δXi
t

∈ SNd . (2.14)

We denote µN = (µN1 , . . . , µ
N
d ), that is, µNi,t = 1

N

∑N
k=1 1{Xk

t =i}.

The initial conditions (X1
0 , . . . , X

N
0 ) are assumed to be i.i.d with Law(X1

0 ) = m0. This can be seen as a single
optimization problem for the process X, governed by the generator

LN,βt ϕ(x) =

N∑
k=1

∑
j 6=xk

Qxk,j(t, βk(t,x), µNx )[ϕ(x−k, j)− ϕ(x)], (2.15)

for any ϕ : JdKN → R. The value function vN of this control problem solves the HJB equation

− d

dt
vN (t,x) + sup

b∈AN

{
− LN,bt vN (t,x)− 1

N

N∑
k=1

f(t, xk, bk, µ
N
x )

}
= 0,

which, by definition of the Hamiltonian in (2.8), gives

− d

dt
vN (t,x) +

1

N

N∑
k=1

Hxk(t, µNx , N∆kvN (t,x))) = 0,

vN (T,x) =
1

N

N∑
k=1

g(xk, µ
N
x ).

(2.16)

This is a system of ODEs indexed by x ∈ JdKN .

Proposition 2.3. Under Assumption A, there exists a unique solution vN to (2.16), which is C1 in time. It is
the value function of the control problem (2.13)–(2.15) and there exists an optimal feedback control.

Proof. This is a standard verification theorem (see e.g. [24], Thm. III.8.1) and existence of solution is given
by the Lipschitz continuity of the Hamiltonian in (2.16), which follows by the continuity of the coefficients
and compactness of A. These properties also yield existence of a maximizer in (2.7) and hence existence of an
optimal feedback.

Remark 2.4. The optimal control is not unique and there might exist non-exchangeable optimizers. We recall
that a vector of stochastic processes is said to be exchangeable if its joint law is invariant under permutations.

Under Assumption B the optimal control is unique.

Remark 2.5. For problem (2.13)–(2.15), the choice of controls in Markovian feedback form is made for con-
venience only and is the most natural setup for this type of control problems. We could consider more general
open-loop controls: in this case, the strategy vector (π1

t , . . . , π
N
t )t∈[0,T ] is a vector of predictable A-valued pro-

cesses and the dynamics of the state process X can be defined as the solution of the controlled martingale
problem related to the generator (2.15), in which βk is replaced by the stochastic process πk. Notably, the value
function of this more general control problem still solves equation (2.16), which admits a unique solution, and
thus these two control problems are equivalent.
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2.3.1. Mean field formulation

We give another formulation of the N -agent optimal control, by restricting the class of admissible controls.
Nevertheless, we will prove that the two formulations are equivalent, in the sense that the value function is the
same and thus the infimum of the cost is the same.

Assume then that the control is the same for any player and is given by a feedback (measurable) Markovian
function αN : [0, T ]× JdK× SNd → A: we make the mean field assumption for which the control depends on the
private state and on the state of other players only through the empirical measure µNt of the entire system.
Namely, we assume that, for any k ∈ JNK,

βk(t,x) = αN (t, xk, µ
N
x ). (2.17)

Thus we have

P(Xk
t+h = j|Xk

t = i, µNt = m) = Qi,j(t, αN (t, i,m),m)h+ o(h), (2.18)

as h→ 0+.
The aim of the players is to choose αN in order to minimize the cost in (2.13), which, assuming now (2.17),

can be rewritten as

JN (αN ) :=
1

N

N∑
k=1

E

[∫ T

0

f(t,Xk
t , αN (t,Xk

t , µ
N
t ), µNt )dt+ g(Xk

T , µ
N
T )

]

=
1

N

N∑
k=1

E

∫ T

0

∑
i∈JdK

1{Xk
t =i}f(t, i, αN (t, i, µNt ), µNt )dt+

∑
i∈JdK

1{Xk
T =i}g(i, µNT )

 ,
and hence

JN (αN ) = E

∫ T

0

∑
i∈JdK

µNi,tf
i(t, αN (t, i, µNt ), µNt )dt+

∑
i∈JdK

µNi,T g
i(µNT )

 . (2.19)

Therefore the N -agent mean field control problem can be seen as a single optimization problem for the empirical
measure, which is a time-inhomogeneous Markov chain on SNd such that

P
(
µNt+h = m+

1

N
(δj − δi)

∣∣∣∣µNt = m

)
= NmiQi,j(t, αN (t, i,m),m)h+ o(h) (2.20)

for any m ∈ SNd and i 6= j ∈ JdK. The control (in feedback form) is now the vector valued measurable function
αN (t, ·,m) ∈ Ad. We remark that the dynamics remains in SNd because m+ 1

N (δj − δi) can be outside SNd only

if mi = 0, but in such case the transition rate is zero. Clearly, we assume that µ0 = 1
N

∑N
k=1 δXi

0
. The generator

of this Markov chain is hence given, for v : SNd → R, by

LN,αN

t v(m) = N
∑

i,j∈JdK

miQi,j(t, αN (t, i,m),m)

[
v

(
m+

1

N
(δj − δi)

)
− v(m)

]
. (2.21)
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The HJB equation for the value function of this problem is then

− d

dt
V N (t,m) + max

a∈Ad

{
− LN,aV N (t,m)−

∑
i∈JdK

mif
i(t, ai,m)

}
= 0,

which rewrites as

− d

dt
V N +

∑
i∈JdK

miH
i(t,m,DN,iV N (t,m)) = 0

V (T,m) =
∑
i∈JdK

mig
i(m),

(2.22)

that is an ODE indexed by m ∈ SNd .

Proposition 2.6. Under Assumption A, the HJB equation (2.22) admits a unique solution V N which is C1

in time; V N is the value function of the control problem (2.19)–(2.20), defined as the infimum over feedback
controls αN : [0, T ]× SNd → Ad, and there exists an optimal feedback. V N satisfies the Lipschitz property

|V N (t,m)− V N (s, p)| ≤ C(|t− s|+ |m− p|) (2.23)

for a constant C independent of N .
Moreover, the value function vN of (2.13)–(2.15) satisfies

vN (t,x) := V N (t, µNx ) (2.24)

and thus the control problems (2.13)–(2.15) and (2.19)–(2.20) are equivalent, i.e.

inf
β
JN (β) = inf

αN

JN (αN ). (2.25)

Proof. The first claim follows by the Lipschitz continuity of H and a standard verification theorem, an optimal
feedback being a measurable function that attains the maximum in (2.7), which exists by compactness of A and
continuity of the coefficients. The Lipschitz continuity of V N is proved in Section 4.1, Lemma 4.1. If wN is the
function defined by the r.h.s. of (2.24), then

− d

dt
wN (t,x) +

1

N

N∑
k=1

Hxk(t, µNx , N(wN (t, j,x−k)− wN (t,x))j∈JdK)

= − d

dt
V N (t, µNx ) +

1

N

N∑
k=1

∑
i∈JdK

1{xk=i}H
i(t, µNx , N(V N (t, µNx +

1

N
(δj − δi))− V N (t, µNx ))j∈JdK)

= − d

dt
V N (t, µNx ) +

∑
i∈JdK

µNx [i]Hi(t, µNx , D
N,iV N (t, µNx )) = 0

because V N solves (2.22). Hence, by uniqueness of the solution to (2.16), we have wN = vN and thus (2.24) is
satisfied.

Remark 2.7. We could restrict the class of admissible controls to the set of αN : [0, T ]→ Ad that are deter-
ministic functions only of time and of the private state i ∈ JdK. This control problem is equivalent to what
we consider here because its value function WN is clearly Lipschitz in time, and hence absolutely continuous,
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and then, by the dynamic programming principle, it is easy to show that WN solves (2.22) at any point of
differentiability. Thus, by uniqueness of the solution to (2.22) (defined in the sense of Caratheodory in the class
of absolutely continuous functions) we get V N = WN , which means that the costs have the same infimum.

We could further restrict the class of admissible controls, for instance, to the set of piecewise constant
(deterministic) functions of time. This setting is the one considered in [27].

If assumption B holds, then the optimal control is unique, since the maximizer in (2.7) is unique (see e.g.
[16], Thm. 5). The control is the transition rate αN (t, i,m) ∈ [0,M ]d, which we denote as a transition matrix
αN = (αi,jN )i,j∈JdK ∈ [0,M ]d×d. In such case, (2.18) becomes simply

P(Xk
t+h = j|Xk

t = i, µNt = m) = αi,jN (t,m)h+ o(h), (2.26)

and the dynamics of µN is then given by

P
(
µNt+h = m+

1

N
(δj − δi)

∣∣∣∣µNt = m

)
= Nmiα

i,j
N (t,m)h+ o(h). (2.27)

Note that the values of αi,i never enter in the dynamics. Then it follows:

Proposition 2.8. Under Assumption B, there exists a unique optimal control. It is given by

αi,jN,∗(t,m) := a∗j (t, i,m,D
N,iV N (t,m)). (2.28)

2.4. Mean field control problem

In the limit, there is a single player which evolves according to

P(Xt+h = j|Xt = i) = Qi,j(t, α
i(t),Law(Xt))h+ o(h) (2.29)

and Law(X0) = m0. The control is here a deterministic measurable function α : [0, T ] → Ad, or equivalently
α : [0, T ] × JdK → A, which is indeed a feedback function of the state Xt, denoted by i ∈ JdK. As a particular
case, this set includes the functions [0, T ] × Sd 3 (t,Law(Xt)) → α̃(t,Law(Xt)) ∈ Ad, since t → Law(Xt) is a
deterministic function of time. The reference player aims at minimizing the cost

J(α) := E

[∫ T

0

f(t,Xt, α(t,Xt),Law(Xt))dt+ g(XT ,Law(XT ))

]
. (2.30)

The problem can be recasted into a deterministic control problem for the dynamics of the law of X, thanks to
the fact that we consider Markovian feedback controls only. Indeed, denoting µt = Law(Xt), i.e. µit = P(Xt = i),
the cost is written as

J(α) =

∫ T

0

∑
i∈JdK

f i(t, αi(t), µt)µ
i
tdt+

∑
i∈JdK

gi(µT )µiT , (2.31)

where µ solves the ODE, indexed by i ∈ JdK,1

1For the deterministic control problem (2.31)–(2.32) the control α : [0, T ] → Ad is indeed in open-loop form, as it is just a
measurable function of time.
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d

dt
µit =

∑
j∈JdK

(
µjtQj,i(t, α

j(t), µt)− µitQi,j(t, αi(t), µt)
)

µ0 = m0.

(2.32)

The HJB equation for the value function V of this problem is then

−∂tV (t,m) + max
a∈Ad

− ∑
i,j∈JdK

miQi,j(t, a
i,m)∂mj−mi

V (t,m)−
∑
i∈JdK

mif
i(t, ai,m)

 = 0,

which rewrites as

− ∂tV (t,m) +
∑
i∈JdK

miH
i(t,m,DiV (t,m)) = 0,

V (T,m) =
∑
i∈JdK

mig
i(m),

(2.33)

in which we recall that [DiV (t,m)]j := ∂mj−mi
V (t,m).

The peculiarity of this first-order equation is that it is stated in the simplex, which is a bounded domain, but
there are no boundary conditions. This is explained by the fact that the simplex is invariant for the dynamics
(2.32), and so is its interior. The first order HJB equation has no classical solutions in general, and for this reason
viscosity solutions were introduced. These are defined properly in the next section, by viewing the simplex as
a subset of Rd−1 instead of Rd. Viscosity solutions can be defined either on Sd or on Int(Sd), depending on
the boundary regularity of the test functions involved. One problem with defining viscosity solutions on Sd is
that it is not clear that a classical solution is a viscosity solution on Sd; however, this definition is the one we
will use to prove convergence of V N to V . Exploiting the fact that Int(Sd) is invariant for the state dynamics,
which results in a property on the subdifferential of H, it is possible to show uniqueness of viscosity solutions
on Int(Sd); see the comparison principle below (Thm. 3.4).

If B holds, we denote as above αi,j(t) = αj(t, i), which is the transition rate matrix. In the next section, we
prove the following:

Theorem 2.9. Let V be the value function of the deterministic control problem (2.31)–(2.32):

1. if Assumption A holds, then V is the unique viscosity solution of (2.33) on Sd, and V is Lipschitz-
continuous in (t,m);

2. if Assumption A holds, then V is the unique viscosity solution of (2.33) on Int(Sd), and, if B holds, there
exists an optimal control;

3. if Assumption C holds, then V ∈ C1,1([0, T ]× Sd) and is the unique classical solution of (2.33);
4. if V ∈ C1,1(Sd) and B holds, then the control given by the feedback

αi,j∗ (t,m) := a∗j (t, i,m,D
iV (t,m)) (2.34)

is the unique optimal control, in the sense that any optimal control α : [0, T ] → [0,M ]d×d, with related
optimal process µ is such that α(t) = α∗(t, µt) for dt-a.e. t ∈ [0, T ].
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2.5. Convergence results

We state here the results about the convergence, as N → ∞, of the value function V N of the N -agent
optimization (2.19)–(2.20) to the value function V of the mean field control problem (2.31)–(2.32), with a
convergence rate of order 1/

√
N . We recall that V N is the classical solution to ODE (2.22), while V is the

viscosity solution to PDE (2.33). The following is our main result:

Theorem 2.10. Under Assumption A,

max
t∈[0,T ],m∈SN

d

∣∣V N (t,m)− V (t,m)
∣∣ ≤ C√

N
. (2.35)

The theorem is proved in Section 4.1. As announced in the Introduction, we exploit the characterization
of V as the viscosity solution to (2.33) in order to prove the result. In fact, ODE (2.22) can be seen as a
finite difference scheme for the PDE (2.33), even if time is still continuous. Indeed the argument DN,iV of the
Hamiltonian in (2.22) converges, at least formally, to DiV appearing in (2.33), as

lim
N→∞

N

[
V

(
m+

1

N
(δj − δi)

)
− V (m)

]
= ∂mj−mi

V (m). (2.36)

This result also permits to construct quasi-optimal controls for the N -agent optimization, starting from
quasi-optimal controls for the MFCP, with an explicit rate of approximation.

Theorem 2.11. Assume A and fix ε > 0 and N ∈ N. Let α : [0, T ]→ Ad be an ε-optimal control for the MFCP.
Then

JN (α) ≤ inf
αN

JN (αN ) +
C√
N

+ ε. (2.37)

This is also proved in Section 4.1. Here, JN (α) is understood as applying the control αN (t,m) = α(t), which
is independent of m. Recall that the infimum over controls αN is the same as the infimum over controls β,
depending on states of all the players, by (2.25), and is also equal to the infimum over controls not depending
on m (like the α considered), by Remark 2.7.

Remark 2.12. In [27], Kolokoltsov proved a result similar to Theorem 2.10, but assuming in addition that F , G
and Q and C1,1 w.r.t. m (similarly to Assumption (C1)). He analyzes a mean field N -optimization like in (2.19)–
(2.21), but allowing for controls that are piecewise constant functions of time only, and are the same controls
he considers in the limiting deterministic control problem (2.31)–(2.32). However, we explained in Remark 2.7
that considering this smaller class is not restrictive, as the value of the N -agent optimization is the same as
what we treat here, i.e. over controls that might depend also on m. Then, by applying the convergence of the
generator (2.21) to the limiting dynamics (2.32), he shows convergence of the value functions with a stronger
convergence rate (Thm. 2 therein):

max
t∈[0,T ],m∈SN

d

∣∣V N (t,m)− V (t,m)
∣∣ ≤ C

N
. (2.38)

As a matter of fact, from his method of the proof (basically, the same set of controls is considered for the
prelimit and the limit optimization problems), it is also possible to derive estimate (2.35). Indeed, by applying
standard arguments in propagation of chaos, we can get a convergence rate of order 1/

√
N , assuming that the

costs and the transition rate are just Lipschitz-continuous w.r.t. m, and not in C1,1. Therefore, what we propose
in this paper is a new method for proving the convergence in (2.35), based on the theory of viscosity solutions,
which we believe can be of interest.
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In case V is smooth, the optimal control of the MFCP is unique and then, if B holds, we are also able to
establish a propagation of chaos result, that is, we prove convergence of the optimal trajectory of the N -agent
optimization to the unique optimal trajectory of the MFCP, with a suitable convergence rate.

Denote then by αN the unique optimal feedback control for the N -agent optimization defined by (2.28), and
by µN the corresponding optimal process satisfying (2.27). Also, let α∗ be the unique optimal feedback control
for the MFCP defined by (2.34) and µ the corresponding optimal trajectory given by (2.32). We stress that αN
and α∗ are functions of t and m.

Theorem 2.13 (Part I). Under Assumption B, if V ∈ C1,1([0, T ]× Sd) then

E

[
sup
t∈[0,T ]

|µNt − µt|

]
≤ C

N1/9
. (2.39)

The propagation of chaos result can be stated also for the vector of processes X related to the optimal control
αN and optimal empirical measure µN , that is, X is given by (2.12) assuming (2.17). For N fixed, denote by

X̃ the i.i.d process (given by (2.12)) in which all players choose the same local control α(t, i) := α∗(t, i, µt)
depending only on the private state, i.e. βk(t,x) = α(t, xk). The propagation of chaos consists in proving

convergence of X to the i.i.d. process X̃.

Theorem 2.13 (Part II). Under Assumption B and (C1), if V ∈ C1,1([0, T ]× Sd) then

E

[
sup
t∈[0,T ]

|Xi
t − X̃i

t |

]
≤ C√

N
. (2.40)

3. Mean field control problem

The aim here is to examine in detail the mean field control problem (2.31)–(2.32) in order to prove Theo-
rem 2.9. We first rewrite the state dynamics and the cost in terms of the local chart x ∈ Rd−1 (recall that we

set (m1, . . . ,md−1,md) = (x1, . . . , xd−1, 1−
∑d−1
j=1 xj)), so that we are allowed to apply standard results about

deterministic control probles on Euclidean spaces; see e.g. [1, 7, 24].

For x ∈ Ŝd, let us denote x−d = 1−
∑d−1
j=1 xj and x̌ = (x, x−d) ∈ Sd. We simply replace md by x−d: dynamics

(2.32) becomes, for i = 1, . . . , d− 1,

d

dt
xit =

d−1∑
j=1

(
xjtQj,i(t, α

j(t), x̌t)− xitQi,j(t, αi(t), x̌t)
)

+ x−dt Qd,i(t, α
d(t), x̌t)− xitQi,d(t, αi(t), x̌t),

(3.1)

while the cost (2.31) is written as

Ĵ(α) :=

∫ T

0

( d−1∑
j=1

xjtf
j(t, αj(t), x̌t) + x−dt fd(t, αd(t), x̌t)

)
dt+

d−1∑
j=1

xjT g
j(x̌T ) + x−dT gd(x̌T ). (3.2)
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It is clear that the value function V̂ of (3.1)–(3.2), defined on Ŝd, is equal to the value function V of (2.31)–(2.32),

defined on Sd, by setting V̂ (t, x) = V (t, x̌). The HJB equation for V̂ in Ŝd is then

− ∂tV̂ +

d−1∑
i=i

xjĤ
j(t, x,DxV̂ ) + x−dĤd(t, x,DxV̂ ) = 0

V̂ (T, x) =

d−1∑
i=1

xjg
j(x̌) + x−dgd(x),

(3.3)

where the modified Hamiltonian is defined, for z ∈ Rd−1, by

Ĥi(t, x, w) = Hi(t, x̌, w1 − wi, . . . , wd−1 − wi,−wi), Ĥd(t, x, w) = Hd(t, x̌, w, 0). (3.4)

We will use several times the fact that Int(Sd) is invariant for the dynamics (2.32), or equivalently that

Int(Ŝd) is invariant for (3.1). Indeed, by assumption A follows that Q is bounded (as it is continuous on a
compact set): let us set

M := max
i,j∈JdK,t∈[0,T ],a∈A,m∈Sd

Qi,j(t, a,m) (3.5)

and recall that Qi,j ≥ 0. Then (2.32) gives

d

dt
µit ≥ 0−M(d− 1)µit,

which, by Gronwall’s inequality, provides

µit ≥ µi0e−TM(d−1), (3.6)

meaning that µt ∈ Int(Sd) if µ0 ∈ Int(Sd).

3.1. Viscosity solution

The value function in not C1 in general and thus does not solve (2.33) in the classical sense, unless the convexity
assumption C holds; see the next Subsection. Hence we present the two definitions of viscosity solutions we make
use of: one in Sd and one in Int(Sd). The notion of viscosity solution is the usual one, but we prefer to state them
to avoid confusions, because the use of test functions defined on a closed set is not standard. By our definition
of C1(Sd), viscosity solutions can be defined in two equivalent ways, since it is equivalent to define functions on

Sd or on Ŝd, by the relation v̂(x) = v(x̌). Thus we prefer to state only the definitions of solutions to (2.33) on

Sd or Int(Sd); the definitions of solutions to (3.3) on Ŝd or Int(Ŝd) being equivalent.

Definition 3.1. A function v ∈ C([0, T )× Sd) is said to be:

(i) a viscosity subsolution of (2.33) on Sd (resp. on Int(Sd)) if, for any ϕ ∈ C1([0, T )×Sd) (resp. in C1([0, T )×
Int(Sd)) ),

− ∂tϕ(t,m) +
∑
i∈JdK

miH
i(t,m,Diϕ(t,m)) ≤ 0, (3.7)

at every (t,m) ∈ [0, T )× Sd (resp. in [0, T )× Int(Sd)) which is a local maximum of v − ϕ on [0, T )× Sd
(resp. on [0, T )× Int(Sd));
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(ii) a viscosity supersolution of (2.33) on Sd (resp. on Int(Sd)) if, for any ϕ ∈ C1([0, T )×Sd) (resp. in C1([0, T )×
Int(Sd)) ),

− ∂tϕ(t,m) +
∑
i∈JdK

miH
i(t,m,Diϕ(t,m)) ≥ 0, (3.8)

at every (t,m) ∈ [0, T )× Sd (resp. in [0, T )× Int(Sd)) which is a local minimum of v − ϕ on [0, T )× Sd
(resp. on [0, T )× Int(Sd));

(iii) a viscosity solution of (2.33) on Sd (resp on Int(Sd)) if it is both a viscosity subsolution and a viscosity
supersolution of (2.33) on Sd (resp on Int(Sd)).

Let us remark that, in the above definition, by solutions to (2.33) we clearly mean solutions to the first line of
(2.33). As an example of test functions in C1([0, T )× Sd), we may consider continuously differentiable functions

defined on an open subset of Rd−1 containing Ŝd. With this remark, it is straightforward to obtain the following
result, which proves point (1) in Theorem 2.9:

Proposition 3.2. Under Assumption A, the value function V of the MFCP is the unique viscosity solution of
(2.33) on Sd (in C([0, T ]× Sd) satisfying the terminal condition). Moreover, V is globally Lipschitz-continuous
in [0, T ]× Sd.

Proof. The Lipschitz-continuity and the viscosity solution property of V follow from standard results in deter-
ministic control theory, see Thms. 7.4.10 and 7.4.14 of [7], by considering the dynamics in Rd−1 and using the

fact that Ŝd−1 is invariant for the dynamics (3.1). Uniqueness of viscosity solutions on Sd follows by the usual
proof of uniqueness, see for instance ([24], Thm. II.9.1), by observing that –if the minimizers are on boundary
points– we can use the fact that the test functions constructed in the proof are quadratic and thus defined in
the whole Rd−1, in particular then belonging to C1([0, T ]× Sd). We believe that there is no need to rewrite the
proof here.

This notion of viscosity solution on Sd will be used in the proof of the convergence result Theorem 2.10, see
Subsection 4.1. Actually, uniqueness of viscosity solutions on Sd can also be derived as a consequence of the
proof therein. The problem with the definition on the closed set Sd is that it is not clear whether a classical
solution is a viscosity solution on Sd. Indeed, if the value function V is smooth, then for sure V is a viscosity
solution on Int(Sd), but if a maximizer of V − ψ lies on the boundary of Sd then it is not clear a priori that
(3.7) holds. We could prove this fact, but we prefer instead to show uniqueness of viscosity solution on Int(Sd),
which implies in particular that V ∈ C1([0, T ] × Sd) is a viscosity solution on Sd, but is more general and we
believe can have an interest on itself. The following result then proves points (2) and (4) in Theorem 2.9.

Proposition 3.3. Under Assumption A, V is the unique viscosity solution of (2.33) on Int(Sd), in C([0, T ]×Sd)
satisfying the terminal condition. Moreover, if B holds:

1. there exists an optimal control for the MFCP;
2. if V ∈ C1,1([0, T ] × Sd), then the control given by the feedback (2.34) is the unique optimal control, in

the sense that any optimal control α : [0, T ] → [0,M ]d×d, with related optimal process µ is such that
α(t) = α∗(t, µt) for dt-a.e. t ∈ [0, T ].

Proof. Existence of an optimal control follows from ([7], Thm 7.4.5), using the convexity of the cost in a. The
viscosity solution property on Int(Sd) is given again by ([7], Thm. 7.4.14), by exploiting the invariance of Int(Sd),
see (3.6). Uniqueness of viscosity solutions on Int(Sd) is an immediate consequence of the Comparison Principle
given below (Thm. 3.4).

Point (2) is a classical verification theorem: if V ∈ C1,1([0, T ]× Sd) then it is the unique classical solution of
(2.33), solving the equation also at boundary points. Under assumption B, using in particular the strict convexity
of F in a, a∗ is the unique argmin of the pre-Hamiltonian 2.7 and thus the optimal control defined by (2.34) is
unique. Note that dynamics (2.32) is well-posed using the feedback α∗ because DiV is Lipschitz-continuous.
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It remains to show the comparison principle for viscosity solutions on Int(Sd); to this end, it turns out that

it is better to consider the dynamics in Rd−1 and thus we state the equivalent result on Int(Ŝd). In absence of

boundary conditions in space, we must rely on the invariance of Int(Ŝd) for the dynamics (3.1). The following
result then extends what we presented in ([15], Thm. 6.2) to a more general dynamics, and borrows ideas
from the proofs of Theorem 3.8 and Proposition 7.3 in [36]. We stress that we do not require here neither
differentiability of the Hamiltonian nor convexity of the costs (in a or m).

Theorem 3.4 (Comparison Principle on Int(Ŝd)). Assume A and let u, v ∈ C([0, T ] × Ŝd), u be a viscosity

subsolution and v be a viscosity supersolution, respectively, of (3.3) on Int(Ŝd). If u(T, x) ≤ v(T, x) for any

x ∈ Ŝd, then u(t, x) ≤ v(t, x) for any t ∈ [0, T ] and x ∈ Ŝd.

Proof. The idea is to define a supersolution vh that dominates u at points near the boundary, for any h, and
then use the comparison principle and pass to the limit in h. The parameter h is needed to force vh to be
infinity at the boundary of the simplex. Since the simplex has corners, the distance to the boundary is not
a smooth function, so the first step is to construct a nice test function that goes to 0 as x approaches the
boundary. Roughly speaking, we consider the product of the distances to the faces of the simplex, and then take
its logarithm.

Step 1. Let ρi(x), for x ∈ Int(Ŝd), be the distance of x from the hyperplane {y ∈ Rd−1 : yi = 0}, for i ∈ Jd− 1K,
and ρd(x) be the distance from {y ∈ Rd−1 :

∑d−1
l=1 yl = 1}. Specifically, for x ∈ Int(Ŝd), we have

ρi(x) =

{
xi i ∈ Jd− 1K,
x−d/

√
d− 1 i = d,

where we recall that x−d = 1−
∑
l∈Jd−1K xl. Clearly, ρi ∈ C∞(Ŝd) and the derivatives, for j ∈ Jd− 1K, are

∂xjρi(x) =

{
δi,j i ∈ Jd− 1K,
−1/
√
d− 1 i = d.

Let us denote, for x ∈ Int(Ŝd) and z ∈ Rd−1, the Hamiltonian in (3.3)

Ĥ(t, x, w) =

d−1∑
i=i

xjĤ
j(t, x, w) + x−dĤd(t, x, w), (3.9)

where Ĥi, for i ∈ JdK, are defined by (3.4); note that Ĥ is convex in w.
Step 2. For any h > 0, let

vh(t, x) := v(t, x)− h2
∑
i∈JdK

log
(
ρi(x)

)
+ h(T − t), (t, x) ∈ [0, T ]× Int(Ŝd).

We claim that vh is a viscosity supersolution of (3.3) on Int(Ŝd). Let then ϕ ∈ C1([0, T ) × Int(Ŝd)), and

(t, x) ∈ [0, T ) × Int(Ŝd) be a local minimum of vh − ϕ on [0, T ) × Int(Ŝd). Since v is a viscosity super-

solution of (3.3) on Int(Ŝd), considering the test function ϕh ∈ C1([0, T ) × Int(Ŝd)) given by ϕh(t, x) =
ϕ(t, x) + h2

∑
i∈JdK log(ρi(x))− h(T − t), we get that (t, x) is a local minimum of v − ϕh and thus

−∂tϕh(t, x) + Ĥ
(
t, x,Dxϕh(t, x)

)
≥ 0,
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that is,

0 ≤ −∂tϕ(t, x)− h+ Ĥ
(
t, x,Dxϕ(t, x) + h2

∑
i∈JdK

Dρi(x)

ρi(x)

)
. (3.10)

We denote w = Dxϕ(t, x), w̌i = (w1−wi, . . . , wd−1−wi,−wi) ∈ Rd for i ∈ Jd−1K and w̌d = (w, 0), yj = Dρj(x)

for j ∈ JdK and similarly y̌ij , and $i = w̌i + h2
∑
j∈JdK

y̌ij
ρj(x) , for i ∈ JdK. We apply the following property, which

is an immediate consequence of the definition of the Hamiltonian in (2.8):

Hi(t,m, z + ζ)−Hi(t,m, z) ≥ −〈Qi,•(t, a∗(t, i,m, z),m), ζ〉 (3.11)

for any z, ζ ∈ Rd with zi = ζi = 0, i ∈ JdK, m ∈ Int(Sd), t ∈ [0, T ], where a∗(t, i,m, z) ∈ A is an argmax of (2.7),
which might not be unique. (This is equivalent to say that −Qi,•(t, a∗(t, i,m, z),m) belongs to the subdifferential
of the convex function Hi(t,m, z).)

Choosing a maximizer a∗(t, i, x,$i) for any i ∈ JdK, applying (3.11) and (3.4), we obtain (we omit the
dependence on (t, x))

Ĥ
(
w + h2

∑
j∈JdK

yj
ρj(x)

)
=

∑
i∈Jd−1K

xiH
i

(
w̌i + h2

∑
j∈JdK

y̌ij
ρj(x)

)
+ x−dHd

(
w̌d + h2

∑
j∈JdK

y̌dj
ρj(x)

)

≤
∑

i∈Jd−1K

xiH
i(w̌i) + x−dHd(w̌d)

− h2
∑

i∈Jd−1K

xi
∑
j∈JdK

〈
Qi,•(a

∗(i,$i)),
y̌ij

ρj(x)

〉
− h2x−d

∑
j∈JdK

〈
Qd,•(a

∗(d,$d)),
y̌dj
ρj(x)

〉
= Ĥ(w)− h2

∑
i∈Jd−1K

xi
∑

j∈Jd−1K

1

ρj(x)

[ ∑
k∈Jd−1K

Qi,k(a∗(i,$i))(δk,j − δi,j) +Qi,d(a
∗(i,$i))(−δj,i)

]

− h2
∑

i∈Jd−1K

xi
1

ρd(x)

[ ∑
k∈Jd−1K

Qi,k(a∗(i,$i))(−1/
√
d− 1 + 1/

√
d− 1) +Qi,d(a

∗(i,$i))1/
√
d− 1

]
− h2x−d

∑
j∈Jd−1K

1

ρj(x)

∑
k∈Jd−1K

Qd,k(a∗(d,$d))δk,j − h2x−d
1

ρd(x)

∑
k∈Jd−1K

Qd,k(a∗(d,$d))(−1/
√
d− 1)

≤ Ĥ(w) + h2
∑

i∈Jd−1K

xi
1

ρi(x)
M(d− 1) + h2 x−d

ρd(x)
√
d− 1

M(d− 1)

= Ĥ(w) + h2Md(d− 1),

where we used the bound 0 ≤ Qi,j ≤M , for any i 6= j ∈ JdK, and the definition of ρi in the last two lines. The
latter inequality, applied in (3.10), gives

−∂tϕ(t, x) + Ĥ
(
t, x,Dxϕ(t, x)

)
≥ h− h2Md(d− 1) ≥ 0 if h ≤ 1

Md(d− 1)
,

which implies that vh is a viscosity supersolution of (3.3) on Int(Ŝd) if h is small enough.



18 A. CECCHIN

Step 3. As ρi ≤ 1, we have vh(t, x) ≥ v(t, x) for any (t, x) ∈ [0, T ]× Int(Ŝd). In particular, vh(T, x) ≥ v(T, x) ≥
u(T, x) for any x ∈ Int(Ŝd). We denote ρ(x) =

∏d
i=1 ρi(x). Since u and v are bounded, we find that for any

h > 0 there exists η > 0 (which may depend on h) such that −h2 log ρ(x) ≥ ‖u‖∞ + ‖v‖∞ if ρ(x) ≤ η. We

denote Γη = {x ∈ Ŝd : ρ(x) = η}, Oη = {x ∈ Ŝd : ρ(x) ≥ η}, and Oηc = {x ∈ Ŝd : ρ(x) ≤ η}; note that Oη is a
smooth domain. Thus vh(t, x) ≥ u(t, x) for any t ∈ [0, T ] and x ∈ Oηc , in particular for any x ∈ Γη. Therefore
we can apply the comparison principle (see [24], Thm. II.9.1) in [0, T ] × Oη, because u, vh ∈ C([0, T ] × Oη):

we obtain u ≤ vh on [0, T ] × Oη and hence u ≤ vh on the entire [0, T ] × Ŝd, since we already have u ≤ vh
on [0, T ] × Oηc . Finally, we obtain u ≤ v on [0, T ] × Int(Ŝd) by sending h to 0, as limh→0 vh(t, x) = v(t, x) for

any (t, x) ∈ [0, T ] × Int(Ŝd), and then the inequality u ≤ v can be extended up to the boundary of Ŝd by
continuity.

3.2. Classical solution

Here we give the sufficient condition for the value function of the MFCP to belong to C1,1([0, T ]× Sd). This
is the the convexity assumption C: we prove hence point (3) in Theorem 2.9.

Theorem 3.5. Under Assumption C, the value function is in C1,1([0, T ]×Sd), and thus it is the unique classical
solution to (2.33) (it solves the equation also at boundary points).

We recall that a function v : [0, T ]×Sd → R is called semiconcave, resp. semiconvex, on [0, T ]× Int(Sd), with
a constant c, if

v(t+ h,m+ p)− 2v(t, x) + v(t− h,m− p)
|h|2 + |p|2

≤ c, resp. ≥ −c, (3.12)

for any t ∈ [0, T ], m ∈ Int(Sd), h with t± h ∈ [0, T ], and p with m± p ∈ Int(Sd).

Proof. We show that the value function is both semiconcave and semiconvex, in time and space, globally in
Int(Sd), with a constant c; clearly it is equivalent to prove this propeties either for V defined on Sd or for V̂

defined on Ŝd. Recall again that Int(Sd) is invariant for dynamics (2.32). Hence Corollary 3.3.8 in [7] ensures
that V ∈ C1,1([0, T ] × Int(Sd)) and the Lipschitz constant of DiV is c, ∀i ∈ JdK. Thus in particular V can be
extended uniquely to a function in C1,1([0, T ] × Sd), and then it solves (2.33) also at boundary points. The
classical solution to (2.33) is unique because any solution is the value function, by a standard application of the
verification theorem.

The value function is semiconcave on [0, T ]× Int(Sd) by Theorem 7.4.11 in [7], thanks to Assumption (C1);
as above, to apply this result set on a Euclidean space, we have just to consider the equivalent formulation of the
control problem on Int(Ŝd). To prove that V is semiconvex, we rewrite the MFCP in an equivalent formulation,
with a control w, such that the cost is convex in (m,w) and the dynamics is linear in (m,w). Consider hence
the problem of minimizing the cost 2

J̃(w) :=

∫ T

0

∑
i∈JdK

µitf
i

(
t,
(wi,jt
µit

)
j 6=i

, µt

)
dt+

∑
i∈JdK

gi(µT )µiT ,

where the couple (µ,w) satisfies the ODE

d

dt
µit =

∑
j

(wj,it − w
i,j
t )

2This reformulation of the MFCP with the control w is typically used for studying potential mean field games; see e.g. [6, 10].
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and is subject to the constraints wi,jt ≥ 0,
wi,j

t

µi
t
≤M . If the initial condition µ0 ∈ Int(Sd), then µt ∈ Int(Sd) for

any t ∈ [0, T ], i.e. µit > 0, thus the cost is well-defined in this case. This control problem is indeed well-defined
only for µ0 ∈ Int(Sd) and it is seen to be equivalent to the MFCP (2.32)–(2.31) by setting wi,j = µiαi,j , meaning
that the value function is the same. The advantage in using this new formulation is that the dynamics is now
linear in w and the set of (µ,w) satisfying the constraints is convex. Moreover, the running cost is convex in
(m,w) and the terminal cost is convex in m by Assumption (C2). Thus we can apply ([7], Thm. 7.4.13), which
says that V (t,m) is a convex function of m ∈ Int(Sd), for any t ∈ [0, T ]. Then V is semiconvex in time and
space, in [0, T ] × Int(Sd), again by ([7], Thm. 7.4.13), but using the original formulation of the MFCP in the
proof therein, for which the coefficients are globally Lipschitz in Int(Sd), yielding thus global semiconvexity,
while in the new formulation the cost is only locally Lipschitz in m ∈ Int(Sd).

3.3. Further properties and potential mean field games

We collect, for reference, other results concerning the mean field control problem and its relation, in some
cases, with a mean field game. These are not used here, but might be useful for future works. They derive
directly from the results of Section 7.4 of [7] about deterministic control problems in a Euclidean space. Thus

we consider the problem (3.1)–(3.2) defined on Ŝd whose value function is denoted by V̂ . As before, for a function

G defined on Sd, we denote by Ĝ its version in local chart, i.e. Ĝ(x) = G(x̌).

Proposition 3.6. Assume A and that F (t, a, ·), Qi,j(t, a, ·), G ∈ C1(Sd) and Ĥ(t, ·, ·) ∈ C1,1(Ŝd ×Rd−1), for the

Hamiltonian Ĥ defined by (3.9). If α is an optimal control and x the corresponding optimal trajectory, then
there exists w ∈ C1(0, T ;Rd−1) such that

d

dt
wjt = ∂xj

Ĥ(t, xt, wt), wjT = ∂xj
Ĝ(xT ); (3.13)

and wt belongs to the space superdifferential of V̂ (t, xt) for any time.

Moreover, if Ĥ(t, x, ·) is strictly convex for any t ∈ [0, T ] and x ∈ Int(Ŝd), and the costs F and G are

semiconcave w.r.t. m, then, assuming that the control problem starts at (t0, x0) ∈ [0, T ]× Int(Ŝd),

– V̂ is differentiable in (t, xt) for any t ∈ (t0, T ], for any optimal trajectory x;

– V̂ is differentiable in (t0, x0) if and only if there exists a unique optimal trajectory x; in such case the

adjoint process w satisfies wjt = ∂xj
V̂ (t, xt) for any t ∈ [t0, T ].

The Hamiltonian is strictly convex w.r.t. w, for x in the interior, in case e.g. the running cost is given by
(2.11), as observed in [15]. We recall that the value function is (time-space) Lipschitz continuous, and thus
differentiable almost everywhere for the 1-dim Lebesgue measure in time and the (d−1)-dim. Lebesgue measure

in space. Further, V̂ is shown to be (time-space) semiconcave in the proof of Theorem 3.5, in case only B and
(C1) hold. The first assertion is instead the Pontryagin principle, which holds also under weaker assumptions.

In case the cost splits as

f i(t, a,m) = `i(t, a) + f i0(t,m), (3.14)

the Hamiltonian H in (2.8) splits as Hi(t,m, z) = Hi
0(t, a)− f i0(t,m), and then (3.13) becomes

− d

dt
wjt + Ĥj

0(t, xt, wt)− Ĥd
0 (t, xt, wt) = ∂xj

F̂0(t, xt), wT = ∂xj
Ĝ(xT ), j ∈ Jd− 1K, (3.15)
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where F0(m) =
∑
i∈JdKmif

i
0(m) and Ĥ is defines as in (3.4). The above equation is in fact equivalent to the

HJB equation in the MFG system, first analyzed in [26], which is

− d

dt
uit +Hi

0(t, µt, (u
j
t − uit)j∈JdK) = fi(t, µt), wjT = git(mT ), i ∈ JdK, (3.16)

for a given running cost f and terminal cost g, in case B holds, so that the transition rate in the coupled equation
for µ in (2.32) are given by αi,jt = a∗j (t, i, (u

j
t − uit)j∈JdK). Equivalence holds if the functions f and g are such that

f̂i(t, x)− f̂d(t, x) = ∂xi
F̂0(t, x), ĝi(t, x)− ĝd(t, x) = ∂xi

Ĝ(t, x), i ∈ Jd− 1K; (3.17)

for instance, the latter holds true by defining f̃i(t, x) = ∂xi
F̂0(t, x) and f̃d(t, x) = 0. It is easy to see that (3.15)

and (3.16) are equivalent: given a solution u to (3.16), it suffices to let wj = uj − ud, j ∈ Jd − 1K; conversely,
given w solution to (3.15), it suffices to solve (3.16) where all the occurrences of ui − uj have been replaced
by wi − wj if j ∈ Jd − 1K and by wi if j = d. We remark that (3.13) can not be interpreted as a mean field
game if the cost does not split as in (3.14). In case the cost splits, we have shown that, if an optimal control
for the MFCP exists, then it gives rise to a solution of a particular mean field game –with costs determined
by (3.17)– and therefore this can provide more informations on the optimal control and on the corresponding
optimal trajectory of the MFCP.

In general, a mean field game, in which hence the costs (fi)i∈JdK and (gi)i∈JdK are given, is said to be potential
if (3.17) holds and the cost f i0 and gi defining the MFCP do not depend on i –say they are equal to f0 and g– so
that F0 = f0 and G = g. Thus the mean field game system represents the necessary conditions for optimality of
the deterministic MFCP and we refer to [15] for a detailed study of potential mean field games and corresponding
MFCP, in particular for the interpretation of (3.17).

4. Convergence results

We prove here the main convergence results: Theorems 2.10 and 2.13. Throughout this section, V N denotes
the value function of the mean field N -agent optimization (2.19)–(2.20), while V denotes the value function of
the mean field control problem (2.31)–(2.32). We recall that V N is the classical solution to ODE (2.22), while
V is the viscosity solution to PDE (2.33).

4.1. Convergence of value functions

Here, we prove Theorem 2.10. Assume hence that Assumption A is in force. We exploit here the character-
ization of V as the unique viscosity solution to (2.33) on the closed set Sd; see Definition 3.1 and Proposition
3.2.

We first need to show that V N is time-space Lipschitz-continuous, uniformly in N ; this is (2.23) in
Proposition 2.6. In this point, the compactness of the control set A is required (Assumption (A1)).

Lemma 4.1. If A holds, then for every t, s ∈ [0, T ] and m, p ∈ SNd

|V N (t,m)− V N (s, p)| ≤ C(|t− s|+ |m− p|), (4.1)

for a constant C independent of N .

Proof. We represent the dynamics of µN , given by (2.20), as an SDE with respect to a Poisson random measure,
as we did in [16]. We restrict attention to controls α : [0, T ] → Ad that are just functions of time and of the
private state i ∈ JdK. Recall that, by Remark 2.7, the value function over this smaller class is the same V N .

Fix N ∈ N and denote by N (dt,dθ) a standard Poisson random measure on [0, T ]× [0,M ]d×d, with intensity
measure ν on [0,M ]d×d, where M is the maximum of Q (which is continuous over a compact set). Let ν be
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defined as the sum of the measures of the intersections with the axes, i.e. ν(E) =
∑
i,j∈JdK Leb(E ∩Θi,j), where

Θi,j := {θ ∈ [0,M ]d×d : θi′,j′ = 0 for all (i′, j′) 6= (i, j)}, which is viewed as a subset of R, as E ∩ Θi,j is, and
Leb is the Lebesgue measure on R. Hence, the dynamics of µN is written as

dµNt =

∫
[0,M ]d×d

1

N
(δj − δi)1(0,NµN

i,tQi,j(t,αi(t),µN
t )]N (dt,dθ). (4.2)

This equation is well-posed because µN takes values in SNd , which is finite, and then (2.20) follows by equation
(2.34) of [16]. Observe that 1

N (δj − δi) represents the increment of µN , while the indicator function gives the
transition rate.

Let µN start in m and ρN start in p, at a fixed time t ∈ [0, T ), with the same control α. Let ε > 0 and
α : [t, T ]→ Ad be an ε-optimal control for the problem starting at (t,m), i.e.

JN (t,m, α) ≤ inf
β
JN (t,m, β) + ε = V N (t,m) + ε,

with an obvious notation for JN (t,m, α). Then, by Lemma 3 of [16], it follows that

E|µNs − ρNs | ≤ |m− p|+
1

N

∑
i,j

|δj − δi|E
∫ s

t

|NµNi,rQi,j(r, αi(r), µNr )−NρNi,tQi,j(r, αi(r), ρNr )|dr

≤ |m− p|+ C

∫ s

t

E|µNr − ρNr |dr,

by using the Lipschitz-continuity of Q, and thus Gronwall’s lemma yields

sup
s∈[t,T ]

E|µNs − ρNs | ≤ C|m− p|. (4.3)

Then

V N (t, p)− V N (t,m) ≤ JN (t, p, α)− JN (t,m, α) + ε

≤ E
∫ T

t

|F (s, α(s), µNs )− F (s, α(s), ρNs )|ds+ E|G(µNT )−G(ρNT )|+ ε

≤ C sup
s∈[t,T ]

E|µNs − ρNs |+ ε ≤ C|m− p|+ ε,

where we applied the Lipschitz-continuity of F and G (defined by (2.3)) and (4.3). Taking the limit as ε vanishes,
we get V N (t, p) − V N (t,m) ≤ C|m − p| and then, changing the role of m and p we obtain also the opposite
inequality, which provides

|V N (t, p)− V N (t,m)| ≤ C|m− p|. (4.4)

To prove the Lipschitz-continuity in time, note that (4.4) implies |DN,iV N (t,m)| ≤ C for any t ∈ [0, T ] and
m ∈ SNd , and thus, recalling that V N is C1 in time, from the HJB equation (2.22) we derive that for any t and
m,

∣∣∣∣ d

dt
V N (t,m)

∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈JdK

miH
i(t,m,DN,iV N (t,m))

∣∣∣∣∣∣
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≤ C(1 + |DN,iV N (t,m)|) ≤ C,

where we used the Lipschitz-continuity of H w.r.t. z. Therefore

sup
t∈[0,T ],m∈SN

d

∣∣∣∣ d

dt
V N (t,m)

∣∣∣∣ ≤ C,
which, together with (4.4), yields (4.1).

We now turn to the proof of Theorem 2.10. As a first step to prove the convergence, it is required to extend
the definition of V N outside SNd . One way to do this, similarly to [8], would be to consider the same control
problem (2.19)–(2.20), but starting at any point in the simplex, not only on SNd . However, in this way, the
dynamics of µN would go also outside the simplex, and thus we prefer to not follow this strategy. Instead, we
use a piecewise constant interpolation of V N , and thus we have to pay a price in order to define it carefully at
boundary points, so that the maximum in the usual doubling of variable argument (see (4.6) below) is attained.

Proof of Theorem 2.10.
We first prove that

E+
N := sup

t∈[0,T ],m∈SN
d

(
V (t,m)− V N (t,m)

)
≤ C√

N
. (4.5)

If E+
N ≤ 0 then (4.5) trivially holds, thus we assume that E+

N > 0. Since V N is defined on the grid SNd only, we

have to construct a piecewise constant extension Ṽ N defined on the whole Sd. Denote by n(N, d) the number

of elements in SNd , and cover the simplex by closed cells (Γk)
n(d,N)
k=1 centered in points of SNd and invariant by

translations. Note that the cells centered at points on the boundary cover also points outside the simplex. Define
Ṽ N (p) = V N (pk) if p ∈ Int(Γk) and pk is the center of Γk. It remains to define Ṽ N at the boundaries of Γk.
Step 1. We exploit the usual argument of doubling the variables, which prompts us to consider the function,
to be defined on [0, T ]2 × S2

d ,

Φ(t, s,m, p) := V (t,m)− Ṽ N (s, p)− |t− s|
2

2ε
− |m− p|

2

2ε
− 2T − t− s

4T
E+
N , (4.6)

where ε is a parameter to be fixed later in terms of N . Then the value of Ṽ N at the boundaries of the cells has
to be chosen such that the above function admits a maximum. Let us give first the idea of our construction. The
strategy is to define first Ṽ N constant in any closed cell, then perform the maximization in any closed cell –in
which a maximum of Φ exists– and thus take the maximum of the values obtained, so that a maximum point
for Φ exists. If this maximum point lies in the interior of a cell, then there is no problem and the value of Ṽ N

at the boundaries does not matter. The critical situation is when the maximum point belongs to the boundary
of a cell. In such situation, we have to define carefully Ṽ N at the boundary of the neighboring cells in order
to verify equality (4.7) below. It is required because we want to exploit the ODE (2.22), and this is indeed the
main reason for considering a piecewise constant interpolation. We give below an example of our construction
in case d = 2, the generalization to d > 2 being not difficult.

Now, more precisely, for a cell Γk centered at pk ∈ SNd , k ∈ {1, . . . , n(N, d)}, let Ṽ Nk (p) := V N (pk) for any

p ∈ Γk, thus also on the boundary of Γk. Then define Φk as is (4.6), but with p ∈ Γk and Ṽ N therein replaced

by Ṽ Nk , and let

γk := max
[0,T ]2×Sd×(Γk∩Sd)

Φk(t, s,m, p).
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Such a maximum exists and is attained at a point (tk, sk,mk, pk), which might be non-unique and such that pk
belongs to the boundary of the cell Γk: we then let

γ = max
k=1,...,n(N,d)

γk =: γk, (t, s,m, p) := (tk, sk,mk, pk).

We can now define Ṽ N such that Ṽ N (s, pk) = Ṽ N (p) := Ṽ N
k

(p) = V N (s, pk), the last equality holding by the

definition above, where we recall pk ∈ SNd is the center of the cell Γk. Note that p = pk may belong to the

boundary of Γk, in which case we have defined Ṽ N at the boundary of Γk. In addition, we require that

V N
(
s, pk +

1

N
(δj − δi)

)
= Ṽ N

(
s, p+

1

N
(δj − δi)

)
(4.7)

for any i, j ∈ JdK. Note that this is automatically satisfied if p ∈ Int(Sd), while it gives the definition of Ṽ N on

a part of the boundary of the cells bordering Γk, if p belongs to the boundary of Γk. Lastly, Ṽ N can be defined
arbitrarily right or left continuous at the other boundary points.

Hence this construction guarantees that Φ in (4.6) admits a maximum on [0, T ]2×S2
d at (t, s,m, p). We stress

that Ṽ N is defined also outside the simplex, so that the RHS of (4.7) is meaningful in case pk + 1
N (δj − δi)

belongs to the boundary of the simplex. Note that Ṽ N is not continuous in space, but it remains Lipschitz in
time, uniformly in space and w.r.t. N .

Before proceeding with the rest of the proof, let us give an example of the above construction in case d = 2.
In this case the simplex is one dimensional and, if projected on [0, 1], we have SN2 = { kN : k = 0, 1, . . . , N}, the

increments are ± 1
N and the cells are Γk = [ kN −

1
2N ,

k
N + 1

2N ], for k = 0, . . . , N . Let us assume that we are in the

critical situation, that is, p belongs to the boundary of Γk; for instance, we can assume that p = pk = k
N + 1

2N .

The following picture provides then the construction of Ṽ N (where we omit the time dependence):

Namely, if Ṽ N is left continuous at p then it is defined to be left continuous also at p± 1
N , so that V N (pk ±

1
N ) = Ṽ N (p± 1

N ). This latter property is crucial in the proof, see (4.10) below. We remark again that Ṽ N can
be define arbitrarily right or left continuous at the other boundary points. It is not difficult to generalize this
construction to d > 2.
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Step 2. The inequality Φ(t, s,m, p) ≥ Φ(t, s, p, p) gives

|m− p|2

2ε
≤ V (t,m)− V (t, p),

which, using the Lipschitz continuity of V , yields

|m− p| ≤ Cε. (4.8)

Similarly, the inequality Φ(t, s,m, p) ≥ Φ(s, s,m, p) provides

|t− s|2

2ε
≤ V (t,m)− V (s,m) +

t− s
4T

E+
N ,

which, as V is Lipschitz-continuous and E+
N is bounded, gives

|t− s| ≤ Cε. (4.9)

We stress that (4.8) and (4.9) hold also in case (t, s,m, p) belong to the (time and space) boundary of [0, T ]2×S2
d .

We fix now ε = 1√
N

.

Step 3. In order to prove (4.5), we consider the three cases: either t = T , or s = T , or t, s < T .
First case: t = T and s ∈ [0, T ]. The inequlity Φ(t, s,m, p) ≥ Φ(t, t,m,m), for any (t,m) ∈ [0, T ] × SNd ,

exploiting the Lipschitz-continuity in time of Ṽ N and in Sd of G, gives

V (t,m)− Ṽ N (t,m) ≤ G(m)−G(p) +G(p)− Ṽ N (s, p) +
2T − 2t

4T
E+
N

≤ C|m− p|+ C|T − s|+ 1

2
E+
N .

Taking the supremum of the l.h.s. and applying (4.8) and (4.9), we have

E+
N ≤ Cε+

1

2
E+
N ≤

C√
N

+
1

2
E+
N ,

which yields (4.5).
Second case: s = T and t ∈ [0, T ]. This can be treated as the first case, by using the Lipshitz-continuity

in time of V .
Third case: t ∈ [0, T ) and s ∈ [0, T ). Let pk be, as above, the point in SNd such that Ṽ N (s, pk) = Ṽ N (s, p).

Here we use the piecewise constant construction of Ṽ N and in particular (4.7). Hence, from (2.22) we obtain

− d

dt
Ṽ N (s, p)−

∑
i

pi
k

{
〈Qi,•(s, a∗i , pk), DN,iṼ N (s, p)〉+ f i(s, a∗i , pk)

}
= 0, (4.10)

where a∗i = a∗i (s, pk) is a point in A which attains the maximum in (2.7). We recall that Ṽ N is defined also
in case p+ 1

N (δj − δi) is outside the simplex, which could happen if pk + 1
N (δj − δi) belongs to the boundary;

while pk + 1
N (δj − δi) can be outside Sd only if pi

k
= 0, in which case the term in (4.10) is zero.

Since Ṽ N − ϕ has a minimum at (s, p), where

ϕ(s, p) = V (t,m)− |s− t|
2

2ε
− |p−m|

2

2ε
− 2T − s− t

4T
E+
N ,
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we get d
dt Ṽ

N (s, p) ≥ ∂tϕ(s, p), with equality if s 6= 0, and thus

s− t
ε
− 1

4T
E+
N −

∑
i

pi
k

{
〈Qi,•(s, a∗i , pk), DN,iV N (s, p)〉+ f i(s, a∗i , pk)

}
≥ 0. (4.11)

On the other hand, as V − ψ has a maximum at (t,m), where

ψ(t,m) = Ṽ N (s, p) +
|s− t|2

2ε
+
|p−m|2

2ε
+

2T − s− t
4T

E+
N ,

since V is a viscosity subsolution of (2.33) on the entire Sd (see again Def. 3.1) and ψ is indeed defined on Rd,
we get

− t− s
ε

+
1

4T
E+
N +

∑
i

miH
i

(
t,m,

(
〈m− p, δj − δi〉

ε

)
j∈JdK

)
≤ 0,

which, by definition of the Hamiltonian, gives

− t− s
ε

+
1

4T
E+
N

−
∑
i

mi

{〈
Qi,•(t, a

∗
i ,m),

(
〈m− p, δj − δi〉

ε

)
j∈JdK

〉
+ f i(t, a∗i ,m)

}
≤ 0.

(4.12)

The inequality Φ(t, s,m, p) ≥ Φ(t, s,m, p+ 1
N (δj − δi)) gives, for any i and j in JdK,

Ṽ N
(
s, p+

1

N
(δj − δi)

)
≥ Ṽ N (s, p) +

|m− p|2

2ε
−
|m− p− 1

N (δj − δi)|2

2ε

≥ Ṽ N (s, p) +
1

Nε

〈
δj − δi,m− p−

1

2N
(δj − δi)

〉
,

which, applied in (4.11), yields, as Qi,j ≥ 0,

s− t
ε
− 1

4T
E+
N ≥

∑
i

pi
k

{〈
Qi,•(s, a

∗
i , pk),

(
〈m− p, δj − δi〉

ε
− 1

Nε

)
j∈JdK

〉
+ f i(s, a∗i , pk)

}
. (4.13)

Summing (4.12) and (4.13), using Assumption A (i.e. the boundedness of Q and the Lipschitz-continuity of Q
and F w.r.t. (t,m)), we obtain

2

4T
E+
N ≤

∑
i

mi

{〈
Qi,•(s, a

∗
i ,m),

(
〈m− p, δj − δi〉

ε

)
j∈JdK

〉
+ f i(s, a∗i ,m)

}
−
∑
i

pi
k

{〈
Qi,•(t, a

∗
i , pk),

(
〈m− p, δj − δi〉

ε
− 1

Nε

)
j∈JdK

〉
+ f i(t, a∗i , pk)

}
≤ C|t− s|+ C|m− pk|+ C

|m− p|2

2ε
+

C

Nε
,
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which provides, using (4.8), (4.9) and that |p− pk| ≤
1
N by construction,

E+
N ≤ C

(
|t− s|+ |m− p|+ 1

N
+
|m− p|2

2ε
+

1

Nε

)
≤ C

(
3ε+

1

N
+

1

Nε

)
≤ C√

N
,

recalling that ε = 1√
N

.

Step 4. The opposite inequality,

E−N := sup
t∈[0,T ],m∈SN

d

(
V N (t,m)− V (t,m)

)
≤ C√

N
, (4.14)

can be proved in the same way, by changing the roles of Ṽ N and V , and using instead the viscosity supersolution
property of V . Finally, (4.5) and (4.14) give (2.35).

Remark 4.2. Similarly to [8], see also ([1], Sect. VI.1), it might be possible to establish a stronger convergence
rate of order 1/N , if V N is semiconcave uniformly in N :

V N (t,m+ p)− 2V N (t,m) + V N (t,m− p) ≤ c|p|2,

for a constant c independent of N . Such estimate should hold if the costs F and G are semiconcave in space.
This is left to future work.

As a consequence, we can also prove Theorem 2.11. In the proof as weel as in the next section, we use several
times the following basic estimate: if ξ = (ξ1, . . . , ξN ) is a vector of N i.i.d. random variables with values in JdK,
such that Law(ξ1) = m ∈ Sd, then

E|µNξ −m| ≤
1√
N

√
d

2
. (4.15)

Indeed, NµNξ = (NµNξ [i])i∈JdK has a multinomial distribution with parameters N and m, and thus the variance

is E|NµNξ [i]−Nmi|2 = Nmi(1−mi). Hence (4.15) follows by Cauchy-Schwarz inequality and recalling that we
are using the Euclidean norm.

Proof of Theorem 2.11. Let αN (t, i,m) be an optimal feedback control for the N -agent optimization and α(t, i)
be ε-optimal for the MFCP, i.e.

V (0,m0) ≤ J(α) ≤ V (0,m0) + ε. (4.16)

Recall that the dynamics start at time 0 and the initial conditionX0 is assumed to be i.i.d. with Law(X1
0 ) = m0.

Since JN (αN ) = E[V N (0, µN0 )], we have

0 ≤ JN (α)− JN (αN )

≤ |JN (α)− J(α)|+ |J(α)− V (0,m0)|+ |V (0,m0)− E[V (0, µN0 )]|+ |E[V (0, µN0 )]− E[V N (0, µN0 )]|

≤ |JN (α)− J(α)|+ ε+ CE|µN0 −m0|+
C√
N
,
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where we used (2.35), (4.16), and the Lipschitz-continuity of V . As µN0 is the empirical measure of an i.i.d
sequence, (4.15) permits to bound E|µN0 −m0|. Thus, in order to prove (2.37), it remains to show

|JN (α)− J(α)| ≤ C√
N
. (4.17)

This follows by standard arguments in propagation of chaos.
Let ρ̃N be the process given by dynamics (2.20), when using the decentralized control α(t, i). Assumption (A3)

gives (denoting α = (α1, . . . , αd) and using definition (2.3))

|JN (α)− J(α)| ≤ E
∫ T

0

∣∣F (t, α(t), ρ̃Nt )− F (t, α(t), µt)
∣∣dt+ E

∣∣G(ρ̃Nt )−G(µt)
∣∣

≤ C sup
t∈[0,T ]

E|ρ̃Nt − µt|.

Hence, to prove (4.17), we have to show

sup
t∈[0,T ]

E|ρ̃Nt − µt| ≤
C√
N
. (4.18)

We use the SDE representation of the dynamics introduced in (4.2), thus ρ̃N solves the SDE

dρ̃Nt =

∫
[0,M ]d×d

1

N
(δj − δi)1(0,Nρ̃Ni,tQi,j(t,αi(t),ρ̃Nt )]N (dt,dθ).

This process is not the empirical measure of a vector of independent processes because of the dependence of Q on
m, thus we introduce also the process µ̃N in which the empirical measure is replaced by the limit deterministic
flow µ: µ̃N solves

dµ̃Nt =

∫
[0,M ]d×d

1

N
(δj − δi)1(0,Nµi,tQi,j(t,αi(t),µt)]N (dt,dθ).

and represents the empirical measure associated to N i.i.d copies of the limit process X̃ satisfying (2.29) and

such that Law(X̃t) = µt. Again (4.15) gives

sup
t∈[0,T ]

E|µ̃Nt − µt| ≤
C√
N
. (4.19)

Thus it remains to estimate the distance between ρ̃N and µ̃N . As in the proof of Lemma 4.1, the representation
in terms of SDEs yields, by exploiting the Lipschitz-continuity of Q w.r.t. the variable m,

E|ρ̃Nt − µ̃Nt | ≤
1

N

∑
i,j

|δj − δi|E
∫ t

0

|Nρ̃Ni,sQi,j(s, αi(s), ρ̃Ns )−Nµi,tQi,j(s, αi(s), µs)|ds

≤ C
∫ t

0

E|ρ̃Ns − µs|ds ≤ C
∫ t

0

E|ρ̃Ns − µ̃Ns |ds+ C sup
t∈[0,T ]

E|µ̃Nt − µt|

≤ C
∫ t

0

E|ρ̃Ns − µ̃Ns |ds+
C√
N
.
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Therefore Gronwall’s inequality gives supt∈[0,T ] E|ρ̃Nt − µ̃Nt | ≤ C√
N

, which, together with (4.19), provides (4.18)

that concludes the proof.

4.2. Propagation of chaos

Here we prove Theorem 2.13. Throughout this subsection, we hence assume that V ∈ C1,1([0, T ] × Sd) and
that Assumptions B and (C1) are in force.

We first show the following simple result.

Lemma 4.3. There exists a constant C such that for any i ∈ JdK

max
t∈[0,T ],m∈SN

d

∣∣DN,iV (t,m)−DiV (t,m)
∣∣ ≤ C

N
. (4.20)

Proof. By definition, for each i, j ∈ JdK and any m ∈ SNd (we omit the time in the notation), using Taylor’s
formula and the Lipschitz-continuity of DiV , we obtain

∣∣DN,iV (m)−DiV (m)
∣∣ =

∣∣∣∣N[V (m+
1

N
(δj − δi)

)
− V (m)

]
− ∂mj−mi

V (m)

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

∂mj−mi
V

(
m+

1

N
s(δj − δi)

)
ds− ∂mj−mi

V (m)

∣∣∣∣
≤ C

N

∫ 1

0

s|δj − δi|ds ≤
C

N
.

As in the statement of Theorem 2.13, let αN be the unique optimal feedback control for the N -agent opti-
mization defined by (2.28), and µN be the corresponding optimal process satisfying (2.27). Also, let α∗ be the
unique optimal feedback control for the MFCP defined by (2.34) and µ the corresponding optimal trajectory
given by (2.32). We stress that αN and α∗ are functions of t and m. Since Assumption (C1) is in force, as
explained in Remark 2.12, we can assume here that the convergence of the value functions holds with a stronger
rate, given by (2.38).

As an intermediate step, we consider the process ρN satisfying (2.27) with the limiting feedback control α∗;
such intermediate process is needed to prove convergence and describes the empirical measure of a standard
mean field interacting particle system, in the sense that the transition rate function α∗ is the same for any N
(and depends on the empirical distribution ρN ), while in µN the rate αN depends on N . Thus, we first show the
proximity of µN and ρN and then prove convergence of ρN to µ. We assume that ρN and µN start at time zero
in the same point in SNd . The proof of the following proposition is the point where assumption (B3) is required.

Proposition 4.4. We have

E
[

sup
0≤t≤T

|µNs − ρNs |
]
≤ C√

N
. (4.21)

Proof. Step 1. We compute the limit value function V along µN . Dynkin formula and then the HJB equation
(2.33) give

E[V (T, µNT )]− E[V (0, µN0 )]

= E

[∫ T

0

(
∂tV (t, µNt ) +N

∑
i∈JdK

µNi,tα
i,j
N (t, µNt )

[
V
(
t, µNt +

1

N
(δj − δi)

)
− V (t, µNt )

])
dt

]
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= E

[∫ T

0

∑
i∈JdK

µNi,t

(
Hi(t, µNt , D

iV (t, µNt )) + 〈αiN (t, µNt ), DN,iV (t, µNt )〉
)

dt

]

= E

[∫ T

0

∑
i∈JdK

µNi,t

(
Hi
(
t, a∗(t, i, µNt , D

iV (t, µNt )), µNt , D
iV (t, µNt )

)
−Hi

(
t, αiN (t, µNt ), µNt , D

iV (t, µNt ))

− f i(t, αiN (t, µNt ), µNt ) + 〈αiN (t, µNt ), DN,iV (t, µNt )−DiV (t, µNt )〉
)

dt

]
.

Since a∗(t, i,m, z) maximizes the pre-HamiltonianHi(t,m, z) in (2.7), using (2.9), we obtain, for any a ∈ [0,M ]d,

Hi(t, a∗(t, i,m, z),m, z)−Hi(t, a,m, z) ≥ λ|a∗(t, i,m, z)− a|2, (4.22)

This inequality, together with (4.20) and the uniform boundedness of αN , yields

E

[∫ T

0

∑
i∈JdK

µNi,tf
i(t, αiN (t, µNt ), µNt )dt+

∑
i∈JdK

gi(µNT )µNi,T

]
− E[V (0, µN0 )]

≥ E

[∫ T

0

λ
∑
i∈JdK

µNi,t
∣∣αiN (t, µNt )− a∗(t, i, µNt , DiV (t, µNt ))

∣∣2 dt

]
− C

N
.

Observe that on the l.h.s. there is exactly JN (αN ), as defined by (2.19), which is equal to E[V N (0, µN0 )].
Therefore we obtain

E

[∫ T

0

∑
i∈JdK

µNi,t
∣∣αiN (t, µNt )− a∗(t, i, µNt , DiV (t, µNt ))

∣∣2dt

]
≤ C

N
+ C max

m∈SN
d

∣∣V N (0,m)− V (0,m)
∣∣,

which, applying (2.38), gives

E

[∫ T

0

∑
i∈JdK

µNi,t
∣∣αiN (t, µNt )− a∗(t, i, µNt , DiV (t, µNt ))

∣∣2 dt

]
≤ C

N
. (4.23)

Step 2. Considering now the process ρN , and applying the SDE representation as in the proof of Lemma 4.1,
we obtain for any t > 0

ϕ(t) := E
[

sup
0≤s≤t

|µNs − ρNs |
]
≤ E

[∫ t

0

∑
i,j

1

N
(δj − δi)

∣∣∣NµNi,sαi,jN (s, µNs )−NρNi,sαi,j∗ (s, ρNs )
∣∣∣ ds]

≤ 2E

[∫ t

0

∑
i,j

(
µNi,s

∣∣∣αi,jN (s, µNs )− αi,j∗ (s, µNs )
∣∣∣+ µNi,s

∣∣αi,j∗ (s, µNs )− αi,j∗ (s, ρNs )
∣∣

+ αi,j∗ (s, ρNs )
∣∣µNi,s − ρNi,s∣∣ )ds

]
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and applying Jensen’s inequality, the boundedness and Lipschitz-continuity of the feedback function α∗ (verified
as V is C1,1 and α∗ is given by (2.34)), and then (4.23), we get

ϕ(t) ≤ C

√√√√E
[ ∫ t

0

∑
i∈JdK

µNi,s
∣∣αNi (s, µNs )− a∗(t, i, µNs , DiV (t, µNs ))

∣∣2 dt

]
+ CE

[∫ t

0

∣∣µNs − ρNs ∣∣ds]

≤ C√
N

+ C

∫ t

0

ϕ(s)ds,

which, by Gronwall’s lemma, provides (4.21).

We introduce also the process Y related to the empirical measure ρN , in which the transition rate function is
given in terms of the limiting optimal feedback α∗(t, i,m), independent of N . In order to prove the propagation
of chaos result (Thm. 2.13) we first show the proximity of X and Y and then prove propagation of chaos for
the process Y , which is a standard mean field interacting particle system. The proof is pretty standard and the
arguments are the same that we used in [17], based on a probabilistic representation of the dynamics, thus we
are not going to give all the details below. We recall that the initial conditions are fixed and i.i.d.. The following
is the counterpart of Proposition 4.4 for the N trajectories.

Lemma 4.5. For any N ∈ N and k ∈ JNK, it holds

E
[

sup
0≤t≤T

|Xk
s − Y ks |

]
≤ C√

N
. (4.24)

Proof. By exploiting the representation of X and Y in terms of SDEs driven by Poisson random measures
(similar for the representation for µN used above, see [17] for the details), we obtain

ϕ(t) := E

[
sup
s∈[0,t]

|Xk
s − Y ks |

]
≤CE

∫ t

0

(∣∣αN (s,Xk
s , µ

N
s )− α∗(s, Y ks , ρNs )

∣∣+ |Xk
s − Y ks |

)
ds

≤ CE
∫ t

0

(∣∣αN (s,Xk
s , µ

N
s )− α∗(s,Xk

s , ρ
N
s )
∣∣+ |Xk

s − Y ks |
)

ds,

where we used that any bounded function is Lipschitz with respect to i ∈ JdK finite. Using the exchangeability
of the processes (X,Y ), we can rewrite

E
∫ t

0

∣∣αN (s,Xk
s , µ

N
s )− α∗(s,Xk

s , ρ
N
s )
∣∣ds =

1

N

N∑
l=0

E
∫ t

0

∣∣αN (s,X l
s, µ

N
s )− α∗(s,X l

s, ρ
N
s )
∣∣ds

=
1

N

N∑
l=0

E
∫ t

0

d∑
i=1

1{Xl
s=i}

∣∣αN (s, i, µNs )− α∗(s, i, ρNs )
∣∣ds

= E
∫ t

0

d∑
i=1

µNi,s
∣∣αN (s, i, µNs )− α∗(s, i, ρNs )

∣∣ds ≤ C√
N
,

the latter bound following from the proof of the previous proposition. Therefore we derive

ϕ(t) ≤ C√
N

+

∫ t

0

ϕ(s)ds,
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which gives (4.24) by Gronwall’s lemma.

We are finally in the position to prove Theorem 2.13. Recall that X̃ is the decoupled process, made by
independent copies of the limit dynamics, in which player X̃k uses the decentralized strategy α∗(t, X̃

k
t , µ(t)),

where α∗ is the optimal control and µ is the optimal trajectory for the MFCP, and we have Law(X̃k
t ) = µ(t)

for any t ∈ [0, T ] and k ∈ JNK.

Proof of Theorem 2.13. Thanks to (4.24), claim (2.40) is proved if we show that

E

[
sup
t∈[0,T ]

|Y kt − X̃k
t |

]
≤ C√

N
. (4.25)

Let µ̃Nt be the empirical measure related to the i.i.d. process X̃. Again (4.15) gives

sup
t∈[0,T ]

E
∣∣µ̃Nt − µt∣∣ ≤ C√

N
. (4.26)

The limit feedback α∗ is Lipschits w.r.t. m because so is DV . We use this fact and also the inequality

|µNx − µNy | ≤ C
1

N

N∑
k=1

|xk − yk| (4.27)

which follows from the definition of the 1-Wasserstein distance, which is is equivalent to the Euclidean distance
in finite dimension. As in the proof of the previous lemma, we have

ϕ(t) := E

[
sup
s∈[0,t]

|Y ks − X̃k
s |

]

≤ E
[∫ t

0

∣∣α∗(s, Y ks , ρNs )− α∗(s, Y ks , µs)
∣∣ds+ C

∫ t

0

∣∣∣Y ks − X̃k
s

∣∣∣ds]
≤ CE

∫ t

0

∣∣ρNs − µs∣∣ds+ CE
∫ t

0

∣∣∣Y ks − X̃k
s

∣∣∣ds
≤ CE

∫ t

0

∣∣ρNs − µ̃Ns ∣∣ds+ C sup
t∈[0,T ]

E
∣∣µ̃Nt − µt∣∣+ CE

∫ t

0

∣∣∣Y ks − X̃k
s

∣∣∣ ds
≤ 1

N

N∑
l=1

CE
∫ t

0

∣∣∣Y ls − X̃ l
s

∣∣∣ds+
C√
N

+ C

∫ t

0

ϕ(s)ds

≤ C√
N

+ C

∫ t

0

ϕ(s)ds,

where in the last inequality we used the exchangeability of the processes. Thus Gronwall’s inequality yields
(4.25).

Finally, observe that, if (C1) is not in force –and thus just (2.35) is satisfied and not (2.38)– then (4.23) holds
with N replaced by

√
N and hence, as a consequence of the above proofs, estimates (4.21) and (4.25) hold with
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√
N replaced by N1/4. Thus (4.27) gives

E

[
sup
t∈[0,T ]

|ρNt − µ̃Nt |

]
≤ C

N1/4
.

Therefore (2.39) follows from (4.21) (with
√
N replaced by N1/4 therein), the above estimate, and the inequality

E

[
sup
t∈[0,T ]

|µ̃t −mt|

]
≤ CN−1/9,

which can be found in [37].

References
[1] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations.
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