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Abstract

This work is divided in two papers (Part I and Part II). In Part I, we
introduced the class of Rare-logics for which the set of terms indexing the
modal operators are hierarchized in two levels: the set of Boolean terms
and the set of terms built upon the set of Boolean terms. By investigating
different algebraic properties satisfied by the models of the Rare-logics,
reductions for decidability were established by faithfully translating the
Rare-logics into more standard modal logics (some of them contain the
universal modal operator).

In Part II, we push forward the results from Part I. For Rare-logics
with nominals (present at the level of formulae and at the level of modal
expressions), we show that the constructions from Part I can be extended
although it is technically more involved. We also characterize a class of
standard modal logics for which the universal modal operator can be
eliminated as far as satifiability is concerned. Although the previous re-
sults have a semantic flavour, we are also able to define proof systems for
Rare-logics from existing proof systems for the corresponding standard
modal logics. Last, but not least, decidability results for Rare-logics are
established uniformly, in particular for information logics derived from
rough set theory.

Since this paper is the continuation of Part I, we do not recall here
the definitions of Part I although we refer to them.

Key-words: polymodal logic, relative accessibility relation, decision pro-
cedure, translation.

1 Introduction

Background. During the last decade, the information logics derived from
Pawlak’s information systems [Paw81] have been the object of active research
(see for example [Orlo84a, OP84, Vak91]). In [DG], we have introduced the
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the group ”Logic and Automated Reasoning”. The visit has been financed by Action COST
#15 “Applications of Many-Valued Logics to Computer Science”.



class of Rare-logics that capture many information logics met in the litera-
ture. Indeed, the polymodal logics obtained from the information systems are
multimodal logics such that the relations in the Kripke-style semantical struc-
tures correspond to relations between objects in the underlying information
systems. Since this paper is a continuation of [DG], a more detailed introduc-
tion can be found there. However, roughly speaking, a Rare-logic £ of type T
is a structure of the form (L,D,Z,C, (X;)ies,T) such that

e L is a modal language, possibly admitting n-ary modal operators (n > 1)
and the set of modal expressions is hierarchized in two levels;

e D is a dimension map for L, that is it encodes the dimensions of the
relations associated to the modal expressions;

e 7 is an operator interpretation, that is it encodes how a syntactic modal
operator is interpreted (e.g., 'N’ is interpreted as set intersection);

e (C is a non-empty class of modal frames depending on L and D;

e (X;)ics is a finite family of relations that are allowed to occur in the
frames of C (this is a necessary condition);

e Tis a label to name a condition CT. Indeed the frames of C are precisely
the modal frames based on relations from (X;);cs satisfying the condi-
tion C. CT is a technical trick to capture various kinds of requirements
on the class C of frames, mostly algebraic in nature.

The precise definition can be found in [DG, Section 3].

Our objectives. Our prime objective in the paper is to compare various
classes of Rare-logics with their corresponding classes of standard modal logics.
The criteria of comparison range from (un)decidability of satisfiability (finite
model property, ...) to complete and sound axiomatization. By achieving
such a comparison, we provide a framework for studying Rare-logics that
allies generality and sheds a new light on the Rare-logics themselves. For
instance by defining satisfiability-preserving transformation from Rare-logics
into standard modal logics, we shall solve open problems about decidability
issues.

Our contribution. The results of this paper are the continuation of [DG].
First, we extend the main proof technique from [DG] in order to deal with
Rare-logics admitting nominals in the language. This leads to a generalization
of the translations defined in [DG]. By taking advantage of such translations,
we define a general construction that allows to define an axiomatization of
Rare-logics from calculi for the corresponding standard modal logics. Some
other refinements are also performed in order to eliminate the universal modal
operator for some cases. Last, but not least, we provide a uniform proof of
decidability for various Rare-logics from [Orto84a, Orto93, Orlo89, Orto88b,
Bal96a, Bal97] for which the issue has been open up to now. Indeed, the
decidability of the corresponding standard modal logics is used with possibly
some adequate adjustments.



Plan of the paper. The rest of the paper is structured as follows. In
Section 2, nominals (names) are added to the logics and we show that the
construction in [DG, Section 4] can be adapted to this new case although it
is technically more involved. Elimination of the universal modal operator is
discussed in Section 3. Section 4 is devoted to show how to build Hilbert-style
proof systems for Rare-logics from existing proof systems for the corresponding
standard modal logics. In Section 5, we apply the new results to various classes
of information logics providing for instance new decidability results. Section
6 contains concluding remarks.

Because of lack of space, we do not recall the definitions from [DG] and
we invite the reader to consult [DG] if needed.

2 Nominal Rare-logics

In this section, we consider Rare-logics for which names (also called nomi-
nals) are included in the language. First, we consider a countably infinite set
Forév = {p",q",...} of world nominals that behave as propositional vari-
ables except that for any interpretation function V, V(p"V) is a singleton.
The addition of world nominals to modal logics has been investigated in the
past years with different motivations (see e.g. [Orto84a, PT85, Gar86, Bla90,
Bla93a, Gia95, BS95]). A world nominal is usually understood as an atomic
proposition that holds true in a unique world of a Kripke model. Most of
the time, the addition of names is intended to increase the expressive power
of the initial logics. For instance, there is a tense formula with names that
characterizes the class of irreflexivity frames [Bla93b]. Another remarkable
breakthrough due to the inclusion of names consists in defining the intersec-
tion operator (see e.g. [PT91]) although it is known that the intersection is
not modally definable in the standard modal language [GT75]. Names have
also been introduced in information logics [Orto84a, Kon97b, Kon97a] derived
from Pawlak’s rough set theory [Paw81] where the motivations concern both
definability and axiomatization purposes. We write £(For)') to denote a logic
whose language is extended with world nominals. Numerous results in [DG,
Section 4] still hold true when the logics (the Rare-logics and the standard
modal logics) admit world nominals. Indeed, most of the time, what is prob-
lematic, is the construction of families of relations satisfying given constraints.
In all the previous constructions, the interpretation of the atomic formulae are
always smoothly preserved.

However, there is another fashion to add nominals to a modal logic. Let £
be a Rare-logic and P}’ be a set of parameter nominals such that P} and P are
disjoint, {PEY : i € J} is a partition of P} and each set P}¥ = {C'V DIV ...}
is a countably infinite set of parameter nominals. We write £(P}') to denote
the Rare-logic £ whose language has been extended with Pév . Each set P; of
parameter expressions is built upon P§ U P%N and as usual P; is closed under
N,U and —. Moreover, for any C*V, DNV € PiN | we require p(C*V) = D(i) — 1,
CiN = DN only if V(C™) £ V(DY) and for any P-valuation V, V(C) is a
singleton of PAR; -in the rest of the section a P-valuation is understood in this
way. As a consequence PAR; is infinite since P%N is assumed to be countably
infinite. We write £(For}’,P}’) to denote the Rare-logic obtained from the
Rare-logic £ by adding world nominals and parameter nominals. For this kind



of extension, the results from [DG, Section 4.2] cannot be so easily applied
to the Rare-logics £(For}',P}’). Indeed, the very notion of normalization has
to be revised. This section is devoted to define satisfiability-preserving maps
between Rare-logics ﬁ(ForéV , Pév ) and the corresponding standard modal logics
Eé(ForéV). In the rest of the section, we assume that the Rare-logics satisfy
the hypothesis presented at the beginning of [DG, Section 4.2]. By the way,
a proposition similar to [DG, Proposition 3.3] holds true for the Rare-logics
L(For),pi).

2.1 Elimination of parameter expressions

Let L be a modal language dedicated to some Rare-logic £(For}',P}’) and
Myg = {cap : @, € w} be a countable set of modal constants. Using the
decidability of the validity problem of the logic CPDL in [PT91], one can
prove that the following problems are decidable: (1) IsA=1 (A € P;)? (2) Is
A=T (AeP)?

Let Cy,...,Cy € Pé and CZiN,...,CiN € PéN for some 7 € J. We assume
I # 0, otherwise consider the developments from [DG, Section 4.1]. For any
integer k € {0,...,2" — 1}, we write B}:O to denote the Boolean expression
(also called a component)

ix def

By E Ay n—cVn...n—c¥
where for k € {0,...,2" — 1}, we write Ai* to denote the Boolean expression

1% def

AFE A N N4,

where for any s € {1,...,n}, A, & C, if bity(k) = 0 (bits(k) denoting the
sth bit in the binary representation of k) otherwise A4 & _C,. When n = 0,
we only consider the Boolean expression —C{¥ n...N —CV (noted Bf'). For
any (k, k') € {0,...,2" — 1} x {1,...,1}, we write B}:’:k, to denote the Boolean

def

expression B}:k, = A};* N C}gj,v If n = 0, then we only consider the Boolean

. ix def 1 . .
expression By = C}CJ,V . In the sequel, we omit the case when n = 0 since

the results can be obtained easily from the non-degenerate case. For any P-
valuation V' (dealing with parameter nominals), the family {V(B}:k,) (K k) €
{0,...,1} x{0,...,2™ — 1}} is a partition of PAR,;.

Let ) # X C P; be such that for any A € X, Pj(A) C {Cy,...,C,} and
PV (a) C {c¥,...,CciNV}. One can show that for any A € X, either A =1
or A = B;:;k,l U...u B}:“%. Such a decomposition has been introduced in
[Kon97b] and it generalizes with parameter nominals the canonical disjunctive
normal form from the propositional calculus (see e.g. [Lem65]). For any

K € {1,...,1}, we write occjs to denote the set
oceiy E{ke{0,...,2" =1} : JA € X, AE...UB}:k,U...}
Informally, occﬁ is the set of indices k € {0,...,2" — 1} such that B?k' occurs

in the normal form of some element of X. We write Setoccig to denote the set
setocels L {Y C ocepy : card(ocely) —1 < card(Y) < 2" — 1}

The definition of setoccﬁ is motivated by the fact that for any P-valuation
V, there is a unique k € {0,...,2"—1} such that V(Bﬁ:k,) # 0 (and V(By,) =

4



V(CiY)). For each Y € setoccjs in turn, in the forthcoming constructions we
shall enforce V(B}';,) =0 for any k € Y.

PROPOSITION 2.1. (Semilattice constructions with atomic parameters)
Let Cy,...,Cy be distinct elements of P§ and CilN, e ,CliN be distinct elements
of PV for some i € J (n > 0,1 > 0). Let X be a non-empty subset of P; such
that P)(X) = {Ciy,...,Cp} and P§¥ (X) = {CiV, ..., CiV}.

(I) Let ({Xp: P C PAR;},U,e) be a semilattice with zero element e and
V be the restriction to P; of a P-valuation such that (H1) Xy = e and
(H2) for any P, Pl g PAR“ Xpup/ = XP U _XPI.

Then, there is a family (Yc)cepm,, such that

(a) {Yc :c €My} is a finite subset of {Xp: P C PAR;};
(b) IfAis a parameter expression built upon {Ci,...,Cp, CiV, ... ,CfN}
such that A = B};k,lu. . .UB};%, then XV(A) = Y(;klﬁk,1 .. .I_IYCku’kL;

(c) There is (O1,...,0;) € setocci x ... x setoccit such that for any
K e{l,...,1} and any k € Oy, Y, ,, =e.

(IT) Let (Y,U, e) be a semilattice with zero element and (Y¢)cep,, be a family
such that {Yc : ¢ € Mpg} C Y. Let (O1,...,0;) be in setoccy x ... x
setocch such that for any &' € {1,...,l} and any k € Oy, YCM, =
e. Then, there is a subalgebra ({Xp : P C PAR;},,e) of (Y,U,e€)
satisfying (H1)-(H2) and there is a restriction V' to P; of a P-valuation
such that

(a) (Ib) above and for any P C PAR;, there exists a (possibly empty)
finite subset {z1,..., 73} of PAR; such that Xp = X,y U... U
Xary U Xo;

(b) there exists a finite subset Z of PAR; such that card(Z) = 2" +1
and for any P C PAR;, Xp = Xpnz (Z is the finite relevant part
of PAR;);

(c) for any k' € {1,...,1} and k € Oy, V(B}:k,) = 0.

Proor: (I) Let (Yc)cenm,, be the family such that

e for any (k, k') € {0,...,2" — 1} x {0,...,1}, Y, ,, d:efXV ix

Brwr)”
def

e for any c € MOd\{Ckar : </€,, k> S {0, . ,l} X {0, e, 2 — 1}}, Yc = YCl,l
(arbitrary value).

It is easy to check that (Yc)ccy, satisfies (Ia) and (Ib).

(Ie) Let (i1,...,4;) € {0,...,2" — 1} be such that for any &' € {1,...,1},
V(Bﬁ:“k,) # 0 ((i1,...,4) is unique). For any k' € {1,...,1}, we take Op =
occis \ {ix} (ix may not belong to occiy). By (Ib), for any k' € {1,...,1} and
any k € Oy, Yck’k, = XV(B}::,C/) =Xy=e

(IT) Let (Yc)cem, and (O1,...,0;) satisfy the hypothesis of (II). For each
K € {1,...,1}, we choose up € {0,...,2" — 1} \ Oy such that if occis # Oy,
then {up } = occiy \Op. Let PAR; be defined as the set w of natural numbers.
Moreover, for any s € {1,...,n},

V(Co) & {k € {0,...,2" =1} : bits(k) = 0}U{2"—14+K : k' € {1,... 1}, bits(up) = 0}



For the other parameter constants V' is not constrained until V' is the restric-
tion of a P-valuation. For any s € w, V(CV) = {2" — 1+ s}. By construction,
for any k € {0,...,2" — 1}, {k} C V(A¥) and for any (k, k') € {0,...,2" —
D x{l,..., 0} 2" -1+ K € V(AY) iff up = k. Let ({Xp: P C PAR;},U,e)
and V be defined such that (H2) holds and

def

o Xy e for any k € {0,...,27" — 1}, Xiky = Yeu o5
e for any k' € {1, e ,l}, X{2n_1+kl} &t Ycu R
klv
e for the remaining P C PAR;, Xp o XpPn{o,...27 —141}-

One can check that the definition of ({Xp : P C PAR;},U,e) and V satisfy
the required conditions. Q.E.D.

2.2 The normalization process N

Let £ be a Rare-logic satistying the hypothesis of [DG, Section 4.2] and
L(For)',PY) be its extension with parameter and world nominals. Results
about the logic £(P{’) shall be also stated in this section: they can be easily
obtained from the more difficult case with £(For?’, P{). Let F be an L-formula
such that for any i € J, Pj(F) = {Cl,...,Cl } and PJV(F) = {ciV.. .., C;fv} (we
assume n; # 0 and [; # 0 since the degenerate cases can be easily derived from
the present one). Let r(A) be a basic modal expression occurring in F such
that A € P; for some i € J and A = Bf,c*l [PACIN B};* w - The first normal form
vy R i .
of r(A), written Ny (r(A)), is the basic modal expression T(B;;,k’l U...UBy 5 )-
def

In the case when A =1, Ny(r(A)) = 7(C; N —C}). We write N1 (F) to denote the
formula obtained from F by substituting each occurrence of 7(4) by Ni(r(4)).
The second normal form of F, written No(F) is the formula obtained from
Ni(F) where each occurrence of T(B?hkﬂ Uu...U B};%) has been substituted

by T(Bkik,l) o ... e r(Bﬁ’%). One can check that F < Nao(F) is L-valid. We

define the mapping N from the set of E(Forév ,Pév )-formulae into the set of

Up(1ys-Up(j . . Op(1)s-:0p(;
E;{i P 7'-’(])}(Foré\f)—formulae in case iz = 1 [resp. ﬁ;{i P 73(’)}(Foré\7)—

formulae in case iz = 0] where £, is the standard modal logic from L.

The normal form of F, written N(F), is the L£(For’)-formula defined as
follows (L} - see [DG, Section 4.2]). Without any loss of generality, we can
assume that for any i € J we have in the language L£4(For)’) the following
stock of distinct modal constants

U {06,07 ey Chmi g sy COgyre e e Cé”i—l,li}

icJ
such that for any i € J and for any (k, k') € {0,...,2"% — 1} x {0,...,;},
p(c}’ﬁ’k,) = D(i) — 1. N(F) is obtained from N5(F) by substituting every occur-
rence of r(C} N —C}) by Up(;) in the case when iy =1 [resp. by 0p(;) in the
case when iz = 0] and every occurrence of 7(Bj*;,) by ¢} .-

The translation is not quite finished yet. E;(actly one of the components
ciVNaj or cPV N —A! (when n; = 1) is interpreted by the empty set. However,
this fact is not taken into account in N. The following developments provide
an answer to this technical problem. Let G be an £%(For)’)-formula. For any



ieJ,any ki € {l,....l;} and any Y € setoccg,_"(F) we write G[k],Y] to denote
the formula obtained from G where for any & é Y, Cz,k; has been substituted
by Upy;) in the case when iz =1 [resp. by Opy;) in the case when iz = 0].

Forany i € J, (0f,...,0]) € setocclfi(F) X ... X setocczi(F) =S, we write
G[i, (01, ..., 0},)] to denote the formula

Gli,(0}....,0})] £ 6[1,0%]...[l;, O} ]

PROPOSITION 2.2. (Faithfulness of N) Let F be an L(For?', P)-formula.
The statements below are equivalent:

(I) Fis L(For)',p})-satisfiable;
(ID) V{N(F)[1,0Y...[j,07] : o' € S;,i € J} is L(For)))-satisfiable.

ProOF: (I) — (II) Assume F is £(For( ,P{)-satisfiable. So there exist an
L(Fory', Py )-model (W, (PARy)ics, (Rp)PCPAR; - - - (Rp)PcpaR;, V) and w €
W such that M,w [=F. For any i € J, ({Rp : P C PAR;}, ¢p5(W),e}) and
the restriction of V' to P; satisty the hypothesis of Proposition 2.1(I). So for
any i € J, there is a family (Yé)ceMé and o' € S; satisfying (Ia), (Ib) and (Ic)
from Proposition 2.1 -we omit the cases n; = 0 or I; = 0.

Let F' be N(F)[1,0]...[j,07] and M’ be the L%(For}’)-model

<VV7 (RC)ceMov V/>

defined as in the first part of the proof of [DG, Proposition 4.3] where we add:
for any pV € Ford', V'(p") = V(p). One can check that for any A € P;(F)
such that A = Bg,k’l U...UB ., V(r(4)) = V/(dfﬂvk,1 @' ... &' d, ) where
for s € {1,...,u},
L Chy o, if ks & (qz)kg - klth component of o'-

d%mké = Up(i) if kg € (Ul.)k; and iz =1

O’D(i) if ks € (Ul)k; and 7, =0
Such a replacement is allowed thanks to the satisfaction of (Ic). Consider the
surjective map @ : M(F) — Mg(N(F)) (M; denotes the set of modal expressions of
L5(For}Y)) such that for any a € M(F), ®(a) is obtained from a by substituting
simultaneously

e cach r(A) such that L= A € P;(F) by Upy;) if iz = 1 [resp. by Op(;) if
ic = 0J;

e cach r(A) such that B};‘;’k,lu. : .UB};‘;% = A € P;(F) by d;ﬁki & ‘@id?@u,k&‘
By Proposition 3.1, M,w | F iff M, w |=F. Hence M',w = F'.
(I) — (I) Assume there exist F' = N(F)[1,0'][2,0?%]...[j,07], an L*(Fory')-
model M = (W, (Rc¢)cem,, V) and w € W such that M, w = F'. Let us define
the family (Rg), cM; follows:
R et e if ¢ = cpp with &' € {1,...,5;} and k € (o')

¢ Rc otherwise

The semilattice (P(WPW), ¢h(W), ek, (R/C)cer) and o satisfy the hypothesis
of Proposition 2.1(II). So for ¢ € J, there exist a structure ({Rp : P C
PAR;}, ¢5(W),el.) and V; such that (take X = P;(F) if P;(F) # () otherwise
X = {Cil?CilN})v



e V/; is the restriction of a P-valuation to P;;

o ({RL: P C PAR;}, ¢h(W),el) is a semilattice with zero element WP
[resp. 0] if iz = 1 [resp. if iz = 0];

e R = ¢i and for any P, P’ C PAR;, R ps = ¢%(W)(Rb, Rb));

def

e PAR; = w and the relevant part of PAR; is {0,...,2™ — 1+ 1;};
IfA € P;(F), A= B}‘;k,lu. .UBY o, then Ry def Rlci; , Ph(W) ... o5(W)R,
Ly

ko kb,
e forany k' € {1,...,;} and k € (o), V}(B}:k,) 0.

Let M’ = <VV, (PARi)ieJ, (R}D)PQPARU ey (Rfu)PgPAR]-, V’} be the E(Forév, Pév)—
model defined as in the second part of the proof of [DG, Proposition 4.3] ex-
cept that we add: for any p» € For)’, V/(p") = V(p»). We claim M’ is an
L-model. The verification of the properties is straightforward.

By applying [DG, Proposition 3.1] with ® described in the proof of (I) —
(II), we conclude that M, w = F iff M',w EF. Q.E.D.

The construction in the proof of Proposition 2.2 can be seen as a general-
ization of the proof of [DG, Proposition 4.3].
Proposition 4.4 in [DG] can be also naturally extended:

PROPOSITION 2.3. (Reducing L}(For(’) to £L(For{’)) There exists a polynomial-
time transformation from L£%(For{')-satisfiability into £(For{)-satisfiability.

The proof of Proposition 2.3 is analogous to the proof of [DG, Proposition
4.4]. Hence,

COROLLARY 2.4. (Decidability and finite model property correspon-
dences) Let £ be a Rare-logic of the type described at the beginning of [DG,
Section 4.2] and L(For'), L(P{), L(For},P}) be extensions with (world
and/or parameter) nominals.

(I) L(Ford,PY) [resp. L(PY), L(Forl')] is decidable iff £%(For)') [resp. L%,
L5(Ford')] is decidable;
(IT) L(For),PY) [resp. L(PY), L(For{)] has the fmp iff L£%(For}’) [resp.
%, L%(For)')] has the fmp;
(IIT) If for any i € J, L} is Up(; -simplifiable or Opy;)-simplifiable (according to
ig) then L(For(’, P{Y) [resp. L(P{'), L(For{')] is decidable iff £}~ (For)')
[resp. £, Ly (For)')] is decidable.

EXAMPLE 2.1. Let £(For)’,P{’) be the Rare-logic (L, D,Z,C, X1,4) such that
j=1,D(1) =2, X1 = Fr?2 and OP = {U,0,* } (interpreted in the standard
way). For any L(For(',P{)-model M = (W, PAR,(Rp)pcpar,V) and for
any P,P' C PAR, Rpnpr = Rp U Rp: and Rpar = (). Here is an example
of formula: [r(CN U —D)* o 7(D)](p = [r(CY N D)]q"). Then, L(For),p{)
has a decidable validity problem. Indeed, let £'(For)’,P{’) be the logic of
type 2 similar to £(For{’,P}’). By Corollary 2.4(III), £'(For}’,P}’) is decid-
able iff Eldor(ForéV) is decidable (see [DG, Proposition 4.6(I1I)]). However,

E;ior(ForéV ) is a fragment of the Combinatory Dynamic Logic CPDL de-
fined in [PT91]. Since CPDL has been proved decidable (see e.g. [PT91]),
L'(For{’,P)’) has a decidable validity problem. Hence £(Forl',P{) is decid-
able by using [DG, Proposition 3.3] for names.



3 Elimination of the universal modal operator

In this section we concentrate on the elimination of [Us] (noted [U]) as far
as decidability of satisfiability for standard modal logics is concerned. In-
stead of stating, £ is decidable iff £} is decidable, we identify cases when £
is decidable iff L; is decidable. As a consequence, we take advantage of the
(un)decidability of standard modal logics (see e.g. [Har84, PT91]) to deduce
(un)decidability of Rare-logics. Adding the universal operator to modal logics
increases the expressive power (see e.g. [GP92]) and it may modify the decid-
ability status of the logic (see e.g. [GP92, Spa93, Mar97]). The main result
on the present section (Proposition 3.1) can be viewed as a consequence of
results from [GP92]. However, when in [GP92] the focus is on proof systems,
we provide a semantical proof whose consequences have been mostly ignored
in the literature.

ProprosITION 3.1. (Reduction of logical consequence to validity) Let
Ly be a standard modal logic closed under disjoint unions and isomorphic
copies (see [DG, Section 2]) such that for any a € M, D(a) = 2 (the Lzmodels
contain only binary relations). The statements below are equivalent:

(I) the logical L£4-consequence problem is decidable;

(II) the EilU}_—validity problem is decidable.

Proor: (II) — (I) Let F,G be Lj-formulas. It is easy to see that F |=¢, G
iff [UJF = [U]G is L"{iU}i—valid. Hence, the EgU}i—validity problem is decidable
only if the logical Lg4-consequence problem is decidable.

(I) — (II) Let us recall the notion of elementary disjunction from [GP92]. An

elementary disjunction ED is an E({iU}_—formula of the form
F_1 V(U)Fo V [UJFL V...V [UF,

where F_1,Fo,Fy,...,F, are U-free formulae. So, F_1,Fo,F1,...,F, are L4-
formulae. Using arguments from the proof of [GP92, Theorem 3.7], for any
E;U}i—formula F there exists a finite set {EDy,...,EDy} of elementary disjunc-
tions such that F < (ED; A... AEDy) is £1°) -valid. ED; A... AEDy is called
here a conjunctive form of F. Actually, there exists an effective procedure to
compute such a set. Let a € M and H,H be EEU}i—formulas such that H' is a
Boolean combination of formulae prefixed by [U] or (U). The Cl{iU}_—formulas
below are C;U}_—Valid:

(i) [a)JHVH) < [aJHVH
(i) UJ(HVH) < [UHVH

By induction on the structure of F, one can show that F is equivalent to a
conjunction of elementary disjunctions. The base case (F is a propositional
variable) and the cases in the induction step when the outermost connective of
F is Boolean are standard and they are omitted here. Let F = [a]F;. By induc-
tion hypothesis, there is a finite set {F1,... ,FL} of elementary disjunctions
such that FIA...AFL, is a conjunctive form of F1. So, [a]F1 < [a]FIA...A[a]FL

is ﬁ({iU}i—valid since (a) is a normal modal operator. (i) guarantees that each



[a]F}, 1 < j < m, has a conjunctive form. So F has an equivalent conjunctive
form. Let F = [U]F;. The proof is similar to the proof of the previous case
except that (ii) is used instead of (i).

Now let ED = F_; V (U)Fo V [U]F1 V...V [U]JF, be an elementary disjunction.
For any EéU}_—model M, M = [UJED iff M |= ED. Using (ii), M = [UJED
iff M E [UJF_1 VvV {(U)FgV [UJF1 V...V [UF,. By easy manipulation at the
propositional level, M | ED iff (iii) M | [U]-Fp = ([UF_1 V [U[F1 V...V
[UJF,,). Moreover (iii) holds iff for some i € {-1,1,...,n}, M [ [U]=Fy =
[UJF;. So, ED is LgU}_—Valid iff (iv) for any £6{1U}_—m0del M, there is i €
{-1,1,...,n}, M |= [U]=F¢ = [U]F;. Let us show that (iv) iff (v) there is
i€ {—1,1,...,n} such that for any .C(EU}i—model M, M [ [U]-Fo = [U]F; (or
equivalently, =F¢ |=¢, Fi). The equivalence between (iv) and (v) corresponds
to the permutation of two quantifiers.

(v) implies (iv) is obvious. Now assume (iv) and suppose (v) does not
hold. By definition of E;{iU}i, (v) holds iff there is i € {—1,1,...,n} such that
for any Lg-model M, M | —Fj implies M = F;. It is worth mentioning
that M is an L£4-model (not an ﬁle}_—model) which is however correct since
F_1,Fo,F1,...,Fy are Lg-formulas. Since (v) is supposed not to hold, for i €
{=1,1,...,n}, there exist an Lg-model M" = (W' (RE)cenm,, V') M’ | Fo
and y; € W' such that M’,y; ¥ F;. Let M~ = (W”l,(REI)CGMO,V/A},
M=, (R'C")CGMO, V') be isomorphic copies of M~ ..., M™ re-
spectively such that for 7,7 € {—1,1,...,n}, i # ¢ implies W N W' = (.
By assumption, £ is closed under isomorphic copies. So M'~L, ..., M'™ are
Lg-models. Let M" = (W', (R¢)cem,, V') be the structure such that:

o WEWLuwlu...uwn

for p € Forg, V'(p) =V ' (p) UV (p) U... UV (p);
for c €My, R £ RC'URA U ... URZ:

foracM V'(a)=V "Ya)uV'a)u...UuV™(a).

By assumption, £ is closed under disjoint unions, so M’ is an Lgz-model.
By induction on the structure of the L4-formula G, for any i € {—1,1,...,n}
and for z € W', M,z |= G iff M’z = G. Consequently, M’ = =Fq and
for i € {-1,1,...,n}, M’ £ F;. By definition of E;{iU}i, (iv) holds iff for
any Lg-model M, there is i € {—1,1,...,n}, M |E =Fg implies M = F;, a
contradiction. -

It is now possible to conclude the proof. Let F be a E(EU} -formula such that
ED; A ... AEDy is a conjunctive form of F. Let us say that for ¢ € {1,..., N},
ED; is of the form

FLy V (U)F) V [UFS V...V [U]FE,

(vi) Fis £ valid iff for all i € {1,..., N}, ED; is £ valid. That is, (vi)
holds iff there is (j1,...,jn) € {—1,1,...,n1}x...x{=1,1,...,ny} such that
forany I € {1,...,N},=F} =z, Fé-l. By assumption, the £4-consequence prob-
lem is decidable and there is an effective procedure to build the conjunctive

forms, so the EgU}_—validity problem is decidable.
Q.E.D.
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Although Proposition 3.1 is interesting for its own sake, it has also natural
consequences for some classes of Rare-logics.

COROLLARY 3.2. Let £ be a Rare-logic of the type described at the beginning
of [DG, Section 4.2] such that for any i € J, D(i) = 2, iz = 1 and L, is closed
under disjoint unions and isomorphic copies. If £} is Us-simplifiable, then the
statements below are equivalent:

(I) £ is decidable;

(IT) the logical £4-consequence problem is decidable.

Proposition 3.3 below describes a set OP of operators that allows us to
simplify Corollary 3.2(II).

ProOPOSITION 3.3. (Particular cases of elimination of [U]) Let £; =
(L,D,Z,C) be a standard modal logic closed under restrictions such that,
for any a € M, D(a) = 2 and either U* € OP or {U,*} C OP with OP C
{n,uU,u** =1 o} (interpreted in the standard way). Then, the statements
below are equivalent:

(I) the logical £4-consequence problem is decidable;
(II) the L4-validity problem is decidable.

A result similar to Proposition 3.3 has been proved in [KT90] for particular
dynamic logics.
ProOF:(I) — (II) The proof is immediate.
(IT) — (I) We can prove using standard techniques for PDL that (i) F =, G
iff (ii) [a]F = G is Lg4-valid where (the c;’s are the modal constants occurring
in {F,G}):
(c1U...Ucy)*if 1 € OP and {U,*} COP
4t ] c1U*...U*c, if 1 ¢OP,U* € OP and {U,*} Z OP
") (c1U...Uc,UcitU...Uc, )" if 1€ OPand {U*} COP
(cpU*.. .U cp U et U .. U ¢ 1) if '€ OP,U* € OP and {U,*} £ OP

(ii) — (i) Assume [a]F = G is L4-valid and M = F for some L4-model M.
So M E [a]F and M [ G.
(i) — (ii) Assume F |=¢ G. Let M = (W, (Rc)cep,, V) be an Lz-model and
x € W be such that M,z |= [a]F. Let us show that M,z |= G. It is easy to
show that
( U ve)ecvE(
beM([a]F=G)
and (iii) for any y € V(a)(z) and F' € sub([a]F = G) (set of subformulae
of [a]F = G), M‘V(a)(z),y EFiff My = F. So M\V(a)(z)al' E [a]F and
My (a)@) F F. Since M|y (ay,) is an Lg-model (L£y is closed under restric-
tions), M|y (a)(z) [ G- In particular, My (a)),* | G and by (iii) M,z = G
(note that z € V(a)(x) since V(a) is reflexive).
Q.E.D.

Proposition 3.1 above is a crucial result since it allows to refine various
statements in [DG, Corollary 4.5].
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ExXAMPLE 3.1. Let £ = (L, D,Z,C, X1,1) be the Rare-logic such that j = 1,
D(1) = 2, OP = {U*,N} (binary operators interpreted by transitive and
reflexive closure of union and set intersection, respectively) and X; = Fr2. £
is decidable iff E;{lU% is decidable by [DG, Corollary 4.5(IT)]. Since L, is closed
under isomorphic copies, disjoint unions and restrictions, by Proposition 3.1

and Proposition 3.3, L4 is decidable iff Et{iU}_ is decidable. Since Ly is a
fragment of PDL+Intersection that is known to be decidable [Dan84], L is
therefore decidable.

4 Proof system translations

This section is devoted to show how to build Hilbert-style proof systems for
Rare-logics from existing proof systems for the corresponding standard modal
logics. We propose a generic translation between calculi using the results of
the previous sections. The idea of the translation consists in providing an
analogous treatment to the basic modal expressions (more precisely to the
components) in the Rare-logics and to the modal constants in the correspond-
ing standard modal logics.

In what follows, £ denotes a Rare-logic of the type described at the be-
ginning of [DG, Section 4.2], including for instance the Rare-logics of type
1,2 and 7. For Rare-logics of type 0, 3 or 4, similar results can be easily ob-
tained. They are omitted here to avoid the boredom of repetitive arguments.
L4 denotes the corresponding standard modal logic and £’ the logic L. We
subscript the sets of syntactic objects related to £’ by the symbol 'd’.

4.1 Proof systems

The rules of the proof systems do not involve formulae but formula schemes.
That is why, we use extensions of the languages of the logics in order to
define calculi. The propositional variables, modal constants and parameter
constants should be read as variables in formula schemes. However, we shall
enrich the set Mg by adding modal constants since it is not true that for any
a €M D(a) € {D(i) : i € J}. Let J be the finite set of integers J' =
{1,...,j+ card({iny1: ® € OP, D(®) = (i1,...,int1)})} (remember OP is
finite). We extend D such that {D(i) :i € J'\ J} = {pdp(®) : ® € OP}. Let
MG" be the infinite countable set of constants defined as follows

1. {M;“* ;4 € J'} is a partition of MJ® and each Mz is countably infinite;

2. for any i € J, Mé’az ) Mf)d (and therefore Mygy C M3®);

3. for any i € J'\ J and any c € My**, we extend p with p(c) & D(i) — 1
and D(c) = p(c) + 1.
First, we define various syntactic notions related for the Rare-logic £. Let
M% be the set of well-formed modal expression schemes and For®® be the set
of formula schemes that are obtained by substituting in the definitions from

[DG, Section 2 and Section 3], Mp by My UM§”. Consequently, For C For®”.
An L-substitution o is a mapping o : Forg UM§* UPg — For UMU P such that

1. for any p € Fory, o(p) € For ;

12



2. for any i € J', for any ¢ € M;"", o(c) € M and D(o(c)) = D(c);

3. for any i € J, for any C € P, o(C) € P;.
Let F be in For®. The formula Fo € For (also written o(F)) is obtained
from F by simultaneously replacing every occurrence of the syntactic object
0 € Forg UM§* UPy by 0(0). From a formula scheme F € For®, the set of
L-substitutions generates a countable set of L-formulae of the form Fo. A
rule Ru is a pair Ru = ((F1,...,Fp), Ax1 ... %, C) such that

e n>1;foranyie{l,...,n}, F; € For®,;

e {x1,...,%x3} C (Forp U Mg* U Po)({F1,..,Fn});

e (' is a condition of the meta-language.
Another way to represent (Fy,...,F,) is the standard whereas Axy ...

n
is a condition for its application. As usual, when n = 1, Ru is also called an
axiom scheme.

F17~~~7Fn—1
F

ExAMPLE 4.1. Some examples of rules:

e ({p,p = q,q), Ap.true) (modus ponens);
e {(p,[c](p,q)), Ap.true) (necessitation rule);
o (([r(€n—=C)lp = [c]p), Ap-true); ({[r(C)]p = [c]p), AC.C =1).

An aziom system' Ax is defined as a countable set of rules. The present
notion of axiom system is strongly related to Hilbert-style calculi. How-
ever, various technical results in this section can be adapted to other kinds
of calculi (see e.g. [DGI8]). The set of Ax-theorems, denoted Fjpy, is the
smallest set of formulae satisfying the following condition. For any rule
Ru = ((Fy,...,Fp), Ax1...3,C) € Ax, for any substitution o, if for any
ie{l,...,n—1}, Fio €Fpx, Ax1...%,Co(x1)...0(xp,) holds true, and F,,0 €
For then F,o €kpy. Here, we abusively write Axi...x,,Co(x1)...0(xp)
to denote that C’ holds true where C’ is obtained from C by replacing si-
multaneously xi...%, by o(x1),...,0(xm), respectively. We write indiffer-
ently F €Fpy or Fpy F. An Ax-derivation Der is a finite sequence Der =
(G1,...,Gy) of L-formulae such that for any ¢ € {1,...,n}, there exist a rule
Ru = ((F1,...,Fn),Ax1...xC) € Ax and an L-substitution o such that
{Fla, ... ,FN,10} - {Gl, cee Gifl} AX1 .. .XMCO(Xl) ... U(XM) holds true and
G; =Fyo € For.

Until now, the defined notions have been introduced for the Rare-logic
L. In order to define the set M3” for the standard modal logic £', take the
definition of Mg and replace the set Mog by M3". The set For%* for £ is built
accordingly. An L'-substitution o is a mapping o : Forg UM* — Fory UMy
such that o satisfying the conditions (1)-(2) in the definition of £-substitution.
Recall that Forg = Forgq and Mg = My5” for ¢ € J. The notions of rules,
axiom systems, Ax-theorems and Ax-derivations for the logic £ are defined as
previously for L.

!This definition of axiom systems does not deviate from what is usually considered in the
literature. It incorporates features from the notion of schematic axiomatic system in [Acz94]
and from the notion of Hilbert-style inference system in [NA94]. However, our motivation
merely consists in expressing translations between proof systems for Rare-logics and standard
modal logics.
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4.2 Syntactic correspondences

First, we describe a generalization of the normalization process N that makes
explicit the correspondences between basic modal expressions in £ and modal
constants in £'. For i € J, let {Ci,..., Cﬁh} be a non-empty finite subset of
Pi. Let X = (Xi)ies be a (finite) family of 1-1 mappings &; : {A¥ : k €
{0,...,2" — 1}} — subset(My,) such that {A}* : k € {0,...,2" — 1}} is the
set of components computed from {Cj,...,C; } and subset(My,) is a (finite)
subset of Mj,. We write Fory [resp. Forgy] to denote the set of £-formulas F
[resp. £'-formulas F] such that for i € J, Pj(F) C {Ci,...,C. } [resp. Mj(F) C
subset(M))]. Similarly, we write My [resp. Msx] to denote the set of modal
expressions from M [resp. Mg] such that for 7 € J, Py(a) € {Ci,...,C}, } [resp.
Mi(a) C subset(Mi,)]. Let us define the map Ny : ForyUMy — ForgyUMgy that
is indeed a natural extension of X to formulas. Roughly speaking, the basic
modal expressions in £ are replaced by modal expressions in L', consistently
with X'. Ny is inductively defined as follows:

e for p € Forg, Nx(p) < p;

e Ny is homomorphic with respect to the Boolean connectives;
def

o Nx([a](F1,...,Fya))) = Na(a)](Nx(F1), ..., Na(Fya)));
e for i € J and for A € P; such that Pj(A) C {C},....C, } and A =
A UL UAY Nx(r(A) € Xi(AY) &' L & X;(AY);
e for i € J and A € P; such that Pj(A) C {C},...,C..} and A =1,
def UfD(i) ifip=1
NX(T(A)) a { OD(i) ifip=0

o for ®(ay,...,a,) € My, Ny(®(ar,....an)) & ®(Nx(ar), ..., Ny(an)).

For any L-formula F, there is a family X such that N(F) = Ny (F) (N is the
normalization map defined in [DG, Section 4.2]). Analogously, we inductively
define the “reverse” map Nz}l :Forgy UMgy — Fory UMy:

def

e for p € Forg, N3'(p) = p;

° N}l is homomorphic with respect to the Boolean connectives;
o Ny ([&](F1,- .- Fyra)) = Ny (@)J (N3 (F1), - Ny (Fopa)));
e for i € J and c € subset(M}), N}l(c) & T(Xfl(c));

def def

e forie J,ifiy =1, then N}l(UD(i)) = r(CiN—C!) otherwise N}l(OD(i)) =

r(Cj N —C});
o for ®(ay,...,a,) € Mgy, N3 (B(a1, .., an)) = OO (a1), .., N3 (an))-

Let X be a family. The formula F € Fory is said to be X -normalized &
Ny (Nx(F)) = F. So for any L-formula F, there is a family X’ such that Ny (F)
is X-normalized. Moreover, for any L'-formula F, there is a family X such
that F and N(N3'(F)) are identical modulo the renaming of modal constants.
The proof of [DG, Proposition 4.4] uses this property.

Now, let X be a family and o [resp. ¢'] be an L-substitution [resp. £’-
substitution] such that the codomain of o [resp. ¢'] allows us to write the
expressions below. We write X (o) to denote the following £'-substitution:
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e for p € Forgg = Forg, X(0)(p) &t Ny(o(p));

def

e for any i € J' and any ¢ € Mj™, X(0)(c) & Ny (o(c));

e the rest of X (o) is irrelevant.

We write X~!(0") to denote the following £-substitution:

def

e for any p € Fory, X‘l(a’)(p) = N;(l (o'(p));

e for any i € J' and all ¢ € ;™ X1(0")(c) & N3l (o' (c));

def

e for any i € J and for C € Pj, X 1(o’)(C) = ¢;
e the rest of X~!(¢”) is irrelevant.

DEFINITION 4.1. Let Ru = ((F1,...,Fn), AX1...%,,.C) be a rule of a system
def

Ax,4. Ru is said to be L-transformable <
1. If [Ax1...xClo(x1)...0(xy) holds for some L'-substitution o, then
[Ax1...xmClo’(0(x1))...0"(0(xm)) holds for any other £'-substitution

1.

o

2. there exists a condition C’ such that for any family X and for any L-
substitution o [resp. £'-substitution ¢'] that make the expressions below
meaningful, we have:

2.1 Mx1 ... %, CNX o)) (x1) - X0 (x0) ifE [Ax1 L. %, O (x1) - -

2.2, [Ax1 ... % C'o(x1) ... 0 (%) T [Ax1 ... %, O] X (0)(x1) - . . X (0) (%)

\Y

Condition 1. above not only allows us to rename derived formulae but
it implies also that no atomic proposition and no modal constants play a
“special role” in the axiomatization. Observe that when C = true, Ru is
always L-transformable: take C’ = true.

4.3 The translations

In this section from an axiom system Ax, for £ we build an axiom system Ax
for £ in a systematic way. Let Axg be an axiom system for the logic £’ such
that,

e for any F € Fory, Fpy, Fiff Fis L'-valid (soundness and completeness);
e the following rules belong to Axy:

— {{p,p = q,q), true) € Axy (modus ponens);
— for any tautology F of the propositional calculus, (F,true) € Axy;

i,a

— for any ¢ € J', for any i € {1,...,D(i) — 1} (c; € Mg;"),

<<p7 [Ci] (pl; s 7pi’717 P, pi’-{—l? se 7pp(Ci))>7 t’)"’LL€> € AXd

(necessitation rules);
— forany i€ J', forany i’ € {1,...,p(c;)} (c; € Mgy"). ((F1 = (F2 =
F3)),true) € Axy where the F;’s are defined as follows

15
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=5
o
e

F1 = [Ci](Plﬂ -5 Py 1P Pirg 1y - - va(Ci))
def

F2 = [ci](P1s- - »Py—1:P = L Pirg1s -+ -+ Pp(cy))
def

F3 = [Ci](Plﬂ - P15 G Py - - va(Ci))

Ax, contains the classical tautologies, the modus ponens and the many-
dimensional version of the necessitation rule and the normality axiom (see
e.g. [Ven9l]). The constraints on the rules in Axy are rather weak since for
all axiom systems Axg for £’ such that for any F € Forg, Fpy, Fiff F is
L'-valid, all these rules are Axg-admissible. A rule Ru is Axg-admissible &
FAxd:}_Axdu{Ru}-

Now let us define the corresponding system Ax for £. Let @ : For$® —
For® be the mapping where ®(F) is computed from F by simultaneously
substituting every occurrence of Upy;) [resp. Op(;)] by 7(C'N—C?) where C' € P},
is some representative element of Py. In the sequel, for any formula F € For
such that P (F) # () without any loss of generality we assume that C' occurs
in F (L-satisfiability and L-validity are not sensitive to the renaming of the
constants) and C’ is the first parameter constants of P}, in any family X.

DEFINITION 4.2. Let = [resp. =3 ] be the smallest transitive relation on M
such that for any a,b € M, if the condition below holds, then a = b [resp.
a =4 b]: b is obtained from a by substituting one occurrence of some A by
B such that A = B [resp. of some (A UB) by r(A) &" r(B)] (here A,B € P; for
some i € J). \v

LEMMA 4.1. The relations =, =4 are decidable and (=U Euq%)* C=,.

DEFINITION 4.3. Let Axg be an axiom system for £’ of the kind above such
that all the rules are £-transformable. The axiom system Ax for £ is composed
of the following rules:

1. for each ((Fi,...,F,),C) € Axg, ((®(F1),...,®(F,)),C") € Ax (C' is
from Definition 4.1);

l(ll’)
)

2. for any i € J' (c,c’ € Mb’
(([c](py; - - - ,pp(c)) < [](py, - - - ’Pp(c))>a Acc’. eitherc = c’ orc = c)
\Y

Alternatively, in Definition 4.3(2.) one can also replace the relations = and
=0 by more primitive substitutions obtained from Definition 4.2. Indeed,
< is logically transitive.

PROPOSITION 4.2. (Soundness and completeness) Let Axy be an axiom
system for £’ such that all the rules are £-transformable and Ax be the axiom
system defined from Ax,; as done in Definition 4.3. For any L-formula F, the
statements below are equivalent:

(1) Fax F;
(II) F is L-valid.
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PRrROOF: (Sketch) The proof is rather long and tedious and it is based on the
following simple principle.

We know that for any L-formula F, F is L-valid iff No(F) is L-valid iff
N(F) is £'-valid. We shall show that we can define mappings between deriva-
tions of N(F) in Axg and derivations of F in Ax. Since Ax and Axy essentially
share numerous inference rules, we define mappings between different kinds
of syntactic objects (modal expressions, formulas, ...) in order to effectively
transform Axg-derivations of N(F) [resp. Ax-derivations of F] into Ax-derivations
of F [resp. Axg-derivations of N(F)]. In that sense, although the proof is rather
technical, it does not say anything deeper than what is informally described
above. However, the technique is general enough to capture a wide range of
Rare-logics.

The proof is based on the following lemmas:

(i) Let X be a family and F € Fory. Then, Fyy N3!'(Ny(F)) & F;
(ii) Let X be a family and F € Forgy. Then, Ny (N3 (F)) = F;

(iii) Let X be a family, F € For§” and o [resp. ¢'] be an L-substitution [resp.
L'-substitution]. Then,

(iiia) If Fo' € Forgy, then N3} (Fo') = ®(F)AX1(o');
(iiib) If ®(F)o € For.y, then Ny (®(F)o) = FX (0);

(iv) Let Der = (Gy,...,Gy) be an Axj-derivation and X be a family such
that for i € J, M ,({G1,...,Gn}) C subset(My,). Then, Fpyx N3'(Gy).

(v) Let Der = (Gy,...,Gx) be an Ax-derivation and X be a family such that
for i € J, Pj({G1,...,Gn}) C {C{,...,CL.} (set from which are built the
components involved in &;). Then, Fpy Nx(Gn).

The proof of (i) is by an easy verification. It is based on the principle of
replacement of equivalents (that can be shown to hold in Ax) and on the rule
2. from Definition 4.3. The proof of (ii) is straightforward. The proof of (iii)
is also not very difficult. The proofs of (iv) and (v) are the difficult parts.
(iv) The proof is by induction on N. The base case is omitted here.

Induction step: Let Der = (G1,...,Gny1) be an Axg-derivation and X be a
family such that for i € J, M), ({G1,...,Gn11}) C subset(Mi,;). There exist a
rule Ru = ((Hy,...,Hy), Ax1 ... %,.C) € Axg and o an £'-substitution such that
Gny1 = Hpo, {Hio,...,Hy_ 10} C {G1,...,Gny} and [Ax ... %4 Clo(x1) ... 0(xm)
holds true. By induction hypothesis, for k € {1,..., N}, Fpx N}l(Gk). In par-
ticular, for k € {1,...,n— 1}, Fax N3 (Hro). By (iiia), for k € {1,...,n —1},
Fax ®(Hp)X (o). Since Ru is L-transformable,

Ru' = ((®(Hy),...,P(H,)), A\x1 ... %,,.C") € Ax

and [Ax; ... %,.C"1X 71 (0)(x1) ... X71(0)(xn) holds true by Definition 4.1(2.1).
Moreover, by (iiia) N3' (Gn41) = ®(H,)X (o). So, Ny'(Gy11) can be derived
in Ax by applying the rule Ru’ with the substitution X (o).

(v) The proof is by induction on N. By way of example, we treat only one
base case below.

Base case 1: N = 1 and there exists an L-substitution ¢ such that G; =
([elP1y- - Ppc)) & [€'](P1s - -+, Pp(c)))o and either o(c) = o(c’) or o(c) =usi
o(c’) for some i € J.
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Base case 1.1: o(c) = o(c’)

It is not difficult to see that Nx([c](py,- - -, P,(c))o) = Na([c](P1s-- -+ Pp(c))o)-
So, l_AXd Nx(Gl).

Base case 1.2: o(c) = o(c’) for some i € J.

So, o(c) is obtained from o (c’) by replacing (a finite amount of times) occur-
rences of (A UB) by r(A) @' r(B). Since for any a,a’,a"” € My,

e adia =, a' @l a;

. a@iazg a;

o (ad'a) @' d" = a® (f ®a");

e Up) @' a = a[resp. Op) @ a= al;

then Ny (o(c)) =z Nx(o(c')). Note that the ¢i(W)s are semilattice oper-
ations in L-models and £'-models (see the beginning of [DG, Section 4.2]).
Since Ax, is complete with respect to £'-validity, Fpy  Nx(G1).

Induction step: Let Der = (Gi,...,Gn4+1) be an Ax-derivation and X be a
family such that for i € J, P{({G1,...,Gy41}) € {C],...,CL. }.

Case I: There exist a rule Ru = ((Hy,...,H,), A1 ... %xp.C) € Axg and o an L-
substitution such that Gy = ®(H,)o, {®(H;)o,...,P(H, 1)o} C {Gy,...,GN}
and [Ax;...xp,.C'lo(x1)...0(%p) holds true. Since Ru is L-transformable,
we indeed apply a rule Ru’ obtained from Ru as done in Definition 4.3(1).
By induction hypothesis, for k € {1,...,N}, Fayx Nx(Gy). In particular,
for k € {1,...,n — 1}, Fpx Ny(®(Hg)o). By (iiib), for & € {1,...,n — 1},
Fax, HpX(0). [Ax1...%0.C]X(0)(%1)... X(0)(xm) holds true by Definition
4.1(2.2). Moreover, by (iiib) Nx(Gyy1) = HoX(0). So, Ny (Gn41) can be de-
rived in Ax, by applying the rule Ru with the substitution X' (o).

Case 2: There exists an L-substitution o such that Gy41 = ([c](py, ..., Pyc)) &
[¢](P1: -+ Pp(e)))o and either o(c) = o(c’) or o(c) =ugi o(c’) for some i € J.
The proof is similar to the Base case 1 above and it is omitted here.

Now we are in position to conclude the proof.

(I) — (II) Let -px F and suppose that F is not £-valid. Let Der = (Fy,...,Fy)
be an Ax-derivation of F (Fy = F) and X be a family such that for i € .J,
Py({F1,...,Fn}) C {Ci,...,C, }. Without loss of generality, we can assume
that PG({F}) = {Ci,...,C},} (if it is not the case, then F can be easily replaced
by an equivalent formula with this property). By (v), Fax, Na(F). Since Fpy
is sound with respect to £’-validity, Ny (F) = N(F) is £'-valid, which is equiv-
alent to F L-valid, a contradiction.

(II) — (I) Assume F is £-valid and suppose t/px F. So there is a family X’ such
that Ny (F) = N(F). We know also that F is £-valid iff N(F) is £'-valid. Since
Fax, is complete with respect to £'-validity, gy, N(F). Let Der = (Gi,...,Gn)
be an Axg-derivation of N(F). Without any loss of generality, we can assume
that for i € J, M),({G1,...,Gn}) C subset(M,;) (if it is not the case there
is a simple way to be in this situation). By (iv), Fax N3 (Nx(F)). By (i),
Fax N3 (Nx(F)) < F. Since the principle of replacement of equivalents holds
in Ax, Fp4 F, a contradiction. Q.E.D.

4.4 Example

Let RIL be an extension of the Rare-logic defined in [Orlo84b] by adding
the intersection operator. RIL is defined as the structure (L,D,Z,C, X1,1)
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such that j = 1, D(1) = 2, OP = {N} (interpreted as intersection) and
X; = {(W,R) € Fr? : R is an equivalence relation}. The logic RILY is
actually a standard modal logic whose modal operators are either of the form
[U] or of the form [c; N ... N ¢,] where each ¢; is a constant interpreted as
an equivalence relation and as usual N is interpreted as intersection. A sound
and complete axiom system for RIL} is defined as the set of rules below (see
e.g. [HM92, Bal97]):

({p,p = q,9), true) (modus ponens);

{{p, [c]p), true) (necessitation rule);

for any tautology F of the propositional calculus, ((F), true);

{([cl(p = a) = ([clp = [c]a)), true);

{([c]p = p), true);

((=lelp = [c]-[c]p), true);

(

[¢'lp = [c]p), Acc’.Moq(c") € Moa(c)).

NS U W

Myg denotes the set of modal constants of RILY. Now, let us define an ax-
iom system for RIL using Proposition 4.2. First, for any modal expression
a,b €M (in RIL) aC b & for any RIL-model (W, PAR, (Rp)pcpar, V),
V(a) € V(b). C can be shown to be decidable by taking advantage of the
normalization processes Ny and Np. All the rules in the system for RIL} are
L-transformable. Indeed, all the rules except the last one have a condition
always true. For the rule 7., one can show that the condition C' = ¢ C ¢’
allows us to show that even this rule is L-transformable. So, by applying
Proposition 4.2, a sound and complete axiom system for RIL contains the
rules 1.-6. above plus the following ones:

7" {([¢"Ip = [c]p), Acc’.c T ).
8. {([c'Ip & [c]p), Acc'. either ¢ = ¢’ or ¢’ =(n c).

The axiom schemes 7." and 8. are obtained by Definition 4.3 but in the present
case 8. is superfluous.

5 Applications to information logics

In this section we show how the results of the previous sections allow us to
state new decidability results (and equivalence between decidability problems)
for information logics. Actually, this was the original motivation to develop
most of the results in the previous sections.

5.1 A logic of indiscernibility relation

The logic of indiscernibility relation LIR has been introduced by Orlowska in
[Orlo93] (see also [Orto84b]). LIR is the Rare-logic (L, D, Z,C, X1, 1) such that
j=1,D(1) =2, OP = {N,U*} are binary operators interpreted respectively
as intersection and the transitive closure of the union and X; = {(W,R) €
Fr? : R is an equivalence relation }. This logic is an extension of RIL defined
in Section 4.4. The logic LIR4, the standard modal logic corresponding to
LIR is precisely the logic DAL defined in [FACO85].
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ProPOSITION 5.1. (Reduction for decidability of LIR) The LIR-satisfiability
problem is decidable iff the DAL-satisfiability problem is decidable.

PROOF: Since LIR;EUQ} is Ug-simplifiable (by [DG, Proposition 4.6]), then by
[DG, Corollary 4.5(IT)], LIR is decidable iff LIR.?} ™ is decidable. By Proposi-

tion 3.1, LIR3U2}7 is decidable iff the LIR4-consequence problem is decidable.
Observe that LIR, is closed under isomorphic copies, disjoint unions and re-
strictions. By Proposition 3.3, the LIR -consequence problem is decidable iff
the LIRg4-validity problem is decidable. Hence the LIR-validity problem is
decidable iff the LIR4-validity problem is decidable. Moreover, LIR; is the
logic DAL defined in [FACO85]. Q.E.D.

Decidability of DAL is open although various attempts? to prove such a
result can be found in the literature (see e.g. [AT89]). This fact is rather sur-
prising considering that after all, DAL is similar to various other polymodal
logics, among them the Propositional Dynamic Logics. It is not difficult to
show that if PDL with converse and intersection is decidable (which is com-
monly conjectured in the literature) then DAL is also decidable.

COROLLARY 5.2. LIR(P)) is decidable iff DAL is decidable and LIR has the
fpsp.

5.2 A logic for reasoning about concepts

The logic for reasoning about concepts LRC is not stricto sensu a Rare-logic
in the sense of [DG, Section 3]. It shares the same language with LIR but the
semantics differs. This logic has been introduced in [Orlo88a]. An LRC-model
is a triple (OB, AT, V') such that (OB, AT) is an information system (in the
sense of [DG, Section 1]) and V is a mapping (Forg UPUM) — (P(OB) U
P(AT)UP(OB x OB)) The only condition that differs with the definition in
[DG, Section 3] is the following;:

V(r(a) € {(z,y) € OBxOB : Yat € V(b), at(zx) = at(y)} = ind(V(4))

The satisfiability relation = for LRC is defined in the standard way as
well as the notions of LRC-validity, LRC-satisfiability, etc .... The LRC-
models are very closely related to the notion of information system. Indeed,
numerous so-called information logics that are Rare-logics have been designed

to reason about information systems. Roughly speaking, in the LIR-model
(OB, AT, V), OB plays the role of W, AT plays the role of PAR using the
terminology for the Rare-logics.

ProproOSITION 5.3. (LRC and LIR are identical) Let F be an LRC-formula.
The statements below are equivalent:

(I) F is LRC-satisfiable;
(II) F is LIR-satisfiable.

PROOF:The proof is a consequence of the following propositions:

2A preliminary version of this article used the decidability of DAL stated in [AT89]. Un-
fortunately, the logic named DAL in [AT89] is quite different from the logic DAL considered
in this work. As far as we know, decidability of DAL is still an open problem.
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(i) for any LRC-model (OB, AT, V') there exists an LIR-model
(OB,PAR,(Rp)pcpar, V')

such that V and V' agree on propositional variables, parameter expres-
sions and basic modal expressions.

(ii) for any LIR-model <OB, PAR, (Rp)ngAR, V’) such that

(OB, PAR, (Rp)pcpar) satisfies the condition C; and PAR is finite (cf.
[DG, Proposition 4.7]) there exists an LRC-model (OB, AT, V') such that
V and V' agree on propositional variables and basic modal expressions
(not necessarily on parameter expressions).

(i) Consider PAR & AT and V'(r(h)) = Ryp) <V (r(h)) for any basic
modal expression r(4).
(ii) Take an LIR-model (OB, PAR, (RP)PQPAR, V’> such that (OB, PAR, (RP)PQPAR>
satisfies C; and PAR is finite.

o AT ¥ {at, : = € PAR} where for any o € OB and any z € PAR,
aty(0) &t R{x}(o)

def

e for any parameter expression A, V(&) = {at, : x € V'(A)};

e for any basic modal expression r(A), V(r(A)) & {(x,y) € OB x OB :
Vat, € V(A) at,(z) = at.(y)}.

We show below that V(r(&)) = V'(r(8)).

V(r(A)) = {{z,y) € OB x OB :Vat, € V(4) at;(z) = at.(y)}
(by definition of V(r(4)))
={(z,y) € OB x OB :Vat, € {aty : 2/ € V'(A)} at.(z) = at.(y)}
(by definition of V' (4))
={(r,y) € OB x OB :Vz € V/(A) Ri.1(x) = Ry (y)}
(by definition of the at,’s)
={(z,y) € OB x OB : (z,y) € Ryp)}
(by hypothesis (.cy(a) Rizy = Ryvay)
= By
= V'(r(8))

Q.E.D.

CoRrOLLARY 5.4. (I) LRC-satisfiability is decidable iff DAL-satisfiability is
decidable;

(IT) LRC has the fpsp.

5.3 Logics for reasoning about similarity

Let SIM = (L,D,Z,C,X1,1) be the Rare-logic such that j = 1, D(1) =
2, OP = () and X; is the set of frames having a reflexive and symmetric
relation. The extension SIM (For(',P{) with world and parameter nominals
has been defined in [Kon97b] except that we do not assume here that the set of
parameters is fixed. We write SIM" to denote the extension of SIM obtained
by adding the binary modal operator N interpreted as the set intersection.
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PROPOSITION 5.5. SIM (For)),P}’)-satisfiability is decidable.

PRrOOF: By Corollary 2.4, STM" (Ford, PY) is decidable iff STM U2} (For))
is decidable. However, there exists a satisfiability-preserving mapping ST’
from ST M;{UQF (Ford') into the two-variable logic FO?[=] (without func-
tion symbols and with equality). The map ST’ is an extension of the Stan-
dard Translation ST from modal logic into classical logic [Ben83] using addi-
tional arguments from [GG93]. Since FO?[=]-satisfiability is decidable [Mor75]
and in NEXPTIME [GKV97], SIM (For}’,P)’)-satisfiability is decidable.
Q.E.D.

A similar proof is described in [DK98] where a faithful translation is directly
defined from STM (For(\,P}’) into FO?*[=]. Furthermore, in [DK98], it is
shown that decidability of the logics defined in [Kon97b] is a consequence of
the decidability of STM (For{',PY).

5.4 Another logic of indiscernibility relations

Let RIL be the Rare-logic defined in Section 4.4 that is an extension of a
Rare-logic defined in [Orto84b]. RIL is a fragment of LIR and RIL is actually

a Rare-logic of type 1 satisfying the hypotheses at the beginning of Section
4.2.

PRroPOSITION 5.6. RIL-satisfiability is decidable.

PROOF: Since RIL;Uz} is Ua-simplifiable then by [DG, Corollary 4.5(1I1)], RIL

is decidable iff RILYV2)™ is decidable. By Proposition 3.1, RILIV ™ is de-
cidable iff the RIL4-consequence problem is decidable. Observe that RILg is
closed under isomorphic copies, disjoint unions and restrictions. By Propo-
sition 3.3, the RIL4-consequence problem is decidable iff RIL,; is decidable.
Hence, RIL is decidable iff RIL,; is decidable. Moreover, RIL,; is known to be
decidable (see e.g. [HM92, Dem99]). Q.E.D.

5.5 A logic with knowledge operators

The Logic with Knowledge Operators LKO has been introduced in [Orto89].
Given a set Forp = {pg,p;,- ..} of propositional variables, the formulae F are
defined as follows:

Fu=p, | FiAFy | =F | K(A)F

for p, € Forg and A € P (set of parameter expressions). Here is an ex-
ample of formula: K(AUB)F & K(—(—A U —B))G. An LKO-model M =
(W,PAR, (Rp)pcpar, V) is a structure such that:

e W and PAR are non-empty sets;

e forany P C PAR, Rp is an equivalence relation and (OB, PAR, (Rp)pcpaR)
satisfies the condition C (with j = 1);

e V is a mapping Forg UP — P(W) U P(PAR) such that V(p) C W for
any p € Forg and V restricted to P is a P-valuation.
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The satisfiability relation |= is defined as usual, except for the following
condition: M,w = K(A)F & ecither for any w' € Ry py(w), M,w" EF or for
any w' € Ry (py(w), M,w" |5 =F. K(A)F can be interpreted by: the set A of
agents knows whether F holds (see e.g. [Hin62, Orlo89]). It also corresponds
to the modal operators in logics of non-contingency (see e.g. [MR66, Hum95]).
The notion of LKO-validity, LKO-satisfiability, . . . , are defined in the standard
way. Let f be the mapping from the set of LKO-formulae into the set of RIL-
formulae:

e f(p)“p for any p € Fory;

e f is homomorphic with respect to the Boolean connectives;
o [UK(AF) = [r(A)]f(F) V [r(A)]f(-F).

It is easy to show:

PROPOSITION 5.7. Any LKO-formula F has an LKO-model of the form (W, PAR, (Rp)pcpar, V)
iff f(F) has an RIL-model of the form (W, PAR, (Rp)pcpar,V’).

COROLLARY 5.8. (Decidability of LKO) The LKO-satisfiability problem is
decidable and LKO has the finite parameter set property.

Using ideas similar to those developed in Section 4, an adequate axioma-
tization of LKO has been defined in [Dem99].

5.6 Parameter logics
5.6.1 Definition

The language L of the parameter logics contains a fized set PAR of parameters.
The modal expressions of the language are the subsets of PAR. All the modal
connectives are unary and they are indexed by sets of parameters. Such logics
have been considered in [Bal96a, Bal96b, Bal97]. Before going any further,
we wish to observe that it is rather unusual to build syntactic expressions
(formulae for instance) from sets that are mathematical structures. This is
certainly one of the peculiarities of the work [Bal97]. In this section, we wish
to be on a safer track and we shall not deal with sets but rather with a finite
representation of certain sets. This representational aspect shall be emphasize
when needed but this is really necessary since we wish to establish decidabil-
ity results. For example, we want to be able to decide whether two sets that
occur in a formula are equal, which seems to be a reasonable requirement.
This means for instance that we shall be able to work at most with a count-
ably infinite subset of P(PAR). So, the mode of representation of the subsets
of PAR plays an important rdle to establish decidability results. A mode of
representation mr can be seen as a partial function mr : ¥* — P(PAR) such
that ¥ is an alphabet (finite set of symbols). So, in the sequel to a set of
parameters PAR we attach a mode of representation and all the logics defined
from PAR can only used subsets P of PAR that can be represented in formulae,
that is there is o € £* such that mr(c) = P.

By an L-frame we understand a pair (W, (Rp) pcpag) such that W is a non-
empty set and for any P C PAR, Rp is a binary relation on W. By an L-model
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M, we understand a triple (W, (Rp) pcpar. V) such that F = (W, (Rp) pcpaR)
is an L-frame and V is a mapping Fory — P(W). The satisfiability relation
is defined in the usual way. In the sequel, by a parameter logic L, of type T,
we understand a quadruple (L, X, Mod, T) such that

e L is a language for parameter logics;
o ) #X C Fr?;
e Mod is the set of L-models such that for any L-models M = (W, (Rp) pcpar, V),

M € Mod iff for any P C PAR, (W, Rp) € X and (W,PAR, (Rp)pcpaR)
satisfies the condition C (by taking J = {1}).

The notion of £,-satisfiability, £,-validity, logical £,-consequence etc, ...
are defined in the usual way. Let £, be a parameter logic (L, X, Mod,T).
The Rare-logic £, defined by (L,,D,,Z,,C,, X, T) (see below) is called the
Rare-logic from Lp:

. def def
=2

e L, is a language for Rare-logic such that j = 1, D(1)

b

~ OP = {n} (interpreted as intersection), pbp(N) = 2, pp(N) = 1

if T e {1,3);
— OP = {U} (interpreted as union) p}p(U) = 2, p3p(U) = 1 if
T € {2,4};

— otherwise OP = ().

def

e X, =X,

e C, is the unique set of frames making £, a Rare-logic of type T.

In the sequel, we study parameter logics of type 1 or 2. Indeed,

PROPOSITION 5.9. Let £; and L2 be similar parameter logics of type 1 [resp.
2] and 3 [resp. 4], respectively. They share the same set of parameters (and
the same mode of representation) and we assume that if P can be represented,
then so can PAR\ P. For any formula F, we write fg,q(F) to denote the formula
obtained from F by replacing a parameter set P by PAR \ P. Then,

(I) Fis Ly-satisfiable [resp. Lo-satisfiable] iff fy,q(F) is L2-satisfiable [resp.
L1-satisfiable];

(IT) £; has the fmp iff £ has the fmp.

When we are interested in decidability issues, we may add assumptions so
that fguq is indeed computable.

5.6.2 Translation

Let £, be a parameter logic of type 1 [resp. of type 2] and £, be the cor-
responding Rare-logic. Let F be an Lp-formula such that the only subsets
of PAR occurring in F are Xi,...,X,. For any integer k£ € {0,...,2" — 1},

as usual we write X} to denote the set X & Y1 N...NY, where for any

i€ {l,...,n}, Y; = X; if bit;(k) = 0 otherwise ¥; & PAR \ X;. Hence X} is
a concrete set (not a Boolean expression as done in [DG, Section 4.1]). The
family {X} : k€ {0,...,2" — 1}, X} # 0} is a partition of PAR. For each set
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X; we associate a parameter constant C; (from the language of £,). For any
integer k € {0,...,2" — 1}, we write A} to denote the Boolean expression

x def

A AN, Na,
where for any i € {1,...,n}, A; L, if bit;(k) = 0 otherwise A; ¢, We
write N(F) to denote the £,-formula obtained from F by substituting X; # ()

def

by N(X;) = r(N'(X;))
N'(X;) = (J{ar c k€ {0,...,2" — 1}, X} # 0,bit;(k) = 0}
In the case when X; = (), §) is substituted by r(C; N —Cy).

PROPOSITION 5.10. (Faithfulness of N) Let F be an £,-formula. The state-
ments below are equivalent:

(I) F is L,-satisfiable;
(II) N(F) is L,-satisfiable.

ProorF: (I) — (II) Let M = (W, (Rp) pcpar, V) be an L,-model and w € W
such that M, w |= F. We assume that the only subsets of PAR occurring in F
are Xi,...,X,. The case when no modal connective occurs in F is omitted
here but its proof can be easily obtained from the proof below for n > 1.
Consider the £,-model M’ = (W,PAR, (Rp)pcpar. V') such that

e the restriction of V' to the set of propositional variables is V;

e for any k € {1,...,n}, V'(Cx)

= Xp.

Hence, for any k € {1,...,n}, V/(N(X})) = X,. It is a routine task to check
that M’,w = N(F) and M’ is an £,-model.

(II) — (I) Let M" = (W, PAR, (Rp)pcpar, V') be an L,-model and w € W
such that M',w | N(F). The set PAR does not have to be equal to PAR.
Consider the £,-model M = (W, (Rp) pcpar, V) such that

e V is the restriction of V' to the set of propositional variables;
def

o Ry =W x W if L is of type 1 [resp. Ry = () if £ is of type 2];
e for any () # P C PAR, we write {X},..., X/} to denote the smallest set

.
of non-empty sets (with respect to1 set inclusion) such that P C X} U
.U X! The set {X/,..., X} always exists and it is unique because
of the condition of minimality and {X} : k € {0,...,2" —1}, X} # 0} is
a partition of PAR. We define Rp as follows Rp = Y if £ is of type 1
[resp. Rp = Y] with Y & {R/ ary kel
K
By an easy manipulation, we can show that for any P, P’ C PAR Rpup =
Rp N Rp: if L is of type 1 [resp. if L is of type 2 Rpypr = Rp U Rp/]. Tt
remains to prove that Rx,, = R, 1 for k" € {1,...,n}. First notice that
N'(Xp)
for any k € {0,...,2" — 1}, if X} # 0, then Rx» = R%/’(AZ)'
equality below is valid if £ is of type 1 but a similar one can be obtained if

L is of type 2 (replace the finite generalized intersections by finite generalized
unions).

The sequence of
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Rx, = RU{X;:ke{o,...,znq},bitk,(k):o,x,:;ﬁ@}

(by definition of the X;’s)

= ﬂ{Rxg cked{0,...,2" — 1}, bity (k) = 0,X; # 0}

(since L) is of type 1)

= N{ Ry g, k€10, 2" = 1} bityo (k) = 0, X, # 0}

(by definition)

= R/V/(U{A;;ke{o,...gnq},bz’tk,(k):o,x,;;é@})

(M’ is an L,-model)

= Rl 7
V(X))

Q.E.D.

5.6.3 Some decidable parameter logics

In this section we establish various decidability results based on the conse-
quences of Section 5.6.2.

PropPOSITION 5.11. (Decidable fragments of £,) Let £, be a parameter
logic of type T € {0,...,4}. Let Z be a class of £,-formulae such that for any
F € Z it is decidable whether (see the notations above)

(I) X; is empty (X7q,...,X, are the sets occurring in F);
(II) X} is empty (0 <k <2"—1).

Then, if the corresponding Rare-logic £, has a decidable satisfiability problem,
then L£,-satisfiability restricted to Z is decidable.

PrROOF: For any T € {1,...,4}, the satisfaction of (I) and (II) implies that
the mapping N is an effective procedure. By Proposition 5.10 we obtain the
decidability of the £,-satisfiability problem restricted to Z.

Now assume T = 0. For any Y,Y’ occurring in a formula F € Z, it is
decidable whether Y = Y’ since Y = Y’ iff Y N (PAR\ Y') = () and (PAR\
Y)NY' =0 (particular instances of (II)). Let N be the mapping from Z into
the set of L,-formulae that consists in substituting each set Y by a basic
modal expression r(Cy) - Cy is a fixed parameter constant for each Y. By
assumption, N is an effective procedure. One can show that for any F € Z, F
is £,-satisfiable iff N(F) is £,-satisfiable (one can use arguments similar to the
ones in the proof of Proposition 5.10) which terminates the proof. Q.E.D.

The condition (I) in Proposition 5.11 means that for any representation
o € 3* of the set P = mr(o) of parameters, one can decide whether P = ().

Let PAR = {p1,p2,...} be a countable set of parameters (not necessarily
finite). A natural representation of the finite subset {pi,...,pp} of PAR is
{Ip1,...,pp} where '{/, "}/ and ’,” are symbols of the language. Each cofi-
nite subset PAR\ {p1,...,pr} can also be represented by {°p1,...,px}¢ where
{¢ and '}¢" are symbols of the language. The empty set is represented by
{7}/ whereas PAR is represented by {“}¢. Let Z/¢ be the set of £,-formulae
such that only finite or cofinite sets of parameters occur and the represen-
tation above is used. Then Z7¢ satisfies the hypothesis of Proposition 5.11.
Moreover, if the representation of the set Y occurs in a formula, then the
representation of the set PAR \ Y can also occur in a formula of Z/¢ (see also
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Proposition 5.9). This class of formulae has been considered for instance in
[Bal96a, Bal97]. Proposition 5.11 above can be applied to Z7¢.

ProposITION 5.12. Let £, = (L, X, Mod,T) be parameter logic such that
T € {0,...,4}. Lp-satisfiability restricted to some Z satisfying (I) and (II)
from Proposition 5.11 is decidable in the following cases:

(1) X is the set of all frames or the set of reflexive frames;

(2) X is either the set of serial frames or the set of symmetrical frames
or the set of reflexive and symmetrical frames or the set of equivalence
relations and T € {0,2,4};

(3) If X is the set of transitive frames or the set of reflexive and transitive
frames and T € {0, 1, 3}.

PRrROOF: By way of example, let us consider in (2) the case £, of type 2 and X
is the set of equivalence relations (OP = {U} and X is not closed under union).
By [DG, Corollary 4.5(II)] and [DG, Proposition 4.6(III)], £, is decidable iff
(L,)q is decidable (one can get rid of the occurrences of [09] since [02]G & T
is (L£,)}-valid). However (L,)q is precisely a fragment of the Data Analysis
Logic with Local Agreement [Gar86] that is known to be decidable [Dem98].
Hence the £,-satisfiability problem restricted to Z is decidable. We invite the
reader to analyse the consequences on Mod of the fact that X is not closed
under union. Q.E.D.

Although it is known that PDL with intersection [Dan84] and PDL with
converse [Seg82] have both a decidable validity problem, as far as we know, it
is an open problem whether PDL with intersection and converse is decidable.

PROPOSITION 5.13. Let £, = (L, X, Mod,T) be a parameter logic of type
T € {1, 3} such that X is the set of symmetric frames [resp. the set of reflexive
and symmetric frames, the set of equivalence relations]. If the validity problem
for PDL with intersection and converse is decidable, then the £,-satisfiability
problem restricted to some Z satisfying (I) and (II) from Proposition 5.11 is
decidable.

6 Concluding remarks

In [DG] we have introduced a class of polymodal logics with relative acces-
sibility relations, the Rare-logics. Particular instances are the information
logics from [Orlo84a, Orlo88a, Orto95, Kon97a, Bal97]. We have shown how
to translate Rare-logics into more standard modal logics and the other way
around. Various kinds of algebraic properties for the families of relations in
the models have been taken into account. The translations are interesting
for their own sake, for instance they help understanding what is brought by
adding a Boolean dimension to a logic.

In the present paper, we are able to prove new decidability results about
some Rare-logics in a unifying framework. The flexibility of the translations
allows an extension when nominals are included in the language for atomic
propositions and above all for atomic parameters (it is technically more in-
volved). Some refinements to eliminate the universal operator are also pre-
sented. Most of our results have a semantical flavour except that we have
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defined translations of calculi between Rare-logics and corresponding stan-
dard modal logics. This is all the more significant because the transformation
is general enough to be used for numerous logics and types of calculi. So when
Rare-logics can be translated into well-known modal logics, we obtain straight-
forward results about the Rare-logics (decidability, complexity upper bounds,
proof systems, ...). This is not always the case, especially when names are
allowed in the language. For instance, the resolution of the following open
problems in the realm of (combinatory) dynamic logics will have straightfor-
ward consequences for numerous classes of Rare-logics (for instance for the
logics defined in [Orto84a]): (un)decidability of CPDL+{N}, CPDL+{N,~!}
(see e.g. [PTI1]).

Acknowledgements: The authors warmly thank the anonymous referee
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this work improving very significantly the quality of the paper. In particular,
we are thankful to the referee for finding a major flaw in the proof of previous
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