
HAL Id: hal-03192244
https://hal.science/hal-03192244v1

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equivalence Between Model-Checking Flat Counter
Systems and Presburger Arithmetic

Stéphane Demri, Amit K Kumar Dhar, Arnaud Sangnier

To cite this version:
Stéphane Demri, Amit K Kumar Dhar, Arnaud Sangnier. Equivalence Between Model-Checking Flat
Counter Systems and Presburger Arithmetic. Theoretical Computer Science, 2017, 735, pp.2-23.
�10.1016/j.tcs.2017.07.007�. �hal-03192244�

https://hal.science/hal-03192244v1
https://hal.archives-ouvertes.fr

Equivalence Between Model-Checking Flat

Counter Systems and Presburger Arithmetic

?

Stéphane Demri1, Amit Kumar Dhar2, and Arnaud Sangnier3

1 LSV, CNRS & ENS Paris-Saclay, France
2 Indian Institute of Information Technology, Allahabad, India

3 IRIF, Univ Paris Diderot, France

Abstract. We show that model-checking flat counter systems with the
branching-time temporal logic CTL* extended with arithmetical con-
straints on counter values has the same worst-case complexity as the
satisfiability problem for Presburger arithmetic. The lower bound already
holds with strong restrictions: the logical language uses only the tempo-
ral operator EF and no arithmetical constraints, and the guards on the
transitions are made of linear constraints. This work complements our
understanding of model-checking flat counter systems with linear-time
temporal logics, such as LTL, for which the problem is already known to
be (only) NP-complete with guards restricted to the linear fragment.

1 Introduction

Branching-time temporal logics for counter systems. At first glance, model-
checking counter systems with temporal logics seems a hopeless enterprise since
even the control-state reachability problem for Minsky machines is known to be
undecidable [34]. However, we are also aware that decidability can be regained
by considering some syntactical or semantical restrictions on the systems. As a
matter of fact, many subclasses of counter systems admit a decidable reachability
problem and even better, sometimes the reachability sets are definable in Pres-
burger arithmetic (PA) [36]. This is the reason why model-checking problems
with temporal logics have been considered for some of these classes like one-
counter automata [18,19], Petri nets [22], reversal-bounded counter systems [3],
flat counter systems [16]. The previous list is certainly not exhaustive and a
general question is how to take advantage of the decidability of the reachability
problem to conclude the decidability of model-checking problems with temporal
logics. This provides a rich variety of decision problems, depending on the sub-
classes of counter systems and on the temporal logics at hand. If one considers
the specific class of flat (a.k.a weak) counter systems (counter systems with all
loops disjoint from each other), it has been shown that their reachability sets are
definable in PA, see e.g. [4,7,16,5], and the model-checking of these systems with
very expressive branching-time temporal logics is decidable [12]. However in this
? Work partially supported by the EU Seventh Framework Programme under grant

agreement No. PIOF-GA-2011-301166 (DATAVERIF).

latter work, no precise complexity analysis on the model-checking problem is
performed. As an answer to that, recently in [10] (see also [13]) a complete com-
plexity analysis for model-checking flat counter systems with linear-time prop-
erties has been provided. In the present paper, we decide to focus on the model-
checking problem considering branching-time temporal logics, more specifically
we consider a variant of CTL⇤ [14] extended with atomic propositions which
allows to describe for each position in the runs counter values.

Our motivations. As we have seen, reachability problems and the verification
of linear-time properties for flat counter systems have been well-studied (see
e.g. [10,5]) and our goal is to understand the computational complexity of model-
checking these systems with branching-time temporal logics such as CTL or
CTL⇤ (see e.g. [14]). There exist some classes of counter systems for which
considering branching-time extensions, instead of simple (repeated) reachabil-
ity questions, lead to undecidability. This is the case of Petri nets for which
the model-checking of CTL is undecidable (with propositional variables only)
whereas the reachability problem and model-checking problems with several LTL
variants are known to be decidable [33,26,22]. As far as flat counter systems are
concerned, we already know that we are on the safe side in the sense that de-
cidability of model-checking with CTL⇤ formulae is established in [12] thanks
to a translation into PA. However no lower bound is provided and the transla-
tion produces a formula which is exponentially bigger than the system given in
input. This is rather unsatisfactory. Our main motivation is therefore to under-
stand the complexity of model-checking flat counter systems with branching-time
logics and to design optimal algorithms.

Our contribution. We prove that the model-checking problem of flat counter sys-
tems with a version of CTL⇤ equipped with arithmetical constraints on counter
values is equivalent to the satisfiability problem for PA, modulo logarithmic-
space reductions.

– For the complexity lower bound, we show that the satisfiability problem for
PA can be reduced to the model-checking problem but there is no need for
arithmetical constraints and for temporal operators other than EF.

– For the complexity upper bound, we reduce the model-checking problem to
the satisfiability problem in PA by using the fact that runs in flat counter
systems can be encoded by tuples of natural numbers and then the semantics
for CTL⇤ can be internalised in PA. This last fact has been already observed
in [12] but herein, we provide a logarithmic-space reduction which makes
a substantial difference with [12]. Indeed, we are also able to quantify over
path schemas (symbolic representation of potential infinite sets of runs),
but concisely. Once more, this witnesses that verification problems can be
encoded efficiently into PA, see e.g. [37,17,6].

– As a consequence, we are able to get the equivalence with PA to known
branching-time temporal logics stronger than CTLEF (such as CTL) and our
proof works as well when considering past-time operators..

2

Moreover, we compare the translation with PA fragments to obtain a more pre-
cise complexity of subproblems of the model-checking problem. From the known
complexity characterization of PA fragments [20], we also deduce a finer charac-
terisation of the complexity of model-checking problem for fragments of CTL⇤

over flat counter systems. As far as proofs are concerned, for the lower bound, we
take advantage of the observation that a quantification in PA over a variable z

can be simulated by a loop that increments a corresponding counter and there is
a correspondence between the first-order quantifier 9 [resp. 8] and the temporal
connective EF [resp. AG]. For the upper bound, quantification over path schemas
is done directly followed by a quantification over the number of times loops are
visited. However, we provide a new way to encode runs in flat counter systems,
which is rewarding complexity-wise. Not only the complexity bound we get is
better than the one given in [12] but also our reduction into PA is much simpler,
and therefore this leaves some hope to incorporate it in a tool which will use
then some solvers for PA or fragments, see e.g. [8,30,1].

Plan of the paper. In Section 3, we provide the preliminary definitions whereas
Section 4 establishes the lower-bound results thanks to a reduction of the satis-
fiability problem for PA into model-checking flat counter systems with CTLEF.
Section 5 presents the reduction of model-checking CTL⇤ over flat counter sys-
tems to the satisfiability problem for PA. More precisely, Section 5.1 presents a
way to encode runs using a small amount of integer vectors, whereas Section 5.2
shows a way to construct a PA formula to check the validity of a run represented
by such integer vectors. Section 5.3 deals with the encoding of an instance of
the model-checking problem for CTL⇤ by some Presburger arithmetic formula,
which leads us to the optimal complexity upper bound. Section 6 shows that
the global model-checking problem can be also solved thanks to the established
translation into PA. Section 7 provides a more involved translation of model-
checking problem to PA in order to get a better comparison between fragments
of CTL⇤ and known PA fragments.

The present paper is an extended and completed version of [11]. It includes
all the proofs and a bit more explanations in several places. Furthermore, we
have added a few more results, namely the use of past-time operators in the
logic and the result about global model-checking obtained as a by-product and
study of the model-checking problem for the fragments of CTL⇤. Moreover, the
material in Section 7 is new.

Omitted proofs can be found in the technical appendix.

2 Related Work

In this section, we provide a more systematic presentation of related works,
maybe at the price of little redundancy with the previous section.

3

Model-checking problems & PA: It is well-known that many verification
problems can be shown decidable by translation into decision problems on Pres-
burger arithmetic, see e.g. [37,17,6]. A typical situation arises when the sets of
reachable configurations can be defined by formulae in Presburger arithmetic, as
it is done, for instance, for one-counter automata [21], reversal-bounded counter
systems [25], flat counter systems [7]. These results have paved the way to further
interests in model-checking of logical formulas over these subclasses.

Similar to the case of reachability sets, many different model-checking prob-
lems over the subclasses of counter systems have been studied in connection with
PA. For example, in [28], the authors have translated the problem of model-
checking flat freeze LTL formulas over one-counter automata to PA formulas
and thereby reducing the problem to the satisfiability problem of PA. Similarly,
translations of model-checking problems over reversal-bounded counter systems
have been performed in [23,3].

Verification of flat counter systems: Similar to other classes of systems,
PA has been used significantly for model-checking problems over flat counter
systems. It was shown initially that the set of reachable configurations for flat
counter systems are Presburger definable [7] (see also [5]). In [12], the authors
considered a subclass of counter systems (which are flat but more powerful than
those considered in the present paper), a more expressive logical specification
than considered in this paper and showed a translation from the model-checking
problem to PA formulas.

Model-checking problem with various logics over flat counter systems and
their optimal complexity characterization have been studied. In [9], it was shown
that model-checking LTL with past over flat counter systems is NP-complete.
Subsequently, in [10], a PSpace-complete characterization was shown for regu-
lar properties. A logical step in this connection as suggested in the future work
section of [10], is to investigate the model-checking problem over flat counter sys-
tems in the context of branching-time temporal logics. In terms of the techniques
used in this paper, it is more related to the work done in [12]. Even though the
translation presented in [12] shows the decidability of the model-checking prob-
lem, the translation itself witnesses an exponential blow-up. We show that the
translation was non-optimal by giving a better translation in the current paper.

3 Counter systems and branching-time temporal logics

3.1 Presburger arithmetic

Presburger arithmetic (PA) is the first-order theory of natural numbers with
addition. It was introduced by M. Presburger who has shown the decidability of
its satisfiability problem by quantifier elimination [36]. We recall here the syntax
and interpretation of this theory.

In the paper, we consider VAR = {z
1

, z

2

, z

3

, . . .}, a countably infinite set of
variables. Terms are expressions of the form

t ::= a 2 N | a.z | t

1

+ t

2

,

4

where a and k are in N and, z belongs to VAR. A valuation f is a map VAR ! N
and it can be extended to the set of all terms inductively as follows:

f(a)

def
= a

f(az)

def
= a ⇤ f(z)

f(t

1

+ t

2

)

def
= f(t

1

) + f(t

2

).

Given a valuation f , a variable z and a natural n, the notation f [z 7! n] rep-
resents the valuation f

0 such that f

0
(z

0
) = f(z

0
) for all z

0 2 VAR \ {z} and
f

0
(z) = n. Formulae of PA are defined by the grammar

� ::= t t

0 | ¬� | � ^ � | 9 z �,

where t and t

0 are terms and z 2 VAR. We denote the class of formulae without
any quantifier as the linear fragment of PA. Thus, A formula � is in the linear
fragment def, � is a Boolean combination of atomic formulae of the form t t

0.
The semantics for formulae in PA is defined with the satisfaction relation |=
which says whether a valuation f satisfies a formula �: for instance f |= t t

0
def, f(t) f(t

0
) and f |= 9 z �

def, there is n 2 N such that f [z 7! n] |= �.
We write �(z

1

, . . . , zn) to denote a formula � such that its free variables are
among z

1

, . . . , zn. A formula �(z
1

, . . . , zn) with n � 1, defines a set of n-tuples

J�(z
1

, . . . , zn)K
def
= {hf(z

1

), . . . , f(zn)i 2 Nn
: f |= �}.

For v 2 Nn, we also write v |= � instead of v 2 J�(z
1

, . . . , zn)K. For a given PA
formula �, the set of free variables of � is denoted by free(�). The satisfiability
problem for PA (also written SAT(PA)) is then the decision problem that takes
as input a formula � and asks whether there is a valuation f such that f |= �.
If such a valuation exists, we say that � is satisfiable. Decidability of Presburger
arithmetic has been shown in [36]. An exact complexity characterization is pro-
vided in [2] and a precise study with respect to the quantifier alternation is done
in [20].

3.2 Counter systems

Let C = {x
1

, x

2

, . . .} be a countably infinite set of counters and we write Cn to
denote the subset {x

1

, . . . , xn}. Let AT = {p
1

, p

2

, . . .} be a countably infinite set
of propositional variables.

Definition 1. A counter system is a tuple hQ, Cn,�, `i where

– Q is a finite set of control states,
– � ✓ Q ⇥ Gn ⇥ Zn ⇥ Q is a finite set of transitions, labelled by guards and

updates where Gn is a set of linear Presburger formulae � with free(�) ✓
{x

1

, . . . , xn}.
– ` : Q ! 2

AT is a labeling function,

5

Guards can be made quite general and any Presburger formula can be allowed.
Since we provide a translation into PA, this can allow us to consider a more gen-
eral model, as in Presburger counter machines [12,29]. However, since we will be
talking about precise characterization of problems where quantifier alternation
is crucial, we restrict our guards to be from the linear fragment of Presburger
arithmetic

For each transition � = hq, g, u, q0i in �, we use the following notations:
source(�) = q, target(�) = q

0, guard(�) = g and update(�) = u. As usual, to
a counter system S = hQ, Cn,�, `i, we associate a labelled transition system
T(S) = hC,!i where C = Q⇥Nn is the set of configurations and !✓ C⇥�⇥ C
is the transition relation defined by: hhq, vi, �, hq0, v0ii 2! (also written hq, vi ��!
hq0, v0i) iff

– q = source(�),
– q

0
= target(�),

– v |= guard(�) and
– v0 = v+ update(�).

We write c ! c

0 iff there exists some edge � such that c

��! c

0.
Given c

0

2 Q⇥Nn, a run ⇢ starting from c

0

in S is a (possibly infinite) path
in the associated transition system T(S) denoted as

⇢ := c

0

�0�! · · · �m�1���! cm
�m��! · · ·

where ci 2 Q ⇥ Nn and �i 2 �, for all i 2 N. Then, let trans(⇢) be the !-word
�

0

�

1

. . . made of transitions appearing in the run ⇢. For every i � 0, we define
⇢[i] = ci and ⇢i = c

0

�0�! c

1

· · · �i�1���! ci. We write c !⇤
c

0 iff there exists a run
⇢ and i 2 N such that ⇢[0] = c and ⇢[i] = c

0. Note that a run in a counter system
S is either finite or infinite. A run ⇢ is maximal iff either it is infinite, or it is
finite and the last configuration is a deadlock (i.e., it does not have any successor
configurations). For a finite maximal run ⇢, we write |⇢| = ↵ where ⇢[↵] is the
deadlock configuration. For an infinite maximal run ⇢, we have |⇢| = !.

A counter system is flat if every node in the underlying graph belongs to at
most one simple cycle (a cycle being simple if no edge is repeated twice in it)
[7,32]. In a flat counter system, simple cycles can be organized as a DAG where
two simple cycles are in the relation whenever there is a path between a node
of the first cycle and a node of the second cycle. We write FlatCS to denote the
class of flat counter systems.

3.3 Logical specifications

We consider a logic that extends the classical CTL⇤ [14] by adding past-time
temporal operators and arithmetical constraints on counter values. By a slight
abuse of notation, the logic is also called CTL⇤. Since this logic will be used
to describe runs of a counter machine equipped with a set of counters Cn =

6

{x
1

, . . . , xn}, we assume that the dimension n is known when giving formulae.
The CTL⇤ formulae are defined as follows:

� ::= p | (x
1

, . . . , xn) | � ^ � | ¬� | X� | �U� | X

�1

� | �S� | E�

where p 2 AT and (x

1

, . . . , xn) is a Presburger formula with free variables in
Cn. We write CTLEF to denote the fragment of CTL⇤ in which the only (unary)
temporal operator is EF (EF� def

= E (> U �) and > def
= (x

1

= x

1

)). Our version of
CTL⇤ is defined as the standard version with past-time operators, see e.g. [14],
except that the Kripke structures are replaced by transition systems from counter
systems and at the atomic level, arithmetical constraints are allowed.

Let S = hQ, Cn,�, `i be a counter system with transition system T(S) =

hC,!i. Given a maximal run ⇢ in S and a position i |⇢|, the satisfaction
relation |= for CTL⇤ is defined as follows:

⇢, i |= p

def, p 2 `(q), where ⇢[i] = hq, vi
⇢, i |= (x

1

, . . . , xn)
def, v |= (x

1

, . . . , xn), where ⇢[i] = hq, vi
⇢, i |= X

def, i+ 1 |⇢| and ⇢, i+ 1 |=

⇢, i |=

1

U

2

def, ⇢, j |=

2

for some i j

such that j |⇢| and ⇢, k |=

1

for all i k < j

⇢, i |= X

�1

def, i > 0 and ⇢, i� 1 |=

⇢, i |=

1

S

2

def, ⇢, j |=

2

for some j i

such that j � 0 and ⇢, k |=

1

for all j < k i

⇢, i |= E�

def, there is a maximal run ⇢

0 s.t. ⇢0i = ⇢i and ⇢

0
, i |= �.

Given a CTL⇤ formula �, a counter system S and a configuration c from S, we
say that S, c |= � iff there exists a maximal run ⇢ in S with ⇢[0] = c such that
⇢, 0 |= �. Note that the symbol |= is overloaded but this shall not cause any
confusion. A flat counter system S is called non-blocking if every maximal run ⇢

in S is infinite. Otherwise it is called a blocking flat counter system.
The model-checking problem for flat counter systems over CTL⇤ is defined

as follows (let us call it MC(CTL⇤, FlatCS)):

Input: A flat counter system S, a configuration c and a formula � in CTL⇤

Output: Do we have S, c |= �?

We know that MC(CTL⇤, FlatCS) is decidable [12] but its exact complexity is
not fully characterised (actually, this is the main purpose of the present paper).
The restriction to LTL formulae is known to be NP-complete [9] when guards
are restricted to the linear fragment. In Section 4, we show that SAT(PA) can
be reduced to MC(CTL⇤, FlatCS) restricted to CTLEF without arithmetical
constraints and to flat counter systems such that the guards are simple linear
constraints. By contrast, model-checking flat finite Kripke structures over CTL⇤

is �P
2

-complete [15,27].

7

3.4 From blocking to non-blocking flat counter systems

We shall see now that we can restrict our attention to non-blocking flat counter
systems where all the maximal runs are infinite. The idea is that we can transform
using logarithmic space an instance of the model-checking problem with any flat
counter systems into one where the counter system is flat and non-blocking.

Let L be either CTL⇤ or CTLEF, S = hQ,�, Cn, `i a flat counter system, c a
configuration and � a formula in L. We will show how to build in logarithmic
space a non-blocking flat counter system S

0, a configuration c

0 and a formula �0

in L such that S, c |= � iff S

0
, c

0 |= �

0.
Roughly speaking, the counter system S

0 is obtained from S by adding a new
state q? that is reachable whenever a deadlock configuration is reached in S and
q? has a self-loop with no effect on counters. The formula �0 is obtained from �

by relativisation related to the control state q?.
We construct S

0
= hQ0

,�

0
, Cn, `

0i as follows:

– Q

0 def
= Q] {q?}.

– `

0
(q?)

def
= {p?} where p? is a new propositional variable and for all q 2 Q,

`

0
(q)

def
= `(q).

– �

0 def
= � [{hq,¬gq, 0, q?i|q 2 Q} [{hq?,>, 0, q?i} where for every state

q 2 Q, gq =

W
source(�)=q

guard(�).

Observe that since S is flat, the counter system S

0 is flat too.
We define then a formula map t(·) for formulas in CTL⇤ such that t(·) is the

identity for the atomic formulae, is homomorphic for Boolean connectives, for
the temporal operators X�1 and S and for the path quantifier E and, it satisfies
the following simple clauses:

– t(X)
def
= X(¬p? ^ t()).

– t(U 0
)

def
= t()U(¬p? ^ t(0

))).

When dealing with the fragment CTLEF, these two clauses are replaced by
t(EF) = EF(¬p? ^ t()). Then, we have the following result whose detailed
proof can be found in Appendix A.

Lemma 2. S

0 is a non-blocking flat counter system, t(�0
) belongs to L and

S, c |= � iff S

0
, c |= t(�).

Thanks to Lemma 2, in the sequel only non-blocking flat counter systems are
considered. Furthermore, since the reachability relation is definable in PA for
flat counter systems [12], it is even possible to decide whether all maximal runs
from a given configuration are infinite.

4 From SAT(PA) to a subproblem of MC(CTL

⇤
, FlatCS)

Atomic formulae in CTL⇤ are arbitrary Presburger formulae with free variables
in {x

1

, . . . , xn}. Consequently, it is easy to reduce (in logarithmic space) SAT(PA)

8

to MC(CTL⇤, FlatCS). Clearly, this is not interesting and the generality of the
guards and the logical atomic formulae in the paper is only considered because,
when establishing the complexity upper bound, we can be quite liberal. Below,
we show that a very restricted fragment of MC(CTL⇤, FlatCS), simply called
MC�(CTL⇤, FlatCS), is already as hard as the satisfiability problem for PA and
our reduction is based on a simple correspondence between quantifiers in PA and
the temporal operators EF and AG in CTL⇤. First, we define MC�(CTL⇤, FlatCS)
as the subproblem of MC(CTL⇤, FlatCS) with the two following restrictions:

1. atomic formulae are restricted to propositional variables (no arithmetical
constraints on counter values) and the only temporal connective is EF (and
its dual AG, by closure under negation);

2. the guards on the transitions are linear constraints t t

0 or their negations.
So, there are no Boolean connectives and no first-order quantifications.

Theorem 3. There is a logspace reduction from SAT(PA) to MC�(CTL⇤, FlatCS).

Proof. Let � be a formula in PA. Without any loss of generality, we can assume
that � has the following form:

Q
1

z

1

Q
2

z

2

· · · Qn zn �

0
(z

1

, z

2

, . . . , zn)

with Q
1

,Q
2

, . . . ,Qn 2 {9, 8} and �0 is a quantifier-free formula. Note that given
any formula in PA, we can reduce it to an equivalent formula of this form in
logarithmic space (which is then fine for our main result since logarithmic-space
reductions are closed under composition [35]). This is essentially based on the
construction of formulae in prenex normal form in first-order logic.

Let us consider the counter system S� defined below in Figure 1 where
ei 2 Nn is the ith unit vector. Observe that �

0
(x

1

, x

2

, . . . , xn) may contain

q
0

q
1

qn�1

qn qn+1

>, e
1

>, e
2

>, en

�0(x
1

, x
2

, . . . , xn),0

>, 0

Fig. 1. Flat counter system S�

Boolean connectives but we can get rid of them in S�. In order to eliminate
the Boolean connectives in the guard of the transition between qn and qn+1

, we
follow two simple rules, while preserving flatness (easy to check since that transi-
tion does not belong to a loop). We explain now our technique. Without any loss
of generality, we can assume that negations are only in front of linear constraints.
For each transition of the form q

 ,0�! q

0 with being a formula with Boolean
connectives, we disintegrate it into a flat system such that there exists a run from

9

q to q

0 iff v |= holds for any configuration hq, vi. A transition q

 1^ 2,0����! q

0 is
replaced by q

 1,0��! q

00 2,0��! q

0 where q

00 is new. Similarly, a transition q

 1_ 2,0����! q

0

is replaced by q

 1,0��! q

0 and q

 2,0��! q

0, assuming that q does not belong to a loop.
It is easy to show that S� can be transformed into a flat counter system S

0
�

by applying the two rules above as much as possible so that eventually, S0
� is

a counter system matching the requirements of MC�(CTL⇤, FlatCS). This is a
standard way of decomposing and representing a positive Boolean combination
of literals. For the ease of the proof, we will actually prove the properties of S�
as shown in Figure 1.

Below, we define in CTLEF whose atomic formulae are among q

1

, . . . , qn+1

(also abusively understood as control states) such that

(†) S�, hq0, 0i |= iff � is satisfiable in PA.

Intuitively, each variable zi from � is taken care of by the ith loop (that can
only increment the ith counter). This is not enough, and additionally, the quan-
tifications from � are simulated in the formula by using EF or AG, depending
whether the first-order quantification is either existential or universal. Below, we
define formally the formulae i with i 2 [1, n+ 1] so that def

=

1

:

 i
def
=

8
<

:

EF(qi ^ i+1

) i n and Qi = 9
AG(qi) i+1

) i n and Qi = 8
EFqn+1

i = n+ 1

Given a valuation f : VAR ! N, we write vf 2 Nn to denote the vector such
that vf [i]

def
= f(zi) for every i 2 [1, n]. In order to establish (†) it is sufficient to

show the following property (††).

(††).1 for all valuations f , we have f |= �

0
(z

1

, z

2

, . . . , zn) iff hqn, vf i |= n+1

,
(††).2 for all i 2 [1, n] and valuations f such that f(zi) = · · · = f(zn) = 0, we

have f |= Q zi · · · Qn zn �

0
(z

1

, z

2

, . . . , zn) iff hqi�1

, vf i |= i.

It is easy to see that, we get the property (†) by applying (††).2 with i = 1.
First, we prove (††).1. Recall that n+1

= EF qn+1

and the only edge between
qn and qn+1

is the following:

qn
�0

(x1,...,xn),0�������! qn+1

Let f be a valuation. By the definition of |=, we have hqn, vf i |= EF qn+1

iff vf |= �

0
(x

1

, . . . , xn). By definition of vf , we get vf |= �

0
(x

1

, . . . , xn) iff f |=
�

0
(z

1

, z

2

, . . . , zn).
Now we prove (††).2 by induction. The base case i = n+ 1 corresponds pre-

cisely to the satisfaction of the property (††).1. Suppose that (††).2 holds for
i+ 1, we show that it holds for i too.

Case 1: Qi = 9.
Let f be a valuation such that f(zi) = · · · = f(zn) = 0. We prove that f |=
9 zi · · · Qn zn �

0
(z

1

, . . . , zn) iff hqi�1

, vf i |= EF(qi ^ i+1

).

10

First, assume that f |= 9 zi · · · Qn zn �

0
(z

1

, . . . , zn). By assumption, there
exists a 2 N such that f [zi 7! a] |= Qi+1

zi+1

· · · Qn zn �

0
(z

1

, z

2

, . . . , zn). By
the induction hypothesis, hqi, vf 0i |= i+1

where f

0
= f [zi 7! a]. Now consider

the transition system T(S�) and its configuration hqi�1

, vf i. There is a run ⇢ in
T(S) starting from hqi�1

, vf i that reaches qi where the loop li is visited exactly
a times. Since the effect of the simple loop li is to increment the counter xi

each time, and vf [i] = 0, there is a finite run from hqi�1

, vf i to hqi, vf 0i. So,
hqi�1

, vf i |= EF(qi ^ i+1

).
On the other hand, assume that hqi�1

, vf i |= EF(qi ^ i+1

). By definition
of |=, there exists a run ⇢ in T(S�) with ⇢[0] = hqi�1

, vf i such that for some
position j |⇢|, ⇢[j] |= qi ^ i+1

. Thus, ⇢[j] = hqi, v0i for some v0 2 Nn. Since
qi is reached only after taking the simple loop li, let us assume that the loop li

is taken a � 0 times. Since, the effect of the simple loop li is to increment the
counter xi each time, v0[i] = a and vf and v0 differ only on the ith component.
So, v0 = vf 0 where f

0
= f [zi 7! a]. Since hqi, vf 0i |= i+1

, by the induction
hypothesis f [zi 7! a] |= Qi+1

zi+1

· · · Qn zn �

0
(z

1

, z

2

, . . . , zn). By definition of
|= in PA, we conclude that f |= 9 zi · · · Qn zn �

0
(z

1

, . . . , zn).

Case 2: Qi = 8.
Let f be a valuation such that f(zi) = · · · = f(zn) = 0. We prove that f |=
8 zi · · · Qn zn �

0
(z

1

, . . . , zn) iff hqi�1

, vf i |= AG(qi) i+1

).
First, we assume that f |= 8 zi · · · Qn zn �

0
(z

1

, . . . , zn). By assumption, for
all a 2 N we have f [zi 7! a] |= Qi+1

zi+1

· · · Qn zn �

0
(z

1

, z

2

, . . . , zn). By the
induction hypothesis, we have hqi, vf 0i |= i+1

where f

0
= f [zi 7! a] with a 2 N.

Now consider the transition system T(S�) and its configuration hqi�1

, vf i. There
are two types of run ⇢ in T(S) starting from hqi�1

, vf i:

1. ⇢ reaches qi and the loop li is visited exactly a times for some a 2 N.
2. ⇢ loops li infinitely many times and never reaches qi.

Due to the implication, qi) i+1

we can easily ignore the runs of type 2 above.
Hence, we will consider only the runs where li is taken only finitely many times.
Since the effect of the simple loop li is to increment the counter xi each time,
and vf [i] = 0, there are finite runs from hqi�1

, vf i to hqi, vf 0i for each of the
valuations f

0
= f [zi 7! a] with a 2 N. So, hqi�1

, vf i |= AG(qi) i+1

).
Now, assume that hqi�1

, vf i |= AG(qi) i+1

). By definition of |=, there exists
a set of runs X, in T(S�) such that for all ⇢ 2 X we have ⇢[0] = hqi�1

, vf i and
for all positions j < |⇢|, if ⇢[j] |= qi then ⇢[j] |= i+1

. Thus, for every run ⇢ 2 X,
⇢[j] = hqi, v0i for some v0 2 Nn. Since qi is reached only after taking the simple
loop li a finite number of times in any run, let us assume that for each value of a �
0, there exists a run ⇢a 2 X where the loop li is taken a times. Since the effect of
the simple loop li is to increment the counter xi each time, we have v0[i] = a and
vf and v0 differ only on the ith component in any run ⇢a in X. So, v0 = vf 0 where
f

0
= f [zi 7! a]. Since hqi, vf 0i |= i+1

for all such valuations vf 0 , by the induction
hypothesis f [zi 7! a] |= Qi+1

zi+1

· · · Qn zn �

0
(z

1

, z

2

, . . . , zn) for all a 2 N. By
definition of |= in PA, we conclude that f |= 8 zi · · · Qn zn �

0
(z

1

, . . . , zn). ut

11

Thus, there is a logarithmic-space reduction from SAT(PA) into MC�(CTL⇤,
FlatCS). This gives one side of the complexity equivalence we are currently
establishing.

5 From MC(CTL

⇤
, FlatCS) to SAT(PA)

In this section, we present a logarithmic-space reduction from MC(CTL⇤, FlatCS)
to the satisfiability problem for PA. In [12], a reduction is already presented to
get decidability of MC(CTL⇤, FlatCS). Unfortunately, it requires exponential
space and it is quite difficult to parse. Following a similar idea, we propose here
a simpler reduction that has the great advantage to be optimal complexity-wise.
The idea of this reduction is based on the two following points:

1. encoding the runs in flat counter systems by tuples of natural numbers
thanks to a symbolic representation for potential infinite sets of runs, see
path schemas in [9];

2. internalising CTL⇤ semantics into (PA) by using the encoding of runs.

Below, we consider a fixed non-blocking flat counter system S = hQ, Cn,�, `i.
Without any loss of generality we can assume that Q = {1, . . . ,↵} for some
↵ � 1 and � = {�

1

, . . . , ��} for some � � 1. Since Q ✓ N, configurations of S
can be seen as vectors in Nn+1 where the first component represents the control
state and range within the interval [1,↵] and the rest represents counter values
of the configuration.

5.1 Minimal path schemas

In [9], following an idea from [31], minimal path schemas are introduced as a
means to symbolically represent all runs in flat counter systems. Path schemas
can be defined as finite sequences made of transitions or simple loops (condi-
tions apply). Formal definition is recalled below. A simple loop l of S is a non-
empty finite sequence of transitions �

1

, . . . , �m such that source(�
1

) = target(�m),
source(�j) = target(�j+1

) for all j 2 [1,m� 1], and, for all j, k 2 [1,m], if j 6= k

then �j 6= �k (no repetition). The length of l, written length(l), is the number m
and we denote by source(l) = target(l) the control state source(�

1

). The number
of simple loops is necessarily finite and we assume that the set of loops of S

is L = {l
1

, l

2

, . . . , l�}. Since S is flat, we have � ↵. Note that since there
is no restriction on path schema, there can be redundant loops and edges. To
restrict this, we define a minimal path schema with no redundancy, as follows.
A minimal path schema P is a non-empty sequence u

1

, . . . , uN such that each
ui 2 � [L and the following conditions are satisfied.

1. uN is a loop,
2. i 6= j implies ui 6= uj ,
3. for all i 2 [1, N � 1], we have target(ui) = source(ui+1

).

12

The second condition guarantees that there are no redundancies whereas the
third condition ensures that P respects the control graph of S. The size of P ,
denoted by size(P), is equal to N . For all j 2 [1, N], we write P [j] for uj . Here
is an obvious result.

Lemma 4. The size of a minimal path schema is bounded by � + � � + ↵.

In order to obtain concrete paths from a path schema P , we augment P with
a vector specifying how many times each internal loop is visited. By definition,
a loop in P is internal if it is not the last one. An iterated path schema is
a pair hP, mi where P is a minimal path schema and m 2 Nsize(P) such that
m[1] = size(P) and for all i 2 [1, size(P)� 1], m[i+ 1] > 0 and if P [i] 2 �, then
m[i+ 1] = 1. From hP, mi, we define the !-word

trans(P, m) def
= P [1]

m[2]
. . . P [j]

m[j+1]

. . . P [size(P)� 1]

m[size(P)]

P [size(P)]

!

Note that, by definition of minimal path schema, P [size(P)] is a loop. Lemma 5
below states that iterated path schemas encode all the runs in flat counter sys-
tems thanks to flatness.

Lemma 5. [9] Given an infinite run ⇢ in a (non-blocking) flat counter system
S, there exists an iterated path schema hP, mi such that trans(⇢) = trans(P, m).

Encoding iterated path schemas. Thanks to Lemma 4, we can encode path
schemas by vectors in NK with K = 1 + � + �. Intuitively, we encode a path
schema P by two vectors vp and vt in NK where the first element of each vec-
tor is equal to size(P) (by convention) and for all i 2 [2, size(P) + 1], we have
vt[i] = 1 if P [i] is a loop and vt[i] = 0 otherwise. So, vt encodes the type of each
element (transition vs. loop) in the sequence defining P . Similarly, vp[i] repre-
sents the number of the associated transition or loop; for instance, vp[i] = 2 and
vt[i] = 1 encodes that P [i] is the second loop, say l

2

. Then, we encode the vector
m by a vector vit 2 NK . Let us formalize this. First, we define the function
⌧ : (({0}⇥ [1,�])[({1}⇥ [1, �])) ! �[L such that ⌧(0, i) def

= �i and ⌧(1, i)

def
= li.

Now, we provide a set of conditions C on the vectors vt, vp, vit 2 NK so that we
can build from these three vectors an iterated path schema.

C.1 vp[1] = vt[1] = vit[1] with vp[1] 2 [1,K � 1];
for all i 2 [vit[1] + 2,K], vp[i] = vt[i] = vit[i] = 0,

C.2 vt[i] 2 {0, 1} for all i 2 [2,K],
C.3 if vt[i] = 0 then vp[i] 2 [1,�], for all i 2 [2, vp[1] + 1],
C.4 if vt[i] = 1 then vp[i] 2 [1, �], for all i 2 [2, vp[1] + 1],
C.5 vt[vp[1] + 1] = 1,
C.6 there are no i, j 2 [2, vp[1]+1] such that i 6= j, vt[i] = vt[j] and vp[i] = vp[j],
C.7 target(⌧(vt[i], vp[i])) = source(⌧(vt[i+ 1], vp[i+ 1])) for all i 2 [2, vp[1]],
C.8 for all i 2 [2, vp[1]], vit[i] > 0 and if vt[i] = 0 then vit[i] = 1.

The first four conditions ensure that the vectorial representation is coherent.
The three next conditions guarantee that the encoding respects the structure of

13

a minimal path schema, i.e. that the last element is a loop (C.5), that there are
no two identical transitions or loops in the schema (C.6) and that the succession
of elements effectively represents a path in the counter system (C.7). The last
condition ensures that vit matches the definition of the vector in an iterated
path schema. It follows that given vectors vp, vt and vit in NK that satisfy all
the conditions (C.i), we can build a minimal path schema Pvt,vp equal to

⌧(vt[2], vp[2]) · · · ⌧(vt[vp[1] + 1], vp[vp[1] + 1]).

From the vector vit, we can define the vector mvit 2 Nvit[1] such that for all
i 2 [1, vit[1]], mvit [i]

def
= vit[i + 1]. Let us explain the encoding of iterated path

schemas with vectors on a simple example. We consider the following flat counter
system.

q

1

q

2

q

5

q

6

q

7

q

8

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

9

�

10

l

1

l

2

l

3

There are 10 transitions and 3 simple loops. The enumeration of edges and
loops is done as shown above. Let hP, mi be such that

P = �

3

· �
6

· l
2

· �
8

· l
3

and m = (5, 1, 1, 146, 1). So, we get the resulting !-word as �
3

·�
6

·(l
2

)

146 ·�
8

·(l
3

)

!.
From the previous encoding, the !-word is encoded by the following vectors

– vp = (5, 3, 6, 2, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0),
– vt = (5, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) and
– vit = (5, 1, 1, 146, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Lemma 6 below, whose proof can be found in Appendix B, states that there
exists a Presburger formula Schema(Zt,Zp,Zit) over the sets of variables Zp =

{z1p, . . . , zKp }, Zt = {z1t , . . . , zKt } and Zit = {z1it, . . . , zKit } which expresses the
conjunctions of the conditions (C.i)i2[1,8]. For three vectors vt, vp, vit 2 NK , we
say that vt, vp, vit |= Schema(Zt,Zp,Zit) iff for some valuation function f , we
have f |= Schema(Zt,Zp,Zit), where f(z

i
t) = vt[i], f(zip) = vp[i] and f(z

i
it) =

vit[i] for all i 2 [1,K].

Lemma 6.

1. Let P be in (� [L)

+ of length N � + � and m 2 NN . Then, hP, mi is an
iterated path schema iff there are vt, vp and vit in NK respecting C such that
P = Pvt,vp and m = mvit .

2. One can build a quantifier-free PA formula Schema(Zt,Zp,Zit) of polynomial
size in the size of the counter system S such that for all vt, vp, vit 2 NK , we
have vt, vp, vit |= Schema(Zt,Zp,Zit) iff vt, vp and vit satisfy C.

14

5.2 Encoding runs using vectors

So, we are able to characterise the minimal path schemas of a flat counter system
S using a Presburger arithmetic formula. Let us show how to describe the runs
respecting any path schema P of S. Lemma 5 states that any infinite run can be
encoded by an iterated path schema. However, not every iterated path schema
corresponds to a run in due form because counter values should be non-negative
and transitions can be fired only if the guards are really satisfied. We will see
now how to check that an iterated path schema indeed represents a run starting
from a given configuration c. First, we need to introduce a notion of pseudo-
run in which only the updates are precise and where the configurations can
take their values in the integers (instead of in the set of natural numbers).
Given c 2 Q ⇥ Zn, a pseudo-run ⇢ starting from c in S is an infinite sequence
⇢ := c

0

�1 · · · �m�1 cm
�m · · · where c

0

= c, ci = hqi, vii 2 Q⇥Zn for all i � 0 and
for all transitions � 2 � we have hq, vi � hq0, v0i def, q = source(�), q0 = target(�)

and v0 = v+ update(�). So, a pseudo-run ⇢ = hq
0

, v
0

i �1 · · · �m�1 hqm, vmi · · · is
a run iff for all i 2 N, vi |= guard(�i) and vi 2 Nn.

Note also that for all configurations hq, vi, if hP, mi is an iterated path schema
such that source(P [1]) = q then there exists a pseudo-run ⇢ starting from c such
that trans(⇢) = trans(P, m) (where the function trans(.) is defined for infinite
pseudo-run the same way it is done for infinite runs, see Section 3.2). As with
runs, we denote ⇢[i] the (i + 1)-th configuration of a pseudo-run ⇢. From these
observations, we conclude that an iterated path schema hP, mi augmented with
c

0

= hq
0

, v
0

i satisfying source(P [1]) = q

0

, defines a unique pseudo-run that is
denoted by ⇢(P, m, c

0

). Given a configuration c

0

= hq
0

, v
0

i, we say that ⇢(P, m, c
0

)

is well-defined if source(P [1]) = q

0

.
We introduce a sequence of positions in a pseudo-run as p

0

, . . . , p
size(P)�1

.
By convention p

0

= 0 and for every i 2 [1, size(P) � 1] let pi
def
=

Pi
j=1

m[j +

1] ⇤ length(P [j]). The value pi is called the position of the ith witness configura-
tion ⇢(P, m, c

0

)[pi]. Intuitively, we reach the ith witness configuration after going
through the iterations of first i elements of the path schema P in ⇢(P, m, c

0

). We
say that ⇢(P, m, c

0

) is positive if for all the witness configurations hq, vi, we have
v 2 Nn. Note that since for all path schemas P , we have size(P) � + �, the
number of witness configurations for such a pseudo-run is bounded by �+� too.

Now, we show how to build a PA formula whose set of solutions corresponds
to the witness configurations of a pseudo-run associated to an iterated path
schema equipped with an initial configuration. Before defining the formula, we
explain some further notions. In the sequel, we use the following sets of variables
– X

0

= {x1
0

, . . . , x

n+1

0

} and X = {x1, . . . , xn+1} to represent configurations,
– Wi = {w1

i , . . . ,w
n+1

i } for every i 2 [0,� + � � 1] to represent pseudo-
configurations (we recall that Q ✓ N, hence (pseudo)-configurations are seen
as tuples in Nn+1) and,

– the variables d
0

, . . . , d�+��1

and y to represent positions in (pseudo)-runs.
Furthermore, given sets of variables X,W representing (pseudo)-configurations,
a variable x and a vector u 2 Nn, we use the shortcut X = W + x.u for the

15

following formula:
n+1^

i=2

x

i
= w

i
+ x.u[i� 1].

Now, we introduce the formula Witness which allows us to check whether a given
set of configurations and natural numbers represent the witness configurations
and their respective positions in a pseudo-run associated to an iterated path
schema. The main idea of the formula is to verify at each step whether the control
states of the witness configurations match with the states of the taken transitions
or loops in the path schema and then to compute the effect of the corresponding
element of the iterated path schema taking into account the number of iterations.

Witness(W
0

, . . . ,W�+��1

, d
0

, . . . , d�+��1

,Zt,Zp,Zit,X0

)
def
=

(d
0

= 0 ^ X

0

= W

0

^
1W

s=0

max(�,�)W
j=1

z

2

p = j ^ z

2

t = s ^ x

1

0

= source(⌧(s, j)))^

�+��1V
i=1

(i < z

1

t)
1W

s=0

max(�,�)W
j=1

(zi+1

p = j ^ z

i+1

t = s ^ di = di�1

+ z

i+1

it ⇤ length(⌧(s, j))^

w

1

i = target(⌧(s, j)) ^Wi = Wi�1

+ z

i+1

it ⇤ update(⌧(s, i)))

We are aware that the above formula is not particularly pretty at first glance,
but it only states simple properties. We need to go through this process of writing
down such formulae for the sake of checking the correctness of our enterprise and
for paving the way to a future implementation of the translation that requires
sufficiently details. More formulae will follow for the same reasons but we shall
try to explain as much as possible every bit, while trying to avoid the boredom
of repetitive arguments.

Lemma 7 below characterizes the property respected by formula Witness by
construction (a detailed proof can be found in Appendix C).

Lemma 7. Let w
0

, . . . , w�+��1

, c
0

2 Nn+1, p
0

, . . . , p�+��1

2 N and vt, vp, vit
in NK such that vt, vp, vit |= Schema(Zt,Zp,Zit). We have

w
0

, . . . , w�+��1

, p
0

, . . . , p�+��1

, vt, vp, vit, c0 |= Witness

iff ⇢(Pvt,vp , mvit , c0) is well-defined and positive and for all j 2 [0,�+��1], if j <
size(Pvt,vp), then wj represents the jth witness configuration of ⇢(Pvt,vp , mvit , c0)
and pj its position.

Hence, the formula Witness gives us a way to characterise the witness po-
sitions and the configuration at those positions of a pseudo-run represented
by an iterated path schema. Identifying witness positions and the configura-
tions is essential to check whether a pseudo-run is a run or not. In fact, using
Witness, one can build in logarithmic space a formula Conf (Zt,Zp,Zit,X0

, y,X)

such that if vt, vp, vit, c0, i, c |= Conf then the vector c is the ith configu-
ration hqi, vii of a pseudo-run ⇢(Pvt,vp , mvit , c0) with the property that vi |=

16

guard(trans(hPvt,vp , mviti)[i + 1]) and vi 2 Nn (here i is the number of transi-
tions to reach that configuration). This offers us the ability to construct then
a formula Run(Zt,Zp,Zit,X0

) to check whether a pseudo-run is a run, since, as
observed earlier, it is enough to check whether at each step the ith configuration
satisfies the guard of the (i+ 1)th transition.

First, we explain how to build the formula Conf (Zt,Zp,Zit,X0

, y,X). The
formula uses Schema(Zt,Zp,Zit) in order to check whether the variables corre-
spond to an iterated path schema. Then, thanks to existential quantifications,
the formula guesses the positions and the values of the witness configurations
using the formula Witness(W

0

, . . . ,W�+��1

, d

0

, . . . , d�+��1

,Zt,Zp,Zit,X0

) and
Lemma 7. We recall that the variables in X represent the configuration at the
position y in the corresponding pseudo-run. To do so, in the formula Conf , a
case analysis is performed depending where y lays with respect to the positions
of the witness configurations. Here are the cases.

1. The value stored in y corresponds to a witness position from which the next
step in the path schema is an edge �. It is then easy to find the value of the
associated configuration which corresponds to a witness configuration and
also thanks to the encoding of the path schema provided by the variables in
Zt ,Zp and in Zit to check that the guards of � is satisfied.

2. The value stored in y corresponds to a position between two consecutive
witness positions and lays inside a loop. One has to check how many times
the corresponding loop has been taken and thanks to this information, the
formula can compute the value of the reached configuration and find the
corresponding guard to be checked for satisfiability.

3. The value stored in y lies in the last loop of the path schema, then the
treatment is the same as for the second case.

Before defining the formula Conf , we introduce some useful notations. Period-
icity constraints can be defined in Presburger arithmetic and we write t ⌘c t

0

(c 2 N and t, t0 are terms) to denote the formula 9x (t = c.x+ t

0
)_ (t

0
= c.x+ t).

Then for a simple loop l of the form �

1

, . . . , �m, for all i 2 [1,m], we will use the
notation l[i] to represent the transitions �i. Furthermore, we write update(lk) to
denote the tuple update(�

1

) + · · ·+ update(�m). Now, we are ready to define the
formula Conf :

17

Conf (Zt,Zp,Zit,X0

, y,X)

def
= Schema(Zt,Zp,Zit) ^

9W
0

. . . 9W�+��1

9d
0

. . . 9d�+��1

Witness(W

0

, . . . ,W�+��1

, d

0

, . . . , d�+��1

,Zt,Zp,Zit,X0

)^
�+��1W
j=0

[(j z

1

p ^ y = dj ^ z

j+2

t = 0 ^ X = Wj^
�W

k=1

(z

j+2

p = k ^ guard(�k)(x
2

, · · · , xn+1

)))_

(j z

1

p ^ dj y < dj+1

^ z

j+2

t = 1^
�W

k=1

(z

j+2

p = k ^ ConfLooplk(Wj , y � dj ,X)))_

(j = z

1

p ^ dj y ^
�W

k=1

(z

j+2

p = k ^ ConfLooplk(Wj , y � dj ,X)))]

where for all loop lk with k 2 [1, �], the formula ConfLooplk(W, y,X) is used
to find the configurations corresponding to X obtained when taking the loop lk

from the configuration W and taking y transitions in the loop.

ConfLooplk(W, y,X)

def
=

length(lk)�1W
j=0

[y ⌘
length(lk) j ^ x

1

= source(lk[j + 1])^

guard(lk[j + 1])(x

2

, · · · , xn+1

) ^
9h.(h ⇤ length(lk) y < h ⇤ length(lk) + 1 ^

X = W + h ⇤ update(lk) +
r=jP
r=1

update(lk[r]))].

In the definition of the formula Conf , the fourth and fifth lines correspond
to the first case we have stated above, the fifth and sixth lines to the second case
and the last line to the last and third cases.

Furthermore, as we have already stated, a pseudo-run ⇢ = hq
0

, v
0

i �1 · · · �m�1
hqm, vmi · · · is a run iff for all i 2 N, vi |= guard(�i) and vi 2 Nn. Consequently to
construct the formula Run(Zt,Zp,Zit,X0

), we only have to check that the values
contained in the set of variables Zt, Zp,Zit and X

0

correspond to a pseudo-run for
which at each step the vector value of the configuration is in Nn and it satisfies
the guard of the next transition. According to the properties satisfied by the
formula Conf , we build the formula Run as follows:

Run(Zt,Zp,Zit,X0

)

def
= 8 y 9 X Conf (Zt,Zp,Zit,X0

, y,X).

By construction we can then deduce the following Lemma (whose proof can
be found in Appendix D) concerning the properties of the formulae Conf and
Run

Lemma 8. For all c
0

, c 2 Nn+1, for all i 2 N and for all vt, vp, vit 2 NK , we
have:

18

1. vt, vp, vit, c0, i, c |= Conf iff vt, vp, vit |= Schema, ⇢(Pvt,vp , mvit , c0) is well-
defined, c = ⇢(Pvt,vp , mvit , c0)[i] and

c[2], · · · , c[n+ 1] |= guard(trans(Pvt,vp , mvit)[i+ 1]).

2. vt, vp, vit, c0 |= Run iff vt, vp, vit |= Schema and ⇢(Pvt,vp , mvit , c0) is well-
defined and is a run.

All the formulae involved in the construction use generalised conjunctions/dis-
junctions of length linear in the sum of the following values: number of states ↵,
number of transitions �, number of simple loops �, number of counters n. So, it
is easy to check that we only need logarithmic space to build the formulae.

Consequently, we can construct a Presburger formula in logarithmic space
that characterises the vectors that can be used to represent runs in a flat counter
system. This allows us to quantify over all the runs of a flat counter system
starting from a distinguished configuration. The ability to do this lends a useful
hand in encoding the model-checking problem in PA without exponential blowup.

5.3 Encoding CTL⇤ formulae using (PA)

We have seen that path schemas and runs can be encoded by tuples of natural
numbers whose constraints can be expressed in Presburger arithmetic. Our next
aim is to encode a given CTL⇤ formula using a formula in PA. The forthcoming
encoding internalises CTL⇤ semantics and a similar idea has been already used
in [12] but with much less concise formulae. For each CTL⇤ formula �, we build
a PA formula Check�(Zt,Zp,Zit,X0

, y) where the variables Zt,Zp,Zit and X

0

encode a run as in the formula Run and, y encodes a position such that the
formula checks whether the CTL⇤ formula is satisfied at the current position. The
formula Check� is defined recursively (Boolean clauses are omitted) as follows:

Checkp
def
= 9 X (Conf (Zt,Zp,Zit,X0

, y,X) ^
W

{j | p 2 `(j)}
x

1

= j)

Check (x1,...,xn)
def
= 9 X (Conf (Zt,Zp,Zit,X0

, y,X) ^ (x2, . . . , xn+1

))

CheckX�
def
= 9 y

0
(y

0
= y + 1 ^ Check�(Zt,Zp,Zit,X0

, y

0
))

Check�U�0
def
= 9 y

00
(y y

00 ^ Check�0
(Zt,Zp,Zit,X0

, y

00
)^

8 y

0
(y y

0
< y

00) Check�(Zt,Zp,Zit,X0

, y

0
)))

CheckX�1�
def
= y > 0 ^ 9 y

0
(y = y

0
+ 1 ^ Check�(Zt,Zp,Zit,X0

, y

0
))

Check�S�0
def
= 9 y

00
(y

00 y ^ Check�0
(Zt,Zp,Zit,X0

, y

00
)^

8 y

0
(y

00
< y

0 y) Check�(Zt,Zp,Zit,X0

, y

0
)))

CheckE�
def
= 9 Z

0
t 9 Z

0
p 9 Z

0
it (Run(Z

0
t,Z

0
p,Z

0
it,X0

) ^ 8y0(0 y

0 y)
8X0

(Conf (Zt,Zp,Zit,X0

, y

0
,X

0
))

Conf (Z

0
t,Z

0
p,Z

0
it,X0

, y

0
,X

0
)))^

Check�(Z
0
t,Z

0
p,Z

0
it,X0

, y)).

Now, we can state the main property concerning the formulae Check� based on
Lemmas 5, 6 and 8.

19

Lemma 9. Let c
0

2 Nn+1, i 2 N and vt, vp, vit 2 NK be such that we have
vt, vp, vit, c0 |= Run. Then, the conditions below are equivalent:

– ⇢(Pvt,vp , mvit , c0), i |= �,
– vt, vp, vit, c0, i |= Check�(Zt,Zp,Zit,X0

, y).

Proof. The proof is by structural induction. Let c
0

2 Nn+1 and i 2 N and
vt, vp, vit 2 NK be such that vt, vp, vit, c0 |= Run. Thus, from Lemma 8, we
can conclude that ⇢(Pvt,vp , mvit , c0) is a run in S. We will show that for any i,
⇢(Pvt,vp , mvit , c0), i |= � iff vt, vp, vit, c0, i |= Check�(Zt,Zp,Zit,X0

, y).

– Base case 1: � = p. By definition, we have Checkp(Zt,Zp,Zit,X0

, y) =

9X Conf (Zt,Zp,Zit,X0

, y,X) ^ _{j|p2`(j)}x
1

= j. Assume that for some i,
⇢(Pvt,vp , mvit , c0), i |= p. Then p 2 `(ci[1]) with ci = ⇢(Pvt,vp , mvit , c0)[i].
From Lemma 8, we know that vt, vp, vit, c0, i, ci |= Conf and ci[1] 2 {j | p 2
`(j)}. Thus, vt, vp, vit, c0, i |= Checkp.
Now, assume vt, vp, vit, c0, i |= Checkp for some i. Thus, there exists a con-
figuration ci such that vt, vp, vit, c0, i, ci |= Conf and ci[1] 2 {j | p 2 `(j)}.
In that case by Lemma 8, ci = ⇢(Pvt,vp , mvit , c0)[i] and p 2 `(ci[1]). Hence,
⇢(Pvt,vp , mvit , c0), i |= p.

– Base case 2: � = (x

1

, . . . , xn). By definition, we have Check (x1,...,xn)(Zt,Zp,

Zit,X0

, y) = 9X Conf (Zt,Zp,Zit,X0

, y,X) ^ (x

2

, . . . , x

n+1

). Assume that
for some i, ⇢(Pvt,vp , mvit , c0), i |= (x

1

, . . . , xn). Then ci[2], . . . ci[n + 1] |=
 (x

1

, . . . , xn) with ci = ⇢(Pvt,vp , mvit , c0)[i]. Recall that ci[1] is a value encod-
ing a control state. From Lemma 8 we know that vt, vp, vit, c0, i, ci |= Conf

and (ci[2], . . . , ci[n+ 1]) is true. Thus, vt, vp, vit, c0, i |= Check (x1,...,xn).
Now, assume vt, vp, vit, c0, i |= Check (x1,...,xn) for some i. Thus, there exists
a configuration ci such that vt, vp, vit, c0, i, ci |= Conf and (ci[2], . . . , ci[n+
1]). In that case, by Lemma 8, ci = ⇢(Pvt,vp , mvit , c0)[i] and ci[2], . . . , ci[n+

1] |= (x

1

, . . . , xn). Hence, ⇢(Pvt,vp , mvit , c0), i |= (x

1

, . . . , xn).
– Induction step: We suppose that for all formulae � such that |�| k, we

have, for all i 2 N, ⇢(Pvt,vp , mvit , c0), i |= � iff vt, vp, vit, c0, i |= Check�(Zt,Zp,

Zit,X0

, y). We will prove the same for the case when |�| = k + 1.
• X�: First we assume that ⇢(Pvt,vp , mvit , c0), i |= X� for some i. By def-

inition of |=, we have ⇢(Pvt,vp , mvit , c0), i + 1 |= �. By the induction
hypothesis, vt, vp, vit, c0, i+1 |= Check�(Zt,Zp,Zit,X0

, y). We can hence
deduce that vt, vp, vit, c0, i |= CheckX�(Zt,Zp,Zit,X0

, y).
Now, assume vt, vp, vit, c0, i |= CheckX�(Zt,Zp,Zit,X0

, y) for some i. By
definition of CheckX�, we have that vt, vp, vit, c0, i+ 1 |= Check�(Zt,Zp,

Zit,X0

, y). By the induction hypothesis, ⇢(Pvt,vp , mvit , c0), i+ 1 |= �. By
definition of |=, we get ⇢(Pvt,vp , mvit , c0), i |= X�.

• X

�1

�: First we assume that ⇢(Pvt,vp , mvit , c0), i |= X

�1

� for some i. By
definition of |=, we have i > 0 ⇢(Pvt,vp , mvit , c0), i� 1 |= �. By the induc-
tion hypothesis, vt, vp, vit, c0, i � 1 |= Check�(Zt,Zp,Zit,X0

, y). We can
hence deduce that vt, vp, vit, c0, i |= CheckX�1�(Zt,Zp,Zit,X0

, y).
Now, assume vt, vp, vit, c0, i |= CheckX�1�(Zt,Zp,Zit,X0

, y) for some i.
By definition of CheckX�1�, we have that i > 0 and vt, vp, vit, c0, i� 1 |=

20

Check�(Zt,Zp,Zit,X0

, y). By the induction hypothesis, ⇢(Pvt,vp , mvit , c0),
i� 1 |= �. By definition of |=, we get ⇢(Pvt,vp , mvit , c0), i |= X

�1

�.
• �U�

0: First we assume that ⇢(Pvt,vp , mvit , c0), i |= �U�

0 for some i. By
definition of |=, there exists j � i such that ⇢(Pvt,vp , mvit , c0), j |= �

0 and
for all i l < j, ⇢(Pvt,vp , mvit , c0), l |= �. By the induction hypothesis,
we get vt, vp, vit, c0, j |= Check�0

(Zt,Zp,Zit,X0

, y) and for all i l < j,
vt, vp, vit, c0, l |= Check�(Zt,Zp,Zit,X0

, y). We can hence deduce that
vt, vp, vit, c0, i |= Check�U�0

(Zt,Zp,Zit,X0

, y).
Now, assume vt, vp, vit, c0, i |= Check�U�0

(Zt,Zp,Zit,X0

, y) for some i.
By definition of Check�U�0 , we have that there exists i j such that
vt, vp, vit, c0, j |= Check�0

(Zt,Zp,Zit,X0

, y) and for all i l < j, vt, vp,
vit, c0, l |= Check�(Zt,Zp,Zit,X0

, y). By the induction hypothesis, we ob-
tain ⇢(Pvt,vp , mvit , c0), j |= �

0 and for all i l < j, ⇢(Pvt,vp , mvit , c0), l |=
�. By definition of |=, we get that, ⇢(Pvt,vp , mvit , c0), i |= �U�

0.
• �S�

0: First we assume that ⇢(Pvt,vp , mvit , c0), i |= �S�

0 for some i. By
satisfaction relation, there exists j i such that ⇢(Pvt,vp , mvit , c0), j |= �

0

and for all j < l i, ⇢(Pvt,vp , mvit , c0), l |= �. By induction hypothesis,
we get vt, vp, vit, c0, j |= Check�0

(Zt,Zp,Zit,X0

, y) and for all j < l
i, vt, vp, vit, c0, l |= Check�(Zt,Zp,Zit,X0

, y). Hence, we conclude that
vt, vp, vit, c0, i |= Check�S�0

(Zt,Zp,Zit,X0

, y).
Assume now vt, vp, vit, c0, i |= Check�S�0

(Zt,Zp,Zit,X0

, y) for some i.
By definition of Check�S�0 , we have that there exists j i such that
vt, vp, vit, c0, j |= Check�0

(Zt,Zp,Zit,X0

, y) and for all j < l i, vt, vp,
vit, c0, l |= Check�(Zt,Zp,Zit,X0

, y). By the induction hypothesis, we ob-
tain ⇢(Pvt,vp , mvit , c0), j |= �

0 and for all j < l i, ⇢(Pvt,vp , mvit , c0), l |=
�. By definition of |=, we get that, ⇢(Pvt,vp , mvit , c0), i |= �S�

0.
• E�: Let us assume that ⇢(Pvt,vp , mvit , c0), i |= E� for some i. By defini-

tion of the satisfaction relation, there exists a run ⇢

0 such that ⇢0i =

⇢(Pvt,vp , mvit , c0)i and ⇢0, i |= �. By Lemma 5, we know that there exists
an iterated path schema hP, mi such that trans(⇢

0
) = trans(P, m). From

Lemma 6, we get that there exist vectors v0t, v0p, v0it such that trans(⇢0) =
trans(Pv0t,v0p , mv0it) and ⇢

0 can be represented as ⇢0(Pv0t,v0p , mv0it , c0). Thus,
⇢

0
(Pv0t,v0p , mv0it , c0), i |= �. By the induction hypothesis, we have

v0t, v
0
p, v

0
it, c0, i |= Check�(Zt,Zp,Zit,X0

, y).

Moreover, since ⇢0(Pv0t,v0p , m
0
v0it

, c
0

) is a run, by Lemma 8 we get v0t, v0p, v0it, c0
|= Run. Finally since we have that ⇢0i = ⇢(Pvt,vp , mvit , c0)i, we deduce
that for j 2 [0, i], we have ⇢

0
[j] = ⇢(Pvt,vp , mvit , c0)[j]. Hence, using

the result of Lemma 8 concerning the formula Conf , we conclude that
vt, vp, vit, c0, i |= CheckE�(Zt,Zp,Zit,X0

, y).
Now, assume that vt, vp, vit, c0, i |= CheckE�(Zt,Zp,Zit,X0

, y). Thus, by
definition of CheckE� and using Lemma 8, we obtain that there ex-
ist v0t, v0p, v0it such that ⇢(Pv0t,v0p , mv0it , c0) is a run and v0t, v0p, v0it, c0, i |=
Check�. Furthermore, the formula CheckE� allows us as well to state
that for all j 2 [0, i], we have ⇢(Pv0t,v0p , mv0it , c0)[i] = ⇢(Pvt,vp , mvit , c0)[i].

21

By the induction hypothesis, ⇢(Pv0t,v0p , m
0
v0it

, c
0

), i |= �. So there is a run
⇢

0 such that ⇢0i = ⇢(Pvt,vp , mvit , c0)i and ⇢

0
, i |= �. By definition of the

satisfaction relation, we get ⇢0(Pvt,vp , mvit , c0), i |= E�.
• The other cases with Boolean connectives can be proved in a similar

manner.
ut

In view of the previous results, we are in a position to construct a Presburger
formula pertaining to our original aim of encoding the model-checking problem
MC(CTL⇤, FlatCS). Given a flat counter system S, a configuration c

0

and a
formula � in CTL⇤, we construct the following Presburger arithmetic formula
as

 = 9Zt 9Zp 9Zit 9X0

(X

0

= c
0

^Run(Zt,Zp,Zit,X0

)

^Check�(Zt,Zp,Zit,X0

, 0)).

Then, Lemmas 8 and 9 allow us to get the following property.

Lemma 10. The formula is satisfiable iff S, c
0

|= �.

Proof. Suppose that is satisfiable. Then there exist vt, vp, vit such that vt, vp,
vit, c0, 0 |= Check�(Zt,Zp,Zit,X0

, y) and vt, vp, vit, c0 |= Run(Zt,Zp,Zit,X0

). By
Lemma 8, since vt, vp, vit, c0 |= Run(Zt,Zp,Zit,X0

), we know that ⇢(Pvt,vp , mvit , c0)
is a run starting at c

0

and using Lemma 9, we have that ⇢(Pvt,vp , mvit , c0), 0 |= �.
Hence S, c

0

|= �.
Suppose now that S, c

0

|= �. Hence there is a run ⇢ starting at c
0

such that
⇢, 0 |= �. Thanks to Lemmas 5 and 6, we know that there exist vt, vp and vit
in NK such that vt, vp, vit |= Schema and ⇢ = ⇢(Pvt,vp , mvit , c0). From Lemma 8
and Lemma 9, we get vt, vp, vit, c0 |= Run and vt, vp, vit, c0, 0 |= Check�. So,
is satisfiable. ut

This allows us to conclude the main result of this section.

Theorem 11. There is a logarithmic-space reduction from MC(CTL⇤, FlatCS)
to SAT(PA).

Equipped with Theorem 11 and Theorem 3 and the fact that CTLEF is a
subclass of CTL⇤, we can conclude that the model-checking problem of flat
counter systems with CTL⇤ is equivalent to SAT(PA), modulo logarithmic-space
reductions.

6 Global Model-Checking

The method we have used so far is robust enough to draw more conclusions.
As shown below, it is also possible to construct a formula in PA that captures
the set of (initial) counter values from which there is an infinite run satisfying
a given CTL⇤ formula. The global model-checking problem over flat counter
systems with CTL⇤ (written GMC(CTL⇤, FlatCS)) is the following:

22

Input: A flat counter system S with n counters, a control state q, a CTL⇤

formula �.
Output: A Presburger formula (z

1

, . . . , zn) such that

J K = {v 2 Nn | S, hq, vi |= �}.

It is actually quite easy to construct the Presburger formula for the global model-
checking problem with CTL⇤ as the model-checking problem itself is encoded by
a Presburger formula. In the previous section, we saw that given a flat counter
system S, a configuration c

0

and a formula � in CTL⇤, we construct the following
Presburger arithmetic formula as described below.

 = 9Zt 9Zp 9Zit 9X0

(X

0

= c
0

^Run(Zt,Zp,Zit,X0

)

^Check�(Zt,Zp,Zit,X0

, 0)).

For the global model-checking problem if we suppose that the control states of
the counter systems are encoded as natural numbers, given a flat counter system
S, a control state q and a formula � in CTL⇤, we construct the Presburger
formula (z

1

, . . . , zn) as

 (z

1

, . . . , zn) = 9Zt 9Zp 9Zit 9X0

(x

1

0

= q ^
nV

i=1

x

i
0

= zi ^ Run(Zt,Zp,Zit,X0

)

^Check�(Zt,Zp,Zit,X0

, 0)).

As a consequence of Lemma 10 and other previous results, we get the following
characterisation.

Lemma 12. For all v 2 Nn, we have v |= (z

1

, . . . , zn) iff there exists a run ⇢

in S starting from hq, vi such that ⇢, 0 |= �.

As a conclusion, our method provides also a means to synthetize Presburger
formulae for solving the global model-checking problem.

7 MC(CTL

⇤
, FlatCS) subproblems and PA fragments

The construction and translation presented in the previous sections entail that
the model-checking problem for CTL⇤ over flat counter systems and the satis-
fiability problem for PA are inter-reducible . Though this provides a nice com-
plexity characterization of the model-checking problem for full CTL⇤ logic over
flat counter systems, our translation allows us to provide some tighter bounds
for CTL⇤ fragments. In [20], the author characterizes the precise complexity of
PA fragments and shows equivalences with classes from the weak-Exp hierar-
chy. In this section, we establish a comparison between PA fragments as those
considered in [20] and the model-checking problem for fragments of CTL⇤ over
flat counter systems.

For subclasses of PA, we borrow the notations used in [20] and denote by
PA(i), the ⌃i-fragment of Presburger arithmetic restricted to i quantifier alter-
nations beginning with an existential quantifier. Let ⌃Exp

i be the ith level of the

23

weak-Exp hierarchy which is analogous to the polynomial-time hierarchy but
built with the help of ExpTime (see e.g. [24]). The following result, established
in [20], is stated below.

Theorem 13. For any fixed i > 0, the PA(i+ 1) fragment of Presburger arith-
metic is ⌃Exp

i -complete.

In order to analyze the complexity of our model-checking problem and to
use this latter result on PA, we need to focus on a restriction of CTL⇤ where
the atomic propositions (x

1

, . . . , xn) that describe the counter values belong to
the linear fragment of PA (i.e., is quantifier-free). We denote by CTL⇤

LIA

this
fragment of CTL⇤.

Now, we aim at analyzing the PA formulae generated by the translation of a
specific instance of the model-checking problem as presented in Section 5. Since
we are interested in the quantifier alternation of the produced formulae, nega-
tion may increase the number of quantifier alternations. In order to simplify the
analysis, without any of loss of generality, we can assume that the negations
are pushed until the atomic propositions and we consequently need to extend
the syntax of CTL⇤ with the disjunction operator, the universal path quanti-
fiers, A� def

= ¬E¬� , the release operator �R�0 def
= ¬(¬�U¬) and the past release

operator �R�1

�

0 def
= ¬(¬�S¬). Thanks to these dual operators, we can restrict

ourselves to CTL⇤
LIA

formulae in negation normal form (negation can only occur
in front of atomic propositions).

We consider now a flat counter system S, a configuration c and a formula �
in negation normal form belonging to CTL⇤

LIA

. We will compute an integer K

such that the translation of the instance of MC(CTL⇤, FlatCS), provided in the
previous section, yields a PA formula in the fragment PA(K). In fact, we will
see that K depends on the joint quantifier and temporal depth of the CTL⇤

LIA

formula �, denoted by qtd(�) and defined inductively as follows :

– qtd(p) = qtd((x

1

, . . . , xn)) = 0,
– qtd(¬�) = qtd(�), qtd(X�) = 1 + qtd(�),
– qtd(�U�

0
) = 1+max(qtd(�), qtd(�

0
)), qtd(�R�0

) = 1+max(qtd(�), qtd(�

0
)),

– qtd(X

�1

�) = 1 + qtd(�), qtd(�S�0
) = 1 +max(qtd(�), qtd(�

0
)),

– qtd(�R

�1

�

0
) = 1 +max(qtd(�), qtd(�

0
)),

– qtd(E�) = 1 + qtd(�) and qtd(A�) = 1 + qtd(�).

Now, let us analyse the formula produced in Section 5. We recall that it has the
following shape:

 = 9Zt 9Zp 9Zit 9X0

(X

0

= c
0

^Run(Zt,Zp,Zit,X0

)

^Check�(Zt,Zp,Zit,X0

, 0)).

The fragment in which this formula belongs to depends on the shape of
the formulas Run(Zt,Zp,Zit,X0

) and Check�(Zt,Zp,Zit,X0

, 0). We begin our
analysis with the easier formula Run(Zt,Zp,Zit,X0

). By definition,

Run(Zt,Zp,Zit,X0

)

def
= 8 y 9 X Conf (Zt,Zp,Zit,X0

, y,X).

24

By construction Conf belongs to the existential fragment of PA and hence Run

belongs to PA(3) (by definition PA(i) starts with an existential quantifier).
Let us now recall how the Check�(Zt,Zp,Zit,X0

, 0) is inductively defined :

Checkp
def
= 9 X (Conf (Zt,Zp,Zit,X0

, y,X) ^
W

{j | p 2 `(j)}
x

1

= j)

Check (x1,...,xn)
def
= 9 X (Conf (Zt,Zp,Zit,X0

, y,X) ^ (x2, . . . , xn+1

))

CheckX�
def
= 9 y

0
(y

0
= y + 1 ^ Check�(Zt,Zp,Zit,X0

, y

0
))

Check�U�0
def
= 9 y

00
(y y

00 ^ Check�0
(Zt,Zp,Zit,X0

, y

00
)^

8 y

0
(y y

0
< y

00) Check�(Zt,Zp,Zit,X0

, y

0
)))

CheckX�1�
def
= y > 0 ^ 9 y

0
(y = y

0
+ 1 ^ Check�(Zt,Zp,Zit,X0

, y

0
))

Check�S�0
def
= 9 y

00
(y

00 y ^ Check�0
(Zt,Zp,Zit,X0

, y

00
)^

8 y

0
(y

00
< y

0 y) Check�(Zt,Zp,Zit,X0

, y

0
)))

CheckE�
def
= 9 Z

0
t 9 Z

0
p 9 Z

0
it (Run(Z

0
t,Z

0
p,Z

0
it,X0

) ^ 8y0(0 y

0 y)
8X0

(Conf (Zt,Zp,Zit,X0

, y

0
,X

0
))

Conf (Z

0
t,Z

0
p,Z

0
it,X0

, y

0
,X

0
)))^

Check�(Z
0
t,Z

0
p,Z

0
it,X0

, y)).

In order to complete our analysis we need as well to provide the translation for
the negation of atomic propositions and for the newly introduced operators A, R
and R

�1:

Check¬p
def
= 9 X (Conf (Zt,Zp,Zit,X0

, y,X) ^
W

{j | p 62 `(j)}
x

1

= j)

Check¬ (x1,...,xn)
def
= 9 X (Conf (Zt,Zp,Zit,X0

, y,X) ^ ¬ (x2, . . . , xn+1

))

Check�R�0
def
= (9 y

00
(y y

00 ^ Check�(Zt,Zp,Zit,X0

, y

00
)^

8 y

0
(y y

0 y

00) Check�0
(Zt,Zp,Zit,X0

, y

0
))))_

8 y

0
(y y

0) Check�0
(Zt,Zp,Zit,X0

, y

0
))

Check�R�1�0
def
= (9 y

00
(y

00 y ^ Check�0
(Zt,Zp,Zit,X0

, y

00
)^

8 y

0
(y

00 y y) Check�0
(Zt,Zp,Zit,X0

, y

0
))))_

8 y

0
(y

0 y) Check�0
(Zt,Zp,Zit,X0

, y

0
))

CheckA�
def
= 8 Z

0
t 8 Z

0
p 8 Z

0
it (Run(Z

0
t,Z

0
p,Z

0
it,X0

) ^ 8y0(0 y

0 y)
8X0

(Conf (Zt,Zp,Zit,X0

, y

0
,X

0
))

Conf (Z

0
t,Z

0
p,Z

0
it,X0

, y

0
,X

0
))))

Check�(Z
0
t,Z

0
p,Z

0
it,X0

, y)).

The proof for the correctness of the extended translation is similar to the one
for Lemma 9. Now, we can perform a case analysis to determine the number of
quantifier alternations in the formula Check� expressed in terms of qtd(�) and
we obtain the following upper bound.

Lemma 14. Check� belongs to PA(2.qtd(�) + 3).

Proof. The proof is by structural induction. For the base case, it is clear that
Checkp, Check¬p, Check (x1,...,xn) and Check¬ (x1,...,xn) are in PA(3).

25

For the induction step, we assume that Check� and Check�0 belong respec-
tively to PA(2qtd(�) + 3) and PA(2qtd(�0

) + 3). Then CheckX� and CheckX�1�

belongs as well to PA(2qtd(�) + 3). Furthermore, we have Check�U�0 belongs to
PA(max(2qtd(�) + 3, (2qtd(�

0
) + 3) + 2) and since qtd(�U�

0
) = 1+max(qtd(�),

qtd(�

0
)), we have that Check�U�0 belongs to PA(2qtd(�U�0

) + 3). The exact
same reasoning holds for S, R and R

�1. Finally we have that CheckE� belongs to
PA(max(3, (2qtd(�)+3)+2) which is in PA(2(qtd(E�)+3)). Similarly, CheckA�
belongs to PA(max(3, 2(qtd(�) + 3) + 2) which is in PA(2qtd(A�) + 3).

If, for k 2 N, we denote by CTL⇤
LIA

(k) the set of formulas � of CTL⇤
LIA

such
that qtd(�) k, the previous lemma together with the previous observations
and Theorem 13 allow us to state the result below.

Theorem 15. MC(CTL⇤
LIA

(k), FlatCS)) is reducible to the satisfiability prob-
lem for PA(2k + 3) and is in ⌃

Exp

2k+2

Note that by analyzing the formula built in the proof of Theorem 3 which
shows that the satisfiability of PA can be reduced to the model-checking of
CTL⇤

LIA

over flat counter systems, we are able to obtain a lower bound. In fact
we observe that the CTL⇤

LIA

formula built from a formula of PA(k) for k 2 N
is such that qtd() = 2.k + 2. The following result can then be deduced.

Theorem 16. For k � 4, MC(CTL⇤
LIA

(k), FlatCS)is ⌃Exp

bk/2c�2

-hard.

8 Conclusion

We have been able to characterise the computational complexity for MC(CTL⇤,
FlatCS) by showing that the problem is equivalent to SAT(PA) (modulo loga-
rithmic-space reductions). The lower bound is obtained by considering a quite
strong restriction (no arithmetical constraints in formulae, the only temporal op-
erator is EF, guards on transitions are simple linear constraints). By contrast, the
restriction of the problem to LTL formulae is known to be NP-complete [9,13]
when guards are in the linear fragment and the restriction of the problem to
formulae in CTLEF is also equivalent to SAT(PA). We have proposed a new way
for encoding runs in flat counter systems using Presburger arithmetic formulae,
but without any exponential blow up, which allows us to get a precise complexity
characterisation. It remains open to determine which extensions of CTL⇤ on
flat counter systems preserve decidability, if not an efficient translation into PA
(typically for logics between CTL⇤ and the modal mu-calculus).

Acknowledgments: We would like to thank the anonymous referees for their
remarks and suggestions that help us to improve the quality of the paper.

References

1. C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In CAV’11, volume 8606 of Lecture Notes
in Computer Science, pages 171–177. Springer, 2011.

26

2. L. Berman. The complexity of logical theories. Theoretical Computer Science,
11:71–78, 1980.

3. M. Bersani and S. Demri. The complexity of reversal-bounded model-checking. In
FROCOS’11, volume 6989 of Lecture Notes in Artificial Intelligence, pages 71–86.
Springer, 2011.

4. B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD thesis,
Université de Liège, 1998.

5. M. Bozga, R. Iosif, and F. Konecny. Safety problems are NP-complete for flat
integer programs with octagonal loops. In VMCAI’14, volume 8318 of Lecture
Notes in Computer Science, pages 242–261. Springer, 2014.

6. V. Bruyère, E. Dall’Olio, and J. Raskin. Durations, parametric model-checking in
timed automata with Presburger arithmetic. In STACS’03, volume 2607 of Lecture
Notes in Computer Science, pages 687–698. Springer, 2003.

7. H. Comon and Y. Jurski. Multiple counter automata, safety analysis and Pres-
burger Arithmetic. In CAV’98, volume 1427 of Lecture Notes in Computer Science,
pages 268–279. Springer, 1998.

8. L. de Moura and N. Björner. Z3: An Efficient SMT Solver. In TACAS’08, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

9. S. Demri, A. Dhar, and A. Sangnier. Taming Past LTL and Flat Counter Systems.
In IJCAR’12, volume 7364 of Lecture Notes in Artificial Intelligence, pages 179–
193. Springer, 2012.

10. S. Demri, A. Dhar, and A. Sangnier. On the complexity of verifying regular prop-
erties on flat counter systems. In ICALP’13, volume 7966 of Lecture Notes in
Computer Science, pages 162–173. Springer, 2013.

11. S. Demri, A. Dhar, and A. Sangnier. Equivalence between model-checking flat
counter systems and Presburger arithmetic. In RP’14, volume 8762 of Lecture
Notes in Computer Science, pages 85–97. Springer, 2014.

12. S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Model-checking CTL⇤

over flat Presburger counter systems. Journal of Applied Non-Classical Logics,
20(4):313–344, 2010.

13. A. Dhar. Algorithms for model-checking flat counter systems. PhD thesis, Univer-
sité Paris Diderot, December 2014.

14. E. Emerson and J. Halpern. ‘sometimes‘ and ’not never’ revisited: on branching
versus linear time temporal logic. Journal of the ACM, 33:151–178, 1986.

15. E. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic
strikes back. Sci. Comput. Program., 8(3):275–306, 1987.

16. A. Finkel and J. Leroux. How to compose Presburger accelerations: Applications to
broadcast protocols. In FST&TCS’02, volume 2256 of Lecture Notes in Computer
Science, pages 145–156. Springer, 2002.

17. L. Fribourg and H. Olsén. Proving safety properties of infinite state systems by
compilation into Presburger arithmetic. In CONCUR’97, volume 1243 of Lecture
Notes in Computer Science, pages 213–227. Springer, 1997.

18. S. Göller, C. Haase, J. Ouaknine, and J. Worrell. Branching-time model checking
of parametric one-counter automata. In FoSSaCS’12, volume 7213 of Lecture Notes
in Computer Science, pages 406–420. Springer, 2012.

19. S. Göller and M. Lohrey. Branching-time model checking of one-counter processes
and timed automata. SIAM J. Comput., 42(3):884–923, 2013.

20. C. Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In
CSL-LICS’14, pages 47:1–47:10. ACM, 2014.

27

21. C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and
parametric one-counter automata. In CONCUR’09, volume 5710 of Lecture Notes
in Computer Science, pages 369–383. Springer, 2009.

22. P. Habermehl. On the complexity of the linear-time mu-calculus for Petri nets. In
ICATPN’97, volume 1248 of Lecture Notes in Computer Science, pages 102–116.
Springer, 1997.

23. M. Hague and A. W. Lin. Model checking recursive programs numeric data types.
In CAV’11, volume 6806 of Lecture Notes in Computer Science, pages 743–759.
Springer, 2011.

24. L. Hemachandra. The strong exponential hierarchy collapses. JCSS, 39(3):299–322,
1989.

25. O. Ibarra. Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25:116–133, 1978.

26. S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary
version). In STOC’82, pages 267–281, 1982.

27. F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking CTL+ and FCTL
is hard. In FOSSACS’01, volume 2030 of Lecture Notes in Computer Science, pages
318–331. Springer, 2001.

28. A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell. Model Checking
Flat Freeze LTL on One-Counter Automata. In CONCUR’16, volume 59, pages
29:1–29:14. LIPIcs, 2016.

29. J. Leroux. Presburger counter machines. Habilitation thesis, U. of Bordeaux, 2012.
30. J. Leroux and G. Point. TaPAS: The Talence Presburger Arithmetic Suite. In

TACAS’09, volume 5505 of Lecture Notes in Computer Science, pages 182–185.
Springer, 2009.

31. J. Leroux and G. Sutre. On flatness for 2-dimensional vector addition systems with
states. In CONCUR, volume 3170 of LNCS, pages 402–416. Springer, 2004.

32. J. Leroux and G. Sutre. Flat counter automata almost everywhere! In ATVA’05,
volume 3707 of Lecture Notes in Computer Science, pages 489–503. Springer, 2005.

33. E. Mayr. Persistence of vector replacement systems is decidable. Acta Informatica,
15:309–318, 1981.

34. M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.
35. C. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
36. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-

metik ganzer Zahlen, in welchem die Addition als einzige Operation hervor-
tritt. In Comptes Rendus du premier congrès de mathématiciens des Pays Slaves,
Warszawa, pages 92–101, 1929.

37. N. Suzuki and D. Jefferson. Verification Decidability of Presburger Array Pro-
grams. Journal of the ACM, 27(1):191–205, 1980.

A Proof of Lemma 2

Proof. First, we show that every maximal run in S

0 is infinite. For every maximal
run ⇢ in S, we write maximize(⇢) to denote the maximal run in S

0 defined as
follows:

– if ⇢ is infinite, then maximize(⇢)

def
= ⇢,

28

– otherwise, we have:

maximize(⇢)

def
= ⇢

�↵+1���! hq?, v↵i
�?��! hq?, v↵i

�?��! · · ·

where
• |⇢| = ↵,
• ⇢[↵] = hq↵, v↵i,
• �? = hq?,>, 0, q?i and
• �↵+1

= hq↵,¬(_
source(�)=q↵guard(�)), 0, q?i.

Since hq↵, v↵i is a deadlock configuration, we have v↵ 2 guard(�) for every �
such that source(�) = q↵. We conclude that v↵ |= ¬(_

source(�)=q↵guard(�))

and hence the only possible configuration after hq, vi is hq?, vi. So, for all
such finite runs this is the only way to get an infinite maximal run extending
⇢.

In other words, if we assume that ⇢? = hq?, v↵i
�?��! hq?, v↵i

�?��! · · · . We can
define the function maximize(·) for any run ⇢ of S as following

maximize(⇢)

def
=

(
⇢ if ⇢ is infinite
⇢

�↵+1���! ⇢? |⇢| = ↵, for some ↵ 2 N

So, clearly, for any run ⇢ in S there exists an unique run ⇢

0 in S

0 such that
⇢

0
= maximize(⇢). Hence, there is a bijection between the set of maximal runs in

S and the set of maximal runs in S

0 that start by a state in Q. Every maximal
run in S

0 is infinite. Below, we also use the inverse map maximize

�1

(·) that
returns a maximal run in S.

By structural induction, we show that for all ⇢ in S and i |⇢|, we have
⇢, i |= � iff maximize(⇢), i |= t(�). As a consequence, for all configurations c in S

and for all formulae � in CTL⇤ [resp. in CTLEF], we have S, c |= � iff S

0
, c |= t(�).

By construction, S0 is non-blocking and, S0 and �

0 can be built in logarithmic
space in the size of S and �.

– Base case: Let ⇢ be a run in S and i |⇢|. Since we have i |⇢| we
deduce that ⇢[i] = maximize(⇢)[i]. As t(·) is the identity for atomic formulae
p and (x

1

, · · · , xn), we conclude that ⇢, i |= p [resp. ⇢, i |= (x

1

, · · · , xn)] iff
⇢

0
, i |= t(p) [resp. ⇢0, i |= t((x

1

, · · · , xn))].
– Induction step: We assume that for all formulae � of size at most k � 1,

for all runs ⇢ and for all i |⇢|, we have ⇢, i |= � iff maximize(⇢), i |= t(�).
Now, we prove this property for formulae of size k. We consider hence a run
⇢ of S and i |⇢|.
• Case X : First, suppose that ⇢, i |= X . By definition of |=, i < |⇢| and
⇢, i+1 |= . By the induction hypothesis, maximize(⇢), i+1 |= t(). Since
i < |⇢|, maximize(⇢)[i+1] = ⇢[i+1] and since maximize(⇢)[i+1] |= ¬p?,
we get that maximize(⇢), i |= X(¬p? ^ t()). Assume maximize(⇢), i |=
X(¬p? ^ t()). So, maximize(⇢), i + 1 |= t() and maximize(⇢), i + 1 |=
¬p?. By construction, for all the positions j in maximize(⇢) such that

29

maximize(⇢), j |= ¬p?, maximize(⇢)[j] is a configuration in ⇢. Thus,
|⇢| > i. By the induction hypothesis, maximize�1

(⇢), i+1 |= . Therefore
⇢, i |= X .

• Case U

0: First suppose that ⇢, i |= U

0. There is i j |⇢|
such that ⇢, j |=

0 and for all k 2 [i, j � 1], we have ⇢, k |= .
Since maximize(⇢)[j] = ⇢[j], we get that maximize(⇢), j |= ¬p?. Us-
ing furthermore the induction hypothesis, we deduce maximize(⇢), i |=
t()U(¬p? ^ t(0

)).
Now suppose that maximize(⇢), i |= t(U 0

). By definition of t(·), there
is i j

0 such that maximize(⇢), j

0 |= t(0
) and maximize(⇢), j

0 |=
¬p? and for all k0 2 [i, j

0 � 1], we have maximize(⇢), k

0 |= t(). Since
maximize(⇢), j

0 |= ¬p?, we know that j0 |⇢| and ⇢[k] = maximize(⇢)[k]

for all k 2 [i, j]. By the induction hypothesis, ⇢, j0 |=

0 and for all
k

0 2 [i, j

0 � 1], we have ⇢, k0 |= . Hence, ⇢, i |= U

0.
• Case X�1

 : First, suppose that ⇢, i |= X

�1

 . By definition of |=, 0 < i and
⇢, i� 1 |= . Since i |⇢|, by the induction hypothesis, maximize(⇢), i�
1 |= t() and consequently we get that maximize(⇢), i |= X

�1t(). As-
sume maximize(⇢), i |= X

�1t(). By a similar reasoning, we can prove
that ⇢, i |= X

�1

 .
• Case S

0: First suppose that ⇢, i |= S

0. There is 0 j i such
that ⇢, j |=

0 and for all k 2 [j + 1, i], we have ⇢, k |= . Using the
induction hypothesis, since i |⇢| and hence j |⇢|, we obtain directly
that maximize(⇢), i |= t() S t(0

).
Similarly if we assume maximize(⇢), i |= t(S 0

), using the fact that
i |⇢| and the induction hypothesis we deduce that ⇢, i |= S

0.
• Case E : First, suppose that ⇢, i |= E . By definition of |=, there is

a maximal run ⇢

0 such that ⇢0i = ⇢i and ⇢

0
, i |= . By the induc-

tion hypothesis, maximize(⇢0), i |= t(). Since by construction we have
maximize(⇢

0
)i = ⇢

0
i = ⇢i = maximize(⇢)i, we deduce

maximize(⇢), i |= E t().

Assume that maximize(⇢), i |= E t(). So, there is a run ⇢

0 such that
⇢

0
i = maximize(⇢)i and ⇢

0
, i |= t(). By the induction hypothesis,

maximize

�1

(⇢

0
), i |= . By construction we have maximize

�1

(⇢

0
)i =

⇢

0
i = maximize(⇢)i = ⇢i, we deduce ⇢, i |= E .

• Case EF : The proof is the same as the one for the case U 0.
ut

B Proof of Lemma 6

Proof.

1. By definition, an iterated path schema is a pair hP, mi such that P is a
minimal path schema and m 2 Nsize(P). Now assume that we have vectors
vt, vp, vit 2 NK such that vt, vp, vit satisfy all the conditions C. We perform

30

the construction of Pvt,vp . By definition of Pvt,vp and C.1 through C.4 ensure
that Pvt,vp is a sequence of loops and edges from S. C.5 ensures that Pvt,vp
ends with a loop. C.6 and C.7 ensure that Pvt,vp is a minimal path schema
where none of the edges or loops are repeated. By construction vp[1] is exactly
equal to size(Pvt,vp). Thus, mvit is defined to be in Nsize(Pvt,vp). C.8 on vit
allows us to conclude that hPvt,vp , mviti is an iterated path schema.
For the other side, given an iterated path schema hP, mi, we construct vt and
vp as:
– vt[1] = vp[1] = size(P).
– vp[i] = j and vt[i] = 0 if P [i�1] = �j for some j, for all i 2 [2, size(P)+1].
– vp[i] = j and vt[i] = 1 if P [i�1] = lj for some j, for all i 2 [2, size(P)+1].
– vp[i] = vt[i] = 0 for all i 2 [size(P) + 2,K].

Note that the above construction follows exactly the reverse steps of the
construction of Pvt,vp . In other words, given an iterated path schema hP, mi,
the above construction gives us the vectors vt and vp such that P = Pvt,vp .
Moreover, we can construct vit from m 2 Nsize(P) as :
– vit[i] = m[i] for all i 2 [1, size(P)],
– vit[i] = 0 for all i 2 [size(P) + 1,K].

Clearly by the construction of vt, vp and the fact that size(P) > 0 we can
conclude that C.1 is satisfied. Similarly, by construction, and the fact that
P is a sequence of edges and loops, C.2 to C.5 are satisfied. Due to the fact
that P is a minimal path schema, C.6 and C.7 are also satisfied. Since, hP, mi
is an iterated path schema, C.8 is satisfied.

2. To construct the formula Schema(Zt,Zp,Zit), we start by defining a formula
 i for each condition C.i.

1

def
= (z

1

t = z

1

p ^ z

1

p = z

1

it ^ z

1

p > 0 ^ z

1

p < K)^
KV
i=2

z

1

p + 1 < i) (z

i
t = z

i
p ^ z

i
p = z

i
it ^ z

i
it = 0)

2

def
=

K̂

i=2

(z

i
t 1)

3

def
=

K̂

i=2

i z

1

p + 1) (z

i
t = 0) z

i
p � ^ z

i
p � 1)

4

def
=

K̂

i=2

i z

1

p + 1) (z

i
t = 1) z

i
p � ^ z

i
p � 1)

5

def
=

K̂

i=2

i = z

1

p + 1) z

i
t = 1

6

def
=

KV
i=2

(i z

1

p + 1) (

KV
j=2,j 6=i

j z

1

p + 1) (z

i
p 6= z

j
p _ z

i
t 6= z

j
t)))

31

7

def
=

KV
i=2

i z

1

p)
W

{(a,b,a0,b0)|target(⌧(a,b))=source(⌧(a0.b0))}
(z

i
t = a ^ z

i
p = b ^ z

i+1

t = a

0 ^ z

i+1

p = b

0
)

8

def
=

K̂

i=2

i z

1

p + 1) (z

i
it > 0 ^ (z

i
t = 0) z

i
it = 1))

We construct the formula Schema(Zt,Zp,Zit) as (

1

^ · · · ^

8

). For all
i 2 [1, 8], vt, vp, vit satisfies C.i iff vt, vp, vit |= i. For example, consider C.6,
which expresses the minimality constraint for the minimal path schemas,
stating that for any two distinct positions either the values are different
or they are of different types. More formally, for all i, j 2 [1, vp[1] + 1],
i 6= j) (vp[i] 6= vt[j]_ vt[i] 6= vt[j]). Note that

6

has a nested conjunction
allowing to compare every possible pair of positions hi, ji. Moreover, for
every possible pair, we check exactly the condition stated in C.6. Clearly,
vt, vp, vit satisfies C.6 iff vt, vp, vit |=

6

. Finally, the formula Schema states
that all formulae i hold for the vectors vt, vp, vit. Hence it is easy to see
that, vt, vp, vit |= Schema(Zt,Zp,Zit) iff vt, vp, vit satisfies C.

ut

C Proof of Lemma 7

Proof. Let w
0

, . . . , w�+��1

, c
0

2 Nn+1 and p
0

, . . . p�+��1

2 N and vt, vp, vit in
NK such that vt, vp, vit |= Schema(Zt,Zp,Zit). By Lemma 6, we know that vt,
vp and vit respect the conditions in C and consequently that hPvt,vp , mviti is an
iterated path schema.

First we suppose that w
0

, . . . , w�+��1

, p
0

, . . . , p�+��1

, vt, vp, vit, c0 |= Witness.

– The subformula

1_

s=0

max(�,�)_

j=1

z

2

p = j ^ z

2

t = s ^ x

1

0

= source(⌧(s, j))

ensures that q
0

= source(Pvt,vp [1]); in fact it states that c
0

[1] = source(⌧(vt[2],
vp[2])). Consequently, we can define the pseudo-run ⇢(Pvt,vp , mvit , c0).

– Let N = size(Pvt,vp). We recall that N = vt[1]. We will now show that wj
is the jth witness configuration of ⇢(Pvt,vp , mvit , c0) and pj is its position for
all j < N .
• First thanks to the part of formula saying d

0

= 0 ^ X

0

= W

0

, we know
that p

0

= 0 and that w
0

= c
0

, whence w
0

is effectively the witness
configuration at position 0. Now thanks to the part of the formula saying

that
�+��1V
i=1

(i < z

1

t)
1W

s=0

max(�,�)W
j=1

(z

i+1

p = j ^ z

i+1

t = s^ di = di�1

+ z

i+1

it ⇤

32

length(⌧(s, j)))), we have that for all 1 < j < N ,

pj =
k=jX

k=1

vit[k + 1] ⇤ length(⌧(vt[k + 1], vp[k + 1]))

and this allows us to deduce that pj is the position of the jth witness
configuration (using the definition of witness configuration).

• Similarly, the part of the formula saying
�+��1V
i=1

(i < z

1

t)
1W

s=0

max(�,�)W
j=1

(z

i+1

p

= j^zi+1

t = s^w1

i = target(⌧(t, j))^Wi = Wi�1

+z

i+1

it ⇤update(⌧(s, i))))
ensures us that for all j < N , wj [1] = target(⌧(vt[j + 1], vp[j + 1])) and
for all i 2 [2, n+ 1],

wj [i] = c
0

[i] +

k=jX

k=1

vit[k + 1] ⇤ update(⌧(vt[k + 1], vp[k + 1]))[i]

and consequently wj corresponds effectively to the jth witness configu-
ration. Furthermore since for all j < N , wj belongs to Nn+1, then we
deduce that the pseudo-run ⇢(Pvt,vp , mvit , c0) is positive.

We now assume that ⇢(Pvt,vp , mvit , c0) is well-defined and positive and for all
j 2 [0,� + � � 1], if j < size(Pvt,vp), then wj is the jth witness configuration
of ⇢(Pvt,vp , mvit , c0) and pj its position. Let N = size(Pvt,vp). We recall that
N = vt[1] by definition of Pvt,vp . By definition of the witness configurations, the
following assertions hold:

– p
0

= 0 and w
0

= c
0

and c
0

[1] = source(Pvt,vp [1]),
whence w

0

[1] = source(Pvt,vp [1]);
– For all 1 < j < N ,

pj =
Pk=j

k=1

vit[k + 1] ⇤ length(Pvt,vp [k])

=

Pk=j
k=1

vit[k + 1] ⇤ length(⌧(vt[k + 1], vp[k + 1]))

= pj�1

+ vit[j + 1] ⇤ length(⌧(vt[j + 1], vp[j + 1])).

– For all 1 < j < N ,

wj [1] = target(Pvt,vp [j]) = target(⌧(vt[j + 1], vp[j + 1])).

– For all 1 < j < N , for all i 2 [2, n+ 1],

wj [i] =
Pk=j

k=1

vit[k + 1] ⇤ update(Pvt,vp [k])[i]

=

Pk=j
k=1

vit[k + 1] ⇤ update(⌧(vt[k + 1], vp[k + 1]))[i]

= wj�1

[i] + vit[j + 1] ⇤ update(⌧(vt[j + 1], vp[j + 1]))[i].

These assertions allow us to conclude that

w
0

, . . . , w�+��1

, p
0

, . . . , p�+��1

, vt, vp, vit, c0 |= Witness.

ut

33

D Proof of Lemma 8

Proof. Proof of (1.). We assume that there exist c
0

, c 2 Nn+1 and i 2 N and
vt, vp, vit 2 NK such that vt, vp, vit, c0, i, c |= Conf . Thanks to the conjunct
Schema(Zt,Zp,Zit), we have that vt, vp, vit |= Schema and using Lemma 6 we
know that hPvt,vp , mviti is an iterated path schema. Furthermore we know that
there exist w

0

, . . . , w�+��1

2 Nn+1 and p
0

, . . . , p�+��1

2 N such that

w
0

, . . . , w�+��1

, p
0

, . . . , p�+��1

, vt, vp, vit, c0 |= Witness,

hence thanks to Lemma 7, we have that ⇢(Pvt,vp , mvit , c0) is well-defined and
positive and for all j 2 [0,� + � � 1], if j < size(Pvt,vp), then wj represents
the jth witness configuration of ⇢(Pvt,vp , mvit , c0) and pj its position. Now, we
proceed on a case analysis on the value of i:

– First assume that there exists j vp[1] = size(Pvt,vp) such that i = pj
and vt[j + 2] = 0. We know from the formula that c = wj and hence since
wj = ⇢(Pvt,vp , mvit , c0)[pj] (by definition of witness configuration), we deduce
that c = ⇢(Pvt,vp , mvit , c0)[i]. Furthermore we have that vt[j + 2] = 0, hence
Pvt,vp [j + 1] 2 � and we also have that c[2], . . . , c[n+ 1] |= guard(�vp[j+2]

).
Using the definition of iterated path schema we have that

�vp[j+2]

= Pvt,vp [j + 1]

= trans(hPvt,vp , mviti)[
k=jP
k=1

length(Pvt,vp [k]) ⇤ vit[k + 1] + 1]

and using the definition of the position of the jth witness configuration, we
deduce that �vp[j+2]

= trans(hPvt,vp , mviti)[pj + 1] = trans(Pvt,vp , mvit)[i+ 1].
Consequently c[2], . . . , c[n+ 1] |= guard(trans(Pvt,vp , mvit)[i+ 1]).

– Now assume that there exists j vp[1] = size(Pvt,vp) such that pj j <

pj+1

and vt[j + 2] = 1 (hence Pvt,vp [j + 1] is a loop). Then, we have wj , i�
pj , c |= ConfLooplk with k = vp[j+2]. Then let u 2 [0, length(lk)�1] and v 2
N such that i�pj = v⇤length(lk)+u. Note that since pj i < pj+1

, we know
that the pseudo-run ⇢(Pvt,vp , mvit , c0) at position i lies exactly in the loop lk

and that it has taken this loop v times exactly and the u first transitions.
Moreover, the next transition will still be one of the loops (otherwise we
would have i � pj+1

). The formula enforces that c[1] = source(lk[u + 1])

and for all 2 f n + 1, we have c[f] = wj [f] +
r=uP
r=1

update(lk[r])[f],

hence this allows us to deduce that c = ⇢(Pvt,vp , mvit , c0)[i]. Furthermore
we also have that c[2], . . . , c[n + 1] |= guard(lk[u + 1]), which allows us
to deduce that c[2], . . . , c[n + 1] |= guard(trans(Pvt,vp , mvit)[i + 1]). In fact,
we have trans(Pvt,vp , mvit)[i + 1] = trans(Pvt,vp , mvit)[pj + (i � pj) + 1] =

trans(Pvt,vp , mvit)[pj + v ⇤ length(lk) + u+ 1] = lk[u+ 1].
– The case where there exist j = vp[1] = size(Pvt,vp) and pj j is similar to

the previous one, the only difference being that this time the position of the
run is in the last loop of the minimal path schema Pvt,vp .

34

The other direction which consists in proving that if vt, vp, vit |= Schema

and ⇢(Pvt,vp , mvit , c0) is well-defined and c = ⇢(Pvt,vp , mvit , c0)[i] and c[2], · · ·
, c[n+ 1] |= guard(trans(hPvt,vp , mviti)[i+ 1]) then vt, vp, vit, c0, i, c |= Conf can
be done in a similar way.

Proof of (2.). Let us check that the formula Run is what we are look-
ing for. First, we assume that there exist c

0

2 Nn+1 and vt, vp, vit 2 N�+�+1

such that vt, vp, vit, c0 |= Run, then for all i 2 N, there exists c 2 Nn+1

such that vt, vp, vit, c0, i, c |= Conf . Thanks to the previous property, we have
vt, vp, vit |= Schema and ⇢(Pvt,vp , mvit , c0) is well-defined and positive and c =

⇢(Pvt,vp , mvit , c0)[i] is represented by c and

c[2], · · · , c[n+ 1] |= guard(trans(hPvt,vp , mviti)[i+ 1]).

Consequently the pseudo-run ⇢(Pvt,vp , mvit , c0) is a run.
Now assume that there exist c

0

2 Nn+1 and vt, vp, vit 2 N�+�+1 such
that vt, vp, vit |= Schema and ⇢(Pvt,vp , mvit , c0) is well-defined and is a run.
Let i 2 N and let c = ⇢(Pvt,vp , mvit , c0)[i], by definition of a run we have
c[2], · · · , c[n+1] |= guard(trans(hPvt,vp , mviti)[i+1]), consequently we deduce that
vt, vp, vit, c0, i, c |= Conf . This allows us to deduce that vt, vp, vit, c0 |= Run.

All the formulae involved in the construction use generalised conjunctions/dis-
junctions of length linear in the sum of the following values: number of states ↵,
number of transitions �, number of simple loops �, number of counters n. So, it
is easy to check that we only need logarithmic-space to build the formulae.

35

