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Coupling numerical deformable models in global and reduced
coordinates for the simulation of the direct and the inverse

kinematics of Soft Robots.
Yinoussa Adagolodjo1, Federico Renda2 and Christian Duriez1

Abstract—In this paper, we propose a method to combine the
Finite Element Method (FEM) with Discrete Cosserat Modeling
(DCM) to capture the mechanics and the actuation of soft robots.
The FEM is used to simulate the non-linear behavior of the
volume of the soft structure while the cable/rod used for the
actuation is modeled using the DCM. The two models are linked
using kinematic constraints without imposing meshing rules.
We demonstrate that both direct and inverse kinematic models
can be obtained by quadratic optimization. The originality of
this coupling is that the FEM model uses global coordinates
(the position of the nodes of its mesh in space) where the
Cosserat model uses local coordinates (successive strain values).
The coupling of these mechanical models allows to combine
the best of each parametrization. On the one hand, FEM
allows to capture the behavior of the volume structure of the
robot while accounting for its geometry with a complex mesh.
On the other hand, the DCM allows efficient modeling of 1D
structures such as rods, (concentric) tubes, cables, etc. that are
used to deform the volume structure of the soft robots. DCM
handles large deformation, torsion and (in)-extensibility and is
efficient to compute. Moreover, the approach is compatible with
complementarity constraints introduced when modeling contact
and friction of the robot with its environment as well as the
self-collision.

Index Terms—Flexible Robotics, Soft Robot Applications, Con-
tact Modeling, Grasping, Modeling, Simulation and Animation,
Tendon/Wire Mechanism, Control, and Learning for Soft Robots

I. INTRODUCTION

THE field of soft robots opens the way to many new
design possibilities, such as the choice of actuators, the

transmission of forces in the structure, the use of materials
with different stiffness, etc. On the one hand, the possible
combinations to obtain desired motions on a deformable robot
are multiple. On the other hand, the tools for the designer, still
require improvement, especially when it comes to mechanical
modeling.
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So far, two methods have mainly emerged to succeed in
modeling the mechanics of these robots, while taking into
account their material properties: The first one is based on
the Cosserat theory, which has the advantage of having a for-
mulation close to serial rigid robots using reduced coordinates.
The second group’s numerical models of finite element type,
which generate large models whose state is defined in global
coordinates.

A. Motivations to combine Cosserat rods and FEM

The DCM is totally adapted to curved robots with a constant
or quasi-constant cross-section and the reduced coordinates
make it possible to limit the size of the models and therefore
calculation times are fast. Furthermore, if one wishes to
particularly constrain a dimension (for example, to simulate
the inextensible behavior of a rod or cable), it is sufficient
to not introduce this strain in the reduced coordinates of the
Cosserat model. However, this model is not adapted for the
simulation of truss structures, complex geometries and cannot
be used for volume deformations.

Conversely, the state of a FEM model is often represented
by the position and velocity (in absolute coordinates) of a
set of nodes connected by elements. This leaves a very large
freedom in geometry and allows to establish well-defined
boundary conditions on these numerical models. There are
FEM models for rods (beams), for shells, or for modeling
deformable volume solids. Material laws can be defined very
freely and for volume models, anisotropy can be modeled in
all directions and rods can be connected freely to create truss
structures. However, for rods modeling, it is necessary to add
additional constraints (such as Lagrange multipliers) to really
avoid some deformations, such as in-extension and this tends
to deteriorate the numerical conditioning of the model. Here,
the DCM is more suitable.

One can therefore observe that each of the models has
advantages for modeling the deformations of certain types
of solids. Yet, there is an increasing interest in combining
different types of bodies in the design of soft robots. There
are recurrent cases where it would be useful to combine these
models: one of them is to model the stiffness of cables used to
transmit motion to a soft robot with a deformable volumetric
structure as demonstrated in this paper. Further examples are
the use of an inextensible wire placed around a pneumatic
cavity to limit its radial inflation or to design new robots that
would use pre-bent flexible rods to transmit their motion to
a volumetric structure. These are possible extensions of this
work.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2021

B. Related Work

The cosserat model has been introduced in continuum
robotics to simulate the deformation the robot body whose
geometry and mechanical characteristics are similar to a rod.
By extension, this model can be used to simulate needles and
sutures [1] or wires [2]. The specificity of Cosserat’s theory
from the point of view of the mechanics of continuous media
is to consider that the set of material points consists of rigid
solids (3 translations, 3 rotations), where most other models
of continuum media mechanics consider the material points as
particles (3 translations). For the modeling of linear structures,
it is therefore possible to find a framework very close to the
articulated solids with a series of rigid solids whose relative
position is defined by a strain state. This model can be used
to model and control concentric tube robots [3], continuum
robots actuated with cables [4] or pneumatic soft robots with
a constant cross-section [5] There are several formalism to
model Cosserat rods. In this paper, we have developed the
Piecewise Constant Strain (PCS) presented by [6], [7] in the
SOFA framework.

The use of finite element models for the design of robots and
especially soft robots is widely used [8], [9], [10], [11]. Indeed,
finite element methods combined with suitable constitutive
laws provide a valuable tool for simulating the behavior of
these robots in interaction with their environment. However,
its use for real-time modeling and control is less common.
Yet, several approaches allow for very fast computations but
sometimes at the price of limitations in the constitutive laws
or in the extent of deformation (very large deformations). For
instance, the co-rotational technique [12], [13], which is used
to improve the computation time of the FEM model, is limited
to small-strain (but large displacements and rotations). In [14],
a model order reduction approach is proposed to reduce the
size of the model by introducing another parameterization
based on deformation modes.

FEM beam models allow to model rods like the Cosserat
model but each node has 6 degrees of freedom, defined
in global coordinates. The model is therefore often much
larger than a corresponding Cosserat model. Inversely, truss
structures can easily be simulated with these beams [9], [15],
which is very difficult with most of the Cosserat rod models.

These two approaches have in common that they derive from
the continuous media mechanics. It is obvious that each of
them has its own advantages and disadvantages. It is useless
to try to place one above the other. On the contrary, to benefit
from their respective advantages, it is much more useful to
combine them. In our opinion, their respective advantages are
mainly related to the parameterization choices (reduced and
global).

There is obviously a lot of work on this subject for rigid ar-
ticulated models, for instance recently in [16], but surprisingly
very little for deformable models, especially in robotics.

C. Contribution

To our best knowledge, we propose the first study of a
mixed modeling for soft robots, which uses a deformable
model in global coordinates (FEM type) to model the structure

of the robot and a deformable model in reduced coordinates
(Cosserat rod types) to model the tendons passing through
this structure to deform it. This work, which is relatively
pioneering for deformable models, is part of the process of
analyzing the parameterization choices that already exist for
articulated rigid bodies, even if there are important differences.

II. MECHANICAL MODELS

In [17], a general formulation of the kinematic model of
soft robots controlled in position has been proposed:

∆δe = WeaW
−1
aa ∆δa (1)

In this equation ∆δe is a small motion of the effector(s),
∆δa a small motion of the actuator(s) and Wea and Waa

are the compliance matrices (inverse of stiffness) that relates
respectively, forces in the actuator space to displacements
in the effector space and forces and displacements in the
actuator space. This equation is obtained by linearization of
a numerical model of the deformations. By small motion, we
mean motions that are small enough over a time step that the
assumption of a linear motion is correct (like Jacobian of an
articulated system in a kinematic equation of a rigid robot) The
Wij compliance matrices are updated at each simulation step,
using a mechanical model that accounts for the mechanical
properties of the materials and the non-linearities of the
deformations.

In this section we explain how we compute these using
both DCM and FEM model. Moreover, the above formulation
supposes that both actuators and effectors are defined on a
unique deformable model so that Wij 6= 0 which is not the
case in our study where actuators are defined on Cosserat
rods and effectors on the FEM model. We will explain how
we integrate sliding constraints in the model and update the
kinematics in equation (14) for coupled models.

A. Discrete Cosserat Model (DCM)

In this work, the state of the DCM model, based on Hook’s
law, is defined by a 6DOF frame at the base and a series of
piecewise constant strain which can be assimilated as reduced
coordinates defined between rigid bodies.

1) Parametrization and Kinematics: In Cosserat theory,
each material point i is defined as a rigid body (with a position
ui and a rotation Ri g0(X = 0) )

gi(X) =

(
Ri ui

0T 1

)
(2)

with gi(X) ∈ SE(3). This material point i belongs to a curve
can be defined with respects to its predecessor. Derivatives
can then be defined along the curve to extract the strain state
(see [6] for details). gi(·) = X ∈ [0, Li] 7→ gi(X) ∈ SE(3)
(respectively by a point)

g′i = gi ξ̂i (3)

where ξ̂i(X) =

(
k̃i x
0T 0

)
∈ se(3) , ξ(X) = (kTi ,ui

T )T ∈

R6, defines the strain state (with k̃i(X) ∈ so(3),ki(X) ∈ R3



ADAGOLODJO et al.: COUPLING NUMERICAL DEFORMABLE MODELS IN GLOBAL AND REDUCED COORDINATES FOR THE SIMULATION... 3

and x(X) ∈ R3 respectively the angular and linear strain).
The model is parametrized using this strain to trigger the
deformation directions and to be as close as possible to the be-
havior law of the material (defined from the strain). To model
constrained rod, such as the Kirchhoff-Love case with angular
strain only, the strain field is specified as: ξi(X) = Biqi+ ξ̄i,
where Bi ∈ R6×ni forms a basis for the allowed motion
subspace, qi(X) ∈ Rni contains the values of the allowed
strains and, ξ̄i ∈ R6 is a fixed twist modeling constant yet
non-zero strains (e.g., for in-extensible rod with x-axis tangent
to the center-line ξ̄i = [000100]T ).

Now, assuming piece-wise constant strains [6] , equations
(1) can be analytically integrated using the matrix exponential
method, leading to :

gi(X) = eXξ̂i (4)

In the same way, thanks to Lie derivatives toolbox, one can
write the velocity twists ηi(X) of a rigid material points i
using the one of its predecessor and the temporal derivative
of the allowed strains q̇i (velocities of reduced coordinates).
See [6] for details.

Successive applications of the kinematics for all the discrete
body points of the system along the curve, yields to the
definition of the geometric Jacobian J(X) ∈ R6×n and
its derivative J̇(X) ∈ R6×n (n being the total number of
DOFs) for each soft/rigid body, which relates the generalized
coordinate vector q = [qT0 q

T
1 . . .q

T
N−1] ∈ Rn (N being the

total number of bodies) and the ith velocity twist as shown
below.

ηi(X) =

i∑
h=0

Ad−1gh...giTghBhq̇h =

i∑
h=0

iShq̇h = Jiq̇

η̇i(X) =

i∑
h=0

iShq̈h +i Ṡhq̇h = Jiq̈ + J̇iq̇

(5)

where the block elements of the ith Jacobian iS(·) ∈ R6×n(·)

and its derivative iṠ(·) ∈ R6×n(·) have been defined. Note that
to simplify the notation, we will consider in the following that
the 6 DOF movement of the rigid body motion q0 of the base
belongs to the state vector q.

The vector of the generalized coordinates being described
in a reduced space of strains, we can write the behavior law of
the material in this space to obtain the stresses σi created by
the deformations. This formulation therefore has the advantage
of having a formulation of internal forces that is extremely
simple to calculate, with diagonal block matrices linking qi to
σi. These stresses must be balanced with the forces applied
to the rod (especially gravity, the inertial forces, and also the
forces used to couple with the FEM). Exactly, as for rigid
articulated chains, the transposed Jacobian matrices JTi are
used to bring back the forces defined on the rigid material
points to the reduced coordinate space (see schema at Fig.1).
We can therefore write the equation of the dynamics in the
reduced space:

M(q)q̈ + C(q, q̇)q̇ = JTP −F(qi) + JTλ (6)

with M(q) the projection of the mass matrix in the reduced
space, C(q, q̇)q̇ some derivative terms that are similar to

centrifugal and Coriolis forces. JTP and JTλ are the gravita-
tional forces and the interaction forces projected in the reduced
space and F(qi) represents the constitutive law.

B. FEM in global coordinates

To simulate the behavior of soft robots with volume defor-
mations in interaction with their environment, we made the
choice of the FE methods computed in real-time. This part is
mainly based on the previous works developed in [10], [18],
[11], which are using FEM implementation provided by the
simulation framework SOFA [19]. In this paper, the choice
of the co-rotational model is made for FE method, which a
good trade of between computational efficiency and accuracy
of the model. Indeed, although a linear model, the co-relational
model allows to take into account the geometric non-linearity
due to the rotation of the elements during the deformation.
Which is the main limitation of most of linear models in FEM.

Tetrahedral or hexahedral meshes are used for the repre-
sentation of the robot body in the FEM implementation for
deformation of the volume structure. In order to efficiently
connect these complex topologies, global coordinates are used
: the state of the system is represented by the motions (position
and velocity) of the nodes of the mesh which are linked
together by the integrated constitutive law on each of the
elements. We are therefore in the opposite case to Cosserat’s
model: the stress/strain space in which we define the behavior
of the material is a mapped space.

On the other hand, one can easily describe in nodes space
the forces related to mass (gravity, inertia), the coupling
constraints with the Cosserat model or the contact constraints.
Newton’s second law that describes the dynamic equation of
the deformable structure of the soft robot is therefore written
in absolute coordinates:

Mẍ = P −F(x, ẋ) + HTλ (7)

where F is a non-linear function providing the internal
forces of the deformable structure (here the soft robot) com-
puted by the FEM. M and x are respectively the mass matrix
(constant and diagonal matrix when using mass lumping) and

Fig. 1. In the Cosserat model, the state of the system is calculated in reduced
coordinates in the space of the material constitutive law. The global positions
are deduced by integrating the motion along the curve. Similarly, the forces
defined in the global reference frame (gravity, inertia, constraints, etc.) are
transferred to the reduced space. The constraint space (to interact with the
FEM), is also using positions defined in the global frame so, it requires the
same process to compute violation and transfer constraint force.
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the vector of the nodes position given by the FE method. P
represents the known external forces (such as gravity), λ and
H are respectively the vector of Lagrange multipliers and the
matrix containing the constraint directions.

C. Definition of Constraints

To make the complete modeling of the robot and in
particular the coupling between the models, the taking into
account of the contacts and friction or the definition of the
effector or the directions of actuation, we rely on the use of
Lagrange multipliers, associated to several type of constraints.
These constraints are defined in their own spaces, often global
coordinates (to define a contact or sliding direction). As shown
above, it is important to be able to easily transfer constraints
from a constraint space to the state space (reduced for the
Cosserat, global using nodes for the FEM.See Fig.1 and Fig.2
for a better overview ). This easy transfer of constraints
through different spaces is facilitated by the concept of map-
pings developed in SOFA [19].

In the following of this section, we will present how the
Lagrange Multipliers is used for modeling the sliding actuation
of rods, handle contacts with the external environment and to
guide the robot’s end effector to reach a define target.

1) Cable Actuation: In our study, the soft robot is actuated
using cables or rods, and the loads applied by these actuators is
model using the Lagrange’s multipliers to transmit the forces
on the FEM to deform it. The coupling is bilateral: while
deforming, the FEM will also cause the deformation of the
Cosserat model by imposing sliding link forces.

As mentioned above, the cable is modeled using discrete
Cosserat modeling and divided into N sections of the form
[0, L1), (L1, L2)(LN−1, LN ] (with LN = L ). At any time t
of the simulation, one can obtain the rigid material point gi(X)
on the cable at the abscissa X. We assume that the cable is
attached to the robot at its extremity Pfix = gi(LN ), and we
actuated the robot by pulling the rigid body at the base of the

Fig. 2. In the case of the FEM model, the state of the system is in global
coordinates with node positions and derivatives (this is convenient for gravity
P and dynamic forces Mẍ). On the other hand, the calculation of internal
forces F(x, ẋ) requires a change from this global state to the space of the
constitutive law (strain / stress). By integrating the stress on the volume of each
element, we obtain the corresponding internal forces on each node. Finally,
interaction constraints HTλ are potentially defined in another space to be
able to place the constraints between nodes of the mesh. δ(x) represents the
violation of the constraint (most of the time a distance) of any interpolated
point p in the mesh. H = ∂δ

∂x
can also be seen as the Jacobian of the mapping

between the FE space and the constraint space. Note that to link the motion
of p and the state x, we use FEM interpolation functions p = Ψ(x).

Cosserat model Ppull = q0. The pulling translation δa(q) of
the cable at the base deforms the robot, and create a reaction
force on this base that is computed thanks to the Lagrange
multiplier λa (This corresponds to the force that a sliding
actuator should apply to create the translation). In the model,
this rigid body base is fixed in all directions (translations and
rotations) except the one in which the cable is pulled.

Note that we have also used the same formulation to model
a torsion based actuation. In such case δa(q) is an angular
displacement imposed along the main axis of the rod.

Fig. 3. Coupling between the DCM model (in red) and the FEM model
(volume mesh) using sliding constraints (numbered from 0 to 5). The last
constraint (6) has an additional direction to reproduce the fixation of the
cable extremity in the silicone.

2) Sliding Constraint: To model the coupling forces,
HT
s λs, between the FEM and the Cosserat models, we first

defined constraint points Ps (3D points , see fig3), inside the
FEM mesh. These points are chosen very close to the path of
the cable inside the robot structure. The first point is positioned
on the entry point of the cable in the robot and the last at the
fixing point Pfix, of the cable on the robot. The rest of the
points are homogeneously distributed along the cable (see fig.
4).

At each time step, for each of these points, we compute the
projection on the cable given the current configuration (see
green line in fig. 4). We can then define a 2d vector δs between
the point and its projection, in the normal plane of the cable’s
curve (see blue arrows in fig 4). For the last point, which
corresponds to the extremity of the cable Pfix = gi(LN ),
we use a 3d vector δs that measure the distance between the
point in the FEM and this extremity. Thanks to the mapping
between spaces defined above (see Figs 1 and 2 ) this vector
can be linked to the position state of both models δs(q,x).

The role of the associated Lagrange Multiplier λs will be
to force δs = 0 at the end of each step (for more details
about bilateral constraints, see [10]). Jacobian matrices are
both defined on the Cosserat model J0,s = ∂δs

∂q0
, Ji,s = ∂δs

∂qi

and on the FEM Hs = ∂δs

∂x to transfer the constraint force in
the state space of each model: JT0,sλs JTi,sλs and HT

s λs
3) Effector Constraint: Our objectives in most of the

simulations, direct or inverse, that we conduct is to guide
the robot extremity called effector e, towards a target in its
workspace. This point belongs to the FEM mesh and its motion
can be interpolated using node motions and interpolation
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Fig. 4. Sliding constraints, applied on constraint points during soft robot
actuation. Blue arrows are bilateral constraints, used to maintain constraint
points on the cable. Green line are violations.

functions Ψ. Let’s define δe(x) = Ψ(x)−ud as the violation
function that measures the shift along x, y and z between this
point and the desired position ud. Like above we compute the
Jacobian matrix, He of this vector δe(x). Since in our various
simulations, we will not have to apply a load to the robot’s
effector, we can therefore note λe = 0.

4) Friction Contacts: To manage the different contacts that
can appear between the robot and its environment, we combine
Signorini’s law for contact and Coulomb’s law for friction (see
[10] for more details). The force HT

c λc induced by this contact
is divided into normal HT

nλnc and tangential HT
t λtc forces.

The corresponding matrix of directions H = [HnHt]
T holds

the normal and the tangential(friction) direction of the contact
force, and λc is the contact response. The contact appears on
the FEM structure and the violation function δc(x) measures at
the contact point, the shift between the robot and the obstacle.
When a potential contact with the robot has been detected, we
need to solve the contact response λc at the collision point
with complementarity conditions.

III. DIRECT AND INVERSE SOLVING

To integrate in time, we made the choice of an implicit
backward Euler scheme. This integration scheme is known
to be dissipative but it guarantees unconditional stability and
being a low-order scheme, non-smooth events such as contacts
can be integrated using a time-stepping approach. Using this
integration scheme for (6) and (7), we obtain non-linear
problems.

Instead of directly solving these nonlinear problems at each
simulation step, we solve a linearized problem. Thus, we can
compute a linearization of the F by applying a first order
Taylor series expansion. For instance, on FEM:

F(xh, ẋh) = F(x0, ẋ0) +
∂F
∂x

dx +
∂F
∂ẋ

dẋ (8)

with xh and x0 the position of the nodes respectively at the
end and at the beginning of the step.

We do the same for the internal forces in the Cosserat model
but in this work, we use a linear constitutive law (Hooke’s law)
so the function F(qi) is already linear so ∂F

∂q is constant. In
the Cosserat model the Mass M(q) is non linear but we take
its value at the beginning of the step q0, same for C(q, q̇)

Let’s consider the simulation at time th = t0 + h using the
relations dq = qh − q0 = hq̇h and dx = xh − x0 = hẋh
to integrate positions and dq̇ = q̇h − q̇0 = hq̈h and dẋ =
ẋh − ẋ0 = hẍh for the velocities, we have:

(
M(q0) + hC(q0, q̇0) + h2

∂F
∂q

)
︸ ︷︷ ︸

Aq

dq̇︸︷︷︸
uq

= h2
∂F
∂q

q̇0

+h(JTP−F0) + hJTλ

(9)

for the Cosserat model and for the FEM model:

(
M + h

∂F
∂ẋ

+ h2
∂F
∂x

)
︸ ︷︷ ︸

Ax

dẋ︸︷︷︸
ux

= h2
∂F
∂x

ẋ0

+h(P h −F0) + hHTλ

(10)

with P h = P (th) and F0 = F(x0, ẋ0).
These two matrix systems of equations are coupled with

the values of the constraint λ. As described in [19], we first
compute each system independently by setting λ = 0 and
obtain the free motion.

A. Direct Problem Formulation

In a direct problem formulation, the displacement of the
actuator δa(q) = v is known. Moreover, we know that the
sliding constraints are solved when δs(q,x) = 0.

These constraints depend on the integrated equations of
DCM (9) and (10). After solving the free motion, we can
compute the Schur complement for each constraint:

δi = h2[JiA
−1
q JTj + HiA

−1
x HT

j ]︸ ︷︷ ︸
Wij

λj + δfreej (11)

Where δfreej = δj(q0,x0) + Jjdq
free + Hjdx

free.
The physical meaning of this Schur complement is central

in the method. Wij provides a measure of the instantaneous
mechanical coupling between the boundary conditions i and
j, whether they correspond to actuator or sliding. In practice,
this projection allows to perform the optimization with the
smallest possible number of equations.

It should be emphasized that one of the main difficulties
is to compute Wij in a fast manner, in particular for the
FEM model because the size of Ax is large, whereas Aq is
much smaller. No precomputation is possible because the value
changes at each iteration. But this type of projection problem is
frequent when solving friction contact on deformable objects,
thus several strategies are already implemented in SOFA.

For solving the direct model we have to solve this linear
system to obtain λa and λs[

δa = v
δs = 0

]
=

[
Waa Was

Wsa Wss

] [
λa
λs

]
+

[
δfreea

δfrees

]
(12)

If we add friction contact, we obtain a Mixed Complemen-
tarity Problem that we can solve with a Gauss-Seidel algorithm
implemented in SOFA [10]. When λa and λs are available,
equations (9) and (10) are evaluated again to obtain the final
motion.
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B. Kinematic and Inverse Problem Formulation

To compute the kinematics and the inverse problem formu-
lation, we add the constraint that corresponds to the effector.
We can rewrite the Schur complement:

 δe
δa

δs = 0

 =

Wee Wea Wes

Wae Waa Was

Wse Wsa Wss

 0
λa
λs

+

δfreee

δfreea

δfrees

 (13)

We can re-write the kinematics of a soft robot, previously
described at equation (1), to provide the link between the
motion of the effector and the actuator on two different models
coupled by sliding constraints:

∆δe = (Wea −WesW
−1
ss Wsa)W−1

aa ∆δa (14)

Note that Wea = 0 as δe is defined on the FEM whereas
δa on the DCM.

For the inverse problem, the main difference is that here
both δe and δa are unknown. The goal is to find the values
of λa (and consequently λs) in order to minimize ‖δe‖2.

we obtain the following QP minimization problem:

min
λa,λs

∥∥∥Weaλa + Wesλs + δfreee

∥∥∥2
with :

Wsaλa + Wssλs + δfrees = 0

(15)

Note that we can force the use of pulling force by adding
λa ≥ 0. λs is part of the optimization variables but one
can use λs = −W−1

ss (Wsaλa + δfrees ) to replace λs in the
minimization problem and only find λa. But most of the QP
solvers are optimized for that and avoid the costly computation
of W−1

ss . (15) is solved using the qpOASES library [20].
Finally, computation of contact forces λc could be added

as part of the optimization variables, which would allow the
controller to make use of contact forces to achieve the desired
motion [11]. But as contacts are complementarity constraints,
one need to use a QPCC solver.

IV. RESULTS

In this paper we have presented a new modeling methodol-
ogy which combines FEM and DCM to describe the behavior
of deformable robots in their environment in real-time. We
also presented the constraint-based kinematics of the robots,
inspired by our previous work, whether in direct or inverse.

In this section we will evaluate these methods, by presenting
various simulation results for robots, with different geomet-
ric and mechanical properties, and with different actuation
directions. We will also associate to this paper a video that
highlights each part of the proposed method and facilitate the
understanding of the paper.

A. Direct Simulation: example of a Grasper

In this first part of the simulation, we use an underactuated
grasper made of silicone designed by Hussan et al. in [21] then
modeled in [10]. But in [10], the model of the cable is only a
geometric constraint. The mechanical properties of the cable

are not taken into account. Here, the three cables are simulated
with Discrete Cosserat Model. In order to allow the grasper to
manipulate a cube, modeled as a rigid, in its working space,
we have added friction and contact constraints to the actuation
constraints. As shown in Fig.5.

(a) Grasper (b) Deformed grasper

Fig. 5. Direct simulation of a soft gripper that grasps a rigid object. The
benefit of having a mechanical model of cables is to take into account their
rigidity in the global mechanical behavior. We can also obtain the stress levels
in the cables.

(a) Three section cable (b) Six sections cable

(c) Ten sections cable (d) Fourteen sections cable

Fig. 6. The study of the convergence of the model in relation to the number
of sections that define the 1D object.

One of the strongest assumptions of the DCM model is
that the strain is constant along each section that compose the
1D object. We thus evaluated the convergence of the model
compared to the number of sections which define a cable. To
do this, we first define the cable that controls the finger using
80 sections. Then the finger is deformed by pulling the cable
to a given position. Four different targets are then defined
on the cable (see yellow spheres in Fig.6). Then, we varied
the number of sections that define the cable starting from
three. Quickly, one can notice that the cable goes through
the four predefined targets (after the deformation) with only
six sections(see Fig.6). This guarantees the convergence of the
model with respect to the number of sections used to define
the object.
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The other information which is represented in Fig.6 is the
distribution of the bending (with respect to the Z axis) along
the cable during the deformation. This goes from blue (no
bending) to red (large bending). Again, one can notice that
from six sections the shape of the color map is quite similar
even if the intensity can vary slightly. However, it is important
to remember that, the variation interval of the color map
depends on the value of the simulation parameters (rod and
deformable object physical properties).

An interesting aspect of using DCM to model the cable
instead of using a geometric constraint is that, when we
increase the radius of the section of the cable the deformation
of the FEM is different for the same actuation force (see Fig.7).
Indeed, in such case, the bending forces imposed by the FEM
model are not sufficient for the rigidity of the rod.

(a) 0.5 mm radius (b) 1.5 mm (c) 2.5 mm

Fig. 7. The kinematics of the flexible finger is influenced by the properties
of the cable (or rod). The larger its radius becomes, the less it can bend and
the silicone tends to compress rather than bend.

Another type of test we have carried out to highlight this
work is the use of pre-bent rods (as for concentric tube robots).
Here, we can slide such a rod into the FEM model and
when we translate or bend the rod, we observe that the FEM
model deforms due to the rigidity of the rod and its pre-bent
shape (see Fig.8). This type of design could be particularly
interesting in future work for manipulation. Fig.8.(d) shows the
distribution of the torsion along the cable which corresponds
to the type of deformation observed.

B. Inverse Simulation

Inverse simulation was tested on two examples: the soft
finger already presented above and a small tentacle actuated
by 4 cables presented in [11]. Each time, the inverse problem
takes as inputs a desired position of the effector (piloted by
an orange sphere in the figures) and computes the actuation
values required to achieve this position (see eq (15)). This
allows for the control of the robots in the open loop.

1) Soft finger: Here the inverse problem has a single
unknown (the translational force at the base of the cable). But
the problem, shown in fig 9, is less trivial than it may seem
because all the sliding constraints between the DCM cable
model and the FEM model of the silicone finger must also be
taken into account.

2) Soft tentacle: With a cable-driven soft tentacle robot
made of silicone, we demonstrate the transmission control of
several cables, all modeled with DCM. In the experimental
scenario shown in Figure 10 we control the tip of the trunk
as the effector and the effector follows a predefined trajec-
tory. The robot is actuated with four cables disposed each
90 degrees around the longitudinal direction. In the inverse

(a) pre-bent cable (b) Finger actuated with pre-bent cable

(c) front view (d) The distribution of torsion along
the cable

Fig. 8. Use of a pre-bent rod. Like in concentric tube systems, the pre-bent
rod deforms the silicone when a rotation is applied in the axis of the rod.

(a) (b)

Fig. 9. Inverse model simulated on the soft finger model and which allows
to find the translation to be applied at the base of the cable to produce the
desired displacement on the end effector (orange sphere).

simulation, we demonstrate that we are able to drive the
translational motion of the base of the DCM cable model to
create the desired motion at the end of the FEM model.

(a) tentacle at rest position (b) Deformed trunk

Fig. 10. Inverse simulation on a soft silicone tentacle modeled in FEM and
actuated by 4 cables models in reduced coordinates by DCM.

The computation timing are based on a modern machine
(Intel Core i7-8850H CPU @ 2.60GHz × 12 ).
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Simu #FEM #DCM #AC #SL #Eff C Time(ms)
grasper 1167 45 3 45 0 D 35.97*
Finger 389 15 1 15 3 I 4.31
Trunk 1972 84 4 84 3 I 82.33

TABLE I
SIMU: SIMULATION, #FEM: NUMBER OF TETRAHEDRAL MESH, #DCM
NUMBER OF SECTIONS OF THE DCM MODELE, #AC: THE NUMBER OF
ACTUATOR CONSTRAINT, #SL:THE NUMBER OF SLIDING CONSTRAINT,

#EFF: THE NUMBER OF EFFECTOR CONSTRAINT, C: THE CONTROL
(DIRECT OR INVERSE), TIME(MS): THE COMPUTATION TIME (IN MS) OF

ONE SIMULATION STEP. *: THIS TAKES INTO ACCOUNT THE FRICTION
AND THE CONTACT RESOLUTION.

It is also important to highlight that the table (table1) allows
us to show that we keep a real time computation time as those
of [10] where the cable is modeled using a purely geometric
constraint without taking into account the constitutive law of
the cable material. Using the DCM model (with 8 sections) to
control the finger, the computation time is 3.83 ms while the
geometric model is 2.54 ms.

V. CONCLUSION AND FUTURE WORK

This work highlights the interest of combining deformable
models with global coordinates (such as FEM here) and
models with reduced coordinates (such as DCM here) to
accurately model the behavior of some soft robots that are
operated by cables or rods. In particular, we have shown that
it is possible to combine them in a single framework to deduce
the direct and inverse models of the robot.

The next steps of this work will be to validate the models
obtained on a real robot and in particular to validate the
stress levels obtained on the cables. We also wish to use this
type of approach to explore new robot designs, using a soft
material matrix (such as silicone) and pre-bent rods on which
translations and rotations can be applied.

We could also work on improving the speed of computation
by combining parallelization, model order reduction for the
FEM part [14] and/or recursive algorithms to calculate the
DCM.
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