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Introduction

Flat counter systems. Counter systems are finite-state automata equipped with program variables (counters) interpreted over non-negative integers. They are used in many places like, broadcast protocols [START_REF] Esparza | On the verification of broadcast protocols[END_REF] and programs with pointers [START_REF] Finkel | Towards model-checking programs with lists[END_REF] to quote a few examples. But, along with their large scope of usability, many problems on general counter systems are known to be undecidable [START_REF] Minsky | Computation, Finite and Infinite Machines[END_REF]. Indeed, this computational model can simulate Turing machines. This is not the end of the story since decidability of reachability problems or model-checking problems based on temporal logics can be regained by considering subclasses of counter systems (this includes restrictions on the instructions, on the control graphs or on more semantical properties). An important and natural class of counter systems, in which various practical cases of infinite-state systems (e.g. broadcast protocols [START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF]) can be modelled, are those with a flat control graph, i.e., those where no control state occurs in more than one simple cycle, see e.g. [2,[START_REF] Comon | Multiple counter automata, safety analysis and PA[END_REF][START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF][START_REF] Leroux | Flat counter systems are everywhere! In[END_REF][START_REF] Bozga | Flat parametric counter automata[END_REF]. Decidability results on verifying safety and reachability properties on flat counter systems have been obtained in [START_REF] Comon | Multiple counter automata, safety analysis and PA[END_REF][START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF][START_REF] Bozga | Fast acceleration of ultimately periodic relations[END_REF]. However, so far, such properties have been rarely considered in the framework of any formal specification language (see an exception in [START_REF] Comon | Flatness is not a weakness[END_REF]). In [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF], a class of Presburger counter systems is identified for which the local model checking problem for Presburger-CTL is shown decidable. These are Presburger counter systems defined over flat control graphs with transitions labelled by adequate Presburger formulae (representing guards). Even though flatness is clearly a substantial restriction, it is shown in [START_REF] Leroux | Flat counter systems are everywhere! In[END_REF] that many classes of counter systems with computable Presburger-definable reachability sets are flattable, i.e. there exists a flat unfolding of the counter system with identical reachability sets. Hence, the possibility of flattening a counter system is strongly related to semilinearity of its reachability set. Moreover, in [START_REF] Comon | Flatness is not a weakness[END_REF] model-checking relational counter systems over LTL formulae is shown decidable when restricted to flat formulae (their translation into automata leads to flat structures). Flat counter systems can be also seen as a way to under-approximate the behavior of general counter systems. In fact, by unfolding nested loops of the original system with different strategies, one can produce an enumeration of flat systems which characterize some behaviors of the system. Note that such an approximation allows to describe more behaviors than the approach that consists in looking at bounded behaviors (where the values of the counters do not overpass a certain given bound).

Towards the complexity of temporal model-checking flat counter systems. Our goal is to revisit here standard decidability results for subclasses of counter systems obtained by translation into Presburger arithmetic in order to obtain optimal complexity upper bounds. Indeed, effectively composing the translation of a verification problem into Presburger arithmetic (PrA) and then using a solver for (PrA) is not necessarily optimal computationally. We focus in this work on the model-checking of flat counter systems taking, as specification language, linear-time temporal logic with past and extended with counter constraints.

Linear temporal logic (LTL) was first introduced as a specification language for verification in [START_REF] Pnueli | The temporal logic of programs[END_REF]. The model-checking problem for LTL and its subclasses over finite structures like Kripke structures has been extensively studied and its exact complexity characterization is well-known (see [START_REF] Clarke | Model Checking[END_REF]). Moreover, it is known that, even though LTL with past-time operators is expressively similar to LTL with only future temporal operators [START_REF] Gabbay | The declarative past and imperative future[END_REF], LTL with past is known to be more succinct than LTL with only future operator [START_REF] Laroussinie | Temporal logic with forgettable past[END_REF]. We plan to investigate the model checking problem for LTL with past operators and with counter constraints as atomic formulae over flat counter system. Even if it is known that such a problem is decidable for flat counter systems [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF], no work has so far provided tight complexity bounds. Due to the popularity of LTL with past in the verification community and to the strong expressive power of counter systems, we believe that providing optimal algorithms for this model-checking problem is of great interest and could as well be useful to the field of verification of infinite state-systems.

Related Works. Many papers study reachability problems for flat control structures manipulating integer variables or counters. The main differences between these different works lie in the type of guards and updates over the counters that are allowed in the system. In [START_REF] Comon | Multiple counter automata, safety analysis and PA[END_REF], Comon and Jurski study reachability problems for a class of counter systems with non-deterministic updates where each transition of the system is labelled by a difference bound matrix (DBM) characterizing the difference between the actual and the successive values of the counters; they show that, for such a model, reachability is decidable. Latter on, in [5], this latter problem is proved to be NP-complete. In [START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF], Finkel and Leroux study another class of counter systems, where the guards are given by Presburger arithmetic formulae and the updates on the counters are performed thanks to linear functions, and they show that it is possible to compute the reachability set of such systems which is expressible in Presburger arithmetic. Note that this latter work extends a previous similar result proposed by Boigelot in [2]. In this work, we focus on the class of counter systems whose guards are Boolean combinations of linear constraints and whose updates are translations, hence this class of systems is incomparable with the class of counter systems labelled with difference bound matrices (we are more expressive in the guards but less powerful in the updates) and it consists in a subclass of the systems studied by Finkel and Leroux.

In [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF], it is proved that CTL model-checking over the class of so-called admissible counter systems is decidable by reduction into the satisfiability problem for Presburger arithmetic, the decidable first-order theory of natural numbers with addition. Note that the flat counter systems considered by Finkel and Leroux, and hence the one we propose to study, are admissible. Even though this latter paper gives the decidability status of the model-checking of Past LTL over flat counter systems (CTL being strictly more expressive that LTL), the introduced decision procedure provides a very rough complexity upper bound in 4ExpTime, whereas, as we shall see, this problem is NP-complete.

Our contributions. In this paper, we establish several computational complexity characterizations of model-checking problems restricted to flat counter systems in the presence of a rich LTL-like specification language with arithmetical constraints and past-time operators. Not only we provide an optimal complexity but also, we believe that our techniques could be reused for further extensions (see the recent work [START_REF] Demri | On the complexity of verifying regular properties on flat counter systems[END_REF] about regular specification languages). Indeed, we combine three proof techniques: the general stuttering theorem [START_REF] Kučera | The stuttering principle revisited[END_REF], the property of small integer solutions of equation systems [START_REF] Borosh | Bounds on positive integral solutions of linear Diophantine equations[END_REF] (this latter technique is used since [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF][START_REF] Gurari | The complexity of decision problems for finite-turn multicounter machines[END_REF]) and the elimination of disjunctions in guards (see Section 7). Let us be a bit more precise. We extend the general stuttering principle established in [START_REF] Kučera | The stuttering principle revisited[END_REF] for LTL (without past-time operators) to Past LTL. However, since this principle will be applied to path schemas, a fundamental structure in flat counter systems, we do not aim at being optimal; what matters in fact for our main result is an NP upper bound. A path schema is simply a finite alternation of path segments and simple loops (no repetition of edges) and the principle states that satisfaction of an LTL formula requires only to take loops a number of times that is linear in the temporal depth of the formula. This principle has been already used to establish that LTL model-checking over weak Kripke structures is in NP [START_REF] Kuhtz | Weak Kripke structures and LTL[END_REF] (weakness corresponds to flatness). It is worth noting that another way to show a similar result would be to eliminate past-time operators thanks to Gabbay's Separation Theorem [START_REF] Gabbay | The declarative past and imperative future[END_REF] (preserving initial equivalence) but the temporal depth of formulae might increase at least exponentially, which is a crucial parameter in our complexity analysis. We show that the modelchecking problem restricted to flat counter systems in the presence of LTL with past-time operators is in NP (Theorem 8.4) by combining the abovementioned proof techniques (we call this problem MC(PLTL[C], FlatCS)). Apart from the use of the general stuttering theorem (Theorem 4.1), we take advantage of the other properties stated for instance in Lemma 6.1 (characterization of runs by quantifier-free Presburger formulae) and Theorem 7.11 (elimination of disjunctions in guards preserving flatness). Note that the loops in runs are visited a number of times that can be exponential in the worst case, but this does not prevent us from establishing the NP upper bound. We also take advantage of the fact that model-checking ultimately periodic models with Past LTL is in PTime [START_REF] Laroussinie | Temporal logic with forgettable past[END_REF]. We also point out the fact that our main decision procedure is not automata-based, unlike the approach from [START_REF] Vardi | Alternating automata: unifying truth and validity checking for temporal logics[END_REF]. In this paper, complexity results for fragments/subproblems are also considered. For instance, we get a sharp lower bound since we establish that the model-checking problem on path schemas with only 2 loops is already NP-hard (see Lemma 5.6). A summary table of results can be found in Section 9.

The present paper is an extended and completed version of [START_REF] Demri | Taming Past LTL and Flat Counter Systems[END_REF]. It includes all the proofs and their explanation in details and furthermore we have added a few more results (see e.g. Section 8.2).

Flat Counter Systems and its LTL Dialect

We write N [resp. Z] to denote the set of natural numbers [resp. integers] and [i, j] to denote the set {k ∈ Z : i ≤ k and k ≤ j}. For every v ∈ Z n , v[i] denotes the i th element of v for every i ∈ [1, n]. For some n-ary tuple t, we also write π j (t) to denote the j th element of t (j ≤ n). In the sequel, integers are encoded with a binary representation. For a finite alphabet Σ, Σ * represents the set of finite words over Σ, Σ + the set of finite non-empty words over Σ and Σ ω the set of ω-words over Σ. For a finite word w = a 1 . . . a k over Σ, we write len(w) to denote its length k. For 0 ≤ i < len(w), w(i) represents the (i + 1)-th letter of the word, here a i+1 .

Counter Systems

Counter constraints are defined below as a subclass of Presburger formulae whose free variables are understood as counters. Such constraints are used to define guards in counter systems but also to define arithmetical constraints in temporal formulae.

Let C = {x 1 , x 2 , . . .} be a countably infinite set of counters (variables interpreted over non-negative integers) and AT = {p 1 , p 2 , . . .} be a countable infinite set of propositional variables (abstract properties about program points). We write C n to denote the restriction of C to {x 1 , x 2 , . . . , x n }. Definition 2.1 (Guards). The set G(C n ) of guards (arithmetical constraints on counters in C n ) is defined inductively as follows:

t ::= a.x | t + t g ::= t ∼ b | g ∧ g | g ∨ g where x ∈ C n , a ∈ Z, b ∈ N and ∼∈ {=, ≤, ≥, <, >}.
Note that such guards are closed under negations (but negation is not a logical connective) and the truth constants and ⊥ can be easily defined too.

Given g ∈ G(C n ) and a vector v ∈ N n , we say that v satisfies g, written v |= g, if the formula obtained by replacing each x i by v[i] holds. Definition 2.2 (Counter system). For a natural number n ≥ 1, a n-dim counter system (shortly a counter system) S is a tuple Q, C n , ∆, l where: For every transition δ = q, g, u, q in ∆, we use the following notations:

• Q is a finite set of control states. • l : Q → 2 AT is a labelling function. • ∆ ⊆ Q × G(C n ) × Z n × Q is a
• source(δ) = q; target(δ) = q , • guard (δ) = g; update(δ) = u.
As usual, to a counter system S = Q, C n , ∆, l , we associate a labeled transition system T(S) = C, → where C = Q×N n is the set of configurations and →⊆ C × ∆ × C is the transition relation defined by: q, v , δ, q , v ∈→ (also written q, v δ -→ q , v ) iff the conditions below are satisfied:

• q = source(δ) and q = target(δ),

• v |= guard (δ) and v = v + update(δ).
Note that in such a transition system, the counter values are non-negative since C = Q × N n . We extend the transition relation → to finite words of transitions in ∆ + as follows. For each

w = δ 0 δ 1 . . . δ α ∈ ∆ + , we have q, v w -→ q , v if there are c 0 , c 1 , . . . , c α+1 ∈ C such that c i δ i -→ c i+1 for all i ∈ [0, α], c 0 = q, v
and c α+1 = q , v . We say that an ω-word w ∈ ∆ ω is fireable in S from a configuration c 0 ∈ Q × N n if for all finite prefixes w of w there exists a configuration c ∈ Q × N n such that c 0 w -→ c. We write lab(c 0 ) to denote the set of ω-words which are fireable from c 0 in S. Note that from a given configuration there could be multiple transitions that are fireable and hence counter systems are inherently non-deterministic.

Given an initial configuration c 0 ∈ Q × N n , a run ρ starting from c 0 in S is an infinite path in the associated transition system T(S) denoted as:

ρ := c 0 δ 0 -→ • • • δ α-1 --→ c α δα -→ • • • where c i ∈ Q × N n and δ i ∈ ∆ for all i ∈ N.
Let lab(ρ) be the ω-word δ 0 δ 1 . . . associated to the run ρ. Note that by definition we have lab(ρ) ∈ lab(c 0 ). When E is an ω-regular expression over the finite alphabet ∆ and c 0 is an initial configuration, lab(E, c 0 ) is defined as the set of labels of infinite runs ρ starting at c 0 such that lab(ρ) belongs to the language defined by E. So lab(E, c 0 ) ⊆ lab(c 0 ).

We say that a counter system is flat if every node in the underlying graph belongs to at most one simple cycle (a cycle being simple if no edge is repeated twice in it) [START_REF] Comon | Multiple counter automata, safety analysis and PA[END_REF]. In a flat counter system, simple cycles can be organized as a DAG where two simple cycles are in the relation whenever there is path between a node of the first cycle and a node of the second cycle. We write FlatCS to denote the class of flat counter systems.

Below, we present the control graph of a flat counter system (guards and updates are omitted).

q 1 q 2 q 3 q 4 q 5 q 6
As mentioned in Section 1, one can define other types of counter systems as it is done for instance in [START_REF] Comon | Multiple counter automata, safety analysis and PA[END_REF]2,[START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF]5] by using different types of guards and updates.

A Kripke structure S is a tuple Q, ∆, l where ∆ ⊆ Q×Q and l : Q → 2 AT is the labelling function. When Q is finite, it can be viewed as a degenerate form of counter systems without counters (in the sequel, we take the freedom to see them as counter systems). All standard notions on counter systems naturally apply to (finite) Kripke structures too (configuration, run, flatness, etc.). In the sequel, we shall also investigate the complexity of model-checking problems on flat Kripke structures (such a class is denoted by FlatKS).

Linear-Time Temporal Logic with Past and Arithmetical Constraints

Model-checking problem for Past LTL over finite-state systems is known to be PSpace-complete [START_REF] Sistla | The complexity of propositional linear temporal logic[END_REF]. In spite of this nice feature, a propositional variable p only represents an abstract property about the current configuration of the system. A more satisfactory solution is to include in the logical language the possibility to express directly constraints between variables of the program, and doing so refining the standard abstraction made with propositional variables. When the variables are typed, they may be interpreted in some specific domain like integers, strings and so on; reasoning in such theories can be performed thanks to satisfiability modulo theories proof techniques, see e.g., [START_REF] Ghilardi | Towards SMT Model Checking of Array-Based Systems[END_REF] in which SMT solvers are used for model-checking infinite-state systems. Hence, the basic idea behind the design of the logic PLTL[C] is to refine the language of atomic formulae and to allow comparisons of counter values. Similar motivations can be found in the introduction of concrete domains in description logics, that are logic-based formalisms for knowledge representation [1,[START_REF] Lutz | NEXPTIME-complete description logics with concrete domains[END_REF]. We define below a version of Linear-time Temporal Logic (LTL), dedicated to counter systems in which the atomic formulae are linear constraints and the temporal operators are those of LTL. Note that capacity constraints from [START_REF] Dixon | Temporal logic with capacity constraints[END_REF] are arithmetical constraints different from those defined below.

The formulae of the logic PLTL[C] are defined as follows:

φ ::= p | g | ¬φ | φ ∨ φ | Xφ | φUφ | X -1 φ | φSφ
where p ∈ AT and g ∈ G(C n ) for some n. We may use the standard abbreviations F, G, G -1 etc. For instance, the formula GF(x 1 + 2 ≥ x 2 ) states that infinitely often the value of counter 1 plus 2 is greater than the value of counter 2. The past-time operators S and X -1 do not add expressive power to the logic itself [START_REF] Gabbay | The declarative past and imperative future[END_REF], but it is known that it helps a lot to express properties succinctly, see e.g. [START_REF] Laroussinie | Specification in CTL + past for verification in CTL[END_REF][START_REF] Laroussinie | Temporal logic with forgettable past[END_REF]. The temporal depth of φ, written td(φ), is defined as the maximal number of imbrications of temporal operators in φ. 

σ, i |= p def ⇔ p ∈ π 1 (σ(i)) σ, i |= g def ⇔ v i |= g where v i (x j ) = π 2 (σ(i))(x j ) σ, i |= Xφ def ⇔ σ, i + 1 |= φ σ, i |= φ 1 Uφ 2 def ⇔ σ, j |= φ 2 for some i ≤ j such that σ, k |= φ 1 for all i ≤ k < j σ, i |= X -1 φ def ⇔ i > 0 and σ, i -1 |= φ σ, i |= φ 1 Sφ 2 def ⇔ σ, j |= φ 2 for some 0 ≤ j ≤ i such that σ, k |= φ 1 for all j < k ≤ i Given a counter system Q, C n , ∆, l and a run ρ := q 0 , v 0 δ 0 -→ • • • δ p-1 --→ q p , v p δp -→ • • • , we consider the model σ ρ : N → 2 AT × N C such that π 1 (σ ρ (i)) def = l(q i ) and π 2 (σ ρ (i))(x j ) def = v i [j] for all j ∈ [1, n] and for all i ∈ N. Note that π 2 (σ ρ (i))(x j ) is arbitrary for all j ∈ [1, n]. We extend the satisfac- tion relation to runs so that ρ, i |= φ def ⇔ σ ρ , i |= φ whenever φ is built from counters in C n .
The verification problem we are interested in is the model-checking problem for PLTL[C] over counter systems, written MC(L, C), where L is a fragment of PLTL[C] and C is a class of counter systems. MC(L, C) is defined as follows:

Input: A counter system S ∈ C, a configuration c 0 and a formula φ ∈ L;

Output: Is there a run ρ starting from c 0 in S such that ρ, 0 |= φ?

If the answer is positive, we write S, c 0 |= φ. It is known that for the full class of counter systems, the model-checking problem is undecidable; this is due to the fact that reachability of a control state is undecidable for counter systems manipulating at least two counters [START_REF] Minsky | Computation, Finite and Infinite Machines[END_REF]. On the other hand, some restrictions can lead to decidability of this problem. This is the case for flat counter systems, for whom it is proved in [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF] that the model-checking problem of some temporal logic more expressive than PLTL[C] is decidable. Unfortunately the decision procedure proposed in [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF] involves an exponential reduction to the satisfiability problem for some formulae of the Presburger arithmetic and as a consequence has a high complexity. The main goal of this work is to show that a much better upper bound for MC(PLTL[C], FlatCS) is possible and to provide the precise complexity of this problem and of its related fragments.

Fundamental Structures: Minimal Path Schemas

In this section, we introduce a fundamental notion for flat counter systems, namely the path schemas. Indeed, every flat counter system can be decomposed into a finite set of (minimal) path schemas and there are only an exponential number of them. In the forthcoming nondeterministic algorithms to solve model-checking problems on flat counter systems, the first step consists in guessing a minimal path schema and then computations are performed on such a structure. This explains why path schemas are a central notion in our work.

Let S = Q, C n , ∆, l be a flat counter system. A path segment p of S is a finite word (or sequence) of transitions from ∆ such that target(p(i)) = source(p(i + 1)) for all 0 ≤ i < len(p) -1. We write first(p) [resp. last(p)] to denote the first [resp. last] control state of a path segment, in other words first(p) = source(p(0)) and last(p) = target(p(len(p) -1)). We also write

effect(p) def = 0≤i<len(p) update(p(i))
representing the total effect of the updates along the path segment. A path segment p is said to be simple if len(p) > 0 and for all 0 ≤ i, j < len(p), p(i) = p(j) implies i = j (no repetition of transitions). A loop is a simple path segment p such that first(p) = last(p). If a path segment is not a loop it is called a non-loop segment. A path schema P is an ω-regular expression built over the alphabet of transitions such that its language represents an overapproximation of the set of labels obtained from infinite runs following the transitions of P . Definition 3.1 (Path Schema). A path schema P is of the form p 1 l + 1 p 2 l + 2 . . . p k l ω k verifying the following conditions: 1. l 1 , . . . , l k are loops, 2. p 1 l 1 p 2 l 2 . . . p k l k is a path segment.

We denote by CPS [resp. KPS] the class of path schemas of counter systems [resp. the class of path schemas of finite Kripke structures]. We write len(P ) for len(p 1 l 1 p 2 l 2 . . . p k l k ) and we denote by nbloops(P ) the number of loops in P (i.e. nbloops(P ) = k). Let L(P ) stand for the set of infinite words in ∆ ω that belong to the language defined by P . Note that some elements of L(P ) may not correspond to any run whenever constraints on counter values are not satisfied. Given w ∈ L(P ), we write iter P (w) to denote the unique tuple in

(N \ {0}) k-1 such that w = p 1 l iter P (w)[1] 1 p 2 l iter P (w)[2] 2 . . . p k l ω k . So iter P (w)[i] is the number of times the loop l i is taken, for every i ∈ [1, k -1].
Then, given a configuration c 0 , the set iter P (c 0 ) is defined as the set of vectors

iter P (c 0 ) def = {iter P (w) ∈ (N \ {0}) k-1 | w ∈ lab(P, c 0 )}
We recall that lab(P, c 0 ) denotes the set of labels of infinite runs ρ starting at c 0 such that lab(ρ) belongs to L(P ).

Finally, we say that a run ρ starting in a configuration c 0 respects a path schema P if lab(ρ) ∈ lab(P, c 0 ) and for such a run, we write iter P (ρ) to denote

q 0 q 1 q 2 q 3 q 4 q 0 q 1 q 2 q 3 q 4 q 3 ≥ 1 ω +1 +2 +3 +4 +5 +6 +1 +2 +3 +4 +5 +5 +6
Figure 1: A flat counter system and one of its minimal path schemas iter P (lab(ρ)). By definition, if ρ respects P , then each loop l i is visited at least once, and the last one infinitely. So far, a flat counter system may have an infinite set of path schemas. To see this, it is sufficient to unroll loops and consider the unrolling as an alternating sequence of path and loop segments. However, we can impose minimality conditions on path schemas without sacrificing completeness. A path schema p 1 l + 1 p 2 l + 2 . . . p k l ω k is minimal whenever 1. p 1 • • • p k is either the empty word or a simple non-loop segment, 2. l 1 , . . . , l k are loops with disjoint sets of transitions.

We can then deduce the following lemma which is a simple consequence of the fact that in a minimal path schema, each transition occurs at most twice. Lemma 3.2. Given a flat counter system S = Q, C n , ∆, l , the total number of minimal path schemas of S is finite and is smaller than card(∆) (2×card(∆)) and the length of a minimal path schema of S is bounded by 2 × card(∆).

In Figure 1, we present a flat counter system S with a unique counter and one of its minimal path schemas. Each transition δ i labelled by +i corresponds to a transition with the guard and the update value +i. The minimal path schema shown in Figure 1 corresponds to the ω-regular expression δ 1 (δ 2 δ 3 ) + δ 4 δ 5 (δ 6 δ 5 ) ω . In order to avoid confusions between path schemas and flat counter systems that look like path schemas, simple loops in the representation are labelled by ω or ≥ 1 depending whether the simple loop is the last one or not. Note that in the representation of path schemas, a state may occur several times, as it is the case for q 3 (this cannot happen in the representation of counter systems). Minimal path schemas play a crucial role in the sequel, mainly because of the following properties. Lemma 3.3. Let S be a flat counter system and P be one of its path schemas. There is a minimal path schema P such that every run respecting P respects P as well.

Proof Consider any non-minimal path schema P = p 1 (l 1 ) + • • • p k (l k ) ω . P is non-minimal because some edge δ occurs strictly more than twice in P . Consider the segments from P containing three consecutive occurrences of δ. Let w denote the subword of p 1 l 1 • • • p k l k formed by taking the segments together. We can write the word w as w 1 δw 2 δw 3 δw 4 and thus source(δ) = target(w 2 ) = target(w 3 ). Similarly, it is clear that target(δ) = source(w 2 ) = source(w 3 ). Since P is obtained from a flat counter system, δ belongs to at most one simple cycle. In this case, clearly there are two loops δw 2 and δw 3 starting and ending at source(δ) and hence both δw 2 and δw 3 are iterations of the same loop. Thus there exists a loop segment l such that δw 2 = l α and δw 3 = l β for some α, β ∈ N and target(l ) = source(l ) = source(δ). Let P 1 be the path schema obtained by replacing σ i . . . σ j . . . σ k with w 1 (l ) + δw 4 in P . Clearly, P 1 is a path schema in due form and L(P 1 ) = L(P ). Note that the above transformation reduces the number of times δ appear by at least one. Performing the above construction repeatedly for any transition appearing strictly more than twice in P , we get a minimal path schema P . Since, the set of accepted words is preserved in the transformation, L(P ) = L(P ) and hence for every run respecting P there is a run respecting P (and the other way around).

Finally, the conditions imposed on the structure of path schemas imply that each run in a flat counter system starting at configuration c 0 respects a path schema (see similar statements in [START_REF] Leroux | Flat counter systems are everywhere! In[END_REF]). Lemmas 3.2 and 3.3 entail the following result.

Corollary 3.4. For a flat counter system S and a configuration c 0 , there is a finite set of minimal path schemas X of cardinality at most card(∆) (2×card(∆)) such that lab(c 0 ) = lab( P ∈X P, c 0 ).

Stuttering Theorem for PLTL[∅]

Stuttering of finite words or single letters has been instrumental to show several results about the expressive power of PLTL[∅] fragments, see e.g. [START_REF] Peled | Stutter-invariant temporal properties are expressible without the next-time operator[END_REF][START_REF] Kučera | The stuttering principle revisited[END_REF]; for instance, PLTL[∅] restricted to the temporal operator U characterizes exactly the class of formulae defining classes of models invariant under stuttering. This is refined in [START_REF] Kučera | The stuttering principle revisited[END_REF] for PLTL[∅] restricted to U and X, by taking into account not only the U-depth but also the X-depth of formulae and by introducing a principle of stuttering that involves both letter stuttering and word stuttering. In this section, we establish another substantial generalization that involves the full logic PLTL[∅] (with its past-time temporal operators). Roughly speaking, we show that if σ 1 s M σ 2 , 0 |= φ where σ 1 s M σ 2 is a PLTL[∅] model (σ 1 , s being finite words), φ is PLTL[∅] formula verifying td (φ) ≤ N and M > 2N , then σ 1 s 2N +1 σ 2 , 0 |= φ (and other related properties). This allows us to conclude that if there is a run (a) satisfying a path schema P (see Section 3) and, (b) verifying a PLTL[∅] formula φ, then there is a run satisfying (a), (b) and each loop is visited at most 2 × td (φ) + 5 times, leading to an NP upper bound (see Proposition 5.1). This extends a result without past-time operators [START_REF] Kuhtz | Weak Kripke structures and LTL[END_REF]. Moreover, this turns out to be a key property (Theorem 4.1) to establish the NP upper bound even in the presence of counters (but additional work needs to be done, see Section 6). It is worth observing that Theorem 4.1 below is interesting for its own sake, independently of our investigation on flat counter systems.

Given M, M , N ∈ N, we write M ≈ N M iff min(M, N ) = min(M , N ). Given w = w 1 u M w 2 , w = w 1 u M w 2 ∈ Σ ω and i, i ∈ N, we define an equivalence relation w, i ≈ N w , i (implicitly parameterized by w 1 , w 2 and u) such that w, i ≈ N w , i means that the number of copies of u before position i and the number of copies of u before position i are related by ≈ N and the same applies for the number of copies after the positions. Moreover, if i and i occur in the part where u is repeated, then they correspond to identical positions in u. More formally, w, i ≈ N w , i def ⇔ M ≈ 2N M and either, M, M ≤ 2N and i = i , or one of the following conditions holds true:

1. i, i < len(w 1 ) + N • len(u) and i = i . 2. i ≥ len(w 1 ) + (M -N ) • len(u) and i ≥ len(w 1 ) + (M -N ) • len(u) and (i -i ) = (M -M ) • len(u). 3. len(w 1 ) + N • len(u) ≤ i < len(w 1 ) + (M -N ) • len(u) and len(w 1 ) + N • len(u) ≤ i < len(w 1 ) + (M -N ) • len(u) and |i -i | = 0 mod len(u).
The conditions merely state that if M, M ≤ 2N then the positions in the respective words have to be same. Since M ≈ 2N M , we have M, M ≤ 2N implies that M = M , that is w = w . Otherwise, when M, M > 2N , the indices i and i should point to the corresponding equivalent positions in the words w and w when i, i are located upto the first N iterations of u or from the last N iterations of u. Finally, if the positions i and i belong to any iteration of u between the block of the first N iterations of u and the block of the last N iterations of u, then i and i have the same relative position with respect to u. Figure 2 presents two words w and w over the alphabet Σ = { , } such that w is of the form w 1 ( ) 7 w 2 and w is of the form w 1 ( ) 8 w 2 . The relation ≈ 3 is represented by edges between positions: each edge from positions i of w to positions i of w represents the fact that w, i ≈ 3 w , i .

w 1 | | | w 2 w 1 | | | w 2
In order to prove our stuttering theorem for PLTL[∅], we need to express some properties concerning the relation ≈ whose proofs can be found in Appendix. Let w = w 1 u M w 2 , w = w 1 u M w 2 ∈ Σ ω , i, i ∈ N and N ≥ 2 such that M, M > 2N and w, i ≈ N w , i . We can show the following properties:

(Claim 1) w, i ≈ N -1 w , i and w(i) = w (i ). (Claim 2) i, i > 0 implies w, i -1 ≈ N -1 w , i -1 . (Claim 3) w, i + 1 ≈ N -1 w , i + 1 (Claim 4) For all j ≥ i, there is j ≥ i such that w, j ≈ N -1 w , j and for all k ∈ [i , j -1], there is k ∈ [i, j -1] such that w, k ≈ N -1 w , k . (Claim 5) For all j ≤ i, there is j ≤ i such that w, j ≈ N -1 w , j and for all k ∈ [j -1, i ], there is k ∈ [j -1, i] such that w, k ≈ N -1 w , k .
We now state our stuttering theorem for PLTL[∅] that is tailored for our future needs.

Theorem 4.1 (Stuttering). Let N ≥ 2 and M, M > 2N and σ = σ 1 s M σ 2 , σ = σ 1 s M σ 2 ∈ (2 AT ) ω . For all i, i ∈ N such that σ, i ≈ N σ , i and for all PLTL[∅] formulae φ with td (φ) ≤ N , we have σ, i |= φ iff σ , i |= φ.
This theorem basically states that no PLTL[∅] formula φ with td (φ) ≤ N is able to distinguish the infinite words σ = σ 1 s M σ 2 and σ = σ 1 s M σ 2 when M, M > 2N . Before proving the theorem we assign a tuple of naturals for each PLTL[∅] formula φ denoted as rank(φ) ∈ N × N and defined as rank(φ) = td (φ), size(φ) where size(φ) denotes the size of the formula φ which is defined as usual. For instance, size(p) = 1 and size(φ

1 ∧ φ 2 ) = size(φ 1 Uφ 2 ) = size(φ 1 ) + size(φ 2 ) + 1.
The tuple rank(φ) is called the rank of the formula φ and we use the lexicographic order < over the ranks of formulae. This order is defined as follows

m 1 , n 1 < m 2 , n 2 iff either m 1 < m 2 or (m 1 = m 2 and n 1 < n 2 ). Proof (Stuttering Theorem) Let N ≥ 2 and M, M > 2N and σ = σ 1 s M σ 2 , σ = σ 1 s M σ 2 ∈ (2 AT ) ω . We consider as well i, i ∈ N such that σ, i ≈ N σ , i . We will show that for all PLTL[∅] formula φ with td (φ) ≤ N , we have σ, i |= φ iff σ , i |= φ.
The proof is by induction on the formula rank. We assume furthermore that (Claim 1) -(Claim 5) are true (the proofs of these claims being provided in Appendix).

• Base case: As base case we consider a PLTL[∅] formula φ with rank(φ) = 0, 1 . (i.e. formulae which are just atomic propositions). Thus we have φ = p for some p ∈ AT. Since, σ, i ≈ N σ , i for some N ≥ 2 and by (Claim 1), w(i) = w(i ), either p ∈ w(i) or p ∈ w(i), In any case, σ, i |= p iff σ , i |= p.

• Induction step: The induction hypothesis is the following one: for all formulae ψ with rank(ψ) < rank(φ) and for all j, j such that σ, j ≈ td(ψ) σ , j , we have σ, j |= ψ iff σ , j |= ψ. To prove that the desired property holds, we proceed by the following case analysis on the shape of the formula φ.

φ = Xφ : Since td (φ ) < td (φ), we have rank(φ ) < rank(φ).

By (Claim 3), σ, i + 1 ≈ N -1 σ , i + 1 and using (Claim 1) repeatedly σ, i + 1 ≈ td(φ ) σ , i + 1 . By induction hypothesis, we have σ, i + 1 |= φ iff σ , i + 1 |= φ . Thus, σ, i |= Xφ iff σ , i |= Xφ . -φ = X -1 φ : First if i = 0 or i = 0, since σ, i ≈ N σ , i , we have i = i = 0 and in that case σ, i |= X -1 φ and σ , i |= X -1 φ . Assume now i > 0 and i > 0. Since td (φ ) < td (φ), we have rank(φ ) < rank(φ). By (Claim 2), i, i > 0 implies σ, i -1 ≈ N -1 σ , i -1
and consequently, thanks to (Claim 1), we deduce σ, i -

1 ≈ td(φ ) σ , i -1 . Using induction hypothesis, σ, i-1 |= φ iff σ , i -1 |= φ . This allows us to deduce that σ, i |= X -1 φ iff σ , i |= X -1 φ . -φ = φ 1 Uφ 2 : First, we suppose that σ, i |= φ 1 Uφ 2 . There is j ≥ i such that σ, j |= φ 2 and σ, k |= φ 1 for every k ∈ [i, j -1].
We have that td (φ 1 ) ≤ N -1 and td (φ 2 ) ≤ N -1, and consequently rank(φ 1 ) < rank(φ) and rank(φ 2 ) < rank(φ). Using (Claim 4), there is j ≥ i such that σ, j ≈ N -1 σ , j and for all k

∈ [i , j -1] there is k ∈ [i, j -1] such that σ, k ≈ N -1 σ , k . Using (Claim 1
) and the induction hypothesis, we deduce that σ , j |= φ 2 and σ , k

|= φ 1 for every k ∈ [i , j -1] . Thus σ , i |= φ 1 Uφ 2 .
Following the same reasoning, we can prove that if

σ , i |= φ 1 Uφ 2 , we have σ, i |= φ 1 Uφ 2 . -φ = φ 1 Sφ 2 : We first suppose that σ, i |= φ 1 Sφ 2 ; consequently there is 0 ≤ j ≤ i such that σ, j |= φ 2 and σ, k |= φ 1 for every k ∈ [j + 1, i]. We have that td (φ 1 ) ≤ N -1 and td (φ 2 ) ≤ N -1,
and consequently rank(φ 1 ) < rank(φ) and rank(φ 2 ) < rank(φ).

Using (Claim 5), there is 0 φ = ¬φ : In that case td (φ ) = td (φ) and size(φ ) = size(φ) -1, hence rank(φ ) < rank(φ). Since σ, i ≈ N σ , i , using (Claim 1), we have σ, i ≈ td(φ ) σ , i (remember that td (φ ) ≤ N ) and by induction hypothesis, we deduce that σ, i φ iff σ , i φ . Thus, σ, i |= ¬φ iff σ , i |= ¬φ .

≤ j ≤ i such that σ, j ≈ N -1 σ , j and for all k ∈ [j +1, i ] there is k ∈ [j +1, i] such that σ, k ≈ N -1 σ , k . Using (Claim
φ = φ 1 ∨ φ 2 : For such a formula, we consider the two following subcases:

(a) (td (φ 1 ) ≤ td (φ) -1 and td (φ 2 ) = td (φ)) or (td (φ 2 ) ≤ td (φ) - 1 and td (φ 1 ) = td (φ))
. Without loss of generality, let us assume that td (φ 1 ) ≤ td (φ) -1 and td (φ 2 ) = td (φ). We have size(φ 2 ) ≤ size(φ) -1. This implies that rank(φ 1 ) < rank(φ) and rank(φ 2 ) < rank(φ). Since σ, i ≈ N σ , i , using (Claim 1) repeatedly, we have σ, i ≈ td(φ 1 ) σ , i and σ, i ≈ td(φ 2 ) σ , i (remember that td (φ 1 ) ≤ N and that td (φ 2 ) ≤ N ). Thus, by induction hypothesis,

σ, i |= φ 1 iff σ , i |= φ 1 and σ, i |= φ 2 iff σ , i |= φ 2 . Hence, σ, i |= φ 1 ∨φ 2 iff σ , i |= φ 1 ∨φ 2 . (b) td (φ 1 ) = td (φ 2 ) = td (φ).
In that case, we have size(φ 1 ) ≤ size(φ)-1 and size(φ 2 ) ≤ size(φ)-1. Consequently rank(φ 1 ) < rank(φ) and rank(φ 2 ) < rank(φ). As previously, this allows us to deduce that σ, i |=

φ 1 ∨ φ 2 iff σ , i |= φ 1 ∨ φ 2 .
A similar proof can be found in [START_REF] Kučera | The stuttering principle revisited[END_REF] and our proof provides a generalisation, in some respect, by dealing with past-time operators. On the other hand, for the purpose of model-checking flat counter systems, we need a simpler property than what is established in [START_REF] Kučera | The stuttering principle revisited[END_REF]. The proof of Theorem 4.1 essentially amounts to design a suitable strategy in Ehrenfeucht-Fraïssé (EF) games [START_REF] Etessami | An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic[END_REF]. Consequently, an alternative proof is possible by using EF games [START_REF] Etessami | An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic[END_REF]; this does not necessarily provide a shorter proof and it requires to use properties of the game, as done in [START_REF] Etessami | An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic[END_REF]. In particular even though the above proof and the proof of [START_REF] Etessami | An until hierarchy and other applications of an Ehrenfeucht-Fraïssé game for temporal logic[END_REF]Theorem 4.4] are also similar in nature, we nevertheless provide the proof which is tailored to our specific need and moreover this allows us to be self-contained. Note that to obtain the same result thanks to EF games, it is enough to observe that the relation w, i ≈ N w , i leads exactly to a winning strategy for the Duplicator in the Ehrenfeucht-Fraïssé game for Past LTL over the words w and w . Another reason for being self-contained is that the properties shown in both proofs are slightly different; typically, for our model-checking procedure, we need a polynomial bound.

Finally, from Theorem 4.1, we conclude that given a formula φ from PLTL[∅], a word σ with an infix s repeated more than max(2.td (φ) + 1, 5) times satisfies φ iff the word σ in which s is repeated exactly max(2.td (φ) + 1, 5) times satisfies φ.

Model-checking Path Schemas

Path schemas in flat counter systems and Kripke structures are defined as ω-regular expressions over the alphabet of transitions. Nevertheless, they can also be viewed as restricted flat systems, i.e. as restricted flat counter systems or Kripke structures, with the proviso that each loop is visited at least once and the structure is more constrained since it follows the definition of path schemas. For instance, in a path schema, it is not possible to have two transitions from the same "state" leading to two different loops. In this section, we consider the model-checking problem with input path schemas (instead of counter systems). Studying such restricted flat systems is indeed important to understand where stands the frontier for the lower and upper bounds of our complexity results.

Complexity results for Path Schemas of Kripke Structures

We begin by looking at the model-checking problem for PLTL[∅] over path schemas of a flat Kripke structure. We write MC(PLTL[∅], KPS) to denote the problem defined below:

Input: A finite flat Kripke structure S, a path schema P of S, a configuration c 0 and a formula φ of PLTL[∅];

Output: Is there a run ρ starting at c 0 , respecting P , and such that ρ, 0 |= φ?

In case of positive answer, we write P, c 0 |= φ. Let ρ and ρ be runs respecting

P . For α ≥ 0, we write ρ ≡ α ρ def ⇔ for every i ∈ [1, nbloops(P ) -1], we have min(iter P (ρ)[i], α) = min(iter P (ρ )[i], α).
We state below a result concerning the runs of flat counter systems (including finite flat Kripke structures) when respecting the same path schema. Proposition 5.1. Let S be a flat counter system, P be a path schema, and φ ∈ PLTL [∅]. For all runs ρ and ρ respecting P such that ρ ≡ 2td(φ)+5 ρ , we have ρ, 0 |= φ iff ρ , 0 |= φ.

This property can be proved by applying the Stuttering Theorem (Theorem 4.1) repeatedly in order to get rid of the unwanted iterations of the loops.

Our algorithm for MC(PLTL[∅], KPS) takes advantage of a result from [START_REF] Laroussinie | Temporal logic with forgettable past[END_REF] for model-checking ultimately periodic models with formulae from Past LTL. An ultimately periodic path is an infinite word in ∆ ω of the form uv ω where uv is a path segment and first(v) = last(v). More generally, an ultimately periodic word over the alphabet Σ is an ω-word in Σ ω that can be written as uv ω where u is the prefix and v is the loop. According to [START_REF] Laroussinie | Temporal logic with forgettable past[END_REF], given an ultimately periodic path w, and a formula φ ∈ PLTL[∅], the problem of checking whether there exists a run ρ such that lab(ρ) = w and ρ, 0 |= φ is in PTime. Using Theorem 4.1, we can bound the maximal number of iterations of v we need to check for a given Past LTL formula φ. For the sake of completeness, we provide the proof presented in [START_REF] Kuhtz | Weak Kripke structures and LTL[END_REF] adapted to our context.

Lemma 5.2. MC(PLTL[∅], KPS) is in NP. ≥ 1 ≥ 1 ≥ 1 q 1 q 2 q 3 ≥ 1 q n ω

Proof

The proof is by reduction from the SAT problem. Let Φ be a Boolean formula built over the propositional variables P V = {p 1 , • • • , p n }. We build a path schema P and a formula ψ such that Φ is satisfiable iff there is a run respecting P and satisfying ψ. The path schema P is the one described in Figure 3 so that the truth of the propositional variable p i is encoded by the fact that the loop containing q i is visited twice, otherwise it is visited once. The formula ψ is defined as a conjunction ψ 1∨2 ∧ψ truth where ψ 1∨2 states that each loop is visited at most twice and ψ truth establishes the correspondence between the truth of p i and the number of times the loop containing q i is visited. Formula ψ 1∨2 is equal to [ i (G(q i ∧ XXq i ⇒ XXXG¬q i ))] whereas ψ truth is defined from Φ by replacing each occurrence of p i by F(q i ∧ XXq i ).

Let us check the correctness of the reduction. Let v : P V → { , ⊥} be a valuation satisfying Φ. Let us consider the run ρ respecting P such that iter P (ρ

)[i] def = 2 if v(p i ) = , otherwise iter P (ρ)[i] def = 1 for all i ∈ [1, n]. It is easy to check that ρ, 0 |= ψ. Conversely, if there is a run ρ respecting P such that ρ, 0 |= ψ, the valuation v satisfies Φ where for all i ∈ [1, n], we have v(p i ) = def ⇔ iter P (ρ)[i] = 2.
Then, the NP-completeness of MC(PLTL[∅], KPS) follows from the two previous lemmas. Let us also consider the case where we restrict the class of path schemas by bounding the number of loops. Hence, for a fixed k ∈ N, we write MC(PLTL[∅], KPS(k)) to denote the restriction of MC(PLTL[∅], KPS) to path schemas with at most k loops. When k is fixed, the number of ultimately periodic paths w in L(P ) such that each loop (except the last one) is visited at most 2td (φ) + 5 times is bounded by (2td (φ) + 5) k , which is polynomial in the size of the input (because k is fixed). From these considerations, we deduce the following result.

Theorem 5.4. MC(PLTL[∅], KPS) is NP-complete. Given a fixed k ∈ N, MC(PLTL[∅], KPS(k)) is in PTime.
It can be shown that MC(PLTL[∅], KPS(k)) is in NC, hence giving a tighter upper bound for the problem. This can be obtained by observing that we can run the NC algorithm from [START_REF] Kuhtz | Model checking finite paths and trees[END_REF] for model checking PLTL[∅] over ultimately periodic paths in parallel on (2td (φ) + 5) k (polynomially many) different paths.

Result for Flat Kripke Structures

Now, we show how to solve MC(PLTL[∅], FlatKS) by using Lemma 5.2. From Lemma 3.2, the number of minimal path schemas in a flat Kripke structure S = Q, ∆, l is finite and the length of a minimal path schema is at most 2 × card(∆). Hence, for solving the model-checking problem for an initial state q 0 and a PLTL[∅] formula φ, a possible algorithm consists in choosing non-deterministically a minimal path schema P starting at q 0 and then apply the algorithm used to establish Lemma 5.2. This new algorithm would be in NP. Furthermore, thanks to Corollary 3.4, we know that if there exists a run ρ of S such that ρ, 0 |= φ then there exists a minimal path schema P such that ρ respects P . Consequently there is an algorithm in NP to solve MC(PLTL[∅], FlatKS) and NP-hardness can be established as a variant of the proof of Lemma 5.3. Theorem 5.5. MC(PLTL[∅], FlatKS) is NP-complete.

Some lower bounds in the presence of counters

We will now provide some complexity lower bounds when considering path schemas over counter systems. As for path schemas from Kripke structures, we use CPS(k) to denote the class of path schemas obtained from flat counter systems with number of loops bounded by k. Surprisingly, in the presence of counters, bounding the number of loops preserves NP-hardness as soon as there are at least two loops. The case with a single loop is dealt with in Section 8.2.

Lemma 5.6. For k ≥ 2, MC(PLTL[C], CPS(k)) is NP-hard.
The proof is by reduction from SAT and it is less straightforward than the proof for Lemma 5.3 or the reduction presented in [START_REF] Kuhtz | Weak Kripke structures and LTL[END_REF] when path schemas are involved. Indeed, we cannot encode the nondeterminism in the structure itself and the structure has only a constant number of loops. Actually, we cannot use a separate loop for each counter; the reduction is done by encoding the nondeterminism in the (possibly exponential) number of times a single loop is taken, and then using its binary encoding as an assignment for the propositional variables.

Proof The proof is by reduction from the problem SAT. Let Φ be a Boolean formula built over the propositional variables in {p 1 , . . . , p n }. We build a path schema P ∈ CPS(2), an initial configuration (in which all counters will be equal to zero) and a formula ψ such that Φ is satisfiable iff there is a run respecting P and starting at the initial configuration such that it satisfies ψ. The path schema P is the one described in Figure 4; it has one internal loop and a second loop that is visited infinitely. The guard x 1 ≤ 2 n enforces that the first loop is visited α times with α ∈ [1, 2 n ], which corresponds to guess a propositional valuation such that the truth value of the propositional variable p i is whenever the ith bit of α -1 is equal to 1. When α -1 is encoded in binary with n bits, we assume the first bit is the most significant one. Note that the internal loop has to be visited at least once since P is a path schema.

Since the logical language does not allow to access to the ith bit of a counter value, we simulate the test by arithmetical constraints in the formula when the second loop of the path schema is visited. For every α ∈ [1, 2 n ] and every i ∈ [1, n], we write α i u to denote the value in [0, 2 i-1 -1] corresponding to the i-1 first bits of α-1. When i = 1, by convention α i u = 0. Similarly, we write α i d to denote the value in [0, 2 n+1-i -1] corresponding to the (n + 1 -i)

q 0 q 1 x 1 ≤ 2 n ,       1 1 . . . 1       ≥ 1 ,       0 0 . . . 0       ,       2 n 2 n-1 . . . 2 1       ω Figure 4: Path schema P last bits of α -1. Observe that α -1 = α i u × 2 n-i+1 + α i d .
One can show that the propositions below are equivalent:

1. ith bit of α -1 is 1, 2. there is some k ≥ 0 such that k × 2 n+1-i + (α -1) ∈ [2 n + 2 n-i , 2 n + 2 n+1-i -1].
Actually, we shall show that k is unique and the only possible value is 2 i-1α i u . Before showing the equivalence between (1.) and (2.), we can observe that condition (2.) can be expressed by the formula

F(q 1 ∧ ((x i -1) ≥ 2 n + 2 n-i ) ∧ ((x i -1) ≤ 2 n + 2 n-i+1 -1)) First, note that [2 n +2 n-i , 2 n +2 n+1-i -1] contains 2 n-i distinct values and therefore satisfaction of (2.) implies unicity of k since 2 n+1-i > 2 n-i . Second, the ith bit of α -1 is equal to 1 iff α i d ∈ [2 n-i , 2 n+1-i -1]. Now, observe that (2 i-1 -α i u )2 n+1-i + (α -1) = 2 n + α i d . So, if (1.), then α i d ∈ [2 n-i , 2 n+1-i -1] and consequently 2 n + α i d ∈ [2 n + 2 n-i , 2 n + 2 n+1-i -1]. So, there is some k ≥ 0 such that k × 2 n+1-i + (α -1) ∈ [2 n + 2 n-i , 2 n + 2 n+1-i -1] (take k = 2 i-1 -α i u ). Now, suppose that (2.) holds true. There is k ≥ 0 such that k ×2 n+1-i +(α-1) ∈ [2 n +2 n-i , 2 n +2 n+1-i -1]. So, k ×2 n+1-i +(α-1)-2 n ∈ [2 n-i , 2 n+1-i -1] and therefore k × 2 n+1-i + α i d -(2 i-1 -α i u ) × 2 n+1-i ∈ [2 n-i , 2 n+1-i -1]. Since the expression denotes a non-negative value, we have k ≥ (2 i-1 -α i u ) (indeed α i d < 2 n+1-i
) and since it denotes a value less or equal to

2 n+1-i -1, we have k ≤ (2 i-1 -α i u ). Consequently, k = 2 i-1 -α i u and therefore α i d ∈ [2 n-i , 2 n+1-i -1]
, which is precisely equivalent to the fact that the ith bit of α -1 is equal to 1.

The formula ψ is defined from Φ by replacing each occurrence of p i by

F(q 1 ∧ ((x i -1) ≥ 2 n + 2 n-i ) ∧ ((x i -1) ≤ 2 n + 2 n-i+1 -1)).
Intuitively, P contains one counter by propositional variable and all the counters hold the same value after the first loop. Next, in the second loop, we check that the ith bit of α-1 is one by incrementing x i by 2 n+1-i . We had to consider n counters since the increments differ. In order to check whether the ith bit of counter x i is one, we add repeatedly 2 n+1-i to the counter. Note that this ensures that the bits at positions i to n remains the same for the counter whereas the counter is incremented till its value is greater or equal to 2 n . Eventually, we may deduce that the counter value will belong to

[2 n + 2 n-i , 2 n + 2 n-i+1 -1].
Let us check the correctness of the reduction. Let v : {p 1 , . . . , p n } → { , ⊥}. be a valuation satisfying Φ. We consider the run ρ respecting P such that the first loop is taken α

= (v(p 1 )v(p 2 ) • • • v(p n )) 2 + 1
times and the initial counter values are all equal to zero.

is read as 1, ⊥ as 0 and

(v(p 1 )v(p 2 ) • • • v(p n ))
2 denotes the value of the natural number made of n bits in binary encoding. Hence, for every i ∈ [1, n], the counter x i contains the value α after the first loop. As noted earlier, v(p i ) = implies that adding 2 n-i+1 repeatedly to x i in the last loop, we will hit

[2 n + 2 n-i , 2 n + 2 n-i+1 -1]. Hence, the formula F(q 1 ∧ ((x i -1) ≥ 2 n + 2 n-i ) ∧ ((x i -1) ≤ 2 n + 2 n-i+1 -1))
will be satisfied by ρ iff v(p i ) = . It is easy to check thus, that ρ, 0 |= ψ. Conversely, if there is a run ρ respecting P such that ρ, 0 |= ψ and the initial counter values are all equal to zero, the valuation v satisfies Φ where for all i ∈ [1, n], we have v(p i ) iff the i th bit in the binary encoding of α -1 is 1, where α is the number of times the first loop is taken. Now, for the sake of completeness, we provide a simple proof that the reachability problem in flat counter systems is NP-hard too. As explained earlier, a path schema in CPS can be seen as a flat counter system with the proviso that each internal loop is visited at least once and the control structure has a limited amount of nondeterminism. For any state q, we write conf 0 (q) to denote the configuration q, 0, • • • , 0 (all counter values are equal to zero). The reachability problem REACH(C) for a class of counter system C is defined as: Input: A counter system S ∈ C and two states q 0 and q f ; Output: Is there a run from conf 0 (q 0 ) to conf 0 (q f )?

We have then the following result concerning the lower bound of reachability in flat counter systems and path schemas from flat counter systems. Proof The proofs are by reduction from the SAT problem. Using the fact that CPS is a special and constrained FlatCS, we will only prove NP-hardness of REACH(CPS). As a corollary, we obtain the result for REACH(FlatCS).

q 0 q f ≥ 1       1 0 . . . 0       ≥ 1       0 1 . . . 0       ≥ 1       0 0 . . . 1       g,       0 0 . . . 0       ≥ 1       -1 0 . . . 0       ≥ 1       0 -1 . . . 0       ≥ 1       0 0 . . . -1       ω
Let Φ be a Boolean formula built over the propositional variables

P V = {p 1 , • • • , p n }.
We build a path schema P such that Φ is satisfiable iff there is a run respecting P starting with the configuration conf 0 (q 0 ) and visiting the configuration conf 0 (q f ). The path schema P is the one described in Figure 5 so that the truth of the propositional variable p i is encoded by the fact that the loop incrementing x i is visited at least twice. The guard g is defined as a formula that establishes the correspondence between the truth value of p i and the number of times the loop incrementing x i is visited. It is defined from Φ by replacing each occurrence of p i by x i ≥ 2. Since the i th and (n + i) th loops perform the complementary operation on the same counters, both of the loops can be taken equal number of times (so that q f is reached with all the counters equal to zero). Let us check the correctness of the reduction. Let v : P V → { , ⊥} be a valuation satisfying Φ. We consider the run ρ respecting P such that iter P (ρ

)[i] = k and iter P (ρ)[n+i] = k for some k ≥ 2, if v(p i ) = , otherwise iter P (ρ)[i] = 1 and iter P (ρ)[n + i] = 1 for all i ∈ [1, n].
It is easy to check that the guard g is satisfied by the run and taking i th loop and (n + i) th loop equal number times ensures resetting the counter values to zero. Hence, the configuration conf 0 (q f ) is reachable. Conversely, if there is a run ρ respecting P and starting with configuration conf 0 (q 0 ) such that the configuration conf 0 (q f ) is reachable, then the guard g ensures that the valuation v satisfies Φ where for all i ∈ [1, n], we have v(p i ) = def ⇔ iter P (ρ)[i] ≥ 2.

Characterizing Infinite Runs by Presburger Formulae

In this section, we show how to build a quantifier-free Presburger formula (also called a constraint system herein) from a path schema P and a configuration c 0 such that it encodes the set of all runs respecting P from c 0 . This can be done for path schemas without disjunctions in guards that satisfy an additional infiniteness property. A path schema P = p 1 l + 1 p 2 l + 2 . . . p k l ω k satisfies the infiniteness property whenever it satisfies the conditions below:

1. effect(l k ) ≥ 0, 2. all the guards in transitions of l k are conjunctions of atomic guards, and for each atomic guard occurring in the loop l k of the form i a i x i ∼ b we have

• i a i × effect(l k )[i] ≤ 0 if ∼∈ {≤, <}, • i a i × effect(l k )[i] = 0 if ∼∈ {=}, • i a i × effect(l k )[i] ≥ 0 if ∼∈ {≥, >}.
It is easy to check that these conditions are necessary to visit the last loop l k infinitely. More specifically, if a path schema does not satisfy the infiniteness property, then no infinite run can respect it (assuming that no disjunction occurs in guards). Moreover, given a path schema, one can decide in polynomial time whether it satisfies the infiniteness property. Now, let us consider a path schema P = p 1 l + 1 p 2 l + 2 . . . p k l ω k (k ≥ 1) obtained from a n-dim flat counter system S such that it satisfies the infiniteness property and all the guards on transitions are conjunctions of atomic guards of the form i a i x i ∼ b where a i ∈ Z, b ∈ Z and ∼∈ {=, ≤, ≥, <, >}. Hence, disjunctions are disallowed in guards. The goal of this section (see Lemma 6.1 below) is to characterize the set iter P (c 0 ) ⊆ (N \ {0}) k-1 for some initial configuration c 0 as the set of solutions of a constraint system. For each internal loop l i of the path schema P , we introduce a variable y i . The number of variables in the systems/formulae is hence precisely k -1.

A constraint system E over the set of variables {y 1 , . . . , y k-1 } is a quantifierfree Presburger formula built over {y 1 , . . . , y k-1 } as a conjunction of atomic constraints of the form i a i y i ∼ b where a i , b ∈ Z and ∼∈ {=, ≤, ≥, < , >}. Conjunctions of atomic counter constraints and constraint systems are essentially the same objects but the distinction in this place allows to emphasize the different purposes: guard on counters in operational models and symbolic representation of sets of tuples. Now, we explain how to build from the path schema P and from an initial configuration c 0 = q 0 , v 0 , a constraint system E over the set of variables {y 1 , . . . , y k-1 } that characterizes the set iter P (c 0 ) ⊆ (N \ {0}) k-1 . The intuition behind this construction being that each variable y i represents the number of times the internal loop l i is taken.

For all α ∈ [1, k] and for all i ∈ [1, n], we write effect < (l α )[i] to denote the term below:

v 0 [i]+(effect(p 1 )+• • •+effect(p α ))[i]+effect(l 1 )[i]y 1 +. . .+effect(l α-1 )[i]y α-1
It corresponds to the value of the counter x i just before entering in the loop l α . Similarly, for all α ∈ [1, k] and for all i ∈ [1, n], we write effect < (p α )[i] to denote:

v 0 [i]+(effect(p 1 )+• • •+effect(p α-1 ))[i]+effect(l 1 )[i]y 1 +. . .+effect(l α-1 )[i]y α-1
It corresponds to the value of the counter x i just before entering in the segment p α . In this way, for each segment p in P (either a loop or a non-loop segment) and for each β ∈ [0, len(p) -1] the term below refers to the value of counter x i just before entering for the first time in the (β + 1)th transition of p:

effect < (p)[i] + effect(p(0) • • • p(β -1))[i]
Similarly, the value of counter x i just before entering for the last time in the (β + 1)th transition of l α is represented by the term below:

effect < (p)[i] + effect(l α )[i](y α -1) + effect(l α (0) • • • l α (β -1))[i]
The set of conjuncts in E is defined as follows. Each conjunct corresponds to a specific requirement in runs respecting P .

E 1 : Each loop is visited at least once:

y 1 ≥ 1 ∧ • • • ∧ y k-1 ≥ 1 E 2 :
Counter values are non-negative. We consider the following constraints:

• For each segment p and each β ∈ [0, len(p) -1], the value of counter x i just before entering for the first time in the (β + 1)th transition of p is non-negative:

effect < (p)[i] + effect(p(0) • • • p(β -1))[i] ≥ 0
The segment p can be either a loop or a non-loop segment.

• For each α ∈ [1, k -1] and for each β ∈ [0, len(l α ) -1], the value of counter x i just before entering for the last time in the (β + 1)th transition of l α is non-negative:

effect < (l α )[i]+effect(l α )[i](y α -1)+effect(l α (0) • • • l α (β -1))[i] ≥ 0
We point out that it is sufficient for preserving non-negativity to check the guards the first time and the last time the run enters in a loop.

E 3 :
Counter values should satisfy the guards the first time when a transition is visited. For each segment p in P , for each β ∈ [0, len(p) -1] and for each atomic guard i a i x i ∼ b occurring in guard (p(β)), we add the atomic constraint:

i a i (effect < (p)[i] + effect(p(0) • • • p(β -1))[i]) ∼ b E 4 :
Counter values should satisfy the guards the last time when a transition is visited. This applies to loops only. For each α ∈ [1, k -1], for each β ∈ [0, len(l α ) -1] and for each atomic guard i a i x i ∼ b occurring in guard (l α (β)), we add the atomic constraint:

i a i (effect < (l α )[i]+effect(l α )[i](y α -1)+effect(l α (0) • • • l α (β-1))[i]) ∼ b
No condition is needed for the last loop since the path schema P satisfies the infiniteness property. Furthermore, the guards are conjunctions of atomic guards (linear constraints), whence they describe a convex set. So, if along a run, the guard is satisfied the first time the loop is visited and the last time the loop is visited, then the guard is satisfied for all the intermediate visits.

Now, let us bound the number of equalities or inequalities above. To do so, we write N 1 to denote the number of atomic guards in P .

• The number of conjuncts in E 1 is less than k.

• The number of conjuncts in E 2 is bounded by len(P ) × n + len(P ) × n = 2n × len(P ).

• The number of conjuncts in E 3 [resp. E 4 ] is bounded by len(P ) × N 1 .

So, the number of conjuncts in E is bounded by 2 × len(P ) × (1 + n + N 1 ) ≤ 2 × len(P ) × n(1 + N 1 ). Since n ≤ size(P ) and 1 + N 1 ≤ size(P ), we get that this number is bounded by len(P ) × 2 × size(P ) 2 .

Let K be the maximal absolute value of constants occurring either in P or in v 0 . Now, we explain how it is possible to bound the maximal absolute value of constants in E. To do so, we start by a few observations.

• A path segment p has at most len(P ) transitions and therefore the maximal absolute value occurring in effect(p) is at most K × len(P ).

• The maximal absolute value occurring in effect < (p) is at most K + K × len(P ) = K(1 + len(P )). The first occurrence of K comes from the counter values in the initial configuration.

Consequently, we can make the following conclusions.

• The maximal absolute values of constants in E 1 is 1.

• The maximal absolute values of constants in the first part of E 2 is bounded by K(1 + len(P )) + Klen(P ) ≤ (K + 1)(len(P ) + 1).

• The maximal absolute values of constants in the second part of E 2 is bounded by K(1 + len(P )) + Klen(P ) + Klen(P ) ≤ 2(K + 1)(len(P ) + 1). So, the maximal absolute values of constants in E 2 is bounded by 2(K + 1)(len(P ) + 1).

• The maximal absolute values of constants in E 3 or E 4 is bounded by n × K × 2(K + 1)(len(P ) + 1) + K. The last occurrence of K is due to the constant b in the atomic constraint.

Consequently, the maximal absolute value of constants in E is bounded by 2n × K(K + 2) × (len(P ) + 1). When P is a minimal path schema, note that len(P ) ≤ 2 × card(∆) ≤ 2 × size(S) and k ≤ card(Q) ≤ size(S). Lemma 6.1. Let S = Q, C n , ∆, l be a flat counter system without disjunctions in guards, P = p 1 l + 1 p 2 l + 2 . . . p k l ω k be one of its path schemas satisfying the infiniteness property and c 0 be a configuration. One can compute a constraint system E such that

• the set of solutions of E is equal to iter P (c 0 ),

• E has k -1 variables,
• E has at most len(P ) × 2 × size(P ) 2 conjuncts,

• the greatest absolute value from constants in E is bounded by 2n × K(K + 2) × (len(P ) + 1).

Proof The constraint system E is the one built above. ( ) Let ρ = q 0 , v 0 q 1 , v 1 q 2 , v 2 • • • be an infinite run respecting the path schema P with c 0 = q 0 , v 0 . We write V : {y 1 , . . . , y k-1 } → N to denote the valuation such that for every

α ∈ [1, k -1], we have V (y α ) = iter P (ρ)[α].
V is extended naturally to terms built over variables in {y 1 , . . . , y k-1 }, the range becoming Z. Let us check that V |= E.

1. Since ρ respects P , each loop l i is visited at least once and therefore

V |= E 1 . 2. We have seen that the value below

V (effect < (p)[i] + effect(p(0) • • • p(β -1))[i])
is equal to the value of counter x i just before entering for the first time in the (β + 1)th transition of p. Similarly, the value below

V (effect < (l α )[i] + effect(l α )[i](y α -1) + effect(l α [0] • • • l α [β -1])[i])
is equal to the value of counter x i before entering for the last time in the (β+1)th transition of l α . Since ρ is a run, these values are non-negative, whence V |= E 2 . 3. Since ρ is a run, whenever a transition is fired, all its guards are satisfied. Hence, for each segment p in P , for each β ∈ [0, len(p) -1] and for each atomic guard i a i x i ∼ b in guard (p(β)), we have

i a i V (effect < (p)[i] + effect(p(0) • • • p(β -1))[i]) ∼ b
Similarly, for each α ∈ [1, k -1], for each β ∈ [0, len(l α ) -1] and for each atomic guard i a i x i ∼ b ∈ guard (l α (β)), we have

i a i V (effect < (l α )[i]+effect(l α )[i](y α -1)+effect(l α (0) • • • l α (β-1))[i]) ∼ b Consequently, V |= E 3 ∧ E 4 .
( ) It remains to show the property in the other direction. Let V : {y 1 , . . . , y k-1 } → N be a solution of E. Let

w = p 1 l V (y 1 ) 1 • • • p k-1 l V (y k-1 ) 1 p k l ω k ∈ ∆ ω
and let us build an ω-sequence ρ = q 0 , v 0 q

1 , v 1 q 2 , v 2 • • • ∈ (Q × Z n ) ω ,
that will be later shown to be an infinite run respecting the path schema P with c 0 = q 0 , v 0 . Here is how ρ is defined (note that the definition does not assume that ρ needs to be a run):

• For every i ≥ 0, q i def = source(w(i)),

• v 0 def = v 0 and for every i ≥ 1, we have v i def = v i-1 + update(w(i)).
In order to show that ρ is an infinite run respecting P , we have to check three main properties.

1. Since V |= E 2 , for each segment p in P and for each β ∈ [0, len(p) -1], counter values just before entering for the first time in the (β + 1)th transition of p are non-negative. Moreover, for each α ∈ [1, k -1] and for each β ∈ [0, len(l α ) -1], counter values just before entering for the last time in the (β + 1)th transition of l α are non-negative too.

We have also to guarantee that for j ∈ [2, V (y α ) -1], counter values just before entering for the jth time in the (β + 1)th transition of l α are non-negative. This is a consequence of the fact that if v ≥ 0 and v + V (y α )effect(l α ) ≥ 0, then for j ∈ [2, V (y α ) -1], we have v + j × effect(l α ) ≥ 0 (convexity). Consequently we have v i ≥ 0 for all i ≥ 0,. 2. Similarly, counter values should satisfy the guards for each fired transition. Since V |= E 3 , for each segment p in P , for each β ∈ [0, len(p) -1] and for each atomic guard i a i x i ∼ b in guard (p(β)), counter values satisfy it the first time the transition is visited. Moreover, since V |= E 3 , for each α ∈ [1, k -1], for each β ∈ [0, len(l α ) -1] and for each atomic guard i a i x i ∼ b in guard (l α (β)) occurs, counter values satisfy it the first time the transition is visited. However, we have also to guarantee that for j ∈ [2, V (y α ) -1], counter values just before entering for the jth time in the (β + 1)th transition of l α , all the guards are satisfied. This is a consequence of the fact that if i a i v[i] ∼ b and

i a i (v + V (y α )effect(l α ))[i] ∼ b, then for j ∈ [2, V (y α ) -1], we have i a i (v + j × effect(l α ))[i] ∼ b (convexity).
Hence, ρ is a run starting at c 0 . 3. It remains to show that ρ respects P . Since ρ is a run (see ( 1) and

(2) above), by construction of ρ , it respects P thanks to V |= E 1 . This last condition is indeed needed since by definition, to respect a path schema each loop has to be visited at least once.

From One Minimal Schema to Several Schemas

Section 6 is restricted to path schemas with no disjunction in guards. However, having disjunctions in guards is not a real problem as soon as we allow quantifiers in the constructed formula. But, on the one hand, in full generality we allow disjunction in guards by definition and, on the other hand, we would like to generate only quantifier-free formulae from Presburger arithmetic for its computational properties. This leaves us with two ways to encode the runs using quantifier-free Presburger formulae. 1. To encode the runs in a path schema (with disjunction in guards) using quantified Presburger formulae and to perform quantifier-elimination procedure to obtain equivalent quantifier-free formulae, 2. To transform the path schema (with disjunction in guards) into path schemas with no disjunction in guards and then to encode the runs respecting such path schemas by using quantifier-free Presburger formulae from Section 6.

The quantifier-elimination procedure is known to be computationally expensive, see e.g. [START_REF] Cooper | Theorem proving in arithmetic without multiplication[END_REF], whereas the second method, as shown in the sequel, allows to obtain a polynomial-size formula thanks to non-deterministic guesses. In order to get an optimal complexity bound for the model-checking procedure, we will in fact follow the second method. Given a flat counter system S = Q, C n , ∆, l , a configuration c 0 = q 0 , v 0 and a minimal path schema P starting from the configuration c 0 , we build a finite set Y of path schemas such that:

1. each path schema in Y has transitions without disjunctions in guards, 2. the existence of a run respecting P is equivalent to the existence of a path schema in Y having the run respecting it, 3. each path schema in Y is obtained from P by unfolding loops so that the terms in each loop satisfy the same atomic guards.

Moreover, we shall see how the cardinality of Y is at most exponential in the size of P . Each path schema in Y comes with an implicit counter system (typically containing exactly the states and transitions occurring in the path schema). We explain below how we can get rid of disjunctions. By contrast, disjunctions can be easily eliminated at the cost of adding new transitions between states and using disjunctive normal form (DNF). This type of transformation easily breaks flatness and may cause an exponential blow-up because of the DNF. That is why we shall follow a different approach.

Term maps

Before defining the set of path schemas with no disjunctions, let us introduce a few definitions. Let B be a finite non-empty set of integers containing all the constants b occurring in guards of S of the form t ∼ b and T be a finite set of terms containing all the terms t occurring in guards of S of the form t ∼ b. Assuming that B = {b 1 , . . . , b m } with b 1 < • • • < b m , we write I to denote the finite set of (non-empty) intervals

I def = {(-∞, b 1 -1], [b 1 , b 1 ], [b 1 +1, b 2 -1], [b 2 , b 2 ], • • • , [b m , b m ], [b m +1, ∞)}\{∅} Note that we may have [b j + 1, b j+1 -1] = ∅ if b j+1 = b j + 1.
The set I contains at most 2m + 1 intervals and at least m + 2 intervals. We consider the natural linear ordering ≤ on intervals in I that respects the standard relation ≤ on integers. In other words,

(-∞, b 1 -1] ≤ [b 1 , b 1 ] ≤ [b 1 +1, b 2 -1] ≤ [b 2 , b 2 ] ≤ • • • ≤ [b m , b m ] ≤ [b m +1, ∞)
A term map m is a map m : T → I that abstracts term values by associating to them an interval. Definition 7.1. Given a loop effect u ∈ Z n , we define the relation u such that m u m def ⇔ for every term t = i a i x i ∈ T , we have

• m(t) ≤ m (t) if i a i u[i] ≥ 0, • m(t) ≥ m (t) if i a i u[i] ≤ 0, • m(t) = m (t) if i a i u[i] = 0.
We write m ≺ u m whenever m u m and m = m .

Sequences of strictly increasing term maps have bounded length.

Lemma 7.2. Let u ∈ Z n and m 1 ≺ u m 2 ≺ u • • • ≺ u m L . Then, L ≤ card(I) × card(T ) ≤ 2 × card(T ) × card(B) + card(T ).
Proof Given a term map m and a term t, m(t) can obviously take one of the card(I) values from I. Due to monotonocity, for each term t,

(increasing) either m 1 (t) ≤ • • • ≤ m L (t) (decreasing) or m L (t) ≤ • • • ≤ m 1 (t).
Also, there are card(T ) distinct terms in T (obvious). Hence, the number of different maps that are either decreasing or increasing can be card(T ) × card(I). Again, we know that card(I) ≤ 2 × card(B) + 1. Hence, L, the number of different term maps in a sequence which is either increasing or decreasing, can be at most card(I) × card(T ) ≤ 2 × card(T ) × card(B) + card(T ).

Given a guard g using the syntactic resources from T and B, and a term map m, we write m g with the following inductive definition:

• m t = b def ⇔ m(t) = [b, b], • m t ≤ b def ⇔ m(t) ⊆ (-∞, b], • m t ≥ b def ⇔ m(t) ⊆ [b, +∞), • m t < b def ⇔ m(t) ⊆ (-∞, b), • m t > b def ⇔ m(t) ⊆ (b, +∞), • m g 1 ∧ g 2 def ⇔ m g 1 and m g 2 , • m g 1 ∨ g 2 def ⇔ m g 1 or m g 2 .
The relation is simply the symbolic satisfaction relation between term values and guards. Since term maps and guards are built over the same sets of terms and constants, completeness is obtained as stated in Lemma 7.3(II) below. Furthermore, Lemma 7.3(I) states that the relation is easy to check. Lemma 7.3.

(I) m g can be checked in PTime in size(m) + size(g).

(II) m g iff for all v : {x 1 , x 2 , • • • , x n } → N and for all t ∈ T , v(t) ∈ m(t) implies v |= g.
It is worth noting that size(m) is in O(size(I) × size(T )). The values size(I) and size(T ) have not been formally defined but we assume a reasonably succinct encoding using a binary representation for integers.

Proof

(I) For the polynomial-time algorithm we follow the following steps. First, for each constraint t ∼ b appearing in g, we replace it either by (true) or by ⊥ (false) depending whether m t ∼ b or not. After replacing all constraints, we are left with a positive Boolean formula whose atomic formulae are either or ⊥. It can be evaluated in logarithmic space in the size of the resulting formula (less than size(g)), see e.g. [START_REF] Lynch | Log Space recognition and translation of parenthesis languages[END_REF].

Given a term map m and a constraint t ∼ b, checking m t ∼ b amounts to check the containement of interval m(t) in a specified interval depending on ∼. This can be achieved by comparing the end-points of the intervals, which can be done in polynomial time in size(t) + size(m). As the number of constraints is also bounded by size(g), the replacement of atomic constraints can be performed in polynomial time in size(m) + size(g). Thus, the procedure runs in polynomial time in size(m) + size(g).

(II) Consider that m g and some v :

{x 1 , x 2 , • • • , x n } → N such that v(t)
lies in the interval m(t) for each term t ∈ T . Now we prove inductively on the structure of g that v |= g.

-As base case we have arithmetical constraints of the guard. Consider a constraint of the form t ≤ b. Since m g, we have that m -Inductive step: Again, the induction step for ∧ and ∨ follows easily.

(t) ⊆ (-∞, b]. Since, v(t) lies in the interval m(t), v(t) ∈ (-∞, b]. In this case v |= t ≤ b. Similarly, for other constraints t ∼ b, observe that if v(t) ∈ m(t) then v(t)
Finally, for a loop segment l, the tuple of term maps m 0 , m 1 , • • • , m len(l)-1 is said to be final iff for every term t = j a j x j ∈ T and for all i ∈ [0, len(l) -1],

• j a j effect(l)[j] > 0 implies m i (t) is maximal in I.

• j a j effect(l)[j] < 0 implies m i (t) is minimal in I.
where effect(l) is defined in Section 3.

Resources and footprints

A resource R is a triple X, T, B such that X is a finite set of propositional variables, T is a finite set of terms and B is a finite set of integers. Without any loss of generality, we can assume that all these sets are non-empty (to avoid treatments of -easy-degenerated cases). A formula φ ∈ PLTL[C] is built over R whenever the atomic formulae are of the form either p ∈ X or t ∼ b with t ∈ T and b ∈ B. A footprint is an abstraction of a model for PLTL[C] restricted to elements from the resource R. More precisely, a footprint ft is of the form ft : N → 2 X ×I T where I is the set of intervals built from B, whence the first element of ft(i) is a propositional valuation and the second one is a term map. The satisfiability relation |= involving models or runs can be adapted to footprints as follows where formulae and footprints are obtained from the same resource R and |= symb is the new symbolic satisfaction relation:

• ft, i |= symb p def ⇔ p ∈ π 1 (ft(i)), • ft, i |= symb t ≥ b def ⇔ π 2 (ft(i))(t) ⊆ [b, +∞), • ft, i |= symb t ≤ b def ⇔ π 2 (ft(i))(t) ⊆ (-∞, b], • ft, i |= symb Xφ def ⇔ ft, i + 1 |= symb φ,
• ft, i |= symb φUψ def ⇔ there is j ≥ i such that ft, j |= symb ψ and for every j ∈ [i, j -1], we have ft, j |= symb φ.

We omit the clauses for Boolean connectives, past-time operators and other arithmetical constraints since their definitions are as expected. Actually, |= symb is exactly the satisfaction relation for plain Past LTL when arithmetical constraints are understood as abstract propositions.

Definition 7.4. Let R = X, T, B be a resource and ρ = q 0 , v 0 , q 1 , v 1 • • • be an infinite run of S. The footprint of ρ with respect to R is the footprint ft ρ such that for every i ≥ 0, we have ft ρ (i) def = l(q i ) ∩ X, m i where for every term t = j a j x j ∈ T , we have j a j v i [j] ∈ m i (t).

Note that the value j a j v i [j] belongs to a unique element of I since I is a partition of Z, hence Definition 7.4 makes sense. Lemma 7.6 below roughly states that satisfaction of a formula on a run can be checked symbolically from the footprint (this turns out to be useful for the correctness of forthcoming Algorithm 1). Lemma 7.5. Let R = X, T, B be a resource, ρ = q 0 , v 0 , q 1 , v 1 • • • be an infinite run, i ≥ 0 be a position and φ be a formula in

PLTL[C] built over R. Then ρ, i |= φ iff ft ρ , i |= symb φ.
Proof The proof is by structural induction.

• Base Case 1 (p ∈ X). The propositions below are equivalent:

-ρ, i |= p, -p ∈ l(q i ) (by definition of |=), -p ∈ π 1 (ft ρ (i)) (by definition of ft ρ ), -ft ρ , i |= symb p (by definition of |= symb ).
• Base Case 2 ( j a j x j ≤ b with j a j x j ∈ T and b ∈ B). The propositions below are equivalent:

-ρ, i |= j a j x j ≤ b, - j a j v i [j] ≤ b (by definition of |=), -π 2 (ft ρ (i))( j a j x j ) ⊆ (-∞, b] (because, by definition of ft ρ , we have j a j v i [j] ∈ π 2 (ft ρ (i))( j a j x j )), -ft ρ , i |= symb j a j x j ≤ b (by definition of |= symb ).
The base cases for the other arithmetical constraints can be shown similarly.

• For the induction step, by way of example we deal with the case φ = Xψ (the cases for the Boolean operators or for the other temporal operators are analogous). We have the following equivalences:

- As a corollary, we obtain the following lemma.

Lemma 7.6. Let R = X, T, B be a resource and ρ and ρ be two infinite runs with identical footprints with respect to R. For all formulae φ built over R and all positions i ≥ 0, we have ρ, i |= φ iff ρ , i |= φ.

Given a minimal path schema P = p 1 l + 1 p 2 l + 2 . . . p k l ω k and a run ρ respecting P , the footprint ft ρ (with respect to a resource R = X, T, B ) is an ultimately periodic word that can be written of the form w • u ω where len(u) = len(l k ).

Unfolding

Let R = X, T, B be a resource, c 0 = q 0 , v 0 be an initial configuration and P = p 1 l + 1 p 2 l + 2 . . . p k l ω k be a minimal path schema such that first(p 1 ) = q 0 (disjunctions in guards are allowed). In the sequel, we assume that T contains the terms present in P and, B contains the constants present in P . In order to define the set of path schemas Y R,P,c 0 parameterized by R, P and c 0 and with no disjunction in the guards, we need to define intermediate objects.

We list some of them below:

• a set of guards G (T, B, U ) (parameterized by the finite set U of updates from P ),

• a set of (structured) control states

Q = Q × I T ,
• a set of transitions ∆ defined from Q , G (T, B, U ) and U .

Let ∆ P be the set of transitions occurring in P . Given a term t = j a j x j ∈ T , an update u ∈ Z n and a term map m, we write ψ(t, u, m(t)) to denote the formula below (where b, b ∈ B):

• ψ(t, u, (-∞, b]) def = j a j (x j + u[j]) ≤ b, • ψ(t, u, [b, +∞)) def = j a j (x j + u[j]) ≥ b, • ψ(t, u, [b, b ]) def = (( j a j (x j + u[j]) ≤ b ) ∧ (( j a j (x j + u[j]) ≥ b).
The formulae of the form ψ(t, u, int) (int ∈ I) have been designed to satisfy the property below.

Lemma 7.7. Let v, v : {x 1 , . . . , x n } → N be such that for every i ∈ [1, n], v (x i ) = v(x i ) + u[i]. For every interval int ∈ I, for every term t ∈ T , v |= ψ(t, u, int) iff v (t) ∈ int.
The proof is by an easy verification. We write G (T, B, U ) to denote the set of guards of the form t∈T ψ(t, u, m(t))

where u ∈ U and m : T → I. Even though the cardinal of G (T, B, U ) is exponential, the new path schemas defined below remain of polynomial size, partly because each guard in G (T, B, U ) is of polynomial size in the size of P .

We define ∆ as a finite subset of

Q × ∆ P × G (T, B, U ) × U × Q such that for every q, m δ, g m ,u
----→ q , m ∈ ∆ , the conditions below are satisfied:

• q = source(δ) and q = target(δ),

• g m is a guard that states that after the update u, for each t ∈ T , its value belongs to m (t). Precisely, g m is equal to t∈T ψ(t, u, m (t))

• Term values belong to intervals that make true guard (δ), i.e. m guard (δ).

• u = update(δ).

We extend the definition of source(δ)/target(δ) to δ = q, m δ, g m ,u

----→ q , m ∈ ∆ with source(δ ) def = q, m and target(δ ) def = q , m . Similarly, for a finite word w ∈ (∆ ) + , we define source(w) def = source(w(0)) and target(w) def = target(w(len(w) -1)).

Below, we define skeletons as slight variants of path schemas in Y R,P,c 0 . The slight differences are explained a bit later. A skeleton sk (compatible with R, P and c 0 = q 0 , v 0 ) is a finite word over ∆ , written

q 1 , m 1 δ 1 , g 1 m ,u 1 -----→ q 2 , m 2 δ 2 , g 2 m ,u 2 -----→ q 3 , m 3 • • • δ K , g K m ,u K ------→ q K+1 , m K+1 ,
verifying the following conditions:

(init) For every term t = j a j x j ∈ T , we have j a j v 0 [j] ∈ m 1 (t) where v 0 is the initial vector. If v 0 is not fixed, typically to solve the global model-checking problem, there is no need to require any condition on m 1 .

(schema) Let f : (∆ ) * → ∆ * be the map such that f (ε) = ε, f (w • w ) = f (w)•f (w ) and f ( q, m δ, g m ,u ----→ q , m ) = δ. We require that f (sk) ∈ p 1 l + 1 p 2 l + 2 . . . p k l + k .
So, a skeleton can be seen as a finite sequence of transitions that is the prefix of a word in the language generated from the path schema P . Moreover, it is decorated by additional pieces of information.

(minimality) For every factor

w = q H , m H δ H , g H m ,u H ------→ q H+1 , m H+1 • • • δ J-1 , g J-1 m ,u J-1
---------→ q J , m J of sk such that f (w) = (l) 3 for some loop l of P (therefore J = H + 3 × len(l)), there is α ∈ [1, len(l)] such that m H+α ≺ effect(l) m H+α+2×len(l) . We disallow three consecutive sequences of transitions related to the loop l without any progress on the term maps. Indeed, if this occurs, then this would be more adequate to capture some of these sequences by a loop in the new path schema.

(last-loop) For the unique suffix

w = q H , m H - → • • • - → q H+len(l k ) , m H+len(l k ) of sk of length len(l k ) (so f (w) = l k ), we have source(w) = target(w) (i.e. q H , m H = q H+len(l k ) , m H+len(l k ) ) and m H , . . . , m H+(len(l k )-1)
is final for the loop l k . Lemma 7.8. For a skeleton sk, len(sk) ≤ (len(p

1 ) + • • • + len(p k )) + 2 × (2 × card(T ) × card(B) + card(T )) × (len(l 1 ) + • • • + len(l k )) Proof Since f (sk) ∈ p 1 l + 1 p 2 l + 2 . . . p k l + k , let f (sk) = p 1 l n 1 1 p 2 l n 2 2 . . . p k l n k k for some n 1 , . . . , n k ≥ 1. We have len(sk) ≤ (len(p 1 ) + • • • + len(p k )) + max(n i ) × (len(l 1 ) + • • • + len(l k )). It remains to bound the values n 1 , . . . , n k . For each factor w of sk such that f (w) = (l i ) n i with i ∈ [1, k],
by the (minimality) condition and Lemma 7.2, we conclude that n i ≤ 2×(2×card(T )×card(B)+ card(T )). Consequently, len(sk) ≤ (len(p

1 )+• • •+len(p k ))+2×(2×card(T )× card(B) + card(T )) × (len(l 1 ) + • • • + len(l k )).
From skeletons, we shall define unfolded path schemas built over the alphabet Q × G (T, B, U ) × U × Q (transitions are not anymore formally labelled by elements in ∆ P ; sometimes we keep these labels for convenience). As for the definition of f , let ∆ be a finite subset of (Q ×G (T, B, U )×U ×Q ) and let h : (∆ ) * → ( ∆) * be the map such that h

(ε) = ε, h(w • w ) = h(w) • h(w ) and h( q, m δ, g m ,u ----→ q , m ) = q, m g m ,u
---→ q , m . This time, elements of ∆ P are removed instead of being kept as for f . Given a skeleton sk, we shall define a path schema

P sk = p 1 (l 1 ) + p 2 (l 2 ) + . . . p k (l k ) ω such that h(sk) = p 1 l 1 p 2 l 2 . . . p k l k .
Hence, skeletons slightly differ from the path schemas. It remains to specify how the loops in P sk are identified. Every

factor w = q H , m H δ H , g H m ,u H ------→ q H+1 , m H+1 • • • δ J-1 , g J-1 m ,u J-1
---------→ q J , m J of sk such that 1. f (w) = l for some loop l of P , 2. w is not the suffix of sk of length len(l k ), 3. the sequence of the len(l) next elements after w is also equal to w, is replaced by (h(w)) + . Finally, l k is equal to h(w) where w is the unique suffix of sk of length len(l k ). The path schema P sk is unique by the condition (minimality). Indeed, there is no factor of sk of the form w 3 such that f (w) = l for some loop l of P . As far as the labeling function is concerned, the labels of q and q, m are identical with respect to the set X, i.e. l ( q, m )

def = l(q) ∩ X. Hence, 1. k ≤ k × (2 × card(T ) × card(B) + card(T )), 2. len(P sk ) ≤ (len(p 1 ) + • • • + len(p k )) + 2 × (2 × card(T ) × card(B) + card(T )) × (len(l 1 ) + • • • + len(l k )), 3 
. P sk has no guards with disjunctions.

The construction of a path schema from a skeleton cannot be done by simply taking the path segments as before and the copies of the loop segments as alternating path and loop segments in the new path schema. For example, consider this system with one counter x,

I = {(-∞, -1], [0, 0], [1, 1], [2, 2], [3, ∞)} and T = {x + 1}
, the representation of a path schema P and of two unfolded path schemas represented in Figure 6. Thanks to Figure 6, we notice that • p 1 (l 1 1 ) + l 2 1 (l 3 1 ) + l 4 1 (l 5 1 ) + p 2 (l 2 ) ω does not have any run respecting it as a path schema, as the loops l 1 1 , l 3 1 cannot be taken even once in any run. • p 1 l 2 1 l 4 1 (l 5 1 ) + p 2 (l 2 ) ω has a run respecting it as a path schema. But, here all the unfoldings of the loop l 1 are taken as path segments.

We write Y R,P,c 0 to denote the set of unfolded path schemas P sk obtained from skeletons sk compatible with the resource R, the minimal path schema P and the initial configuration c 0 . Lemma 7.9. Checking whether a word w

∈ (Q × ∆ × G (T, B, U ) × U × Q ) * is a skeleton compatible with R, P and q 0 , v 0 assuming that len(w) ≤ (len(p 1 ) + • • • + len(p k )) + 2(2 × card(T ) × card(B) + card(T )) × (len(l 1 ) + • • • + len(l k )
) can be done in polynomial time in the size of q 0 , v 0 , size(P ), size(T ) and size(B).

Observe that in the statement of Lemma 7.9, the length of w depends on the length or cardinal of several objects whereas the checking procedure depends on their respective size, partly because we need to take into account the binary encoding of the integers. As previously, the sizes size(P ), size(T )

q 0 q 1 q 2 , +1 , +1 , +1 , (0) 
≥ 1 ω P q 0 , [0, 0] q 1 , [1, 1] ≥ 1 q 1 , [2, 2] ≥ 1 q 1 , [3, ∞) ≥ 1 q 2 , [3, ∞) ω x + 1 = 1, +1 x + 1 = 2, +1
x+1=1,+1

x + 1 ≥ 3, +1

x+1=2,+1

x and size(B) have not been formally defined but we assume a reasonably succinct encoding using a binary representation for integers.

+ 1 ≥ 3, +1 x+1>2,+1 , 0 P q 0 , [0, 0] q 1 , [1, 1] q 1 , [2, 2] q 1 , [3, ∞) ≥ 1 q 2 , [3, ∞) ω x + 1 = 1, +1 x + 1 = 2, +1 x + 1 ≥ 3, +1 x + 1 ≥ 3, +1 x+1>2 
Proof Let w be a word over

Q × ∆ P × G (T, B, U ) × U × Q whose length is bounded by (len(p 1 ) + • • • + len(p k )) + 2(2 × card(T ) × card(B) + card(T )) × (len(l 1 ) + • • • + len(l k )).
Let N be the sum of size of q 0 , v 0 , size(P ), size(T ) and size(B). Since the length of w is bounded, its size is also polynomial in N .

Checking whether an element in Q × ∆ P × G (T, B, U ) × U × Q belongs to ∆ can be done in polynomial time in N thanks to Lemma 7.3(I). Hence, checking whether w belongs to (∆ ) * can be done in polynomial time in N too since its length is also polynomial in N . It remains to check the conditions for skeletons.

• Condition (schema) can be checked by building first f (w) (this requires linear time in N ) and then by checking whether it belongs to p 1 l + 1 p 2 l + 2 . . . p k l + k (requires also linear time in N ). • Condition (last-loop) can be checked by extracting the suffix of w of length len(l k ).

• Condition (minimality) can be checked by considering all the factors w of w (there are less than len(w) 2 of them) and whenever f (w ) = l 3 for some loop l, we verify that the condition is satisfied. All these operations can be done in polynomial time in N .

• Finally, condition (init) is also easy to check in polynomial time in N .

The main properties about the set of unfolded path schemas Y R,P,c 0 are stated below. Proposition 7.10.

(I) Let ρ be an infinite run respecting P and starting at c 0 = q 0 , v 0 . Then, there is a path schema P in Y R,P,c 0 and an infinite run ρ starting at q 0 , m 0 , v 0 respecting P and such that ft ρ = ft ρ .

(II) Let ρ be an infinite run starting at q 0 , m 0 , v 0 and respecting P for some P ∈ Y R,P,c 0 . Then, there is an infinite run ρ starting at c 0 = q 0 , v 0 and respecting P such that ft ρ = ft ρ .

Proof (I) Let ρ = q 0 , v 0 δ 0 - → q 1 , v 1 δ 1 - → • •
• be an infinite run respecting P with footprint ft ρ : N → 2 AT × I T . We write Z i , m i to denote ft ρ (i). In order to build ρ and P , first we enrich the structure ρ and then we define a skeleton from the enriched structure that allows us to define P . The run ρ is then defined from ρ so that the sequences of counter values are identical. From ρ, we consider the infinite sequence below:

w = q 0 , m 0 δ 0 , gm 1 ,update(δ 0 ) ----------→ q 1 , m 1 δ 1 , gm 2 ,update(δ 1 ) ----------→ • • •
It is easy to check that w can be viewed as an element of (∆ ) ω where ∆ is defined as a finite subset of

Q × ∆ P × G (T, B, U ) × U × Q where U is the finite set of updates from P = p 1 (l 1 ) + p 2 (l 2 ) + • • • (l k-1 ) + p k (l k ) ω . Moreover, we have f (w) ∈ L(P ), that is f (w) = p 1 (l 1 ) n 1 p 2 (l 2 ) n 2 • • • (l k-1 ) n k-1 p k (l k ) ω for some n 1 , . . . , n k-1 ≥ 1.
From w, one can build a skeleton sk compatible with P and q 0 , v 0 . sk is formally a subword of w such that

f (sk) = p 1 (l 1 ) n 1 p 2 (l 2 ) n 2 • • • (l k-1 ) n k-1 p k (l k ) n k with 1 ≤ n i ≤ min(n i , 2 × (2 × card(T ) × card(B) + card(T )) for every i ∈ [1, k -1] and 1 ≤ n k ≤ 2 × (2 × card(T ) × card(B) + card(T )).
We have w = w • w 0 • w 0 • (w 0 ) ω with f (w 0 ) = l k for some w 0 . The skeleton sk is obtained from w • w 0 • w 0 by deleting copies of loops as soon as two copies are consecutive. More precisely, every maximal factor of w • w 0 • w 0 of the form (w ) N with N > 2 such that f (w ) = l i for some loop l i of P , is replaced by (w ) 2 . This type of replacement can be done at most k × (2 × (2 × card(T ) × card(B) + card(T ))) times. One can check that sk is indeed a skeleton compatible with R, P and q 0 , v 0 . Considering the path schema P sk built from sk, one can show that the sequence ρ below is an infinite run respecting P sk :

q 0 , m 0 , v 0 gm 1 ,update(δ 0 ) --------→ q 1 , m 1 , v 1 gm 2 ,update(δ 1 ) --------→ q 2 , m 2 , v 2 • • • so that ft ρ = ft ρ .
When entering in the last loop of P sk , counter values still evolve but the sequence of control states forms a periodic word made of the last len(l k ) control states of sk. By construction of sk and P sk , it is clear that ρ and ρ have the same sequences of counter values (they have actually the same sequences of updates) and by definition of the labels, they have also the same sequences of sets of atomic propositions. It remains to check that ρ is indeed a run, which amounts to verify that guards are satisfied. This is guaranteed by the way guards are defined, by the completeness result in Lemma 7.3(II) and by the result of Lemma 7.7.

(II) Let ρ be some run respecting some P ∈ Y R,P,c 0 of the following form:

q 0 , m 0 , v 0 δ 0 , gm 1 ,update(δ 0 ) ----------→ q 1 , m 1 , v 1 δ 1 , gm 2 ,update(δ 1 ) ----------→ q 2 , m 2 , v 2 • • •
In the above run, we have decorated the steps by transitions from P as P is defined from a skeleton in which transitions are decorated by such transitions. After a tedious (but not difficult) verification, one can show that

ρ = q 0 , v 0 δ 0 - → q 1 , v 1 δ 1 - → • • •
is a run respecting P such that ft ρ = ft ρ . Satisfaction of guards is guaranteed by the way ∆ is defined. The fact that ρ respects P is even easier to justify since all the path schemas in Y R,P,c 0 can be viewed as specific instances of P that differ in the way the term maps evolve (see the condition (schema)). Details are omitted.

Let P = p 1 (l 1 ) + p 2 (l 2 ) + . . . p k (l k ) ω be a path schema in Y R,P,c 0 and ρ be a run q 0 , m 0 , v 0

gm 1 ,update(δ 0 ) --------→ q 1 , m 1 , v 1 gm 2 ,update(δ 1 )
--------→ q 2 , m 2 , v 2 • • • respecting P . It is easy to show that for i ≥ 0, we have π 2 (ft ρ (i)) = m i and ft ρ is an ultimately periodic word of the form w • u ω where len(u) = len(l k ) = len(l k ) and len(w) = (len(p 1 ) + • • • + len(p k )) + (iter P (ρ) [1] × len(l 1 ) + • • • + iter P (ρ)[k -1] × len(l k -1 )). As seen previously, we have ρ, 0 |= φ iff ft ρ , 0 |= symb φ.

Let us also define the function proj which associates to w ∈ ∆ω the ω-sequence proj(w) : N → 2 X × I T such that for all i ∈ N, if w(i) = q, m , g, u, q , m and l(q) ∩ X = L then proj(w)(i) def = L, m . Now, we can state the main theorem about removing disjunction in the guards by unfolding of loops. It entails the main properties we expect from Y R,P,c 0 . Theorem 7.11. Given a flat counter system S, a minimal path schema P , a resource R = X, T, B such that the set of terms T includes those in P , the set of constants B includes those in P , and an initial configuration c 0 = q 0 , v 0 , there is a finite set of path schemas Y R,P,c 0 , such that:

1. No path schema in Y R,P,c 0 contains disjunctions occurring in guards. 2. For every P ∈ Y R,P,c 0 , len(P ) is polynomial in len(P ) + card(T ) + card(B).

3. Checking whether P belongs to Y R,P,c 0 can be done in polynomial time in size(P ) + size(T ) + size(B). 4. For every run ρ respecting P and starting at q 0 , v 0 , we can find a run ρ respecting some P ∈ Y R,P,c 0 such that ρ |= φ iff ρ |= φ for every φ built over R. 5. For every run ρ respecting some P ∈ Y R,P,c 0 with initial counter values v 0 , we can find a run ρ respecting P such that ρ |= φ iff ρ |= φ for every φ built over R. 6. For every P ∈ Y R,P,c 0 , for every ultimately periodic word w•u ω ∈ L(P ), for every φ built over R checking whether proj(w • u ω ), 0 |= symb φ can be done in polynomial time in the size of w • u and in the size of φ.

Proof Let Y R,P,c 0 be the set of path schemas defined from the resource R, the minimal path schema P and the initial configuration c 0 .

1. For every path schema in Y R,P,c 0 , the guards on transitions are of the form t∈T ψ(t, u, m(t)) and each guard ψ(t, u, m(t)) is itself an atomic guard or a conjunction of two atomic guards. Hence, no path schema in Y P contains any disjunction in some guard. 2. By Lemma 7.8, every skeleton defining a path schema in Y R,P,c 0 has polynomial length in len(P ) + card(T ) + card(B). Each path schema in Y R,P,c 0 has a linear length in the length of its corresponding skeleton. Consequently, for every P ∈ Y R,P,c 0 , its length len(P ) is polynomial in len(P ) + card(T ) + card(B). 3. Given a path schema P in Y R,P,c 0 , one can easily identify its underlying skeleton sk by removing iteration operators such as + and ω (easy at the cost of keeping track of transitions from ∆ P ). By Lemma 7.9, checking whether sk is compatible with R, P and q 0 , v 0 can be done in polynomial time in size(P ) + size(T ) + size(B). In particular, if sk is too long, this can be checked in polynomial time too. 4. By Proposition 7.10(I), for every run ρ respecting P and starting at q 0 , v 0 , there are P ∈ Y R,P,c 0 and a run ρ respecting P such that ft ρ = ft ρ . By Lemma 7.6, ρ |= φ iff ρ |= φ. We write Y R,P to denote the set of path schemas defined as for those in Y R,P,c 0 except that there is no constraint on the first term map (this amount to ignore the condition (init)). This set will be useful to solve the global model-checking problem.

Model-checking PLTL[C] over Flat Counter Systems

A decision procedure in NP

We provide here a nondeterministic polynomial-time algorithm to solve MC(PLTL[C], FlatCS). To do so, we combine the properties of the general stuttering theorem for LTL with past-time operators (see Theorem 4.1) with small solutions of constraint systems. In Algorithm 1 below, nondeterministic steps (guesses) are performed only at the beginning of the algorithm. Note that a polynomial p (•) is used and its existence follows from forthcoming Theorem 8.1. Similarly, the polynomial q (•) follows from Theorem 7.11. Now, we explain how p (•) is defined. Let S be a flat counter system, c 0 = q 0 , v 0 be an initial configuration and φ ∈ PLTL [C]. Let N = size(S) + size( q 0 , v 0 ) + size(φ). Let P be a minimal path schema of S. We have:

• len(P ) ≤ 2 × card(∆) ≤ 2N , • nbloops(P ) ≤ card(Q) ≤ N .
Let T be the set of terms t occurring in S and φ in guards of the form t ∼ b. We have card(T ) ≤ size(S) + size(φ) ≤ N . Let B be the set of constants b occurring in either S or φ in guards of the form t ∼ b. We have card(B) ≤ size(S) + size(φ) ≤ N . Let R = X, T, B be the resource such that X is the finite set of propositional variables occurring in φ. Such a resource is said to be coherent with S and φ.

Let M be the maximal absolute value of a constant occurring in S, φ, v 0 (either as an element of B or as a coefficient in front of a counter or as a component in v 0 ). We have M ≤ 2 N . Now, let P be a path schema in Y R,P,c 0 with P = p 1 (l

1 ) + p 2 (l 2 ) + • • • p k (l k ) ω . Since len(P ) ≤ (len(p 1 ) + • • • + len(p k )) + 2 × (2 × card(T ) × card(B) + card(T )) × (len(l 1 ) + • • • + len(l k
)), we have len(P ) ≤ 5 × card(T ) × card(B) × len(P ) ≤ 5N 3 . Similarly, nbloops(P ) ≤ 5N 3 . The number of guards occurring in P is bounded by len(P ) × 2 × card(T ) ≤ 10 × N 4 . The maximal constant M occurring in P is bounded by M + n × M 2 which is bounded by N × 2 2×N . Let E be the constraint system defined from P (see Lemma 6.1).

• The number of variables is equal to nbloops(P ) which is bounded by 5N 3 .

• The number of conjuncts is bounded by 2 × len(P )

× n × (1 + N 1 )
where N 1 is the number of atomic guards in P . Hence, this number is bounded by

2 × 5N 3 × N × (1 + 10 × N 4 ) ≤ 110N 8 .
• The greatest absolute value from constants in E is bounded by n × nbloops(P )×(M ) 4 ×len(P ) 3 , which is bounded by

N (5N 3 )(N ×2 2×N ) 4 × 5 3 N 9 ≤ 625 × N 17 × 2 8×N .
We will see in the sequel how these bounds allows us to show that E ∧ ψ 1 ∧ • • • ∧ ψ k-1 admits a small solution using the theorem below for any 

ψ 1 ∧ • • • ∧ ψ k-1 built from Algorithm 1.
(625 × N 17 × 2 8×N ) C×2×(110×N 8 +5×N 3 )
which can be easily shown to be bounded by 2 p (N ) for some polynomial p (•) (of degree 9). This is precisely, the polynomial p (•) that is used in Algorithm 1 (for obvious reasons). In order to justify the coefficient 2 before 110, note that any constraint of the form i a i y i ∼ b with ∼∈ {=, ≤, ≥, < , >} can be equivalently replaced by 1 or 2 atomic constraints of the form i a i y i ≥ b. Algorithm 1 starts by guessing a path schema P (line 1) and an unfolded path schema P = p 1 l + 1 p 2 l + 2 . . . p k l ω k (line 3) and check whether P belongs to Y R,P,c 0 (line 5). It remains to check whether there is a run ρ respecting P such that ρ |= φ. Suppose there is such a run ρ; let y be the unique tuple in [1, 2td(φ) + 5] k-1 such that y ≈ 2td(φ)+5 iter P (ρ). By Algorithm 1 The main algorithm in NP with inputs S, c 0 = q, v 0 , φ 1: guess a minimal path schema P of S satisfying the infiniteness property 2: build a resource R = X, T, B coherent with S and φ 3: guess a path schema P = p 1 l + 1 p 2 l + 2 . . . p k l ω k such that len(P ) ≤ q (len(P ) + card(T ) + card(B)) 4: guess y ∈ [1, 2td(φ) + 5] k-1 5: guess y ∈ [1, 2 p (size(S)+size(c0)+size(φ)) ] k-1 6: check that P belongs to Y R,P,c0 7: check that proj(p 1 l y 

[1] 1 p 2 l y[2] 2 . . . l y[k-1] k-1 p k l ω k ),
|= E ∧ ψ 1 ∧ • • • ∧ ψ k-1 Proposition 5.1, we have proj(p 1 l y[1] 1 p 2 l y[2] 2 . . . l y[k-1] k-1 p k l ω k ), 0 |= symb φ.
Since the set of tuples of the form iter P (ρ) is characterized by a quantifier-free Presburger formula, by the existence of small solutions from [START_REF] Borosh | Bounds on positive integral solutions of linear Diophantine equations[END_REF], we can assume that iter P (ρ) contains only small values. Hence line 4 guesses y and y (corresponding to iter P (ρ) with small values). Line 6 precisely checks proj(p 1 l y

[1] 1 p 2 l y[2] 2 . . . l y[k-1] k-1 p k l ω
k ), 0 |= symb φ whereas line 11 checks whether y encodes a run respecting P with y ≈ 2td(φ)+5 y. Lemma 8.2. Algorithm 1 runs in nondeterministic polynomial time.

Proof We first check that all the guesses can be done in polynomial time.

• A minimal path schema P of S is of polynomial size with respect to the size of S.

• The path schema P is of polynomial size with respect to the size of P , φ and c 0 (Theorem 7.11(2)).

• y and y are obviously of polynomial size since their components have values bounded by some exponential expression only (values in y can be much smaller than the values in y ). Now, we verify that all the checks can be in done in polynomial time too.

• Both P and P are in polynomial size with respect to the size of the inputs and checking compatibility amounts to verify that P is an unfolding of P , which can be done in polynomial time (see Theorem 7.11(3)).

• Checking whether proj(p 1 l

y[1] 1 p 2 l y[2] 2 . . . l y[k-1]
k-1 p k l ω k ), 0 |= symb φ can be done in polynomial time using Theorem 7.11(6) since p 1 l y(1)

1 p 2 l y(2) 2 . . . l y(k-1) k-1
p k l k is of polynomial size with respect to the size of P and φ.

• Building E ∧ ψ 1 ∧ • • • ∧ ψ k-1 can be done in polynomial time since E can be built in polynomial time with respect to the size of P (see Section 6) and ψ 1 ∧ • • • ∧ ψ k-1 can be built in polynomial time with respect to the size of φ (td(φ) ≤ size(φ)).

• y |= E ∧ ψ 1 ∧ • • • ∧ ψ k-1
can be finally checked in polynomial time since the values in y are of exponential magnitude and the combined constraint system is of polynomial size.

It remains to verify that Algorithm 1 is correct, which is stated below.

Lemma 8.3. S, c 0 |= φ iff Algorithm 1 on inputs S, c 0 , φ has an accepting run.

In the proof of Lemma 8.3, we take advantage of all our preliminary results.

Proof First, let us show that if Algorithm 1 on inputs S, c 0 = q 0 , v 0 , φ has an accepting computation, then S, c 0 |= φ. This means that there are P , P , y, y that satisfy all the checks. Let w = p 1 l y

[1] 1 • • • p k-1 l y [k-1] k-1 p k l ω k and ρ = q 0 , m 0 , v 0 q 1 , m 1 , v 1 q 2 , m 2 , v 2 • • • ∈ (Q × Z n ) ω be defined as follows: • For every i ≥ 0, q i def = π 1 (source(w(i))), • v 0 def = v 0 and v i def = v i-1 + update(w(i)) for every i ≥ 1. By Lemma 6.1, since y |= E ∧ ψ 1 ∧ • • • ∧ ψ k-1 , we deduce that ρ is a run respecting P starting at the configuration q 0 , m 0 , v 0 . Since y |= ψ 1 ∧ • • • ∧ ψ k-1 and y |= ψ 1 ∧ • • • ∧ ψ k-1
, by Proposition 5.1, the statements below are equivalent:

( ) proj(p 1 l y[1] 1 p 2 l y[2] 2 . . . l y[k-1] k-1 p k l ω k ), 0 |= symb φ,
global model-checking [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF] but we can conclude that they are structurally simple and we provide an alternative proof).

Corollary 8.5. Given a flat counter system S, a control state q 0 and a formula φ ∈ PLTL[C] one can effectively build an existential Presburger formula φ that represents the initial counter values v 0 such that there is an infinite run ρ starting at q 0 , v 0 such that ρ, 0 |= φ.

It is sufficient to consider the formula below:

minimal path schema P P =p 1 l + 1 p 2 l + 2 ...l + k-1 p k l ω k ∈Y R,P ( t∈T ϕ(t, m first P (t)))∧ y s.t. ft p 1 l y[1] 1 p 2 l y[2] 2 ...l y[k-1] k-1 p k l ω k ,0 |= symb φ ∃ y 1 • • • y k-1 E P ∧ ψ 1 ∧ • • • ∧ ψ k-1
where

• the first generalized disjunction deals with minimal path schemas starting on q 0 ,

• the second disjunction enumerates the unfolded path schema in Y R,P with no constraint on the first term map, say m first P , • given a term t = j a j x j ∈ T and a term map m, we write ϕ(t, m(t))

to denote the formula below (where b, b ∈ B):

-ϕ(t, (-∞, b]) def = j a j x j ≤ b, -ϕ(t, [b, +∞)) def = j a j x j ≥ b, -ϕ(t, [b, b ]) def = (( j a j x j ≤ b ) ∧ (( j a j x j ≥ b).
• the third generalized disjunction deals with y ∈ [1, 2td(φ) + 5] k-1 ,

• the constraint system E P is obtained from E P by replacing initial counter values by free variables, i.e. by replacing occurrences of v 0 [i] by x i in expressions built in Section 6.

8.2. The special case of path schemas with a single loop Thanks to Lemma 5.6, we have seen that MC(PLTL[C], CPS(k)) is NPhard as soon as k ≥ 2. By contrast, we prove that MC(PLTL[C], CPS(1)) is in PTime by using the previous proof techniques.

Consider a path schema P = p • l ω in a counter system with only one loop l. Due to the structure of P there exists at most one run ρ respecting P and starting from a given initial configuration c 0 . The footprint ft ρ of this run (see Section 7) is of the form u.v ω , which is an ultimately periodic word. Since the only loop l is to be taken an infinite number of times, we have len(v) = len(l), which is polynomial in the input size, but len(u) can be exponential. In fact, in the word lab(ρ(0)ρ(1) • • • ρ(len(u))) ∈ p • l + , the number of repetitions that can be attached to the loop l may be exponential. The algorithm computes the number of different possible sets of term maps (defined in Section 7), that can be generated while visiting the loop l. There are at most a polynomial number of such term maps due to Lemma 7.2. Next, for each such assignment of term maps to the nodes of l, the algorithm calculates the number of iterations β of l, for which the terms remain in their respective term map. However, each of these β i can be exponentially large. Now, the formula is symbolically verified over the ultimately periodic path where the nodes of the path schema are augmented with the term maps.

Before providing the algorithm formally, we need to introduce auxiliary notions. For a path segment p = δ 0 δ 1 • • • δ len(p)-1 , we define p[i, j] = δ i δ i+1 • • • δ j with 0 ≤ i ≤ j ≤ len(p) -1 and p[i, j] = ε (the empty word) if j < i. We use furthermore the convention that effect(ε) = 0.

Since the unique run respecting P must contain p and copies of l, we can specify the term maps for w = p • l. Consider the function f init : [0, len(w)] → I T for a given configuration c 0 = q 0 , v 0 , defined as follows:

• f init (0) def = m 0 iff for each term t = j a j x j ∈ T , we have j a j .v 0 [j] ∈ m 0 (t) and m 0 guard (w(0)).

• for every

i ∈ [1, len(w)], f init (i) def = m i iff, for each term t = j a j x j ∈ T , we have j a j .(effect(w[0, i -1])[j] + v 0 [j]) ∈ m i (t) and if i < len(w), then m i guard (w(i)).
• Otherwise, if the term maps do not satisfy the guards, then there does not exist any run and hence f init (i) is undefined.

In the algorithm, we also consider a map curr : T → Z that provides the value of the terms at specific positions of the run. From this function, we define the function val curr : ∆ + → I T as follows, val curr (w) = m where m verifies: curr(t) + j a j .(effect(w)[j]) ∈ m(t) for all t = j a j x j ∈ T . Finally, given a path segment p = δ 0 δ 1 • • • δ len(p)-1 with δ i = q i , g i , u i , q i+1 ∈ ∆ for i ∈ [0, len(p) -1] and a given tuple of term maps

M = m 0 , m 1 , • • • , m len(p) , we define p ⊗ M def = δ 0 δ 1 • • • δ len(p)-1 where δ i def = q i , m i , g i , u i , q i+1 ,
m i+1 . Now, we describe our algorithm that solves MC(PLTL[C], CPS(1)) in polynomial time. Given an initial configuration c 0 , it begins by computing the term maps for each position of p and the first iteration of l, using f init . Subsequently, it computes new tuples of term maps m 0 , m 1 , • • • , m len(l) for l and the number of iterations β + 1 of l for which the terms remain in their respective term map from the tuple. We store those tuples made of term maps in an array A and the integer variable β i + 1 is used to store the number of iterations corresponding to tuple A[i]. If for some position the algorithm reaches some term map that does not satisfy some guard, the procedure aborts (this means that there is no infinite run).

There are only polynomially many entries in A but each number of loop iterations β i + 1 can possibly be exponential. The algorithm performs then symbolic model checking over a path schema augmented with the calculated term maps. The augmented path schema is obtained by performing l ⊗ A[i] for each i. Finally since the number of times l ⊗ A[i] is repeated can be exponential, when checking for the satisfaction of the formula, instead of taking β i + 1 times the loop l ⊗ A[i], we consider the same run where the loop is taken min(β i + 1, 2td(φ) + 5) times. By Theorem 4.1, we have that the two path schemas are equivalent in terms of satisfiability of φ. The polynomial-time algorithm is described in Algorithm 2.

It now remains to prove that the algorithm runs in PTime and is correct.

Lemma 8.6. Algorithm 2 terminates in polynomial time in the input size.

Proof We check that each step of the algorithm can be performed in polynomial time.

• Building a resource and a set of intervals can be done by scanning the input once.

• Since the updates of P is part of the input, we can compute f init for all positions in p • l in polynomial time.

• Computation of curr depends on the previous value of curr and the coefficients appearing in the guards of P . Hence, it involves addition and multiplication of at most a polynomial number of bits. Thus, this can be performed in polynomial time.

• The maximal possible value for h is bounded by a polynomial given by Lemma 7.8. Indeed, the process described in the while loop is the same as the creation of the set of unfolded path schemas. There is just a major difference: there exists at most one run and hence at most one unfolded path schema.

• Calculation of each value β h requires computing val curr , which again involves arithmetical operations on polynomially many bits. Thus, this requires polynomial time only.

• Checking (p ⊗ f init (0), . . . , f init (len(p)) • (l ⊗ A[1]) T R [1] (l ⊗ A[2]) T R [2] . . .

(l ⊗ A[h -1]) T R[h-1] (l ⊗ A[h]
) ω , 0 |= symb φ can be done in polynomial time for the following reasons.

-By definition of T R[h], size of (p ⊗ f init (0), . . . , f init (len(p)) • (l ⊗ A[1]) T R [1] (l ⊗ A[2]) T R [2] . . .

(l ⊗ A[h -1]) T R[h-1] (l ⊗ A[h]
) ω is polynomial in the input size.

-By [29, Theorem 5.1], (p⊗ f init (0), . . . , f init (len(p)) •(l⊗A[1]) T R [1] (l⊗ A[2]) T R [2] . . .

(l ⊗ A[h -1]) T R[h-1] (l ⊗ A[h]
) ω , 0 |= symb φ can be checked in time O(size(φ) 2 ⊗ len(p • l T R [1] l T R [2] • • • l T R[h-1] l)). Indeed, |= symb is analogous to the satisfaction relation for plain Past LTL.

Lemma 8.7. P, c 0 |= φ iff Algorithm 2 on inputs P, c 0 , φ has an accepting run.

Proof First, we assume that P, c 0 |= φ. We show that there exists a vector of positive integers β 1 , β 2 , . . . , β h for some h ∈ N such that Algorithm 2 has an accepting run. Clearly, the word of transitions taken by a run ρ respecting P and satisfying φ is of the form pl ω . Hence, it can be decomposed as the sequence pl β 1 +1 l β 2 +1 . . . l β h +1 l ω , depending on the portion of P that is visited, such that for each consecutive copy of l, the term maps associated with the nodes change. It is easy to see that this decomposition is the same as the one computed by the algorithm. Now, each β i can be exponential. But due to Lemma 7.5 and Theorem 4.1, we know that (p ⊗ f init (0), . . . , f init (len(p))

• (l ⊗ A[1]) β 1 +1 (l ⊗ A[2]) β 2 +1 . . . (l ⊗ A[h -1]) β h-1 +1 (l ⊗ A[h]
) ω , 0 |= symb φ iff (p ⊗ f init (0), . . . , f init (len(p)) • (l ⊗ A[1]) T R [1] (l ⊗ A[2]) T R [2] . . .

(l ⊗ A[h -1]) T R[h-1] (l ⊗ A[h]
) ω , 0 |= symb φ. Hence, the algorithm has an accepting run. Now, suppose that the algorithm has an accepting run on inputs P, c 0 and φ. We prove that P, c 0 |= φ. Since the algorithm has an accepting run, let β 1 , β 2 , • • • , β h be the integers it successively computes. Let w = pl β 1 +1 l β 2 +1 . . . l β h +1 l ω and ρ = q 0 , m 0 , v 0 q 1 , m 1 , v 1 q 2 , m 2 , v 2 • • • ∈ (Q × Z n ) ω be defined as follows:

• for every i ≥ 0, q i def = π 1 (source(w(i))),

• v 0 def = v 0 and,

• for every i ≥ 1, we have v i def = v i-1 + update(w(i)).

By the calculation of β j for j ∈ [1, h] in the algorithm, it is easy to check that q 0 , v 0 q 1 , v 1 q 2 , v 2 • • • ∈ (Q × Z n ) ω is a run respecting P . Algorithm 2 guarantees that (p ⊗ f init (0), . . . , f init (len(p)) • (l ⊗ A[1]) T R [1] (l ⊗ A[2]) T R [2] . . .

(l ⊗ A[h -1]) T R[h-1] (l ⊗ A[h]
) ω , 0 |= symb φ. Thus, by Lemma 7.5 and Theorem 4.1, we deduce q 0 , v 0 q 1 , v 1 q 2 , v 2 • • • , 0 |= φ. 

Conclusion

We have investigated the computational complexity of the model-checking problem for flat counter systems with formulae from an enriched version of LTL (with past-time operators and arithmetical constraints on the counters). Our main result is the NP-completeness of the problem MC(PLTL[C], FlatCS), significantly improving the complexity upper bound from [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF]. This also improves the results about the effective semilinearity of the reachability relations for such flat counter systems from [START_REF] Comon | Multiple counter automata, safety analysis and PA[END_REF][START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF]; indeed, our logical dialects allow to specify whether a configuration is reachable. Figure 7 presents our main results and compares them with the complexity of the reachability problem. Furthermore, our results extend the recent result on the NPcompleteness of model-checking flat Kripke structures with LTL from [START_REF] Kuhtz | Weak Kripke structures and LTL[END_REF] (see also [START_REF] Kuhtz | Model checking finite paths and trees[END_REF]) by adding counters and past-time operators. As far as the proof technique is concerned, the NP upper bound is obtained as a combination of a general stuttering property for LTL with past-time operators (Claim 5) for all j ≤ i, there is j ≤ i such that w, j ≈ N -1 w , j and for all k ∈ [j -1, i ], there is k ∈ [j -1, i] such that w, k ≈ N -1 w , k .

Proof The proof is similar to the proof for (Claim 4) by looking backward instead of looking forward (still there are slight differences because past is finite). Nevertheless, full proof is provided below for the sake of completeness. We proceed by a case analysis on the positions i and j.

• If i < len(w 1 ) + N len(u) [i is in Zone A N or B N ] then j < len(w 1 ) + N len(u) [j is in Zone A N or B N ], i < len(w 1 ) + N len(u) [i is in Zone A N or B N ] and i = i . We define j = j. Then it is clear that j < i and w, j ≈ N w , j . By (Claim 1), we get w, j ≈ N -1 w , j . Let k ∈ [j -1, i ] and let k = k , then we have that k ∈ [j -1, i] and also w, k ≈ N w , k , hence by (Claim 1), w, k ≈ N -1 w , k .

• 

  finite set of edges labeled by guards and updates of the counter values (transitions).

Theorem 2 . 3 .

 23 [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF][START_REF] Kuhtz | Weak Kripke structures and LTL[END_REF] MC(PLTL[C], FlatCS) can be solved in 4ExpTime. MC(PLTL[∅], FlatKS) restricted to formulae with temporal operators U,X is NP-complete.

Figure 2 :

 2 Figure 2: Two words w, w with u = and the relation ≈ 3

Figure 3 :

 3 Figure 3: A simple path schema P

Figure 5 :

 5 Figure 5: A simple path schema

  ρ, i |= Xψ, ρ, i + 1 |= ψ (by definition of |=), -ft ρ , i + 1 |= symb ψ (by induction hypothesis), -ft ρ , i |= symb Xψ (by definition |= symb ).

,+1 , 0 PFigure 6 :

 06 Figure 6: A path P and two unfolded path schemas

5 .

 5 Similar to (4.) by using Proposition 7.10(II). 6. Let us consider an ultimately periodic word w • u ω ∈ L(P ). We can build in linear time the ultimately periodic word w • u ω = proj(w • u ω ) over the alphabet 2 X × I T and the size of the word w [resp. u ] is linear in the size of the word w [resp. w ]. By [29, Theorem 5.1], we know that w • u ω , 0 |= symb φ can be checked in time O(size(φ) 2 × len(w • u )). Indeed, |= symb is analogous to the satisfiability relation for plain Past LTL.

Theorem 8 . 1 .

 81 [START_REF] Borosh | Bounds on positive integral solutions of linear Diophantine equations[END_REF] Let M ∈ [-M, M ] a×b and b ∈ [-M, M ] a , where a, b, M ∈ N. If there is x ∈ N b such that Mx ≥ b, then there is y ∈ [0, (max{b, M }) Ca ] b such that My ≥ b, where C is some constant.By Theorem 8.1, E ∧ ψ 1 ∧ • • • ∧ ψ k-1 has a solution iff E ∧ ψ 1 ∧ • • • ∧ ψ k-1has a solution whose counter values are bounded by

  Consequently, we get the PTime upper bound. Proposition 8.8. MC(PLTL[C], CPS(1)) is in PTime.

--

  Zone D N or E N ], we choose k = k + (M -M )len(u) and here also we deduce w, k ≈ N w , k and by (Claim 1), w, k ≈ N -1 w , k . If on the other hand, w 1 +N len(u) ≤ k < len(w 1 )+(M -N )len(u) [k is in Zone C N ], let = (k -(len(w 1 ) + N len(u))) mod len(u) ( is the relative position of k in the word u it belongs to) and let k = len(w 1 ) + N len(u) + (k is placed at the same relative position of k in the first word u of the Zone C N ). Then we have w 1 +N len(u) ≤ k < len(w 1 )+(M -N )len(u) and |k -k | = 0 mod len(u) which allows to deduce that w, k ≈ N w , k and by (Claim 1), w, k ≈ N -1 w , k .• If len(w 1 ) + N len(u) ≤ i < len(w 1 ) + (M -N )len(u) [i is in Zone C N ] then len(w 1 ) + N len(u) ≤ i < len(w 1 ) + (M -N )len(u) [i is in Zone C N ] and |i -i | = 0 mod len(u). Let = (i -(len(w 1 ) + N len(u)))mod len(u) (the relative position of i in the word u). We have the following possibilities for the position j ≥ i: If j -i < len(u) -+ len(u) (j is either in the same word u as i or in the next word u), then j < len(w1 ) + (M -(N -1))len(u) [j is in Zone C N or D N ].We define j = i + (j -i) and we have that len(w 1 ) + N len(u) ≤ j < len(w 1 ) + (M -(N -1))len(u) [j is in Zone C N or D N ] and since |i -i | = 0 mod len(u), we deduce |j -j | = 0 mod len(u). From this, we obtain w, j ≈ N -1 w , j . Let k ∈ [i , j -1] and k = i+k -i . We have then that k ∈ [i, j-1] and len(w 1 ) + N len(u) ≤ k < len(w 1 ) + (M -(N -1))len(u) and len(w1 ) + N len(u) ≤ k < len(w 1 ) + (M -(N -1))len(u). Since |i -i | = 0 mod len(u), we also have |k -k | = 0 mod len(u). Hence, w, k ≈ N -1 w , k . If j -i ≥ len(u)-+len(u) (j isneither in the same word u as i nor in the next word u) and j ≥ len(w 1 )+(M -N )len(u) [j is in Zone E N or D N ]. Let j = j-(M -M )len(u) then j ≥ len(w 1 )+(M -N )len(u) [j is in Zone E N or D N ] and consequently w, j ≈ N w , j and by (Claim 1) we get w, j ≈ N -1 w , j . Then let k ∈ [i , j -1]. If k ≥ len(w 1 ) + (M -N )len(u) [k is in Zone D N or E N ], then let k = k +(M -M )len(u); we have in this case that k ≥ len(w 1 )+(M -N )len(u) and this allows us to deduce that w, k ≈ N -1 w , k . Now assume k < len(w 1 ) + (M -N )len(u) [k is in Zone C N ] and k -i < len(u) -(k and i are in

-

  If i ≥ len(w 1 ) + (M -N )len(u) [i is Zone D N or E N ] then i ≥ len(w 1 ) + (M -N )len(u) [i is in Zone D N or E N ] and i = i + (M -M )len(u) and we have the following possibilities for the position j ≤ i:If j ≥ len(w 1 )+(M -N )len(u) [j is in Zone D N or E N ], then let j = j -(M -M )len(u). Consequently, we have w, j ≈ N w , j and by (Claim 1) we get w, j ≈ N -1 w , j . Let k ∈ [j -1, i ] and k = k + (M -M )len(u). Then we have that k ∈ [j -1, i] and also w, k≈ N w , k . By (Claim 1), w, k ≈ N -1 w , k . -If len(w 1 )+N len(u) ≤ j < len(w 1 )+(M -N )len(u) [j is in Zone C N ],then let = (j -(len(w 1 ) + N len(u))) mod len(u) ( is the relative position of j in the word u it belongs to). Consequently 0 ≤ < len(u). Let j = len(w 1 ) + (M -N )len(u) -(len(u) -) (j is at the same position as j in the last word u of the Zone C N ).Then len(w 1 ) + N len(u) ≤ j < len(w 1 ) + (M -N )len(u) [j is in Zone C N ] (because (M ≥ 2N + 1) and |j -j | = 0 mod len(u), they are at the same position in the word u). We deduce that w, j ≈ N w , j and by (Claim 1) we get w, j≈ N -1 w , j . Then let k ∈ [j -1, i ] and let k = k + (M -M )len(u). Then we have that k ∈ [j -1, i]. Furthermore, if k ≥ len(w 1 ) + (M -N )len(u) [k is in Zone D N or E N ] then k ≥ len(w 1 ) + (M -N )len(u) [k is in Zone D N or E N ]and we obtain w, k ≈ N w , k and by (Claim 1), w, k ≈ N -1 w , k . Moreover, if k < len(w 1 ) + (M -N )len(u) then necessarily len(w 1 ) + N len(u) ≤ k this case we have len(w 1 )+N len(u) ≤ k < len(w 1 )+(M -N )len(u) [k is in Zone C N ] and since |j -j | = 0 mod len(u), we also have |k -k | = 0 mod len(u), hence w, k ≈ N -1 w , k .

  lies in the interval specified in the definition of and thus, v |= t ∼ b.-The induction step for ∧ and ∨, follows easily.On the other hand, assume that for all valuations v and for all t ∈ T , we have v(t) ∈ m(t) implies v |= g. Similar to above, we will use inductive argument to show that m g -Base Case: Let us specifically consider the atomic guard t ≥ b

and v be a valuation such that v(t) ∈ m(t). We have v |= t ≥ b, and consequently v(t) ∈ [b, +∞). Since, v(t) ∈ m(t), we have that, m(t) ⊆ [b, +∞). Hence, m t ≥ b. Similarly, for constraints of other forms t ∼ b, v(t) lies in the interval exactly specified in the definition of . Thus, m t ∼ b.

  0 |= symb φ 8: build the constraint system E over the variables y 1 , . . . , y k-1 for P with initial counter values v 0 (obtained from Lemma 6.1) 9: for i = 1 → k -1 do

	10: if y[i] = 2td(φ) + 5 then
	11:	ψ i ← "y i ≥ 2td(φ) + 5"
	12: else
	13:	ψ i ← "y i = y[i]"
	14: end if
	15: end for
	16: check that y
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p k l ω k ) = ft ρ , by Lemma 7.5, we deduce that ρ, 0 |= φ. By Theorem 7.11 (5), there is an infinite run ρ , starting at the configuration q 0 , v 0 and respecting P , such that ρ , 0 |= φ. Now, suppose that S, c 0 |= φ. We show that there exist P , P , y, y that allow to build an accepting computation of Algorithm 1. There is a run ρ starting at c 0 such that ρ, 0 |= φ. By Corollary ρ respects some minimal path schema of S, say P . By Theorem 7.11 [START_REF] Bozga | Fast acceleration of ultimately periodic relations[END_REF], there is a path schema P = p 1 l + 1 p 2 l + 2 . . . p k l ω k in Y R,P,c 0 for which there is a run ρ satisfying φ. Furthermore, since P ∈ Y R,P,c 0 , we know that len(P ) ≤ q (len(P ) + card(T ) + card(B)) for some polynomial q (•). From iter P (ρ ) ∈ (N \ {0}) k-1 , for every i ∈ [1, k -1], we consider ψ i such that ψ i is equal to y i = iter P (ρ )[i] if iter P (ρ )[i] ≤ 2td(φ) + 5, otherwise ψ i is equal to y i ≥ 2td(φ) + 5. Since P admits at least one infinite run ρ such that iter P (ρ ) satisfies ψ 1 ∧ • • • ∧ ψ k-1 , the constraint system E obtained from P (thanks to Lemma 6.1) but augmented with ψ 1 ∧ • • • ∧ ψ k-1 admits at least one solution. Let us define y ∈ [1, 2 p (size(S)+size(c 0 )+size(φ)) ] k-1 as a small solution of E ∧ ψ 1 ∧ • • • ∧ ψ k-1 and y ∈ [1, 2td(φ) + 5] k-1 be defined such that y[i] = max(y [i], 2td(φ) + 5) for i ∈ [1, k -1]. As shown previously, the bound 2 p (size(S)+size(c 0 )+size(φ)) is sufficient if there is a solution. Clearly,

) and since by Lemma 7.5, we have ft ρ |= symb φ, we get that proj(p 1 l

This also implies that P satisfies the infiniteness property. Hence

, 0 |= symb φ thanks to Proposition 5.1. Consequently, we have all the ingredients to build safely an accepting run for Algorithm 1 on inputs S, c 0 , φ.

The two previous lemmas allow us to state the main result of this paper.

As a corollary, we can also solve the global model-checking problem with existential Presburger formulae (we knew that Presburger formulae exist for 8:

11:

For each term t ∈ T , curr(t) (a result extending what is done in [START_REF] Kučera | The stuttering principle revisited[END_REF] with past-time operators) and the use of small integer solutions for quantifier-free Presburger formulae [START_REF] Borosh | Bounds on positive integral solutions of linear Diophantine equations[END_REF]. This latter technique is nowadays widely used to obtain optimal complexity upper bounds for verification problems, see e.g. [START_REF] Haase | Reachability in succinct and parametric one-counter automata[END_REF][START_REF] Haase | Integer vector addition systems with states[END_REF]. Herein, our main originality rests on its intricate combination with a very general stuttering principle. There are several related problems which are not addressed in the paper. For instance, the extension of the model-checking problem to full CTL is known to be decidable [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF] and the complexity characterization has been recently solved in [START_REF] Demri | Equivalence between modelchecking flat counter systems and Presburger Arithmetic[END_REF]. Similarly, the model-checking problem can be extended by considering successively more powerful guards and updates (see the very recent work [5], see also [START_REF] Dhar | Algorithms for model-checking flat counter systems[END_REF]). In this respect, extending our model by allowing quantified Presburger arithmetic formulae immediately results in a reduction from the satisfiability problem for Presburger arithmetic. Extending our model by incorporating updates with finite monoid property in the sense of [START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF] is another option to consider. In fact, though model-checking is known to be decidable [START_REF] Demri | Modelchecking CTL* over flat Presburger counter systems[END_REF], the exact complexity is possibly higher than NP.

Another direction for extensions would be to consider richer update functions or guards and to analyze how much our combined proof technique is robust in those cases, for instance by allowing transfer updates. For the proofs of (Claim 1) -(Claim 5), the positions of each word w of the form w = w 1 u M w 2 ∈ Σ ω (Σ = 2 AT , w 1 ∈ Σ * , u ∈ Σ + and w 2 ∈ Σ ω ) with M > 2N are partitionned into five zones (A, B, C, D and E). We also assume that N ≥ 2. Indeed, given that w, i ≈ N w , i , we shall proceed by a case analysis on the positions i and i depending on which zones i and i belong to (assuming that w = w 1 u M w 2 ∈ Σ ω with M > 2N ). The definition of zones is illustrated on Figure A.8 and here is the formal characterization:

• Zone B corresponds to the set of positions i ∈ N such that len(w

• Zone C corresponds to the set of positions i ∈ N such that len(w

• Zone D corresponds to the set of positions i ∈ N such that len(w

• Zone E corresponds to the set of positions i ∈ N such that len(w Note that the definition of zones depends on the value N (taken from ≈ N ) and also on u, w 1 and w 2 . In the sequel, we may index the zones by N (providing A N , B N , etc.) when it is useful to make explicit from which relation ≈ N the definition of zones is made. Moreover, we may use a prime symbol (providing A N , B N , etc.) to refer to zones for the infinite word w . So, the relation ≈ N can be redefined as follows when M, M > 2N :

) and one of the conditions holds true:

Proof We first prove that w, i ≈ N -1 w , i . Without any loss of generality, we can assume that

Hence, w, i ≈ N -1 w , i .

. This also entails that w, i ≈ N -1 w , i .

As far as the second property is concerned, it is easy to conclude that w(i) = w (i ), because either i and i correspond to the same position relatively to the words w 1 or w 2 , or they are respectively in the Zone C and they correspond to the same position of u. Indeed, in this latter case, their difference is such that |i -i | = 0 mod len(u).

Proof Without any loss of generality, we can assume that M ≥ M . Since

Proof The proof is similar to the proof for (Claim 2). Nevertheless, full proof is provided below for the sake of completeness. Without any loss of generality, we can assume that M ≥ M . Since N > N -1, it is again obvious that M ≈ 2(N -1) M .

. This also entails that w, i + 1 ≈ N -1 w , i + 1 . Before providing the detailed proof, we give a concrete example on Figure A.9. On this example, we assume that the top word w and the bottom word w and their respective positions i and i are such that w, i ≈ 3 w , i . We want to illustrate (Claim 4) and for this matter, we choose a position j in w. Now observe that according to the zone classification, j is in the Zone C of the word w and furthermore it is not possible to find a j > i in the Zone C of the word w such that j and j points on the same position of the word u. That is why we need to consider at this stage not the relation ≈ 3 but instead ≈ 2 . In fact, as shown at the bottom of Figure A.9, we can find for j, a position j in w such that w, j ≈ 2 w , j (take j = j ) and this figure also shows that for all i ≤ k ≤ j , w, k ≈ 2 w , k . Let us recall what is (Claim 4). Let

(Claim 4) For all j ≥ i, there is j ≥ i such that w, j ≈ N -1 w , j and for all k

Proof We proceed by a case analysis on the positions i and j:

We define j = j -(M -M )len(u). Then it is clear that j ≥ i and w, j ≈ N w , j . By (Claim 1), we get w, j ≈ N -1 w , j . Let k ∈ [i , j -1] and let k = k + (M -M )len(u), then we have that k ∈ [i, j -1] and also w, k ≈ N w , k , hence by (Claim 1), w, k ≈ N -1 w , k .

, i = i and we have the following possibilities for the position j ≥ i:

, then let j = j. Consequently we have w, j ≈ N w , j and by (Claim 1) we get w, j ≈ N -1 w , j . Let k ∈ [i , j -1] and k = k . Then we have that k ∈ [i, j -1] and also w, k ≈ N w , k and by (Claim 1), w, k

then let = (j -(len(w 1 ) + N len(u))) mod len(u) ( is the relative position of j in the word u it belongs to). Consequently 0 ≤ < len(u). Let j = len(w 1 ) + N len(u) + (we choose j at the same relative position of j in the first word u of the Zone C N ). Then len(w 1 ) + N len(u) ≤ j < len(w 1 ) + (M -N )len(u) [j is in Zone C N ] (because (M -N ) > 0) and |j -j | = 0 mod len(u). We deduce that w, j ≈ N w , j and by (Claim 1) we get w, j ≈ N -1 w , j . Then let k ∈ [i , j -1] and let k = k . Then we have that k

and we deduce that w, j ≈ N w , j and by (Claim 1) we get w, j We have the following possibilities for the position j ≤ i:

-If i -j < + len(u) (j is in the same word u as i or in the previous word u) then j ≥ len(w 1 ) + (N -1)len(u) [j is in Zone B N or C N ]. We define j = i -(i -j) and we have that len(w 1 ) + (N -1)len(u) ≤ j < len(w 1 ) + (M -N )len(u) [j is in Zone B N or C N ] and since |i -i | = 0 mod len(u), we deduce |j -j | = 0 mod len(u). From this, we obtain w, j ≈ -If i -j ≥ + len(u) (j is neither in the same word u as i nor in the previous word u) and j < len(w 1 ) + N len(u) [j is in zone A N or B N ]. Let j = j. So, j < len(w 1 )+N len(u) and w, j ≈ N w , j . By using (Claim 1) we get w, j ≈ N -1 w , j . Then let k ∈ -If j -i ≥ + len(u) (j is neither in the same word u as i nor in the previous word u) and j ≥ len(w 1 ) + N len(u) [j is in zone C N ]. Then let = (j -(len(w 1 ) + N len(u))) mod len(u) the relative position of j ∈ u. We choose j = i --(len(u) -) (j and j are on the same position of u but in the word u precedent the one to which i belongs to). We have then that j ≥ len(w 1 ) + (N -1)len(u) [j is zone B N or C N ] (because i -≥ len(w 1 )+N )len(u) and len(u)-≤ len(u)) and |j -j | = 0 mod len(u) (j and j are both pointing on the -th position in word u), hence w, j ≈ N -1 w , j . Let k ∈ [j -1, i ]. If i -k ≤ (k and i are in the same word u), then let k = i -(i -k ). In this case we have k ≥ len(w 1 ) + N len(u) [k is in Zone C N ] and since |i -i | = 0 mod len(u), we also have |k -k | = 0 mod len(u), hence w, k ≈ N -1 w , k . If i -k > (k and i are not in the same word u), then k -j < len(u) -and let k = j + k -j . In