
HAL Id: hal-03192209
https://hal.science/hal-03192209v1

Submitted on 8 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-Variable Separation Logic and Its Inner Circle
Stéphane Demri, Morgan Deters

To cite this version:
Stéphane Demri, Morgan Deters. Two-Variable Separation Logic and Its Inner Circle. ACM Trans-
actions on Computational Logic, 2015, 16 (2:15), �10.1145/2724711�. �hal-03192209�

https://hal.science/hal-03192209v1
https://hal.archives-ouvertes.fr

A

Two-Variable Separation Logic and Its Inner Circle

STEPHANE DEMRI, New York University, USA & CNRS, France
MORGAN DETERS, New York University, USA

Separation logic is a well-known assertion language for Hoare-style proof systems. We show that first-order
separation logic with a unique record field restricted to two quantified variables and no program variables
is undecidable. This is among the smallest fragments of separation logic known to be undecidable, and this
contrasts with decidability of two-variable first-order logic. We also investigate its restriction by dropping
the magic wand connective, known to be decidable with non-elementary complexity, and we show that the
satisfiability problem with only two quantified variables is not yet elementary recursive. Furthermore, we
establish insightful and concrete relationships between two-variable separation logic and propositional in-
terval temporal logic (PITL), data logics, and modal logics, providing an inner circle of closely-related logics.

Categories and Subject Descriptors: F.3.1 [Specifying and Verifying and Reasoning about Programs]:
Logics of Programs

General Terms: Theory, Verification

Additional Key Words and Phrases: Separation logic, two-variable logics, interval temporal logic, modal
logic, data logic, decidability, complexity

ACM Reference Format:
Stéphane Demri, Morgan Deters, January 21st, 2015 [paper accepted], November 14th, 2014 [revised sub-
mission]. Initial submission: September 13th, 2013. Two-Variable Separation Logic and Its Inner Circle
ACM Trans. Comput. Logic V, N, Article A (January YYYY), 37 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Bounding the number of variables. The satisfiability problem for the two-variable

fragment of first-order logic (FO2) is decidable [Scott 1962; Mortimer 1975], and it is
NEXPTIME-complete [Lewis 1980; Grädel et al. 1997a], even though the extension with
three variables is known to be undecidable [Kahr et al. 1962]. Bounding the number of
variables to find decidable fragments is usually motivated by identifying maximal frag-
ments that are decidable or to determine a rough boundary between decidability and
undecidability. It is often observed that the critical zone for the decidability border lies
between two and three variables for first-order dialects; for instance, the two-variable
fragment of first-order intuitionistic logic (with constant domain) has been shown un-
decidable in [Gabbay and Shehtman 1993], whereas FO2 extended with weak forms of
recursion such as transitive closure operators is also undecidable [Grädel et al. 1999].
Similarly, monodic two-variable first-order linear-time temporal logic with equality is
undecidable [Degtyarev et al. 2002]. By contrast, decidability results of FO2 inter-
preted over linear structures can be found in [Otto 2001]; FO2 on data words is de-

Work partially supported by the EU Seventh Framework Programme under grant agreement No. PIOF-GA-
2011-301166 (DATAVERIF), the Air Force Office of Scientific Research (under award FA9550-09-1-0596),
and the National Science Foundation (under grant 0644299).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

cidable, too, and somewhat equivalent to the reachability problem for Petri nets [Bo-
jańczyk et al. 2011]. There are also other decidable extensions of FO2, see [Pachol-
ski et al. 1997; Grädel et al. 1997b; Kieroński et al. 2012; Szwast and Tendera 2013;
Charatonik et al. 2014]. At the propositional level, bounding the number of propo-
sitional variables also makes sense, to restrict syntactic resources and to study its
impact on the complexity of decision problems; see examples for modal and temporal
logics in [Halpern 1995; Demri and Schnoebelen 2002]. Herein, we follow a similar
path, and we consider first-order separation logic [Reynolds 2002].

Decidability and complexity issues for separation logics. Before going any further,
let us recall briefly that the models (heaps) in separation logics can be understood as
partial functions with profile h : N ⇁ Nk for some k ≥ 1 and with finite domain (k cor-
responds to the number of record fields). The set of natural numbers behaves here as
an abstraction for the sets of locations and values, respectively. Separating connectives
are those in the logical formalism that operate on models by possibly updating them by
addition or removal of elements in the domain of the heap (this is done in a controlled
way, of course). Program variables are understood as first-order variables with a rigid
interpretation (in contrast to quantified variables).

First-order separation logic is used as an assertion language for Hoare-style proof
systems about programs with pointers [Reynolds 2002]. There is an ongoing quest to
determine expressive fragments with relatively low complexity (see e.g. [Cook et al.
2011]) and to extend known decidability results (see e.g. [Iosif et al. 2013; Brother-
ston et al. 2014]). As far as decidability is concerned, first-order separation logic with
two record fields (2SL) is shown undecidable in [Calcagno et al. 2001] (see also [Yang
2001, Section 8.1] or the undecidability results from [Brotherston and Kanovich 2014;
Larchey-Wendling and Galmiche 2013], which are obtained in an alternative setting
with propositional variables and no first-order quantification) and the proof does not
require any use of separating connectives.

So, the result in [Calcagno et al. 2001] has been strengthened in [Brochenin et al.
2012] by showing that first-order separation logic with a unique record field (1SL) is
also undecidable, which is obtained by showing that 1SL is equivalent to weak second-
order logic (weakness refers to quantifications over finite sets only). Recently, in [Demri
and Deters 2014], 1SL restricted to two quantified variables has also been shown to
be equivalent to weak second-order logic, providing another undecidability proof but
one more complex than what is presented below, since one needs to go through an en-
coding of weak second-order logic. If separating implication (also known as the “magic
wand” operator) is dropped, decidability is regained but with non-elementary complex-
ity as a consequence of [Rabin 1969; Stockmeyer 1974]. A natural continuation of this
undecidability result, quite surprising considering that there is a single record field,
would be to see how the undecidability is sensitive to the number of quantified vari-
ables, following the trend of works related to two-variable fragments of first-order di-
alects. Whereas 1SL restricted to one variable and augmented with program variables
admits a decidable satisfiability problem and is the subject of another paper [Demri
et al. 2014], we study herein the two-variable first-order separation logic without pro-
gram variables; the atomic formulae are made of the equality predicate symbol and the
points-to predicate only (no other predicate symbols are allowed), which is a consider-
ably downgraded version of the full logic. Separating connectives include separating
conjunction and separating implication.

Our contribution. The paper presents two main results and provides inter-
esting relationships between separation logic [Reynolds 2002], interval temporal
logic [Moszkowski 2004], data logics [Bojańczyk et al. 2011] and modal logics, see

2

e.g. [Blackburn et al. 2001]. In that way, we improve our understanding about the
expressive power of separation logic fragments.

(1) We show that two-variable first-order separation logic with a unique record field
(1SL2) has an undecidable satisfiability problem by reduction from the halting
problem for Minsky machines (Section 4). It is certainly minimal in terms of
the number of quantified variables, considering that the case with one variable
is decidable [Demri et al. 2014]. This concludes the classification of fragments
of 1SL with respect to the number of variables. For first-order separation logic,
undecidability already strikes with two variables (by contrast to the NEXPTIME-
completeness of FO2), which could be explained by the fact that the magic wand
can be used to simulate quantification of locations (see the proof in Section 4). In
our proof, all the difficulties are concentrated on the use of only two variables:
of course, we can take advantage of the recycling of variables as done for modal
logics [Gabbay 1981], but this is not sufficient since we need to compare the neigh-
borhood of locations that are not direct predecessors or successors. This is where
the separating operators for separation logic are helpful, for instance to operate
surgically on selections of the heap (see Section 4.4).
Additionally, we provide evidence that an undecidable logic on data words
from [Bojańczyk et al. 2011] can be reduced to two-variable first-order separation
logic (Section 4.6). Logics on data words have already been used to get undecid-
ability results for separation logic with data fields, see e.g. [Bansal et al. 2009].
Herein, we use a simple version of first-order separation logic without program
variables, without data fields, and apart from equality, there is only one binary
relation, and it is functional and finite. This marks a substantial difference with
existing work, and it highlights just how few our syntactic resources are while still
getting undecidability and complexity lower bounds.

(2) Two-variable first-order separation logic with a unique record field and without the
magic wand (1SL2(∗)) is known to be decidable (as a consequence of [Brochenin
et al. 2012, Corollary 3.3]), but we establish non-elementary complexity by a
reduction from Moszkowski’s Propositional Interval Temporal Logic PITL (see
e.g. [Moszkowski 2004]), despite the restriction on the number of variables. So,
we are able to make an interesting bridge between interval temporal logics and
separation logics (see Section 3). This is not completely surprising since there is
a clear similarity between the “chop” operator in interval temporal logics and the
separating conjunction in separation logic, but we are able to conclude an original
result about a fragment of two-variable first-order separation logic. To our knowl-
edge, this is the first time that the similarity has been turned into a concrete,
interesting result. The possibility to relate separation logic and interval temporal
logic has been already envisaged by Tony Hoare, see e.g. [Zhou Chaochen 2008].1
Finally, we refine this result by proposing a new simple modal logic MLH inter-
preted on heaps that can be translated into two-variable separation logic with a
unique record field via a standard translation schema (see Section 2.4 and Sec-
tion 3.4). For instance, we are able to show that MLH restricted to only the sep-
arating conjunction (i.e. without the magic wand operator) has non-elementary
complexity. So, we are also happy to provide a modal logic closely related to two-
variable separation logic, strengthening relationships between modal logics and
two-variable fragments (see also [Lutz and Sattler 2002] in a more classical set-
ting).

1We thank Ben Moszkowski for pointing us to this work.

3

Figure 1 diagrams the contributions of this paper and puts them in context with
previously-known results. Logic definitions can be found in Sections 2, 3.1, and 4.6.

PITL
non-elementary

[Moszkowski 2004]

MLH(∗)
non-elementary
(Theorem 3.12)

1SL2(∗)
non-elementary

(Theorem 3.8)

⋃
α≥1 FO2α,0(<,+1,=)
NEXPTIME-complete
[Etessami et al. 1997]

1SL(∗)
decidable

[Brochenin et al. 2012]

MSO
decidable

[Rabin 1969]

Halting problem
undecidable
[Minsky 1967]

MLH (introduced herein)
decidability unknown

1SL2
undecidable

(Theorem 4.12)

⋃
α≥1 FO2α,1(<,+1,=,∼,≺)

undecidable
[Bojańczyk et al. 2011]

Section 2.3

Section 3.3

Section 3.4

Section 2.4

fragment-of

[Brochenin et al. 2012]

Section 4

Section 4.6

Section 2.4

fragment-of

Fig. 1. A depiction of the contributions of this paper, in context, with both novel and previously-known
results marked. Complexity and decidability results are shown for the satisfiability problem in each respec-
tive logic. Each arrow represents a known satisfiability-preserving translation of formulae. For example,
any PITL formula φ can be translated into an MLH(∗) formula ψ such that φ is satisfiable in PITL if and
only if ψ is satisfiable in MLH(∗); we abuse this notation to mean “encoding” in the case of our encoding of
the halting problem for Minsky machines in 1SL2. 1SL2(∗) is a syntactic fragment of 1SL(∗), so certainly
such a “translation” is possible.

Structure of the paper. Section 2 is primarily dedicated to the presentation of the
separation logic 1SL, but it also explains how data words can be encoded in 1SL2(∗).
This encoding will be useful many times in succeeding sections. Moreover, we intro-
duce a new modal logic on heaps (MLH) that is a fragment of 1SL2(∗). Section 3 recalls
the basics of propositional interval temporal logic PITL and we present an elementary
satisfiability-preserving reduction from PITL to 1SL2(∗), leading to a non-elementary
lower bound for 1SL2(∗). This result is strengthened by showing non-elementarity of
MLH restricted to only the separating conjunction ∗. Section 4 contains a master re-
duction from the halting problem for Minsky machines into the satisfiability problem
for 1SL2. To do so, several technical problems need to be solved and we dedicate one

4

subsection to each of them. We also explain how undecidability results for first-order
data logics can be used to obtain a similar result for 1SL2, which provides an alterna-
tive to the master reduction. Finally, Section 5 contains concluding remarks.

2. PRELIMINARIES
2.1. First-order separation logic with one record field (1SL)
A heap h is a partial function h : N⇁ N with finite domain. We write dom(h) to denote
its domain and ran(h) to denote its range. Two heaps h1, h2 are said to be disjoint,
denoted h1 ⊥ h2, if their domains are disjoint; when this holds, we write h1] h2 to
denote the heap obtained from h1 and h2 by taking their disjoint union. We use li, with
i, li ∈ N and i ≥ 0, to represent locations. We write l1 → l2 → · · · → lm (or, equivalently,
lm ← lm−1 ← · · · ← l1) to mean that for every i ∈ [1,m − 1], h(li) = li+1. In that case
{l1, . . . , lm−1} ⊆ dom(h). We write]̃l to denote the cardinal of the set {l′ : h(l′) = l}made
of predecessors of l (heap h is implicit in the expression]̃l). A location l is an ancestor
of a location l′ iff there exists i ≥ 0 such that hi(l) = l′ where hi(l) is shorthand for
h(h(. . . (h(l) . . .))) (i applications of h to l).

Usually in models for separation logic(s), memory states have a heap and a store
for interpreting program variables, see e.g. [Reynolds 2002]. Our work concentrates on
hardness results, and we are able to obtain these results without using such program
variables. For this reason, we do not introduce them. Observe also that heaps will be
understood as first-order structures of the form (N,R) where R is a finite and func-
tional binary relation. Indeed, R = {(l, h(l)) : l ∈ dom(h)} for a heap h. A new modal
logic with such frames is presented in Section 2.4. The locations l and l′ are in the same
connected component whenever (l, l′) ∈ (R∪R−1)∗. Usually, connected components are
understood as non-singleton components. A finite functional graph (N,R) can be made
of several maximal connected subgraphs so that each connected subgraph is made of a
cycle, possibly with trees attached to it. Figure 2 presents a heap, i.e. a finite functional
graph on N with two maximal connected subgraphs.

1

11
12

121 122

2
3 31 311

4414114111

42

421
422

411

Fig. 2. A heap/finite functional graph with two maximal connected subgraphs.

Let Var = {u1, u2, . . .} be a countably infinite set of quantified variables. Formulae of
1SL are defined by the abstract grammar below:

φ ::= ui = uj | ui ↪→ uj | emp | φ ∧ φ | ¬φ | φ ∗ φ | φ−∗φ | ∃ ui φ
The connective ∗ is called the separating conjunction and the connective −∗ is called the
separating implication (also known as the magic wand). We will make use of standard
notations for the derived connectives.

An assignment is a map f of the form Var → N. The satisfaction relation |= is pa-
rameterized by assignments and defined as follows:

5

— h |=f emp
def⇔ dom(h) = ∅.

— h |=f ui = uj
def⇔ f(ui) = f(uj).

— h |=f ui ↪→ uj
def⇔ f(ui) ∈ dom(h) and h(f(ui)) = f(uj).

— h |=f φ1 ∧ φ2
def⇔ h |=f φ1 and h |=f φ2.

— h |=f ¬φ
def⇔ h 6|=f φ.

— h |=f φ1∗φ2
def⇔ there exist h1, h2 such that h1 ⊥ h2, h = h1]h2, h1 |=f φ1 and h2 |=f φ2.

— h |=f φ1−∗φ2
def⇔ for all h′, if h ⊥ h′ and h′ |=f φ1 then h] h′ |=f φ2.

— h |=f ∃ ui φ
def⇔ there is l ∈ N such that h |=f [ui 7→l] φ (f [ui 7→ l] refers to a map equal to

f except that ui takes the value l).

Remark 2.1. Given a bijection σ : N → N, we write h′ = h ◦ σ to denote the heap
whose graph is {(σ(l), σ(h(l))) : l ∈ dom(h)}. Similarly, we write f ′ = f ◦σ to denote the
assignment such that f ′(ui) = σ(f(ui)). Note that for all formulae φ, we have h |=f φ
iff h′ |=f ′ φ. That is why heaps equipped with assignments are understood modulo
bijections (i.e. concrete heaps are canonical elements of equivalence classes).

For a fixed i ≥ 0, we write 1SLi to denote the fragment of 1SL restricted to i quan-
tified variables and 1SLi(∗) to denote its restriction when the magic wand operator is
disallowed.

Let L be a logic among 1SL, 1SLi, 1SLi(∗). The satisfiability problem for L takes
as input a sentence φ from L and asks whether there is a heap h such that h |= φ
(regardless of assignment, as φ has no free variables).

THEOREM 2.2. [Rabin 1969; Brochenin et al. 2012] The satisfiability problem for
1SL is undecidable, and the satisfiability problem for 1SL(∗) is decidable with non-
elementary complexity.

Decidability of 1SL(∗) is shown by (easy) reduction into weak monadic second-order
logic of one unary (total) function with equality (referred to as MSO in Figure 1) that
is shown decidable in [Börger et al. 1997, Corollary 7.2.11] by using [Rabin 1969].

2.2. Toolkit of formulae
In the following, let u and u be the variables u1 and u2, in either order. Throughout this
paper, we build formulae with the quantified variables u and u. Note that any formula
φ(u) with free variable u can be turned into an equivalent formula with free variable u
by switching the two variables.

Below, we define (standard) formulae and explain which properties they express.

— The domain dom(h) has exactly one location:

size = 1
def
= ¬emp ∧ ¬(¬emp ∗ ¬emp)

— The domain dom(h) has exactly two locations:

size = 2
def
= (¬emp ∗ ¬emp) ∧ ¬(¬emp ∗ ¬emp ∗ ¬emp)

— u has a successor: alloc(u)
def
= ∃ u u ↪→ u

— u has at least k predecessors:]u ≥ k def
=

k times︷ ︸︸ ︷
(∃ u u ↪→ u) ∗ · · · ∗ (∃ u u ↪→ u)

— u has at most k predecessors:]u ≤ k def
= ¬ (]u ≥ k + 1)

— u has exactly k predecessors:]u = k
def
= (]u ≥ k) ∧ ¬(]u ≥ k + 1)

— For all ∼∈ {≤,≥,=} and i ≥ 0, we define the following formulae:

6

]u0 ∼ k def
=]u ∼ k

]ui+1 ∼ k def
= ∃ u u ↪→ u ∧]ui ∼ k

]u−i−1 ∼ k def
= ∃ u u ↪→ u ∧]u−i ∼ k

For instance,]u6 ≥ 5 states that there is a (necessarily unique) location at distance
6 from u and its number of predecessors is greater than or equal to 5. The formula
]u−5 ≤ 2 states that there is a (not necessarily unique) location at distance −5 from u
and its number of predecessors is not strictly greater than 2. For instance,]u1 ≥ 1 is
logically equivalent to alloc(u).

— There is a non-empty path from u to u and nothing else except loops that exclude u:

ls′(u, u)
def
=]u = 0 ∧ alloc(u) ∧ ¬alloc(u) ∧
∀ u ((alloc(u) ∧]u = 0) =⇒ u = u) ∧
∀ u

[
(]u 6= 0 ∧ u 6= u) =⇒ (]u = 1 ∧ alloc(u))

]
— There is a (possibly empty) path from u to u:

ls(u, u)
def
= u = u ∨

[
> ∗ ls′(u, u)

]
One can show that h |=f ls(u, u) iff there is i ∈ N such that hi(f(u)) = f(u). The
proof for this property can be found in [Brochenin et al. 2012, Lemma 2.4] (a similar
property has been established for graph logics in [Dawar et al. 2007]).

— There is at most a single connected component (and nothing else):

1comp
def
= ¬emp ∧ ∃ u ∀ u alloc(u)⇒ ls(u, u)

— There are exactly two components: 2comps def
= 1comp ∗ 1comp

Remark 2.3. The heap is a finite tree with at least two nodes can be expressed by
the formula below:

¬emp ∧ ∃ u ¬alloc(u) ∧ (∀ u alloc(u)⇒ ls(u, u))

Complexity results about two-variable fragments of first-order logic over finite trees
can be found in [Benaim et al. 2013] but we cannot really take advantage of them
since we do not use predicate symbols apart from equality and the points-to relation.
By contrast, we do admit separating connectives.

Remark 2.4. Observe that all formulae in our toolkit above are in the 1SL2(∗) frag-
ment. This is not by accident; we will study this fragment extensively in Section 3 and
will need to employ several of the above formulae.

2.3. Encoding data words with multiple attributes
In this section, we present a simple encoding of data words with multiple attributes
into heaps that will be useful in the rest of the paper. Finite data words [Bouyer 2002]
are ubiquitous structures that include timed words, runs of Minsky machines, and
runs of concurrent programs with an unbounded number of processes. These are fi-
nite words in which every position carries a label from a finite alphabet and a finite
tuple of data values from some infinite alphabet. A wealth of specification formalisms
for data words (and slight variants) has been introduced stemming from automata to

7

adequate logical languages such as first-order logic [Bojańczyk et al. 2011; Schwentick
and Zeume 2012] and temporal logics [Figueira 2010; Decker et al. 2014].

A data word of dimension β is a finite non-empty sequence in ([1, α]×Nβ)+ for some
α ≥ 1 and β ≥ 0. The set [1, α] is understood as a finite alphabet of cardinal αwhereas N
is the infinite data domain. Data words of dimension zero are simply finite words over
a finite alphabet whereas data words of dimension one correspond to data words in the
sense introduced in [Bouyer 2002]. Finite runs of Minsky machines (with two counters)
can be viewed as data words of dimension two over the alphabet [1, α] assuming that
the Minsky machine has α distinct instructions (see also Section 4.1).

Let dw = (a1, d1
1, . . . , d

1
β) · · · (aL, dL1 , . . . , dLβ) be a data word in ([1, α] × Nβ)+, i.e. dw is

of dimension β and its underlying alphabet has cardinal α ≥ 1. The data word dw shall
be encoded by the heap hdw containing a path of the form below:

l10 → l11 → · · · → l1β → · · · → lL0 → lL1 → · · · → lLβ

where

— for every i ∈ [1, L], li0 has ai + 2 predecessors,
— for all i ∈ [1, L] and all j ∈ [1, β], lij has dij + α+ 3 predecessors,
— every location in the domain of the heap is either on that path or points to a location

on that path.

Such a path from l10 to lLβ is called the main path, and h
(β+1)L−1
dw (l10) = lLβ . Other

simple encodings are possible (for instance without shifting the values from the finite
alphabet or from the infinite domain) but the current one is well-suited for all the
developments made in this paper. In particular, the encoding allows us to know easily
whether a location encodes a letter from the finite alphabet or an element from the
infinite domain. Note also that hdw is not uniquely specified, and we understand it
modulo isomorphism as discussed in Remark 2.1.

Figure 3 presents the encoding of the data word dw0 = (2, 1)(1, 2)(2, 2) of dimension
1 with α = 2 with its representation of the heap hdw in which the predecessors of the
locations on the main path are provided schematically. We use this type of schema in
Section 4 to illustrate a few constructions.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 3. The heap for data word dw0 = (2, 1)(1, 2)(2, 2) of dimension 1 and with α = 2 (focus on the main
path) with its schematic representation.

The heap hdw looks like a fishbone. Let us make this precise. A heap h is a fish-
bone def⇔

8

(fb1). dom(h) 6= ∅,
(fb2). there is a location reachable from all the locations of dom(h) that is not in
dom(h), and
(fb3). there are no distinct locations l1, l2, l3, l4, l5 such that l1 → l2 → l3 ← l4 ← l5 in
the heap h.

When h is a fishbone, it has a tree-like structure (when looking at the edges backward),
equipped with a root (the unique location from (fb2)), but additionally, one can recog-
nize the locations on the main path as those locations with at least one predecessor.
The existence of such a main path is guaranteed by (fb3). The first location on the main
path satisfies the formula

first(u)
def
= (]u ≥ 1) ∧ ¬(]u−1 ≥ 1)

and the last location on the main path satisfies precisely the formula

last(u)
def
= (]u ≥ 1) ∧ ¬alloc(u)

Let φfb be the formula below:

(fb1)︷ ︸︸ ︷
¬emp ∧

(fb2)︷ ︸︸ ︷
(∃ u ¬alloc(u) ∧ (∀ u alloc(u)⇒ ls(u, u))) ∧

(fb3)︷ ︸︸ ︷
¬(∃ u (]u−2 ≥ 0) ∗ (]u−2 ≥ 0))

LEMMA 2.5. Let h be a heap. h |= φfb iff h is a fishbone.

The proof for Lemma 2.5 is by an easy verification.
Now, let us refine the notion of a fishbone heap so that it takes into account con-

straints on numbers of predecessors. An (α, β)-fishbone is a fishbone heap such that

(C1). the first location on the main path has a number of predecessors in [3, α+ 2],
(C2). on the main path, a location with a number of predecessors in [3, α + 2], is
followed by β locations with at least α+ 3 predecessors, and
(C3). the number of locations on the main path is a multiple of β + 1.

It is easy to check that the formulae φC1, φC2 and φC3 in 1SL2(∗) defined below are
able to express the conditions (C1), (C2) and (C3), respectively. This assumes that the
heap is already known to be a fishbone, which is equivalent to the satisfaction of φfb

(by Lemma 2.5).

φ(C1)
def
= ∃ u first(u) ∧ (3 ≤]u ≤ α+ 2)

φ(C2)
def
= ∀ u (3 ≤]u ≤ α+ 2)⇒

∧
i∈[1,β]

]u+i ≥ α+ 3

φ(C3)
def
= ∀ u (3 ≤]u ≤ α+ 2)⇒ ((¬]u+(β+1) ≥ 0) ∨ (3 ≤]u+(β+1) ≤ α+ 2))

We write dw(α, β) to denote the formula φfb ∧ φ(C1) ∧ φ(C2) ∧ φ(C3). It specifies the
shape of the encoding of data words in ([1, α]× Nβ)+ as stated below.

LEMMA 2.6. Let h be a heap. We have h |= dw(α, β) iff h is an (α, β)-fishbone.

Again, the proof is by an easy verification by using Lemma 2.5 and the correspon-
dence between condition (Ci) and the formula φ(Ci).

Given a data word dw = (a1, d1
1, . . . , d

1
β) · · · (aL, dL1 , . . . , dLβ), we can associate a (α, β)-

fishbone hdw with (1 + β)× L locations on the main path, say

l10 → l11 → · · · → l1β → · · · → lL0 → lL1 → · · · → lLβ

9

such that

— for every i ∈ [1, L],]̃li0 = ai + 2,
— for all i ∈ [1, L] and all j ∈ [1, β],]̃lij = dij + α+ 3.

The heap hdw is unique modulo isomorphism. This natural encoding generalizes the
encoding of finite words by heaps in [Brochenin et al. 2012, Section 3] (see also [Bansal
et al. 2009]) while providing a much more concise representation. Note also that the
encoding by itself is of no use since it is essential to be able to operate on it with the
logical language at hand.

Conversely, given a (α, β)-fishbone h with (1 +β)×L locations on the main path, say

l10 → l11 → · · · → l1β → · · · → lL0 → lL1 → · · · → lLβ

we associate a (unique) data word dwh = (a1, d1
1, . . . , d

1
β) · · · (aL, dL1 , . . . , dLβ) such that for

every i ∈ [1, L], ai def
=]̃li0 − 2 and for all i ∈ [1, L] and all j ∈ [1, β], dij

def
=]̃lij − α− 3.

LEMMA 2.7. There is a one-to-one map between data words in ([1, α] × Nβ)+ and
(α, β)-fishbone heaps (modulo isomorphism).

The proof is then by an easy verification.
So, we have seen that finite words can be encoded in 1SL2(∗), which allows us

to establish that 1SL2(∗) is NEXPTIME-hard since first-order logic restricted to two
quantified variables on finite words (written FO2α,0(<,+1,=) herein) is NEXPTIME-
complete [Etessami et al. 1997]. Indeed, consider a sentence φ in that fragment of
first-order logic. Let us define t(φ) such that φ is satisfiable iff dw(α, 0) ∧ t(φ) is satis-
fiable in 1SL2(∗).

We define the logarithmic-space translation t as follows (i, j ∈ {1, 2}).

— t is homomorphic for Boolean connectives,
— t(ui = uj)

def
= ui = uj ,

— t(a(ui))
def
= (]ui = a + 2),

— t(ui = 1 + (uj))
def
= uj ↪→ ui,

— t(ui < uj)
def
= ls(ui, uj) ∧ ui 6= uj ,

— t(∃ ui φ)
def
= ∃ ui (]ui ≥ 1) ∧ t(φ).

Note that FO2α,0(<,+1,=) and 1SL2(∗) share the same number of quantified variables
and ls(ui, uj) can be expressed in 1SL2(∗) (see Section 2.2). We do not provide the
correctness proof herein since we can do much better than NEXPTIME-hardness by
making a strong connection with Moszkowski’s Interval Temporal Logic ITL (with the
locality condition), see Section 3. However, we shall use a similar type of reduction in
Section 4.6 with β > 0.

2.4. A modal logic for heaps
Let us conclude this section about logics for heaps, by introducing a new modal
logic. We introduce a modal logic that is closely related to 1SL2. Modal Logic for
Heaps (MLH) is a multimodal logic in which models are exactly heap graphs and it
does not contain propositional variables (as 1SL does not contain unary predicate sym-
bols). In a sense, it is similar to Hennessy-Milner logic HML [Hennessy and Milner
1980] in which the only atomic formulae are truth constants. However, the language
contains modal operators and separating connectives, which is a feature shared with
the logics defined in [Courtault and Galmiche 2013]. We define below the formulae of

10

the modal logic MLH.

φ ::= ⊥ | ¬ φ | φ ∧ φ | 3 φ | 3−1 φ | 〈6=〉 φ | 〈?〉 φ | φ ∗ φ | φ −∗ φ
Note that there are no quantified variables involved in formulae, which is a feature
shared with most known propositional modal logics, see e.g. [Blackburn et al. 2001].
We write MLH(∗) to denote the fragment of MLH without the magic wand operator −∗.

A model for MLH M is a pair (N,R) such that R is a binary relation on N that is
finite and functional. Otherwise said, the models for MLH are heap graphs. Models for
MLH could be defined as heaps but we prefer to stick to the most usual presentation for
modal logics with frames. The satisfaction relation |= is defined below and it provides
a standard semantics for the modal operators and separating connectives (we omit the
clauses for Boolean connectives):

— never M, l |= ⊥,
— M, l |= 3φ

def⇔ there is l′ such that (l, l′) ∈ R and M, l′ |= φ,
— M, l |= 3−1φ

def⇔ there is l′ such that (l′, l) ∈ R and M, l′ |= φ,
— M, l |= 〈?〉φ def⇔ there is l′ such that (l, l′) ∈ R∗ and M, l′ |= φ where R∗ is the reflexive

and transitive closure of R,
— M, l |= 〈6=〉φ def⇔ there is l′ 6= l such that M, l′ |= φ,
— M, l |= φ1 ∗ φ2

def⇔ (N,R1), l |= φ1 and (N,R2), l |= φ2 for some partition {R1,R2} of R,
— M, l |= φ1−∗φ2

def⇔ for all models M′ = (N,R′) such that R ∩ R′ = ∅ and R ∪ R′ is
functional, M′, l |= φ1 implies (N,R ∪R′), l |= φ2.

We use the following standard abbreviations:

— 〈U〉φ def
= φ ∨ 〈6=〉 φ, [U]φ

def
= ¬〈U〉¬φ,

— [6=]φ
def
= ¬〈6=〉¬φ,

— 3−1
≥k>

def
= 3−1> ∗ · · · ∗3−1> (k ≥ 1 times), 3−1

≤k−1>
def
= ¬3−1

≥k>,
— 3−1

[k1,k2]>
def
= 3−1

≥k1> ∧3−1
≤k2>, 3−1

=k>
def
= 3−1

≥k> ∧3−1
≤k>.

A formula φ is satisfiable whenever there is a model M and a location l such that
M, l |= φ. The satisfiability problem for MLH is therefore defined as any such problem
for modal logics. Note that MLH has forward and backward modalities as in Prior’s
tense logic (see e.g. [Prior 1967]), the inequality modal operator (see e.g. [de Rijke
1992]) and the transitive closure operator as in PDL (see e.g. [Harel et al. 2000]).
The most non-standard feature of MLH is certainly the presence of the separating
connectives. It is possible to design a relational translation from MLH formulae into
1SL2 formulae by recycling variables (only u1 and u2 are used, so i ∈ {1, 2}):

— t is homomorphic for the connectives ¬, ∧, ∗ and −∗,
— t(⊥, ui)

def
= ⊥,

— t(3 φ, ui)
def
= ∃ u3−i (ui ↪→ u3−i) ∧ t(φ, u3−i),

— t(3−1 φ, ui)
def
= ∃ u3−i (u3−i ↪→ ui) ∧ t(φ, u3−i),

— t(〈6=〉 φ, ui)
def
= ∃ u3−i (ui 6= u3−i) ∧ t(φ, u3−i),

— t(〈?〉 φ, ui)
def
= ∃ u3−i ls(ui, u3−i) ∧ t(φ, u3−i).

PROPOSITION 2.8. A formula φ in MLH is satisfiable iff ∃ u1 t(φ, u1) is satisfiable
in 1SL2. Moreover, if φ is in MLH(∗), then ∃ u1 t(φ, u1) is in 1SL2(∗).

PROOF. (sketch) The proof is obtained as an obvious adaptation of the proof for the
relational translation from modal logic K into FO2, see e.g. [Morgan 1976; van Ben-

11

them 1976; Blackburn et al. 2001]. Indeed, the models (N,R) for MLH are heap graphs
and therefore formulae in 1SL2 can be equivalently interpreted on MLH models; for in-
stance, we get (N,R) |=f u1 ↪→ u2 iff (f(u1), f(u2)) ∈ R. Similarly, (N,R) |=f φ1−∗φ2 iff
for all MLH models (N,R′) such that (N,R∪R′) is an MLH model too and (N,R′) |=f φ1,
we have (N,R ∪R′) |=f φ2.

Note that uj is the only free variable in t(φ, uj). The standard translation t is seman-
tically faithful in the following sense: for all MLH models (N,R), l ∈ N and formulae φ
in MLH, we have (N,R), l |= φ iff (N,R) |=[u1 7→l] t(φ, u1). This is sufficient to establish
Proposition 2.8.

We show that for all i ∈ {1, 2}, for all formulae ψ in MLH, for all MLH models
M = (N,R) and for l ∈ N, we have M, l |= ψ iff M |=[ui 7→l] t(ψ, ui). The proof is by
structural induction. The base case for ⊥ and the cases in the induction step for the
Boolean connectives are straightforward. By way of example, let us provide the cases
in the induction step for ψ = 〈?〉 ψ′ and for ψ = ψ1 ∗ ψ2. The proof for the other cases is
similar and quite standard.
Case ψ = 〈?〉 ψ′. The following are equivalent:

— M, l |= ψ,
— M, l′ |= ψ′ for some l′ ∈ R∗(l) (by definition of |=),
— M |=[u3−i 7→l′] t(ψ

′, x3−i) for some l′ ∈ N such that l′ ∈ R∗(l) (by the induction hypothe-
sis),

— M |=[ui 7→l] ∃ u3−i ls(ui, u3−i) ∧ t(ψ′, x3−i) (by definition of |= in 1SL2 and by the fact
that ls is the reachability predicate),

— M |=[ui 7→l] t(ψ, ui) (by definition of t).

Case ψ = ψ1 ∗ ψ2. The following are equivalent:

— M, l |= ψ,
— (N,R1), l |= ψ1 and (N,R2), l |= ψ2 for some partition {R1,R2} of R, (by definition of
|= in MLH),

— (N,R1) |=[ui 7→l] t(ψ1, ui) and (N,R2) |=[ui 7→l] t(ψ2, ui) for some partition {R1,R2} of R,
(by the induction hypothesis),

— M |=[ui 7→l] t(ψ1, ui) ∗ t(ψ2, ui) (by definition of the satisfaction relation in 1SL2)
— M |=[ui 7→l] t(ψ, ui) (by definition of t).

Modal logic MLH can be viewed as a fragment of 1SL2. Any formula ψ1 ∗ ψ2 [resp.
ψ1−∗ψ2] in t(φ, u1) has at most one free variable. A similar restriction can be found in
monodic fragments for first-order temporal logics, see e.g. [Degtyarev et al. 2002].

Since MLH(∗) can be translated into 1SL2(∗) and 1SL(∗) is decidable [Brochenin
et al. 2012, Corollary 3.3], we get decidability of MLH(∗) as a corollary.

COROLLARY 2.9. The satisfiability problem for MLH(∗) is decidable.

Note that to be more uniform, we could have added to the modal language the con-
verse operators 〈6=〉−1 and 〈?〉−1. However, since the inequality relation is symmet-
ric, 〈6=〉−1φ is logically equivalent to 〈6=〉φ. The above translation can be obviously ex-
tended with the modal operator 〈?〉−1 and therefore decidability holds also for this
extension. However, we have introduced MLH mainly to establish non-elementarity of
MLH(∗) (shown below), refining the result for 1SL2(∗). We did not include 〈?〉−1 be-
cause the proof of non-elementarity result does not require it. By contrast, we do not
know whether the satisfiability problem for MLH is decidable. As far as we know, the
characterization of the computational complexity of MLH without separating connec-

12

tives is open too. This corresponds to a fragment of deterministic PDL with (restricted)
graded modalities and inequality modality.

3. WHEN INTERVAL TEMPORAL LOGIC MEETS SEPARATION LOGIC
Interval-based temporal logics admit time intervals as first-class objects (instead of
time points), and an early and classical study for reasoning about intervals can be
found in [Allen 1983]. One of the most prominent interval-based logics is Propositional
Interval Temporal Logic (PITL), introduced by Ben Moszkowski in [Moszkowski 1983]
for the verification of hardware components. It contains the so-called ‘chop’ operation
that consists of chopping an interval into two subintervals. This is of course reminis-
cent of separating conjunction in separation logic, and in this section we make a formal
statement about this correspondence, in addition to deriving new complexity results.
Before doing so, it is worth noting that even though most standard point-based tempo-
ral logics used in computer science are decidable (CTL, CTL?, ECTL?, etc.), undecid-
ability is much more common in the realm of interval-based temporal logics. Below, we
consider PITL in which propositional variables are interpreted under the locality con-
dition and for which decidability is guaranteed but computational complexity is very
high. This will allow us to derive similar bounds for 1SL2(∗).

Below, we recall the main definitions about PITL under the locality condition and we
explain why formulae from PITL can be faithfully translated into formulae in 1SL2(∗),
leading to insights about both formalisms and new complexity results. A similar anal-
ysis is presented for MLH(∗) making new bridges between modal logic, interval-based
temporal logics and separation logic.

3.1. Logic PITL
Given α ≥ 1, we consider the finite alphabet Σ = [1, α] and we write PITLΣ to denote
propositional interval temporal logic in which the models are non-empty finite words
in Σ+. We write PITL instead of PITLΣ when the finite alphabet Σ is clear from the
context. Formulae for PITLΣ are defined according to the following abstract grammar:

φ ::= a | pt | ¬φ | φ ∧ φ | φC φ

with a ∈ Σ. Even though elements of Σ are natural numbers (for the sake of technical
convenience), we write a to denote such an arbitrary element to emphasize that a is a
letter from a finite alphabet. Roughly speaking, a holds true at word w when a is the
first letter of w. Similarly, the atomic formula pt holds true at a word w when the word
w is only a single letter. The connective C is the chop operator, which chops a word.

Formally, we have a nonempty word w ∈ Σ+, its length |w|, extractions of the ith
letter wi where 1 ≤ i ≤ |w|, and extractions of nonempty subwords wi..j = wiwi+1..wj ,
where 1 ≤ i ≤ j ≤ |w|. We define a ternary relation chops on words:

chops
def
= {(w1,w2,w3) | ∃ a,w′,w′′ such that w1 = w′aw′′,w2 = w′a,w3 = aw′′}

Observe that when a word w1 is chopped into two subwords w2 and w3, there is
an overlap between the last letter of w2 and the first letter of w3. For instance,
(abb, ab, bb) ∈ chops but (ab, a, b) 6∈ chops.

Let us define the satisfaction relation |= for PITLΣ between a word w ∈ Σ+ and a
formula φ:

— w |= a
def⇔ w1 = a (here, w1 denotes the first letter of w).

— w |= pt
def⇔ |w| = 1.

— w |= ¬φ def⇔ w 6|= φ.
— w |= φ ∧ ψ def⇔ w |= φ and w |= ψ.

13

— w |= φ C ψ
def⇔ there exist words w1,w2 such that chops (w,w1,w2), w1 |= φ and

w2 |= ψ.

The satisfiability problem for PITLΣ consists in checking whether a PITLΣ formula
admits a model satisfying it. Note that the models are nonempty, finite words and the
satisfaction of a letter on a word depends only on its first letter (the locality condition).

Two examples. Consider the alphabet Σ with two distinct letters a and b and the
PITLΣ formula below:

(b C a) C ¬pt
This formula is satisfiable; many words satisfy this formula, for example the word
“bab”—the top-level chop is satisfied since ba |= b C a and ab |= ¬pt. This gives in-
sight on how to specify a lower-bound on word length, by applying sufficiently many
chops and ¬pt to force a particular (minimum) length. Of course, b C a also enforces a
minimum word length (of 2), but constrains also the word content.

Consider another example:

pt ∧ (a C b)

For this formula to be satisfiable, there must exist a word w for which both w |= pt and
w |= aC b. This is impossible, as the first implies |w| = 1, and there is no way to chop a
single-letter word into subwords that satisfy both a and b; the formula is unsatisfiable.

THEOREM 3.1. (see e.g. [Moszkowski 1983; 2004]) Given α ≥ 1 and Σ = [1, α], the
satisfiability problem for PITLΣ is decidable, but with α ≥ 2 is not elementary recursive.

3.2. Correspondence between words and heaps
From now on, we use the data word representation of Section 2.3. From Lemma 2.7, we
know there is a fishbone heap hw corresponding to each nonempty word w ∈ Σ+. Let
us define a relation ∼ that establishes this correspondence between words and their
fishbone representations, adding also a correspondence between the empty word and
the empty heap:

∼ def
=
{

(w, hw) |w ∈ Σ+
}
∪ {(ε, ∅)}

Here, observe that:

(1) ∼ is a bijection between the set of finite words in Σ∗ and the set of (equivalence
classes of isomorphic) (α, 0)-fishbone heaps augmented with the empty heap;

(2) so, every word w is in dom(∼);
(3) so, every (α, 0)-fishbone heap is in ran(∼);
(4) so, if w ∼ h, h is either empty or an (α, 0)-fishbone heap; and
(5) if w ∼ h, then w is empty iff dom(h) is empty.

In this section, we will only employ (α, 0)-fishbone heaps, with α = card(Σ).
The correspondence between finite words in Σ+ and (α, 0)-fishbone heaps satisfies a

nice property as far as splitting a word into two disjoint subwords is concerned (which
is a slight variant of chopping). Before making a formal statement, let us introduce the
following notion.

A clean cut of a (α, 0)-fishbone heap h is a pair of (α, 0)-fishbone heaps (h1, h2) such
that h = h1]h2, and for some words w1 ∼ h1 and w2 ∼ h2, we have w1w2 ∼ h. That is, a
clean cut is one that neatly cleaves a heap representation of a word into two subheaps
in correspondence with two subwords. Figure 4 illustrates examples of a clean cut and
a non-clean cut on a fishbone heap. Informally, a non-clean cut is one that either results
in one subheap (or both) no longer satisfying the (α, 0)-fishbone conditions, or that

14

results in subheaps that don’t preserve predecessor counts and thus don’t represent
subwords of the original.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

q
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

q
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Fig. 4. A visual depiction of clean and non-clean cuts. Clockwise from left: the original (α, 0)-fishbone heap;
a clean cut of the original heap; a non-clean cut of the original heap. Note that clean cuts must result in
two (α, 0)-fishbone heaps. A non-clean cut may or may not do so; the figure depicts a non-clean cut that does
result in two (α, 0)-fishbone heaps.

LEMMA 3.2. Let w ∼ h with w = w1w2 ∈ Σ∗. There exist heaps h1 and h2 such that
h = h1] h2, w1 ∼ h1, and w2 ∼ h2.

PROOF. Suppose that w ∼ h and w = w1w2 ∈ Σ∗. If w1 = ε or w2 = ε, then the proof
is by an easy verification with h equal to h1 or h2 respectively. In particular, if w = ε,
then h is the empty heap and therefore w1 = w2 = ε and h1 = h2 = ∅, which satisfies
the statement.

Otherwise suppose that w = a1 · · · aK ∈ Σ+, w1 = a1 · · · aK′ ∈ Σ+, w2 = aK′+1 · · · aK ∈
Σ+ (K > K ′). Since w is nonempty and w ∼ h, h is a fishbone heap and the main path
of h is of the form l1 −→ l2 −→ · · · −→ lK and for every i ∈ [1,K],]̃li = ai + 2. Let h1 be
the subheap of h whose domain is {l′ ∈ N : l′ is an ancestor of lK′ in h}, and let h2 be
the unique heap such that h = h1] h2. It is easy to show that w1 ∼ h1 and w2 ∼ h2.
Moreover, it is not difficult to see that (h1, h2) is a clean cut of h.

Lemma 3.2 entails the following lemma, that will be useful to show the correctness
of our reduction from PITLΣ into 1SL2(∗). It is tailored to the semantics of the chop
operator in PITLΣ.

LEMMA 3.3. For all letters a, b ∈ Σ, words w ∈ Σ+ and w′,w′′ ∈ Σ∗, and heaps h
such that w ∼ h and chops (aw, aw′b, bw′′), there exist heaps h1, h2 such that w′b ∼ h1,
w′′ ∼ h2, and h = h1] h2.

15

3.3. A reduction and its three ways to chop
In this section, we present a satisfiability-preserving translation of PITLΣ into
1SL2(∗). This translation hinges on the insight that the chop operation is very sim-
ilar to the separating conjunction in separation logic. However, the correspondence is
not an exact one: the connective C of PITLΣ does not cut into disjoint pieces, but rather
preserves one letter on both sides, in a sense “duplicating” the letter upon which the
chop operates.

Fig. 5. The correspondence between PITL’s chop ‘C’ and separation logic’s separating conjunction ‘∗’ (before
and after).

To handle this discrepancy, our translation uses the standard separating conjunction
on heaps, but internally carries a “ghost letter” (a parameter to the translation) on
one side to represent this “lost” letter. In the translation, we denote this ghost letter
parameter a ∈ Σ. Figure 5 illustrates how a chop operation on words is translated into
a separation on heaps. It is worth noting that we must always obtain a clean cut from
the original heap.

Before presenting the formal definition of the translation, let us present a formula
that allows us to perform a clean cut for which one of the subheaps contains all the
ancestors of f(u). Such a formula will be used in the translation and this is the purpose
of Lemma 3.4.

LEMMA 3.4. Given a fishbone heap h and a word w such that w ∼ h, and an as-
signment f such that f(u) is a location on the main path of h with h |=f alloc(u),
any pair of heaps (h1, h2) such that h = h1] h2, h1 |=f dw(α, 0) ∧ ¬alloc(u), and
h2 |=f dw(α, 0) ∧]u = 0, is a clean cut of h.

PROOF. Since h1 |=f dw(α, 0) and h2 |=f dw(α, 0), we know the heaps h1 and h2

are (α, 0)-fishbones. Fishbones are single components, so we know that h must be sep-
arated into exactly two connected components. It remains to analyze precisely how h
can be separated into two fishbones, and to show that it must be a clean cut.

16

We know l = f(u) is on the main path of h, so that means h |=f]u > 0. Since
h2 |=f]u = 0, that means l must have the same number of predecessors in h as it
does in h1. We know h1 |=f ¬alloc(u), and we know l has at least one predecessor in
h1. Therefore, l is on the main path of h1. We know h2 |=f]u = 0, so l is not on the
main path of h2. However, it is allocated (since h |=f alloc(u) and h1 |=f ¬alloc(u)),
so its successor (call the location l′) is on the main path of h2. Let f ′ = f [u 7→ l′]. Now,
note that h |=f ′ u ↪→ u and h1 6|=f ′ u ↪→ u, and recall that that on a fishbone, no two
predecessors of an element can both have predecessors (fb3). Therefore, l′ must have
the same number of predecessors in h2 as it did in h, and none of these predecessors
can be on the main path.

Thus l is the final location on the main path of h1, and l′ is the first location on the
main path of h2. Further, l has 0 predecessors in h2 and the same number of predeces-
sors in h and h1. l′ has 0 predecessors in h1 and the same number of predecessors in h
and h2.

Putting the above together, since l and l′ are positions on the main path of h such
that h(l) = l′, and since l 6∈ dom(h1), l ∈ dom(h2), l ∈ ran(h1), l 6∈ ran(h2), we must have
a clean cut.

We reduce a PITLΣ formula φ to a 1SL2(∗) formula t(φ) with the help of the main
translation t(·). We use the auxiliary translation map ta(·) parameterized by a ghost
letter a. The three disjuncts in the translation of φ C ψ correspond to three types of
chopping of w that leads to three ways of separating the heap h (assuming that w ∼ h):

(1) When (w, aw1b, bw2) ∈ chops and the ghost letter is a, the heap h is separated into
the heap h1 with w1b ∼ h1 (with ghost letter a) and into the heap h2 with w2 ∼ h2

(with ghost letter b).
(2) When (w,w, b) ∈ chops and the ghost letter is a, the heap h is separated into itself

(again with ghost letter a) and into the empty heap (with ghost letter b).
(3) When (w, a,w) ∈ chops and the ghost letter is a, the heap h is separated into the

empty heap (with ghost letter a) and into itself (again with ghost letter a).

These are the three possible cases and the rest of the translation is quite straightfor-
ward.

17

t(φ)
def
=
(
dw(α, 0) ∨ emp

)
∧
∨
a∈Σ

ta(φ)

ta(b)
def
=

{
> if b = a

⊥ if b 6= a

ta(pt)
def
= emp

ta(¬φ)
def
= ¬ta(φ)

ta(φ ∧ ψ)
def
= ta(φ) ∧ ta(ψ)

ta(φC ψ)
def
= chop1a ∨ chop2a ∨ chop3a (with the three formulae as defined below)

chop1a

def
=
∨
b∈Σ

∃ u
(
]u = b + 2 ∧[

dw(α, 0) ∧ ¬alloc(u) ∧ ta(φ) ∗ dw(α, 0) ∧]u = 0 ∧ tb(ψ)
])

chop2a

def
=
∨
b∈Σ

(∃ u last(u) ∧]u = b + 2) ∧
[
ta(φ) ∗ emp ∧ tb(ψ)

]
chop3a

def
= emp ∧ ta(φ) ∗ ta(ψ)

In full generality, ta(·) is also parameterized by the alphabet Σ (see the clause for for-
mulae with outermost chop operator C) and the formulae chop1a, chop2a, and chop3a

are parameterized by φ C ψ. Clearly the translation t(·) can only produce 1SL2(∗) for-
mulae, as the right-hand side of each translation step above is in 1SL2(∗). Note also
that ta(φ) always produces a closed formula (i.e., without free occurrences of individual
variables).

The correctness of the translation is stated below, making completely explicit the
role of the ghost letter in the translation process.

LEMMA 3.5. Let a ∈ Σ, w ∈ Σ∗, and h be a heap such that w ∼ h. For every PITLΣ

formula φ, we have aw |= φ iff h |= ta(φ).

Remark 3.6. Note that since ta(φ) has no free occurrences of individual variables,
in Lemma 3.5, there is no need to specify what the assignments are.

PROOF. The proof is by structural induction.
The base cases are:

— ta(b). (⇒) If aw |= b, then a = b. Clearly h |= >, so h |= ta(b).
(⇐) h |= ta(b), so it must be that a = b (since h 6|= ⊥). Thus aw |= b.

— ta(pt). (⇒) If aw |= pt, then w = ε. Thus h = ∅. Since ta(pt) = emp, we have h |= ta(pt).
(⇐) h |= ta(pt), and since ta(pt) = emp, we know h = ∅. Thus w = ε, so clearly aw |= pt.

The inductive cases are:

— ta(¬φ). (⇒) aw |= ¬φ, so aw 6|= φ. By IH, h 6|= ta(φ), so h |= ¬ta(φ) and precisely
¬ta(φ) = ta(¬φ).
(⇐) h |= ¬ta(φ), so h 6|= ta(φ). By IH, aw 6|= φ, so aw |= ¬φ.

18

— ta(φ ∧ ψ). (⇒) aw |= φ ∧ ψ, so aw |= φ and aw |= ψ. By IH, h |= ta(φ) and h |= ta(ψ), so
then h |= ta(φ) ∧ ta(ψ). We have h |= ta(φ ∧ ψ).
(⇐) h |= ta(φ ∧ ψ), so h |= ta(φ) ∧ ta(ψ). Then h |= ta(φ) and h |= ta(ψ). By IH, aw |= φ
and aw |= ψ, so aw |= φ ∧ ψ.

— ta(φC ψ). (⇒) If aw |= φ C ψ, then there are w1,w2 such that chops (aw,w1,w2),
w1 |= φ, and w2 |= ψ. From the definition of chops, we have, further, that there are
b,w′,w′′ such that aw = w′bw′′, w1 = w′b, and w2 = bw′′.

Case 1. w′ = ε (the chop occurs at the first position). Then aw = bw′′ and w1 = b = a,
so w = w′′. Since a |= φ and aw |= ψ, we have by IH that ∅ |= ta(φ) and h |= ta(ψ).
Then h |= emp ∧ ta(φ) ∗ ta(ψ), so h |= chop3a, and h |= ta(φC ψ).

Case 2. w′ 6= ε, w′′ = ε (the chop occurs at the last position). aw = w1, so
aw |= φ. w2 = b, so b |= ψ. By IH, we then have h |= ta(φ) and ∅ |= tb(ψ). Thus
h |= ta(φ) ∗ emp ∧ tb(ψ). Further, since the last letter of w is b and w ∼ h, the
last location on the main path of h must have b + 2 predecessors. Therefore,
h |= ∃ u last(u) ∧]u = b + 2. So h |= chop2a, and thus we have h |= ta(φC ψ).

Case 3. w′ 6= ε, w′′ 6= ε (the chop occurs in the middle of the word). We know w1

is nonempty and starts with a, so let w′1 be a word such that w1 = aw′1. From
Lemma 3.3, we have heaps h1, h2 such that h = h1 ∗ h2, w′1 ∼ h1, and w′′ ∼ h2.
Observe that, since they are in ran(∼), h1 and h2 are (α, 0)-fishbones. Since aw′1 |= φ
and bw′′ |= ψ, then by IH, we have h1 |= ta(φ) and h2 |= tb(ψ). Now, let l be the location
of the chop, so that l is the last position on the main path of h1 and a predecessor of
the first position on the main path of h2. Let f be an assignment such that f(u) = l.
Since h1 |=f dw(α, 0)∧¬alloc(u)∧ ta(φ) and h2 |=f dw(α, 0)∧]u = 0∧ tb(ψ), we have
h |=f

[
dw(α, 0) ∧ ¬alloc(u) ∧ ta(φ) ∗ dw(α, 0) ∧]u = 0 ∧ tb(ψ)

]
. Further, since in h,

location l encodes the letter b, it has b + 2 predecessors, so we have h |=f]u = b + 2,
so h |= chop1a. Then h |= ta(φC ψ).

(⇐) If we have that h |= ta(φC ψ), then one of the disjuncts in the translation holds,
depending on where the separation applies in the heap and the content at that
position. We consider three cases based on which of the constraints (chop1a, chop2a,
or chop3a) applies.

Case 1. The chop1a constraint applies (neither subheap is empty). We know it holds
for some b ∈ Σ, and that the existentially quantified formulae holds for some location;
w.l.o.g., assume that the case b ∈ Σ holds, with location l. Let f be an assignment
such that f(u) = l. We know that h |=f]u = b + 2, and that h can be separated
into two disjoint subheaps h1, h2 such that h1 |=f dw(α, 0) ∧ ¬alloc(u) ∧ ta(φ) and
h2 |=f dw(α, 0) ∧]u = 0 ∧ tb(ψ). This cut must be a clean cut by Lemma 3.4. By IH,
then, we have words w1,w2 such that w1 ∼ h1, w2 ∼ h2, aw1 |= φ, and bw2 |= ψ. We
know w1 ends with a letter b, since u is the last position on the main path of h1 and
has b + 2 predecessors. So then chops (aw1w2, aw1, bw2) holds. Thus aw1w2 |= φC ψ.

Case 2. The chop2a constraint applies (the right subheap is empty). We know it
holds for some b ∈ Σ, and that the existentially quantified formula holds for some
location; w.l.o.g., then, assume that the case b ∈ Σ holds, at some location l. We know
that heap h can be separated into two disjoint subheaps h1, h2 such that h1 |= ta(φ),
h2 = ∅, and h2 |= tb(ψ). Thus h = h1, and by IH we have aw |= φ and b |= ψ. Next, let f
be an assignment such that f(u) = l. We know h |=f last(u) and that h |=f]u = b+ 2.

19

Since w ∼ h, the last letter of w is b. So chops (aw, aw, b), and therefore aw |= φC ψ.

Case 3. The chop3a constraint applies (the left subheap is empty). We then have
h1 = ∅, ∅ |= ta(φ), and h2 |= ta(ψ). Since h = h2, by IH we have a |= φ and aw |= ψ.
Then chops (aw, a, aw); thus aw |= φC ψ.

Therefore, aw |= φ iff h |= ta(φ)

As a result, we obtain a reduction between the satisfiability problems, as stated
below.

LEMMA 3.7. Given α ≥ 1 and Σ = [1, α], a PITLΣ formula φ is satisfiable if and
only if the 1SL2(∗) formula t(φ) is satisfiable.

PROOF. (⇒) Suppose that φ is satisfiable. This means that there exists a nonempty
word w such that w |= φ. The word w can be written in the form w = aw′ for some letter
a. If w′ = ε, we have w′ ∼ ∅ and by Lemma 3.5, we have ∅ |= emp ∧ ta(φ). So ∅ |= t(φ)
and therefore t(φ) is satisfiable. If w′ 6= ε, then there is a (α, 0)-fishbone heap h′ such
that w′ ∼ h′. By Lemma 3.5, we have h′ |= dw(α, 0) ∧ ta(φ). So h′ |= t(φ) and therefore
t(φ) is satisfiable.

(⇐) If t(φ) is satisfiable, then there exists a heap h such that h |= (dw(α, 0) ∨ emp) ∧∨
a∈Σ ta(φ). If h |= emp ∧ ta(φ) for some letter a, then by Lemma 3.5, we have a |= φ.

Otherwise, if h |= dw(α, 0) ∧ ta(φ), then h is an (α, 0)-fishbone heap by Lemma 2.6 and
then there is a word w such that w ∼ h such that by Lemma 3.5, we have aw |= φ. In
both cases, φ is a satisfiable formula in PITLΣ.

THEOREM 3.8. The satisfiability problem for 1SL2(∗) is decidable but not elemen-
tary recursive.

PROOF. Satisfiability for PITLΣ is known to be decidable with non-elementary com-
plexity when Σ has at least two elements, see e.g. [Moszkowski 1983; 2004], and 1SL(∗)
is decidable [Brochenin et al. 2012]. From the correctness of our translation t(·) of
PITLΣ to 1SL2(∗) (Lemma 3.7), we then conclude that 1SL2(∗) is decidable but not
elementary recursive. Note that the map t(·) may require exponential time and space
in the size of the input formula in the worst-case but this is still fine to establish that
1SL2(∗) is not elementary recursive, since this adds only a single exponential.

As mentioned earlier, Theorem 3.8 refines the non-elementarity result for 1SL(∗)
established in [Brochenin et al. 2012].

Remark 3.9. The reduction from PITL to 1SL2(∗) provided in this section allows us
to underline the common features of both formalisms. However, non-elementarity of
1SL2(∗) can be established in a slightly different way as explained below. First, non-
elementarity of PITL is due to Dexter Kozen (see e.g. [Moszkowski 2004, Appendix
A.3])2, and the proof is by reduction from the nonemptiness problem of regular expres-
sions built over a binary alphabet with union, concatenation and complement [Stock-
meyer 1974]. Nonelementarity of 1SL2(∗) can be obtained by defining a similar re-
duction, but this is of course less insightful to understand the relationships between
interval temporal logic and separation logic. Alternatively, it is also possible to con-
sider the variant of PITL in which the chop operator does not share a letter, since this
variant is of identical expressive power and complexity. In that way, we may avoid the
introduction of the ghost letter but at the cost of introducing empty models (which may
occur when chopping has no sharing) and of using a less standard interval temporal

2We thank Ben Moszkowski for pointing us to this fact.

20

logic. So, the current reduction from PITL is quite an attractive option to relate the log-
ics. Finally, as noted in [Moszkowski 2004, Appendix A], complexity results about PITL
presented in [Moszkowski 1983] were obtained in collaboration with Joseph Halpern.

In Section 3.4 below, we establish an even stronger result (see Theorem 3.12). The
proof uses the same principles as for the proof of Theorem 3.8 and we only need to
express the properties in modal lingua.

3.4. A refinement with the modal fragment of 1SL2(∗)
In this section, we show that the satisfiability problem for MLH(∗) is decidable but it is
not elementary recursive. Decidability is due to the fact that the standard translation
leads to formulae in 1SL2(∗), see Section 2.4. In order to establish the lower bound, we
express in MLH(∗) all the properties that were useful to translate PITLΣ formulae into
1SL2(∗). For instance, note that the empty heap is the only heap validating the formula
([U]¬3>). Similarly, a location with at least one predecessor and with no successor
(for instance, last location on the main path in a fishbone heap) satisfies the formula
(3−1> ∧ ¬3>).

More interestingly, the formula in 1SL2(∗) characterizing the (α, β)-fishbone heaps
has a modal counterpart. Let us consider the following formulae.

— The formula φ2fb defined below is designed exactly as the formula φfb (see Section 2.3).

(〈U〉3>)∧

〈U〉((3−1> ∧ ¬3>) ∧ [6=]¬(3−1> ∧ ¬3>)) ∧ [U](3> ⇒ 〈?〉(3−1> ∧ ¬3>))∧

(¬〈U〉(3−13−1> ∗3−13−1>))

This is a faithful translation except that we use the specification language MLH(∗).
— The formula φ2(C1) defined below is also designed exactly as the formula φ(C1) (see

Section 2.3).

〈U〉((3−1>) ∧ (¬3−13−1>) ∧3−1
[3,α+3]>)

— The formula φ2(C2) is equal to [U](3−1
[3,α+3]> ⇒

∧
i∈[1,β]

i times︷ ︸︸ ︷
3 · · ·33−1

≥α+3>)

— The formula φ2(C3) is defined below:

[U](3−1
[3,α+3]> ⇒ (¬

β+1 times︷ ︸︸ ︷
3 · · ·3 >) ∨

β+1 times︷ ︸︸ ︷
3 · · ·3 (3−1

[3,α+3]>))

We write dw2(α, β) to denote the formula φ2fb ∧ φ2(C1) ∧ φ
2
(C2) ∧ φ

2
(C3). It specifies the

shape of the encoding of data words in ([1, α] × Nβ)+ as stated below. Note that since
dw2(α, β) is a Boolean combination of formulae whose outermost connectives are [U] or
〈U〉, then dw2(α, β) holds true at some location iff dw2(α, β) holds true at any location.

LEMMA 3.10. Let M = (N,R) be a model for MLH. M, l |= dw2(α, β) for some loca-
tion l iff M is the graph of an (α, β)-fishbone heap.

Again, the proof is by an easy verification by using Lemma 2.5 and the correspon-
dence between condition (Ci) and the formula φ2(Ci). In the rest of this section we are
back to the case β = 0.

Given a formula φ in PITLΣ with Σ = [1, α], we define a modal formula t2(φ) such
that φ is satisfiable iff t2(φ) is satisfiable. Actually, the modal formula t2(φ) will ex-
press exactly the same properties as in the translation into 1SL2(∗). For instance, t2(φ)

21

is precisely the formula below:

(dw2(α, 0) ∨ ([U]¬3>)) ∧ (
∨
a∈Σ

t2a (φ))

The formula t2a (φ) is defined inductively as follows.

— t2a (a)
def
= > and t2a (b)

def
=⊥ for every letter b ∈ Σ \ {a}.

— t2a (·) is homomorphic for Boolean connectives.

— t2a (pt)
def
= ([U]¬3>).

— The formula t2a (φC ψ) is defined as chop12
a ∨ chop22

a ∨ chop32
a where:

— chop12
a

def
=
∨

b∈Σ〈U〉((3
−1
=b+2> ∧ dw2(α, 0) ∧ ¬3> ∧ t2a (φ)) ∗ (dw2(α, 0) ∧ ¬3−1> ∧

t2b (ψ))),

— chop22
a

def
= (
∨

b∈Σ〈U〉 ((3−1> ∧ ¬3>) ∧3−1
=b+2>) ∧ (t2a (φ) ∗ (t2b (ψ) ∧ ([U]¬3>)))),

— chop32
a

def
= ((t2a (φ) ∧ ([U]¬3>)) ∗ t2a (ψ)).

LEMMA 3.11. Let α ≥ 1, Σ = [1, α], φ be a PITLΣ formula and t2(φ) be its translation
in MLH. We have φ is satisfiable iff t2(φ) is satisfiable.

The proof goes as in the case for the direct translation into 1SL2(∗) since the modal
subformulae express exactly the same properties. Therefore, we can refine Theorem 3.8
as follows.

THEOREM 3.12. The satisfiability problem for MLH(∗) is decidable but not elemen-
tary recursive.

Interestingly, we do not know the decidability status for full MLH (i.e., with the
magic wand operator).

4. HOW TWO VARIABLES WITH THE MAGIC WAND ENCODE RUNS
In this section, we consider the logic 1SL2 (i.e., equipped with both the separating
conjunction and the separating implication), and we prove its undecidability. In order
to show that the 1SL2 satisfiability problem is undecidable, we reduce the halting
problem for Minsky machines [Minsky 1967].

4.1. Minsky machines in a nutshell
Let M be a Minsky machine with α ≥ 1 instructions, where 1 is the initial instruc-
tion and α is the halting instruction. Machine M has two counters C1 and C2 and the
instructions are of the following types:

(a) I: Cj := Cj + 1; goto J .
(b) I: if Cj = 0 then goto J1 else (Cj := Cj − 1; goto J2).
(c) α: halt.

(j ∈ [1, 2], I ∈ [1, α− 1], J, J1, J2 ∈ [1, α])
Machine M halts if there is a run of the form

(I0, c
1
0, c

2
0), (I1, c

1
1, c

2
1), . . . , (IL, c

1
L, c

2
L)

such that (Ii, c
1
i , c

2
i) ∈ [1, α]×N2 (i ∈ [1, L]), the succession of configurations respects the

instructions (in the obvious way), I0 = 1, IL = α, and c10 = c20 = 0. The halting problem
consists in checking whether a machine halts and it is known to be undecidable, see

22

e.g. [Minsky 1967]. Clearly, a halting run is a data word dw of dimension 2 such that
the first letter is 1 and the last letter is α.

When a Minsky machine M has α ≥ 1 instructions, any run starting from the initial
instruction 1 and ending by the halting instruction α (there is a single such run since
M is deterministic) is a data word of dimension two over the finite alphabet [1, α].
The main and obvious idea to get undecidability is to show how 1SL2 can characterize
heaps encoding data words of dimension two corresponding to halting runs of M .

4.2. Roadmap
Let us start by explaining how the rest of the section is structured. The next paragraph
describes how initial and final conditions on the run are encoded in 1SL2; typically the
run starts by instruction 1 and possibly ends by the halting instruction α. Then, the
next two paragraphs deal with the description of two problems that we need to tackle.
(Section 4.3 and Section 4.4 contain the technical developments.) In a nutshell, the first
problem consists of being able to compare the numbers of predecessors of two locations
(which corresponds to comparison of two counter values in Minsky machines), whereas
the second problem is related to the fact that these two locations may be separated by
distance three along the main path. Both issues stem from the fact that we have only
two individual variables at hand. (It is already known how to solve these problems
with an unbounded number of variables [Brochenin et al. 2012].) Section 4.5 provides
the final definition of the reduction from the halting problem for Minsky machines
to the satisfiability problem for 1SL2 whereas Section 4.6 presents the idea of an al-
ternative undecidability proof by reduction from a first-order logic on data words (see
Section 2.3). These proofs share essential building blocks, for instance the construc-
tions allowing to compare numbers of predecessors. However, this provides different
points of view as well.

Limit conditions. We have seen that (α, 2)-fishbone heaps can be characterized
thanks to the formula dw(α, 2). Obviously, more constraints need to be expressed, typ-
ically those related to the first instruction and those related to the halting instruction.
Let us start by specifying the limit conditions thanks to the formulae φfirst and φlast

below.

— The first three locations on the main path have 3, α + 3, and α + 3 predecessors
respectively:

φfirst
def
= ∃ u first(u) ∧ (]u = 3) ∧ (]u+1 = α+ 3) ∧ (]u+2 = α+ 3)

— The main path encoding the run ends by a configuration with the halting instruction:

φlast
def
= ∃ u ((]u = α+ 2) ∧ (]u+2 ≥ 0) ∧ ¬(]u+3 ≥ 0))

Let us call φ? the conjunction of dw(α, 2) ∧ φfirst ∧ φlast. It specifies the shape of the
encoding of the run without taking care of the constraints about counter values and
instruction counter.

LEMMA 4.1. Let h be a heap. h |= φ? iff h encodes a data word

dw = (a1, d1
1, d

1
2) · · · (aL, dL1 , dL2)

such that a1 = 1, aL = α, and d1
1 = d1

2 = 0.

We have provided formulae for basic properties about the encoding of the runs, but
this is insufficient. Indeed, three consecutive locations on the main path encode a con-
figuration of the Minsky machine M . In order to check that two consecutive config-
urations correspond to a step that is valid for M , we need to compare numbers of

23

predecessors for locations on the main path at distance three from each other. For in-
stance, considering locations l and l′ on the main path such that l′ = h3(l), we plan to
build formulae to express constraints between]̃l and]̃l′. There are two problems there.

Distance three. Firstly, with two variables, one can explore the heap but is obliged to
“forget” previously visited locations (in fact, it is possible to store only a finite amount
of information). Since [Gabbay 1981], it is known how to visit a graph with only two
quantified variables. In the current encoding of runs, we will need to compare the num-
bers of predecessors of locations at distance three on the main path. Let us consider
the formula below:

∃ u [∀ u (u ↪→ u)⇒ (]u = 3 ∨]u = 7)] ∧ [∃ u (u ↪→ u) ∧ ∃ u ((u ↪→ u) ∧]u = 11)]

This formula states that there are two locations in the model for which there is a path
of length 2 between them, the second location has exactly 11 predecessors and for the
first one, every predecessor has either 3 or 7 predecessors.

In MLH (without the use of ∗ or −∗), this property can be written as follows:
〈U〉(2−1(3−1

=3> ∨3−1
=7>) ∧333−1

=11>)

So, it is possible to state properties between locations that are not direct successors,
but note that we can only enforce properties while we are visiting the nodes: once we
move forward or backward we have no more access to previously visited locations. This
becomes a problem when we need to compare number of predecessors for locations at
distance three. Observe that if we had proposed another encoding of the runs, at some
stage we would have to deal with locations that are not direct successors and for which
we need to compare some potentially unbounded amount of information (since we need
anyhow to encode counter values that are potentially unbounded). Section 4.4 provides
a solution to this problem by presenting a selective chopping of the heap that preserves
the numbers of predecessors we wish to compare while being able to access easily those
locations for which the number of predecessors are compared.

It is worth observing that for locations on the main path related to counter instruc-
tions, we are not in big trouble because it is possible with two quantified variables to
visit two successive locations related to counter instructions and to check that they
respect the instructions of the Minsky machine (because only a finite amount of infor-
mation needs to be encoded). While moving along the model, we may “forget” where we
start, but this is fine since we can remember the value of the counter instruction in the
formula. By contrast, when comparing two locations corresponding to two successive
values of the same counter, this does not work anymore.

Arithmetical constraints. Secondly, we have also to be able to compare numbers of
predecessors between locations. For instance, given two locations l and l′, we wish to
be able to check whether]̃l =]̃l′ or]̃l =]̃l′ + 1. Such a need should not come as a
surprise, since in our encoding of data words, data values are represented by numbers
of predecessors. Such arithmetical constraints can be expressed in 1SL (i.e. without
limiting the number of quantified variables), and this has been a key step to establish
1SL’s equivalence to weak second-order logic on heaps [Brochenin et al. 2012]. In Sec-
tion 4.3, we provide a fine-tuned adaptation with only two quantified variables (instead
of an unbounded number of variables) and with substantial simplifications. The devel-
opments in Section 4.3 are not consequences of developments from [Brochenin et al.
2012, Section 5.2] but rather refinements using similar principles. Actually, we can
take advantage of the fact that we do not work on an arbitrary heap but rather on an
(α, 2)-fishbone heap. Moreover, we do not seek expressive completeness but rather we
aim at expressing a sufficient set of arithmetical constraints to allow us to characterize
(α, 2)-fishbone heaps that encode halting runs of M .

24

4.3. Expressing arithmetical constraints
Below, we show how to express in 1SL2 the constraints]u =]u,]u =]u + 1 and
]u =]u + 1, which is not at all obvious. We explain why this can be done in 1SL2 by a
careful recycling of variables; along the way, we also take advantage of the properties
of heaps satisfying φ?.

We shall use the fact that N ≤ N ′ iff for every n ≥ 0, we have N ′ ≤ n implies
N ≤ n. Quantification over the set of natural numbers will be simulated by quantifi-
cation over disjoint heaps in which n is related to the cardinal of their domains. Such
quantification is performed thanks to the magic wand operator.

A fork in h is a sequence of distinct locations l, l0, l1, l2 such that h(l0) = l,]̃l0 = 2,
h(l1) = l0, h(l2) = l0 and]̃l1 =]̃l2 = 0. The endpoint of the fork is l. Similarly, a knife
in h is a sequence of distinct locations l, l0, l1 such that h(l0) = l,]̃l0 = 1, h(l1) = l0 and
]̃l1 = 0. The endpoint of the knife is l. By way of example, the heap of Figure 6 contains
three knives, two forks and four endpoints (identified by ‘?’).

? ? ?

? ••• •

•

•

•
•

•
•

•

•

•

•
•

•

•

Fig. 6. A heap with three knives, two forks and four endpoints.

LEMMA 4.2. Let h be a (α, β)-fishbone heap with α ≥ 1 and β ≥ 0. Then, h has no
knife and no fork.

Indeed, in such heaps, any allocated location has no predecessor or at least three
predecessors.

A heap h is a collection of knives def⇔ there is no location in dom(h) that does not
belong to a knife and no distinct knives share the same endpoint. A heap h is segmented
whenever dom(h) ∩ ran(h) = ∅ and no location has strictly more than one predecessor.

LEMMA 4.3. Let h be a (α, β)-fishbone heap with α ≥ 1, β ≥ 0 and h′ be a segmented
heap disjoint from h. Then, h] h′ has no fork.

Being segmented can be naturally expressed in 1SL2:

seg
def
= ∀ u u (u ↪→ u⇒ ((]u = 1) ∧ (]u = 0) ∧ ¬alloc(u)))

The statement below is counterpart to [Brochenin et al. 2012, Lemma 5.2] with sim-
plified properties and with simpler formulae but using only two quantified variables.

LEMMA 4.4. There are formulae forky(u), KS and KS1F in 1SL2 such that for every
heap h,

(I) h |=f forky(u) iff all the predecessors of f(u) are endpoints of forks,
(II) h |= KS iff h is a collection of knives,

25

(III) h |= KS1F iff there are h1, h2 such that h = h1] h2, h1 is a collection of knives and
h2 is made of a unique fork such that its unique endpoint is not in the range of h1.

PROOF. forky(u) is equal to:

∀ u (u ↪→ u)⇒ (∃ u (u ↪→ u) ∧ (]u = 2) ∧ ¬(]u−1 ≥ 1))

A knife is made of two consecutive memory cells that can be respectively called part
1 and part 2 as shown in l

part 1−−−→ l′
part 2−−−→ l′′.

KS
def
= ∀ u alloc(u)⇒ (φpart1(u) ∨ φpart2(u))

where

φpart1(u)
def
= (]u = 0) ∧ (]u+1 = 1) ∧ (]u+2 = 1) ∧ ¬(]u+3 ≥ 0)

φpart2(u)
def
= (]u = 1) ∧ (]u−1 = 0) ∧ (]u+1 = 1) ∧ ¬(]u+2 ≥ 0)

KS1F
def
=

unique fork︷ ︸︸ ︷
[∃ u (]u = 2) ∧ (]u+1 = 1) ∧ ¬(]u+2 ≥ 0) ∧ ¬(]u−1 ≥ 1) ∧ ¬(∃ u (u 6= u) ∧ (]u = 2))]∧

[∀ u alloc(u)⇒

(φpart1(u) ∨ φpart2(u)︸ ︷︷ ︸
part with knifes

∨ ((]u = 0) ∧ (]u+1 = 2)) ∨ (]u = 2))︸ ︷︷ ︸
part with one fork

]

In our proof, we use the idea of augmenting the heap with a segmented heap, then
augmenting it further with knives to form forks whose endpoints are predecessors of
u; this is borrowed from [Brochenin et al. 2012]. As it is, this would not be sufficient
to express arithmetical constraints on fishbone heaps since only two quantified vari-
ables are allowed. This restriction is not considered in [Brochenin et al. 2012]—the
formulae there use strictly more than two quantified variables. This is why we had
to provide specific developments that are well-tailored to fishbone heaps while taking
into account our limited amount of syntactic resources. Simplifications have also been
made in order to focus on undecidability rather than on questions of expressive power.

LEMMA 4.5. Let h be a heap with h = h1] h2 and f be an assignment such that
h1 |=f φ

?, f(u) is on the main path of the (α, 2)-fishbone heap h, h2 |=f seg ∧]u = 0,
n = card(ran(h2) \ dom(h1)) and m is the number of predecessors of f(u) in h1. We have
the following properties:

(a) h |=f ¬(KS −∗ ¬forky(u)) iff n ≥ m.
(b) h |=f ¬(KS1F −∗ ¬forky(u)) iff n ≥ m− 1.

In Figure 7, we present three heaps obtained by combining a segmented heap h2 with
collections of knives (corresponding to h3 in the proof of Lemma 4.5). Edges labelled by
‘1’ are part of a fishbone heap h1 (partially represented) whereas edges labelled by ‘2’
are part of a segmented heap h2 so that no edge points to f(u) or to f(u). The heap
on the left (corresponding to h1 ∗ h2 in Lemma 4.5) is obtained by adding a segmented
heap h2 whereas the heap in the middle (say h1 ∗ h2 ∗ h3) is obtained then by adding a

26

•
f(u)

•
f(u)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

1

1

1

1

1

2

2

2

2

2

•
f(u)

•
f(u)

•

•

•

3

3

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3

3

1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

3

•
f(u)

•
f(u)

•

•

•

3

3

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

3

Fig. 7. A segmented heap and collections of knives.

collection of knives h3 so that every predecessor of f(u) is the endpoint of a fork. Note
that not all edges of the segmented heap are used to build forks. Similarly, the heap
on the right (say h1 ∗ h2 ∗ h′3) is obtained then by adding a collection of knives h′3 to the
heap h1 ∗ h2 on the very left so that every predecessor of f(u) is the endpoint of a fork.

PROOF. Let us provide the proof for (a). (The proof for (b), being analogous, is omit-
ted.) So, let h be a heap with h = h1] h2 such that h1 |=f φ

? and h2 |=f seg ∧]u = 0.
Moreover, f(u) is on the main path, which entails that h(f(u)) 6= f(u) (if h(f(u)) is
defined at all) and f(u) has at least one predecessor.

One can make the following (obvious) observations.

(O1). The heap h1 has no knives and, h1 and h1] h2 have no forks. (see Lemma 4.2
and Lemma 4.3).
(O2). h1] h2 may not satisfy φ? but this is fine since we only need to focus on the
number of predecessors of f(u) (i.e., on the value m). Indeed, h1] h2 may contain
knives (see the left heap in Figure 7). A knife l1 → l2 → l3 in h1] h2 is made of
l1 ∈ dom(h2) and of l2 ∈ dom(h1). This observation is not really used below but,
hopefully, it could be helpful to better grasp how the heaps h1 and h2 are combined.
(O3). f(u) has the same number of predecessors in h1 and in h1] h2. This is due to
the fact that h2 |=f]u = 0.
(O4). For every n ≥ 0, there is a disjoint heap h′2 such that h′ = h1] h′2, h′2 |=f

seg ∧]u = 0 and card(ran(h′2) \ dom(h1)) = n. See the left heap in Figure 7 with
card(dom(h2)) = 5 and card(ran(h2) \ dom(h1)) = 4 (look at edges labelled by ‘2’).
Once more, this observation is not used below but it will be in the proof of Proposi-
tion 4.6.

First, let us suppose that h |=f ¬(KS −∗ ¬forky(u)), i.e., (†) there is a heap h3, disjoint
from h1] h2, such that (h1] h2)] h3 |=f forky(u) and h3 |=f KS. Let us make additional
observations.

— The only forks in h1] h2] h3 whose endpoints are predecessors of f(u) are those
obtained with l1 → l2 such that l1 ∈ dom(h2) (so h2(l1) = l2), l2 6∈ dom(h1), and
l′1 → l2 → l′3 is a knife from h3. This is due to (O1) and to the fact that all the
predecessors of f(u) in h have no predecessors since f(u) is on the main path of h.

27

— The number of forks in h1] h2] h3 whose endpoints are predecessors of f(u) is there-
fore less of equal to card(ran(h2) \ dom(h1)).

— The number of predecessors of f(u) in h1]h2]h3 is greater or equal to the number of
its predecessors in h1 (by using (O3)). So, if h1]h2]h3 |=f forky(u), then the number
of predecessors of f(u) in h1 is smaller or equal to card(ran(h2) \ dom(h1)) = n, i.e.
n ≥ m.

Now, let us establish the other direction and let us suppose that n ≥ m and
the predecessors of f(u) are p1, . . . , pm. Let l11, l

2
1, . . . , l

1
n, l

2
n be locations such that

{l11, . . . , l1n} = ran(h2) \ dom(h1) and for every i ∈ [1, n], we have h2(l2i) = l1i . Let us build
h3 so that it satisfies (†), which is quite easy to realize. Let lnew

1 , . . . , lnew
m be (new) loca-

tions that are not in dom(h1]h2)∪ ran(h1]h2). We define h3 so that it contains exactly
m knives whose endpoints are exactly all the predecessors of f(u). For every i ∈ [1,m],
we define h3(lnew

i)
def
= l1i and h3(l1i)

def
= pi (well, that is possible because l1i 6∈ dom(h1] h2)).

It is easy to check that h3 satisfies (†).
Consequently, h |=f ¬(KS −∗ ¬forky(u)) iff n ≥ m.

Now, we are able to state the main proposition of this section that allows us to com-
pare the numbers of predecessors for two locations on the main path of a fishbone
heap. Let us introduce the following abbreviations: ϕ1(u, u)

def
= seg ∧]u = 0 ∧]u = 0,

ϕ2(u)
def
= ¬(KS−∗ ¬forky(u)) and ϕ3(u)

def
= ¬(KS1F−∗ ¬forky(u)).

PROPOSITION 4.6. Suppose h1 |=f φ
? and, f(u) and f(u) are on the main path of

h1. We have the following equivalences:

— h1 |=f ϕ1(u, u)−∗(ϕ2(u)⇒ ϕ2(u)) iff]̃u ≤]̃u.
— h1 |=f ϕ1(u, u)−∗(ϕ2(u)⇒ ϕ3(u)) iff]̃u ≤]̃u + 1.
— h1 |=f ϕ1(u, u)−∗(ϕ3(u)⇒ ϕ2(u)) iff]̃u ≤]̃u− 1.

PROOF. By way of example, let us show the second property. The other cases are
proved in a similar fashion. Let h1 be a heap satisfying φ?. The statements below are
equivalent.

(1) h1 |=f (ϕ1(u, u)−∗(ϕ2(u)⇒ ϕ3(u)))).
(2) For every disjoint heap h2 such that h2 |=f ϕ1(u, u), if h1] h2 |=f ϕ2(u), then h1]

h2 |=f |= ϕ3(u). (by definition of |=f)
(3) For every n ≥ 0, there is a disjoint heap h2 with card(ran(h2) \ dom(h1)) = n such

that h2 |=f ϕ1(u, u) and if h1] h2 |=f ϕ2(u), then h1] h2 |=f ϕ3(u) (see (O4) in the
proof of Lemma 4.5). This is possible by using the fact that one can add a segmented
heap so that the resulting heap has n isolated memory cells. Indeed, given the heap
h1, let us build a disjoint heap h2 such that h2 |=f ϕ1(u, u) and dom(h2) = n for any
fixed n ≥ 0. Since X = dom(h1) ∪ ran(h2) ∪ {f(u), f(u)} is a finite subset of N,
there are 2n distinct locations l11, l

2
1, . . . , l

1
n, l

2
n in N \X. We simply need to define h2

such that dom(h2)
def
= {l11, . . . , l1n}, ran(h2)

def
= {l21, . . . , l2n} and for all i ∈ [1, n], we set

h2(l1i)
def
= l2i .

(4) for every n ≥ 0, we have n ≥]̃u in h implies n ≥]̃u− 1 in h. (by Lemma 4.5)
(5)]̃u ≤]̃u + 1.

4.4. Constraints between locations at distance three
The goal of this section is the following: given a formula ϕ(u, u) equal to either]u =
]u or]u =]u + 1 (in particular, this means that ϕ(u, u) only deals with numbers of

28

predecessors and Section 4.3 explains how to define these formulae in 1SL2), we show
how to define a formula in 1SL2, say ϕ+3(u), such that

h |=f ϕ
+3(u) iff h |=f [u7→h3(f(u))] ϕ(u, u),

assuming that h3(f(u)) is defined and h |=f dw(α, 2) ∧ (]u ≥ α + 3)). When ϕ(u, u) is
equal to]u =]u [resp.]u =]u + 1], we write]u =]u+3 [resp.]u =]u+3 + 1] instead
of ϕ+3(u). Note that if we had three quantified variables, defining ϕ+3(u) would not
require much work since the formula below does the job:

∃ u′ (u ↪→ u′ ∧ ∃ u (u′ ↪→ u ∧ ∃ u′ (u ↪→ u′ ∧ ϕ(u, u′))))

Let us start our construction. To do so, let h be a heap and f be an assignment such
that h |=f dw(α, 2) ∧ (]u+3 ≥ 0) ∧ (]u ≥ α + 3)). In the statements below, this property
is always satisfied.

The u-3cut of h is the minimal subheap h3cut of h (with respect to set inclusion of the
domain) such that all the ancestors of l′ = h3(f(u)) in dom(h) are also ancestors of l′ in
h3cut. It looks like a clean cut from Section 3 but operated on h3(f(u)) and on an (α, 2)-
fishbone heap. As a consequence, f(u) and l′ have the same amount of predecessors in
h and in the u-3cut heap. Moreover, if f(u) has more than α+ 3 predecessors, then the
u-3cut of h is also a (α, 2)-fishbone heap.

In Figure 8, the bottom left heap is the u-3cut of the heap at the top. When h |=f

]u+4 ≥ 0, the almost u-3cut of h is the minimal subheap of h containing the u-3cut heap
and such that]u+4 = 1 holds true. The almost u-3cut of h contains the edge from l′

which is the only predecessor of the interpretation of u+4. In Figure 8, the middle left
heap is the almost u-3cut of the heap at the top. Below, we explain how to obtain the
u-3cut of some heap, possibly via the construction of the almost u-3cut, if it exists.

Lemma 4.7 below states that all we need to define ϕ+3(u) is to be able to express a
property in its u-3cut. In particular, the only location that is unallocated and on the
main path is h3(f(u)).

LEMMA 4.7. Let h |=f dw(α, 2)∧ (]u+3 ≥ 0)∧ (]u ≥ α+ 3)) and h′ be its u-3cut heap.
Then, h |=f [u7→h3(f(u))] ϕ(u, u) iff h′ |=f (∃ u ¬alloc(u) ∧]u ≥ 1 ∧ ϕ(u, u)).

PROOF. Let l′ = h3(f(u)) and l = f(u). Let h′ be the u-3cut heap of h. We have (†)]̃l in
h is equal to]̃l in h′ and]̃l′ in h is equal to]̃l′ in h′. Indeed, the u-3cut heap h′ is a subheap
of h such that all the ancestors of l′ in h are also ancestors of l′ in h′ and l is an ancestor
of l′ in h. Note also that l′ is the unique location such that h′ |=[u7→l′] ¬alloc(u)∧]u ≥ 1.
So, h′ |=f (∃ u ¬alloc(u)∧]u ≥ 1∧ϕ(u, u)) iff h′ |=f [u7→l′] ϕ(u, u)) iff h |=f [u7→h3(f(u))] ϕ(u, u)
by (†). Note that we use the fact that ϕ(u, u) specifies a property about the numbers of
predecessors.

When h is equal to its u-3cut, i.e. when (]u+4 ≥ 0) does not hold, we have
h |=f [u7→h3(f(u))] ϕ(u, u) iff h |=f φUC(u) with

φUC(u)
def
= (∃ u ¬alloc(u) ∧]u ≥ 1 ∧ ϕ(u, u))

Now, let us consider the case when h is not equal to its u-3cut (probably, the most
common situation) and let us show how to separate the current heap so that we can
isolate the u-3cut heap.

LEMMA 4.8. Let h |=f dw(α, 2)∧ (]u+4 ≥ 0)∧ (]u ≥ α+ 3)) and φ(u) be an arbitrary
formula. Then, h |=f 1comp ∗ (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5 ≥ 0) ∧ φ(u)) iff the almost
u-3cut of h, say h′, satisfies: h′ |=f φ(u).

29

The formula 1comp was introduced in Section 2.2, and it states that the heap is made
of a unique connected component. The way h has to be divided to satisfy the formula is
illustrated by the two heaps in the middle of Figure 8.

PROOF. Let h be heap such that h |=f dw(α, 2) ∧ (]u+4 ≥ 0) ∧ (]u ≥ α + 3). Let h′ be
the almost u-3cut heap of h and h′′ be the heap such that h = h′] h′′. By construction of
h′, it is easy to check that h′ |=f 1comp∧(]u+4 = 1)∧¬(]u+5 ≥ 0). Similarly, h′′ |=f 1comp.
This implies that h |=f 1comp ∗ (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5 ≥ 0)).

So, suppose that the almost u-3cut heap of h satisfies: h′ |=f φ(u). This means that
h′′ |=f 1comp and h′ |=f (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5 ≥ 0) ∧ φ(u)). Hence, h |=f 1comp ∗
(1comp ∧ (]u+4 = 1) ∧ ¬(]u+5 ≥ 0) ∧ φ(u)).

Now, suppose that h |=f 1comp ∗ (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5 ≥ 0) ∧ φ(u)). There are
heaps h1 and h2 such that h2 |= 1comp and h1 |=f (1comp∧(]u+4 = 1)∧¬(]u+5 ≥ 0)∧φ(u)).
In particular, this means that h1 |=f 1comp ∧ (]u+4 = 1) ∧ ¬(]u+5 ≥ 0).

Let us show that there is a unique pair (h1, h2) of heaps satisfying that property and
h1 = h′, which will entail that h′ |=f φ(u). First note that

{f(u), h(f(u)), h2(f(u)), h3(f(u)), h4(f(u))} ⊆ dom(h1) h5(f(u)) 6∈ dom(h1)

Since h1 |=f (]u+4 = 1), all the predecessors of h4(f(u)), apart from h3(f(u)), are in
dom(h2) and there are more than two such predecessors since h4(f(u)) is on the main
path of h and therefore has at least three predecessors in h.

Hence, h1 contains also all the ancestors of h3(f(u)), otherwise h2 would have at least
two distinct connected components. So, the u-3cut of h is also a subheap of h1.

Now, it is easy to check that if any location in dom(h′′) that is not a predecessor of
h4(f(u)) were in dom(h1), then h1 would have more than two connected components.
Hence, h1 is the almost u-3cut heap of h and therefore h′ |=f φ(u).

Let us build on Lemma 4.8 so as to be able to specify properties on the u-3cut heap.

LEMMA 4.9. Let h |=f dw(α, 2) ∧ (]u+4 ≥ 0) ∧ (]u ≥ α+ 3)) and φ(u) be the formula
(size = 1) ∗ (¬(]u+4 ≥ 0) ∧ φUC(u)). Then, h |=f 1comp ∗ (1comp ∧ (]u+4 = 1) ∧ ¬(]u+5 ≥
0) ∧ φ(u)) iff the u-3cut of h, say h′, satisfies: h′ |=f φUC(u).

We write φAUC(u) to denote the formula 1comp∗(1comp∧(]u+4 = 1)∧¬(]u+5 ≥ 0)∧φ(u))
with φ(u) equal to (size = 1) ∗ (¬(]u+4 ≥ 0) ∧ φUC(u)).

The proof for Lemma 4.9 is also by an easy verification by observing that an almost
u-3cut heap is equal to the u-3cut plus one memory cell (see Figure 8).

By combining Lemma 4.7–4.9, we get the following proposition by performing a case
analysis depending whether]u+4 ≥ 0 holds true or not on the heap h.

PROPOSITION 4.10. Let h be a heap and f be an assignment such that h |=f

dw(α, 2) ∧ (]u+3 ≥ 0) ∧ (]u ≥ α + 3)). We have h |=f [u7→h3(f(u))] ϕ(u, u) iff h |=f ϕ
+3(u)

with the formula ϕ+3(u) defined below:

ϕ+3(u)
def
= (¬(]u+4 ≥ 0) ∧ φUC(u)) ∨ ((]u+4 ≥ 0) ∧ φAUC(u))

PROOF. We distinguish two cases depending whether h is itself its u-3cut or not.
Case 1: ¬(]u+4 ≥ 0), i.e. h is its own u-3cut heap. By Lemma 4.7, if h |=f [u7→h3(f(u))]

ϕ(u, u), then h |=f φUC(u) and therefore h |=f ϕ
+3(u). Conversely, if h |=f ϕ

+3(u), then
h |=f φUC(u) since (]u+4 ≥ 0) does not hold on h. Again, by Lemma 4.7, we get that
h |=f [u7→h3(f(u))] ϕ(u, u).
Case 2: (]u+4 ≥ 0). By Lemma 4.7, if h |=f [u7→h3(f(u))] ϕ(u, u), then h′ |=f φUC(u) where
h′ is the u-3cut of h. By Lemma 4.9, this implies that h |=f φAUC(u) and therefore h |=f

30

•

l′′

• • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

l′

|=f (]u
4 = 1) ∧ ¬(]u5 ≥ 0)

l′′

•

•

•

•

•

•

•

•

•

•

l′′

|=f 1comp
• • •

•

•

•

•

•

l′

|=f ¬]u+4 ≥ 0

•

•

•

•

•

•

•

•

•

•

l′

|=f size = 1

l′′

almost u-3cut heap

u-3cut heap

f (u) = l

f (u) = l

f (u) = l

|=f dw(α, 2) ∧ (]u+3 ≥ 0) ∧ (]u ≥ α + 3)

h3(f (u)) = l′

Fig. 8. How to get a u-3cut – Decomposition in two stages.

ϕ+3(u) (thanks to its second disjunction). Conversely, if h |=f ϕ
+3(u), then h |=f φAUC(u)

since (]u+4 ≥ 0) holds on h. Again, by Lemma 4.9, we get that h′ |=f [u7→h3(f(u))] φUC(u)
and by Lemma 4.7, we conclude h |=f [u7→h3(f(u))] ϕ(u, u).

Note that the reasoning performed in this section cannot be extended to an arbi-
trary formula ϕ(u, u) since taking a u-3cut or an almost u-3cut preserves the number
of predecessors of f(u) and h3(f(u)) but may not preserve more general properties.
Nevertheless, this is sufficient for our needs in Section 4.5.

4.5. Master reduction from halting problem for Minsky machines
We shall use formulae of the form ϕ+3(u) when ϕ(u, u) expresses one of the following
arithmetical constraints:]u =]u,]u =]u+ 1 and]u =]u+ 1 (see Section 4.4). For each
instruction I ∈ [1, α− 1], we build a formula φI so that the Minsky machine M halts iff
the formula φ? ∧

∧
I∈[1,α−1] ϕI is satisfiable in 1SL2. It remains to define ϕI for each

instruction I.
If instruction I is of the form “I: Cj := Cj + 1; goto J” then we need to check the

following properties:

(1) If a location l encodes the instruction I on the main path (i.e.]̃l = I + 2) and h3(l)
is defined, then the location h3(l) encodes the instruction J .

(2) If a location l encodes the value for the counter Cj in a configuration with instruc-
tion I (i.e.,]̃l ≥ α + 3 and the jth ancestor of l has I + 2 predecessors) and h3(l) is
defined, then]̃l + 1 =]̃h3(l).

31

(3) Similarly, if a location l encodes the value for the counter C3−j (i.e., the counter
C3−J is not updated after instruction I) in a configuration with instruction I (i.e.,
]̃l ≥ α+ 3 and the jth ancestor of l has I + 2 predecessors) and h3(l) is defined, then
]̃l =]̃h3(l).

The properties can be expressed by the formula ϕI below:

∀ u (]u+3 ≥ 0)⇒ [

(1)︷ ︸︸ ︷
((]u = I + 2)⇒ (]u+3 = J + 2))∧

(2)︷ ︸︸ ︷
((]u ≥ α+ 3) ∧ (]u−j = I + 2)⇒ (]u =]u+3 − 1))∧

(3)︷ ︸︸ ︷
((]u ≥ α+ 3) ∧ (]uj−3 = I + 2)⇒ (]u =]u+3))]

Each subformula decorated by a curly bracket with (i) expresses exactly the property
(i) above. Note that]u+3 = J + 2 states that the number of predecessors of h3(f(u))
is J + 2, which is quite easy to express in 1SL2 (see Section 2.2). By contrast, the
formula]u =]u+3 − 1 states that the number of predecessors of h3(f(u)) is equal to
the number of predecessors of f(u) plus one, which requires the more sophisticated
formulae introduced in Section 4.3 and in Section 4.4.

Similarly, let I be the instruction “I: if Cj = 0 then goto J1 else (Cj := Cj − 1; goto J2)”
then ϕI is defined as follows:

∀ u (]u+3 ≥ 0)⇒ [

(4)︷ ︸︸ ︷
((]u = I + 2) ∧ (]u+j = α+ 3)⇒ (]u+3 = J1 + 2))∧

(5)︷ ︸︸ ︷
((]u = I + 2) ∧ (]u+j > α+ 3)⇒ (]u+3 = J2 + 2))∧

(6)︷ ︸︸ ︷
((]u > α+ 3) ∧ (]u−j = I + 2)⇒ (]u+3 =]u− 1))∧

(7)︷ ︸︸ ︷
((]u = α+ 3) ∧ (]u−j = I + 2)⇒ (]u+3 = α+ 3))∧

(8)︷ ︸︸ ︷
((]u ≥ α+ 3) ∧ (]uj−3 = I + 2)⇒ (]u =]u+3))]

The subformula decorated by a curly bracket with (4) states that if a location l en-
codes the instruction I and hj(l) has α+3 predecessors (i.e., counter Cj has value zero),
then the location h3(l) has J1+2 predecessors (i.e., the next instruction is J1). Similarly,
the subformula decorated by a curly bracket with (5) states that if a location l encodes
the instruction I and hj(l) has strictly more than α+3 predecessors (i.e., counter Cj has
non-zero value), then the location h3(l) has J2 + 2 predecessors (i.e., the next instruc-
tion is J2). Moreover, the subformula decorated by a curly bracket with (6) states that
if a location l has at least α+3 predecessors and its jth ancestor has I+2 predecessors

32

(i.e., counter Cj has non-zero value and we are really dealing with instruction I), then
the number of predecessors of h3(l) is equal to the number of predecessors of l minus
one, which corresponds to encode a decrement on counter Cj . Subformulae (7) and (8)
admit a similar reading.

It is now easy to show the following lemma since we have seen that all the con-
straints between consecutive configurations can be encoded in 1SL2, assuming that
the heap encodes a data word in ([1, α]× N2)+.

LEMMA 4.11. M has a halting run iff

dw(α, 2) ∧ φfirst ∧ φlast ∧
∧

I∈[1,α]

ϕI

is satisfiable in 1SL2.

Below, we conclude by the main result of the paper.

THEOREM 4.12. 1SL2 satisfiability problem is undecidable.

We know that if the number of quantified variables is not restricted, 1SL(−∗) is unde-
cidable too [Brochenin et al. 2012] and recently the satisfiability problem for 1SL2(−∗)
has been shown undecidable as well [Demri and Deters 2014], but this requires a far
more complex proof passing via an equivalence to weak second-order logic.

4.6. Note on a variant proof using
⋃
α≥1 FO2α,1(<,+1,=,∼,≺)

As mentioned earlier, there exist many formalisms to specify properties about data
words; among them can be found first-order languages. Below, we recall a few standard
definitions as well as the main results. Finally, we sketch the proof of a reduction
from an undecidable variant of first-order logic on data words into 1SL2. These results
show interesting relationships between first-order logics on data words and separation
logics.

Let us present the first-order language FO2α,β(<,+1,=,∼,≺) to interpret data
words in ([1, α] × Nβ)+ following developments from [Bojańczyk et al. 2011]. Most of
the time, a fragment of the full language is needed, but it is helpful to provide the most
general definition once and uniformly.

Let FO2α,β(<,+1,=,∼,≺) be the set of formulae defined below:

φ ::= a(v) | v ∼j v | v ≺j v | v < v | v = 1 + (v) | v = v | ¬φ | φ ∧ φ | ∃ v φ

with v ::= u1 | u2, j ∈ [1, β] and a ∈ [1, α]. When β = 0, this implies that there is
no atomic formula using ∼j or ≺j . We write FO2α,β(<,+1,=,∼) to denote the restric-
tion of FO2α,β(<,+1,=,∼,≺) without ≺. Formulae in FO2α,β(<,+1,=,∼,≺) are inter-
preted over data words

dw = (a1, d1
1, . . . , d

1
β) · · · (aL, dL1 , . . . , dLβ)

in ([1, α] × Nβ)+ via the satisfaction relation |=f parameterized by f : {u1, u2} → [1, L]
(Boolean clauses are omitted, and i, i′ ∈ {1, 2}):

— dw |=f a(ui)
def⇔ af(ui) = a,

— dw |=f ui ∼j ui′
def⇔ d

f(ui)
j = d

f(ui′)
j ,

— dw |=f ui ≺j ui′
def⇔ d

f(ui)
j < d

f(ui′)
j ,

— dw |=f ui = ui′
def⇔ f(ui) = f(ui′),

— dw |=f ui = 1 + (ui′)
def⇔ f(ui) = f(ui′) + 1,

33

— dw |=f ui < ui′
def⇔ f(ui) < f(ui′),

— dw |=f ∃ ui φ
def⇔ there is p ∈ [1, L] such that dw |=f [ui 7→p] φ.

A sentence φ in FO2α,β(<,+1,=,∼,≺) is satisfiable def⇔ there is a data word dw in
([1, α] × Nβ)+ such that dw |= φ (no need to specify a variable assignment since φ is
closed).

Let us recall major results about FO2 on data words; FO2α,0(<,+1,=) was intro-
duced in Section 2.3 and the others just above.

THEOREM 4.13.

(I) The satisfiability problem for
⋃
α≥1 FO2α,0(<,+1,=) is NEXPTIME-complete [Etes-

sami et al. 1997] (see also [Weis 2011, Corollary 2.2.4]).
(II) The satisfiability problem for

⋃
α≥1 FO2α,1(<,+1,=,∼) is decidable and closely

related to the reachability problem for Petri nets [Bojańczyk et al. 2011; David
2009, Theorem 3].

(III) The satisfiability problem for
⋃
α≥1 FO2α,2(<,+1,=,∼) is undecidable [Bojańczyk

et al. 2011; David 2009, Proposition 27].
(IV) The satisfiability problem for

⋃
α≥1 FO2α,1(<,+1,=,∼,≺) is undecidable [Bo-

jańczyk et al. 2011; David 2009].

Theorem 4.13(IV) shall be used in this section but decidability can be regained, as
shown in [Schwentick and Zeume 2012], where finite satisfiability of FO2 over data
words with a linear order on the positions and a linear order and a corresponding
successor relation on the data values shown in EXPSPACE [Schwentick and Zeume
2012].

A slightly simpler undecidability proof can be also obtained from the undecidability
of the satisfiability problem for

⋃
α≥1 FO2α,1(<,+1,=,∼,≺) on data words [Bojańczyk

et al. 2011] (see Theorem 4.13(IV)). In order to obtain a reduction from the halting
problem for Minsky machines, we had to deal with encoding of instructions, which
is a bit tedious in some places but the gain has been to obtain a master reduction.
Master reductions are understood as reductions from decision problems involving, for
instance, Turing machines, Minsky machines or any other standard class of computa-
tional models. These reductions are always preferred because no intermediate decision
problems are involved and therefore this limits the sources of flaws for example. Nev-
ertheless, the reduction from the satisfiability problem

⋃
α≥1 FO2α,1(<,+1,=,∼,≺) is

a bit simpler if undecidability has to be explained in the most concise way.
Let us briefly provide the main ingredients for such a proof. We define a logarithmic-

space translation t as follows. A position u in the data word corresponds to a location
on the main path of the fishbone encoding the same position but for the (unique) part
related to the (unique) datum. In the translation process, we freely use macros defined
earlier (i, j ∈ {1, 2}).

— t is homomorphic for Boolean connectives,
— t(ui = uj)

def
= ui = uj ,

— t(ui < uj)
def
= ls(ui, uj) ∧ ui 6= uj ,

— t(uj = 1 + (ui))
def
= > ∗ (ls′(ui, uj) ∧ (]u+3

i = 1) ∧ ¬(]u+4
i ≥ 0)),

— t(a(ui))
def
= ∃ u3−i (u3−i ↪→ ui) ∧ (]u3−i = a + 2),

— t(ui ∼1 uj)
def
=]ui =]uj ,

— t(ui ≺1 uj)
def
=]ui + 1 ≤]uj ,

34

— t(∃ ui φ)
def
= ∃ ui (]ui ≥ α+ 3) ∧ t(φ).

LEMMA 4.14. Let φ be a formula in FO2α,1(<,+1,=,∼,≺).

(I) For every data word dw in ([1, α]× N)+, dw |= φ iff hdw |= dw(α, 1) ∧ t(φ).
(II) Let h be a heap such that h |= dw(α, 1) ∧ t(φ), then there is a data word dw in

([1, α]× N)+ such that h and hdw are isomorphic and dw |= φ.

As a corollary, 1SL2 is undecidable, since for any φ in FO2α,1(<,+1,=,∼,≺), φ is
satisfiable iff dw(α, 1) ∧ t(φ) is satisfiable in 1SL2. Note that the gain with the proof
sketched above is not that significant; however, we do not need the material from Sec-
tion 4.4. (Still, though, we need to express arithmetical constraints between the num-
bers of predecessors.) Furthermore, we need to formally prove Lemma 4.14, which is of
a complexity comparable to the material in Section 4.5. Observe also that Section 4.4 is
interesting in its own right because it establishes a result about the expressive power
of 1SL2 by performing surgical cuts.

5. CONCLUSION
In the paper, we have shown that two-variable first-order separation logic (1SL2) is
undecidable by designing a simple master reduction from the halting problem for Min-
sky machines and, if we drop the magic wand operator (a fragment called 1SL2(∗)),
we get decidability but with non-elementary complexity. Our contribution is related to
the hardness results when only two variables are used (no program variables, only two
quantified variables, no unary predicate symbols). Heavy recycling of variables is done,
following the classical result for modal logic [Gabbay 1981]. In order to get these re-
sults, we have shown a simple encoding of data words with multiple attributes that is
used both for the undecidability and for the non-elementarity result. This nice relation-
ship with data logics [Bojańczyk et al. 2011] is also complemented by the fact that we
have shown how to encode propositional interval temporal logic (PITL) [Moszkowski
2004] into 1SL2(∗). Hence, we believe we have established promising bridges between
data logic(s), interval temporal logic(s), and separation logic(s), apart from providing
additional evidence of the importance of intervals in logics for computer science. More-
over, we have introduced a separation modal logic MLH. While its decidability status
remains open, we have proved that its restriction to separating conjunction is decid-
able with non-elementary complexity. This has been not only an opportunity to better
understand the expressive power of separation logic fragments but also to significantly
populate 1SL2’s inner circle (see Figure 1 for an overview).

ACKNOWLEDGMENT

We would like to thank Emanuel Kieroński, Ben Moszkowski, and Guido Sciavicco. for insightful exchanges
about interval temporal logics and two-variable first-order logic(s). Furthermore, we are indebted to two
anonymous referees for many helpful and insightful suggestions that helped us to improve the quality of
this manuscript.

References
J. Allen. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11 (1983), 832–843.
K. Bansal, R. Brochenin, and E. Lozes. 2009. Beyond Shapes: Lists with Ordered Data. In FOSSACS’09

(Lecture Notes in Computer Science), Vol. 5504. Springer, 425–439.
S. Benaim, M. Benedikt, W. Charatonik, E. Kieroński, R. Lenhardt, F. Mazowiecki, and J. Worrell. 2013.

Complexity of two-variable logic over finite trees. In ICALP’13 (Lecture Notes in Computer Science), Vol.
7966. Springer, 74–88.

P. Blackburn, M. de Rijke, and Y. Venema. 2001. Modal Logic. Cambridge University Press.

35

M. Bojańczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin. 2011. Two-variable logic on data
words. ACM Transactions on Computational Logic 12, 4 (2011), 27.

E. Börger, E. Grädel, and Y. Gurevich. 1997. The Classical Decision Problem. Springer.
P. Bouyer. 2002. A Logical Characterization of Data Languages. Inform. Process. Lett. 84, 2 (2002), 75–85.
R. Brochenin, S. Demri, and E. Lozes. 2012. On the Almighty Wand. Information and Computation 211

(2012), 106–137.
J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Perez. 2014. A Decision Procedure for Satisfiability

in Separation Logic with Inductive Predicates. In CSL-LICS’14. ACM.
J. Brotherston and M. Kanovich. 2014. Undecidability of Propositional Separation Logic and Its Neighbours.

Journal of the Association for Computing Machinery 61, 2 (2014).
C. Calcagno, P. O’Hearn, and H. Yang. 2001. Computability and Complexity Results for a Spatial Assertion

Language for Data Structures. In FSTTCS’01 (Lecture Notes in Computer Science), Vol. 2245. Springer,
108–119.

W. Charatonik, E. Kieroński, and F. Mazowiecki. 2014. Decidability of Weak Logics with Deterministic Tran-
sitive Closure. In CSL-LICS’14. ACM.

B. Cook, Ch. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. 2011. Tractable Reasoning in a Fragment of
Separation Logic. In CONCUR’11 (Lecture Notes in Computer Science). Springer, 235–249.

J.-R. Courtault and D. Galmiche. 2013. A Modal BI Logic for Dynamic Resource Properties. In LFCS’13
(Lecture Notes in Computer Science), Vol. 7734. Springer, 134–148.

C. David. 2009. Analyse de XML avec données non-bornées. Ph.D. Dissertation. LIAFA, Université Paris VII.
A. Dawar, Ph. Gardner, and G. Ghelli. 2007. Expressiveness and complexity of graph logic. Information and

Computation 205, 3 (2007), 263–310.
M. de Rijke. 1992. The modal logic of inequality. The Journal of Symbolic Logic 57, 2 (1992), 566–584.
N. Decker, P. Habermehl, M. Leucker, and D. Thoma. 2014. Ordered Navigation on Multi-attributed Data

Words. In CONCUR’14 (Lecture Notes in Computer Science), Vol. 8704. 497–511.
A. Degtyarev, M. Fisher, and A. Lisitsa. 2002. Equality and monodic first-order temporal logic. Studia Logica

72, 2 (2002), 147–156.
S. Demri and M. Deters. 2014. Expressive completeness of separation logic with two variables and no sepa-

rating conjunction. In CSL-LICS’14. ACM, 37.
S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Mery. 2014. Separation Logic with One Quantified

Variable. In CSR’14 (Lecture Notes in Computer Science), Vol. 8476. Springer, 125–138.
S. Demri and Ph. Schnoebelen. 2002. The complexity of Propositional Linear Temporal Logics in Simple

Cases. Information and Computation 174, 1 (2002), 84–103.
K. Etessami, M. Vardi, and Th. Wilke. 1997. First-Order Logic with Two variables and Unary Temporal

logics. In LICS’97. IEEE, 228–235.
D. Figueira. 2010. Reasoning on words and trees with data. Ph.D. Dissertation. ENS de Cachan.
D. Gabbay. 1981. Expressive Functional Completeness in Tense Logic. In Aspects of Philosophical Logic.

Reidel, 91–117.
D. Gabbay and V. Shehtman. 1993. Undecidability of modal and intermediate first-order logics with two

individual variables. The Journal of Symbolic Logic 58, 3 (1993), 800–823.
E. Grädel, Ph. Kolaitis, and M. Vardi. 1997a. On the decision problem for two-variable first-order logic.

Bulletin of Symbolic Logic 3, 1 (1997), 53–69.
E. Grädel, M. Otto, and E. Rosen. 1997b. Two-Variable logic with counting is Decidable. In LICS’97. IEEE,

306–317.
E. Grädel, M. Otto, and E. Rosen. 1999. Undecidability Results on Two-Variable Logics. Archive for Mathe-

matical Logic 38, 4–5 (1999), 313–354.
J. Halpern. 1995. The effect of bounding the number of primitive propositions and the depth of nesting on

the complexity of modal logic. Artificial Intelligence 75, 2 (1995), 361–372.
D. Harel, D. Kozen, and J. Tiuryn. 2000. Dynamic Logic. MIT Press.
M. Hennessy and R. Milner. 1980. On observing nondeterminism and concurrency.. In ICALP’80 (Lecture

Notes in Computer Science), Vol. 85. Springer, 299–309.
R. Iosif, A. Rogalewicz, and J. Simacek. 2013. The Tree Width of Separation Logic with Recursive Definitions.

In CADE’13 (Lecture Notes in Computer Science), Vol. 7898. Springer, 21–38.
A. S. Kahr, E. F. Moore, and H. Wang. 1962. Entscheidungsproblem reduced to the ∀ ∃ ∀ case. Proc. Nat.

Acad. Sci. U. S. A. 48, 3 (1962), 365–377.

36

E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. 2012. Two-Variable First-Order Logic with
Equivalence Closure. In LICS’12. IEEE, 431–440.

D. Larchey-Wendling and D. Galmiche. 2013. Nondeterministic Phase Semantics and the Undecidability of
Boolean BI. ACM Transactions on Computational Logic 14, 1 (2013).

H. Lewis. 1980. Complexity Results for classes of quantificational formulas. J. Comput. System Sci. 21
(1980), 317–353.

C. Lutz and U. Sattler. 2002. The complexity of reasoning with Boolean Modal Logics. In Advances in Modal
Logics 2000, Volume 3. World Scientific, 329–348.

M. L. Minsky. 1967. Computation: finite and infinite machines. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

Ch. Morgan. 1976. Methods for automated theorem proving in non classical logics. IEEE Trans. Comput. 25,
8 (1976), 852–862.

M. Mortimer. 1975. On language with two variables. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik 21 (1975), 135–140.

B. Moszkowski. 1983. Reasoning about digital circuits. Technical Report STAN–CS–83–970. Dept. of Com-
puter Science, Stanford University, Stanford, CA.

B. Moszkowski. 2004. A Hierarchical Completeness Proof for Propositional Interval Temporal Logic with
Finite Time. Journal of Applied Non-Classical Logics 14, 1–2 (2004), 55–104.

M. Otto. 2001. Two Variable First-Order Logic over Ordered Domains. The Journal of Symbolic Logic 66, 2
(2001), 685–702.

L. Pacholski, W. Szwast, and L. Tendera. 1997. Complexity of Two-Variable logic with counting. In LICS’97.
IEEE, 318–327.

A. Prior. 1967. Past, Present and Future. Oxford University Press.
M. Rabin. 1969. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math.

Soc. 41 (1969), 1–35.
J. C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In LICS’02. IEEE, 55–74.
Th. Schwentick and Th. Zeume. 2012. Two-Variable Logic and Two Order Relations. Logical Methods in

Computer Science 8 (2012), 1–27.
D. Scott. 1962. A decision method for validity of sentences in two variables. The Journal of Symbolic Logic

27 (1962), 377.
L. Stockmeyer. 1974. The complexity of decision problems in automata theory and logic. Ph.D. Dissertation.

Department of Electrical Engineering, MIT.
W. Szwast and L. Tendera. 2013. FOˆ2 with one transitive relation is decidable. In STACS’13 (LIPIcs),

Vol. 20. 317–328.
J. van Benthem. 1976. Correspondence Theory. Ph.D. Dissertation. Mathematical Institute, University of

Amsterdam.
Ph. Weis. 2011. Expressiveness and Succinctness of First-Order Logic on Finite Words. Ph.D. Dissertation.

University of Massachussetts.
H. Yang. 2001. Local Reasoning for Stateful Programs. Ph.D. Dissertation. University of Illinois, Urbana-

Champaign.
Zhou Chaochen. 2008. In Logics of Specification Languages, D. Bjorner and M. Henson (Eds.). Springer,

Chapter Reviews on “Duration Calculus”, 609–611. Monographs in Theoretical Computer Science. An
EATCS Series.

37

