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• Aquatic invasions have cost the global
economy US$345 billion.

• Most costs are caused by invertebrates,
in North America and damages to re-
sources.

• Costs have increased exponentially over
time, to at least US$23 billion in 2020.

• Aquatic invasion costs are underrepre-
sented compared to terrestrial invasion
costs.

• Taxonomic, geographic and tempo-
ral gaps make these costs severely
underestimated.
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Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across
ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a compre-
hensive global database,we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the
distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global
costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the
existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority at-
tributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported
in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of re-
corded costs were from management. The magnitude and number of reported costs were highest in the United
States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported
costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among coun-
tries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders
of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared
to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being
aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus
substantial, but likely underreported. Costs have increased over time and are expected to continue risingwith fu-
ture invasions. We urge increased and improved cost reporting bymanagers, practitioners and researchers to re-
duce knowledge gaps. Few costs are proactive investments; increasedmanagement spending is urgently needed
to prevent and limit current and future aquatic IAS damages.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The impacts of invasive alien species (IAS) on biodiversity (Mollot
et al., 2017; Spatz et al., 2017; Shabani et al., 2020), ecosystem services
(Vanbergen, 2013; Blackburn et al., 2019) and human wellbeing
(Pejchar andMooney, 2009) are well recognized (Pyšek et al., 2020). Ac-
cordingly, there are numerous national and international policies, regula-
tions and mandates in place to prevent new introductions and limit the
geographic spread of IAS [e.g. Convention on Biological Diversity (UNEP,
2011); European Union Regulation 1143/2014 on IAS]. However, records
of IAS are continuously increasing, owing to factors such as habitat distur-
bance, climate change, and an increasing diversity, frequency and inten-
sity of anthropogenic vectors associated with globalising trade and
transport networks (Capinha et al., 2015; Seebens et al., 2017, 2018;
Turbelin et al., 2017; McGeoch and Jetz, 2019). Alien species numbers
are burgeoning across geographical regions and habitat types, with the
number of established alien species expected to increase by 36% in the
next three decades (Seebens et al., 2020).

Aquatic ecosystems can be severely threatened by IAS, which
contribute to extinctions of individual species, substantially
change the structure of native communities, and alter ecosystem
functioning (Vitousek et al., 1997; Ricciardi and MacIsaac, 2011;
Jackson et al., 2017). Aquatic ecosystems provide numerous ser-
vices to people, from food provision to flood protection and recrea-
tion; these services can also be critically altered by the presence of
IAS (e.g. Katsanevakis et al., 2014). The vulnerability of aquatic eco-
systems to invasions is increased by high interconnectedness
among habitats, specifically man-made waterways and shipping,
as well as other anthropogenic pressures (Strayer and Findlay,
2010; Poulin et al., 2011; Darwall et al., 2018) and climate shifts
(Woodward et al., 2010).

In recent years there have been significant advances across habitat
types in understanding ecological impacts of IAS (Kumschick et al.,
2015; Dick et al., 2017; but see Crystal-Ornelas and Lockwood, 2020)
and the drivers of invasion success (Cuthbert et al., 2019, 2020;
Fournier et al., 2019; van Kleunen et al., 2020), as well as methodologi-
cal advances in assessing the economic dimensions of IAS and their
management (Lovell et al., 2006; Hanley and Roberts, 2019). However,
studies of economic aspects of IAS have been limited to certain
taxonomic groups (Bradshaw et al., 2016), communities, or regions
(Pimentel et al., 2000; 2005; Kettunen et al., 2009; Cuthbert et al.,
2021; Haubrock et al., 2021). In particular, costs of aquatic IAS are
2

generally less well understood than costs of terrestrial IAS, despite
some estimates indicating high costs (Lovell et al., 2006; Aldridge and
Oreska, 2011). Comprehensive and systematically-assembled data on
the costs of aquatic IAS would greatly help planning and prioritisation
for their management, in the context of limited resources (McGeoch
et al., 2015). Such datawould also provide a useful resource for commu-
nications with policymakers and the general public: impacts expressed
in economic terms aremore tangible and comprehensible than complex
ecological impacts (Diagne et al., 2020a).

This paper is the first systematic effort to describe global pat-
terns and trends in reported costs of aquatic IAS. Our analysis,
based on the recently developed InvaCost database (Diagne et al.,
2020b), allows us to synthesise standardised costs, identify knowl-
edge gaps and provide recommendations for management and fur-
ther research. We describe the global monetary costs associated
with aquatic IAS based on taxonomic, geographic and temporal de-
scriptors, as well as between fully aquatic and semi-aquatic taxa. In
doing so, we examine (i) how costs are structured by implementa-
tion method (i.e. observed vs. potential/expected), (ii) reliabilities
of cost estimates and (iii) their typology, i.e., whether costs result
from damages and losses or management expenditure. Further,
we model the yearly and cumulative dynamics of costs and investi-
gate whether they are likely to saturate in the near future. Finally,
we assess potential biases between aquatic and terrestrial cost
reporting. These biases are then used to identify gaps in manage-
ment spending between habitats.

2. Materials and methods

2.1. Original data

For the purpose of quantifying global costs of aquatic IAS,we used the
most comprehensive and up-to-date dataset of costs caused by alien spe-
cies globally, assembled by the InvaCost project (Diagne et al., 2020a,
2020b). At time of writing, this includes 9823 entries in various lan-
guages from systematic and opportunistic literature searches (Diagne
et al., 2020b; Angulo et al., 2021; full database version 3 at https://doi.
org/10.6084/m9.figshare.12668570). This database captures any re-
ported economic costs associatedwith IAS in their novel range, including
those for species that have already become invasive (e.g. management,
damages and losses) and species that may become invasive in the future
(e.g. prevention and rapid eradication).

http://creativecommons.org/licenses/by/4.0/
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The InvaCost version 3 database contains a column ("Environment_
IAS")which classifies species as either aquatic (specieswith a close associ-
ation with aquatic systems at any life stage, including for reproduction,
development and/or foraging; n= 2317 cost entries after our below cor-
rections) or terrestrial (n = 6433 cost entries after our below correc-
tions), independently of where costs occurred. For some analyses, we
split out costs for semi-aquatic species: the subset of aquatic species
with a looser association with aquatic systems (see Supplementary
Material 1). Remaining entries, linked to species from diverse habitats
(i.e. a mixture of aquatic and terrestrial) or unspecified habitats, were
excluded from analyses. We also carefully screened the published data-
base, removing clear duplicates and correcting clear mistakes. All mod-
ifications made in our dataset were sent to updates@invacost.fr as
recommended by the database managers.

Briefly, costs in InvaCost are standardised against a single currency
for comparability (2017 US$); costs in the database may be ‘expanded’
so that entries can be considered on an annual basis. That means that
costs spanning multiple years (e.g. $10 million between 2001 and
2010) are divided according to their duration (e.g. $1 million for each
year between 2001 and 2010); we considered this expanded database
version in all analyses (SupplementaryMaterials 1; n=5682 aquatic en-
tries). Expansion was done using the expandYearlyCosts function of the
‘invacost’ R package (R Core Team, 2020; Leroy et al., 2020). The final,
unexpanded dataset used in our analyses is provided as Supplementary
Material 2. We note that 1 billion = 1 × 109.

2.2. Cost descriptors

To obtain a general overview of the costs associated with IAS, we
first illustrated them across a number of key database descriptors
(see Supplementary Material 1 and https://doi.org/10.6084/m9.
figshare.12668570 for complete details). These included (1) broad
taxonomic grouping of species presenting costs (invertebrates, ver-
tebrates, plants, other), (2) perceived reliability of each cost entry
(“High” vs. “Low”), (3) cost implementation type (“Observed” vs.
“Potential”), (4) geographic region in which the cost occurred
(within continent- and country- scales) and (5) cost type (“Damage”
vs. “Management”). We summed the expanded entries (see above)
to quantify cost totals among these descriptors.

2.3. Spatial and taxonomic connectivity

We investigated spatial and taxonomic patterns in costs of aquatic
IAS with a network analysis (see Supplementary Material 1). Here, we
created a bipartite network composed of two types of nodes: countries
and IAS.When a species had a reported economic impact in a country, a
link was drawn between the two nodes. The weight of the link was
equal to the cumulative cost, since 1960. We defined the size of nodes
on the network as proportional to their total costs with a log spline,
such that country or species nodeswith higher costs are easier to distin-
guish from those with lower economic impacts.

2.4. Prediction of annual costs for aquatic IAS

To examine themost appropriate temporal relationship for the accu-
mulation of costs over time, we used the modelCosts function of the
‘invacost’ package (Leroy et al., 2020). We fitted multiple models to
thedata and identified the bestmodel(s) by quantitative andqualitative
criteria (see Supplementary Material 1). As we were dealing with
econometric data, we selected models that were robust to issues of
heteroskedasticity, temporal autocorrelation and outliers. We exam-
ined the long-term trend of annual costs worldwide between 1960
and 2020, i.e., we predicted costs as a function of years. First, owing to
time lags in cost reporting, we corrected the data by removing the
most recent, thus incomplete years; not making this correction would
result in an inherent underestimation of costs (SupplementaryMaterial
3

1). Second, we employed and compared a range of statistical techniques
on the resulting data: ordinary least squares regression (linear and qua-
dratic), robust regression (linear and quadratic), multivariate adaptive
regression splines, generalised additivemodels (GAMs) and quantile re-
gression [0.1 (lower boundary of cost), 0.5 (median cost value), 0.9
(upper boundary of cost)].

2.5. Trend in cumulated costs for aquatic IAS

In addition to modelling annual costs, we mathematically described
temporal changes in cumulated costs of aquatic IAS.We chose to rely on
a variation of the functional form proposed by Yokomizo et al. (2009)
for density-impact curves, where we considered the cumulative cost C
in terms of population density u. By assuming logistic growth in the
population, C can then be expressed as a function of time and therefore
serves as a model for the cumulative temporal cost of impacts (Supple-
mentary Material 1). We used a non-linear regression curve-fitting tool
to estimate the bestfit parameters, such as cost saturation Cmax, carrying
capacity K and intrinsic growth rate α. We quantified the fit by comput-
ing the squared correlation coefficient (r2) and root mean square error
(RMSE).

2.6. Reporting of invasion costs from aquatic IAS compared to terrestrial IAS

We obtained known numbers of established alien species (n =
13,867) in aquatic and terrestrial habitats globally, using databases
such as the inventory of IAS in Europe (DAISIE; see Supplementary
Material 1 for full list of sources). Categorising entries originating from
either aquatic or terrestrial species, we then counted for the two habi-
tats in InvaCost: the numbers of species having costs (excluding unspe-
cific entries), the number of documents reporting these costs, total
costs, and costs only reporting management actions (not reporting
damage). Then, we compared these numbers to the proportions of
known established IAS between habitats. Finally, we predicted the ex-
pected costs of management actions for aquatic IAS, under the hypoth-
esis of an unbiased expenditure between aquatic and terrestrial habitats
(based on the known proportion of global aliens that are aquatic).

3. Results

3.1. Global costs and taxonomic groupings

Global costs of aquatic IAS summed to US$345 billion, based on 5682
records from the expanded InvaCost database. These were all published
since 1971. Semi-aquatic species cost US$185 billion (n= 2971 records)
and fully aquatic species US$149 billion (n=2518 records), with diverse
costs (that spanned semi-aquatic and fully aquatic species) comprising
the remaining US$11 billion (n = 193 records). Only 1% of the cost was
from fully marine species (US$3.6 billion; n= 234 records).

Costs were unevenly distributed across taxonomic groups, with the
majority (62%, US$214 billion) attributed to invertebrates, 28% (US$97
billion) to vertebrates and 6% (US$20 billion) to plants. All other taxo-
nomic groups accounted collectively for 4% (US$14 billion) of the total
costs (Fig. 1). Highly reliable (i.e. peer-reviewed or traceable) sources
contributed 79% (US$274 billion) of the documented total costs of
aquatic IAS (Fig. 1a). Themajority of the total costs for animals (inverte-
brates: 76%; vertebrates: 88%) and plants (65%) were based on highly
reliable sources.

Most (65%, US$224 billion) of the costs were derived from empirical
observations, rather than predictions (Fig. 1b). The majority of costs for
aquatic invertebrates were derived from empirical observations (92%).
However, just 17% of the costs for aquatic vertebrates and 42% of plant
costs, were based on empirical observations.

The 10 aquatic generawith the highest documented costs accounted
for US$304 billion (88%) of total costs (Fig. 2). These taxa included four
invertebrates, three vertebrates and three plants. Mosquitoes belonging

http://updates@invacost.fr
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Fig. 1. Balloon plots illustrating global monetary costs of aquatic invasive alien species across major taxonomic groupings, with respect to (a) method reliability and (b) implementation
type. Figures below each balloon correspond to the numbers of entries from the expanded database.
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to three species of the Aedes genus caused 50% (US$153 billion) of the
total top 10 cost. These were followed by ruffes Gymnocephalus cernua
(18%, US$53 billion), mussels Dreissena spp. (two species, 16%, US$50
billion), coypus Myocastor coypus (6%, US$19 billion) and primroses
Ludwigia spp. (three species, 3%, US$8 billion). Contributions from
the remaining genera were relatively small. For all genera, excepting
Lithobates, damages outweighed reported management spending
(Fig. 2).

3.2. Geographic regions

Reported economic costs of aquatic IAS were unevenly distributed
across geographic regions (Fig. 3). North America, owing to costs
primarily from the United States of America (USA), reported the highest
Fig. 2.Totalmonetary costs of the top 10 costly aquatic invasive alien genera, alongside species-s
each genus were also included. Fills illustrate cost type contributions per genus. Note that “M
eradication and research, whilst “Mixed” is a mixture of cost types.

4

costs (48%, US$166 billion), followed by costs that were not attributed
to specific regions (26%, US$91 billion) and costs from Asia (13%, US
$45 billion). The costs in Europe and South America accounted
collectively for 12% (US$41 billion) of total reported costs, whilst
Africa, Oceania-Pacific Islands and the Antarctic-Subantarctic, combined
accounted for 0.6% (US$2.1 billion) (Fig. 3). Regarding cost types, 74%
(US$256 billion) of global costs were driven by damages, whereas
only 6% (US$21 billion) consisted of management-related expenditure
(Fig. 3b). Mixed spending (i.e. combined records of damage and
management-related spending) comprised 20% of global costs (US$68
billion). Further information on taxonomic and cost typology break-
downs per region is provided in Supplementary Material 1.

At the country level, the USA had the highest recorded cost for
aquatic IAS, followed by Brazil, India and France (Fig. 4a); other
pecific information of underlyingdata pertaining to each genus. Unspecified specieswithin
anagement” corresponds to expenditure related to activities such as prevention, control,



Fig. 3.Total aquatic invasion costs across geographic regionswith respect to (a) taxonomic
groupings and (b) cost types. Note in (b), that “Management” corresponds to expenditure
related to activities such as prevention, control, eradication and research,whilst “Mixed” is
a mixture of cost types.

Fig. 4.Maps illustrating global distribution of (a) total economic costs and (b) number of
studies (i.e. unique documents) for aquatic invasive alien species. Costs unattributable to
individual countries were excluded (US$110 billion, out of a total US$345 billion; n =
37 study per country data points, out of a total 526). Costs with a known location in the
territorial waters of each country are also included in the displayed data. Total costs are
presented on a log10 scale.
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countries were relatively similar in costs. The USA also had the largest
number of studies. Other countries that reported costs generally had
similar numbers of studies, with numbers from, for example, Spain,
Brazil and Australia relatively high (Fig. 4b). We found no reported
costs for aquatic IAS from the majority of African and Asian countries.

3.3. Spatial and taxonomic connectivity

We found eight clusters of IAS costs that were composed of at least
five nodes (coloured clusters in Fig. 5), and eleven minor clusters that
were composed of only two nodes (grey nodes in Fig. 5). We found two
types of clusters. First,most clusterswere composed of one or a few coun-
tries and a unique combination of IAS. This was the case, for example, for
countries with the highest costs (mainly European and North American
countries), which often had clusters of their own. Among these unique
country clusters, the USA example was pervasive, with highest reported
costs for Dreissena spp., G. cernua andMelaleuca quinquenervia, alongside
many other IAS that were unique to that country. Second, there was one
cluster that was driven by one genus, Aedes, which had pantropical eco-
nomic impacts as well as impacts in temperate countries. For most of
the Southern Hemisphere countries, Aedeswas the only genus for which
costs were reported. Despite these specific clusters of costly IAS per
5

country, several IAS taxa had widespread economic impacts on multiple
countries, such as Lithobates catesbeianus, M. coypus, Neovison vison,
Dreissena spp., Hydrocotyle ranunculoides and Eichhornia crassipes. Inter-
estingly, we found no strong biogeographical structure in the network.
Australia, for example, shared costly IASwith geographically disparate re-
gions such as European countries, South Africa, Argentina and Chile.

3.4. Prediction of annual costs for aquatic IAS

The linear models projected the highest costs of aquatic IAS in the
year 2020 (since 1960; data from years 2013 to 2020 were removed
owing to <75% completeness), however they had a relatively poor
fit, with high RMSE (Fig. 6; SupplementaryMaterial 1). The quadratic
robust regression was removed owing to cost reductions in recent
years, but it also had the highest RMSE (0.63). The GAM approach
thus provided the best fit to the data (ΔRMSE ≥0.08; Fig. 6). This
model indicated a rapid increase in costs by three orders of magni-
tude between 1970 and 2000, followed by a relatively gradual in-
crease within a further magnitude since 2000 (Fig. 6c). Overall, the
best-fitting GAM predicted a cost of aquatic IAS of US$23 billion glob-
ally in the year 2020.

3.5. Trend in cumulated costs for aquatic IAS

We found that the linear curve and high threshold curve models
performed well, with the former providing a slightly better fit
(Table S1; Supplementary Material 1). In the long term, the cumula-
tive cost saturates to a fixed value Cmax (i.e. maximum cumulative
cost of impact), where the invasion is completely controlled and no
further impact costs are incurred (Fig. 7). A clear saturation in costs
(i.e. carrying capacity) was not reached for either the full or adjusted
dataset (with outliers removed), indicating that costs will continue
to increase in the near future. The reduction in rate of cost increases
over recent years was likely an artefact of time lags in cost reporting
versus occurrence.

3.6. Reporting of invasion costs of aquatic IAS compared to terrestrial IAS

Of 13,867 known established alien species worldwide (see Supple-
mentaryMaterial 1), 26% are associatedwith aquatic habitats, compared
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Fig. 5. Global network of aquatic invasive alien species costs per country. This bipartite network is composed of both species and country nodes. Links indicate the cumulative costs of
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Fig. 6. Fivemodelling techniques considering global aquatic invasion costs over time [ordinary least squares (OLS) regressions (a), robust regression (b), generalised additivemodel (GAM)
(c),multivariate adaptive regression splines (MARS) (d) and quantile regressions (e)]. Points are annual total costs. Note the scales differ among subplots. Shaded areas are 95% confidence
intervals, and prediction intervals in the case of MARS. Root mean square error (RMSE) is shown for all appropriate models as well as 2020 cost predictions.
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Fig. 7. Plot of the linear curvemodel given by Eq. (3) (SupplementaryMaterial 1) against the cumulative cost data. Circularmarkers represent all the data.We computed best fit parameter
values Cmax=335.1, K=26274, α=0.22 andmetric values r2=0.996, RMSE=6.73. Squaremarkers represent the adjusted data set, which excludes four upper end extreme values (any
cost value greater thanQ3+1.5× IQR=US$14.66 billion,whereQ3 is the upper quartile and the IQR is the interquartile range of the dataset), i.e. (2003, US$25.06billion), (2005, US$21.07
billion), (2009, US$18.34 billion) and (2011, US$52.61 billion), corresponding to times t=43, 45, 49 and 51, respectively.We found that Cmax=205.6,K=2882,α=0.18, r2=0.999 and
RMSE = 2.26. The shaded areas represent 95% confidence regions indicating the range of predicted cumulative costs.
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to 74% associated with terrestrial habitats (Fig. 8). Although in InvaCost
the number of aquatic species and the number of documents reporting
their costs constituted relatively similar percentages (20% and 28%,
respectively), the value of their reported cost comprised just 5% of the
global total. This increased to just 9% when considering only costs
reported from management strategies. If management expenditure
was unbiased between habitat types according to numbers of known
established aliens, we estimated that a further US$39 billion should
have been spent on aquatic species to date.
Fig. 8. Proportions of known established alien species, and with respect to InvaCost
estimates: numbers of species, documents, total costs and management costs between
terrestrial and aquatic habitats. Raw values are presented per habitat type; abbreviations:
b. = billion.
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4. Discussion

Our study reveals that aquatic IAS have likely cost the global economy
at least US$345 billion. This estimate is probably highly conservative as it
only includes costs that have been documented and captured in the
InvaCost database. Moreover, the taxonomic, geographic, temporal and
habitat trends among these costs suggest that cost reporting is very un-
even, with many IAS and countries entirely lacking reported costs. Most
costs were attributed to aquatic invertebrates (US$214 billion), with
lower costs for vertebrates (US$97 billion) and plants (US$20 billion).
Our estimate of the costs of aquatic IAS globally in the year 2020 – US
$23 billion,much higher inmagnitude than the cost, for example, ofman-
aging global marine protected areas (US$5–19 billion; Balmford et al.,
2004) – calls for increased investments in management of IAS.

4.1. Cost distributions across taxa

Globally, mosquitoes are major contributors to the burden of
diseases, with vector-borne pathogens and parasites causing over one
billion infections and one million deaths annually (Kilpatrick and
Randolph, 2012; Campbell-Lendrum et al., 2015). The massive costs at-
tributed to vector-borne diseases from invasivemosquitoes are thus not
surprising, given the costs to healthcare systems worldwide. In Brazil,
for example, the government invested approximately US$48 million
per year from 2015 to 2017 for limiting population outbreaks of
A. aegypti (Bueno et al., 2017). In Columbia, total medical costs for the
treatment of dengue-infected patients reached US$3 billion between
2010 and 2012 (Rodríguez et al., 2015), and the recent chikungunya
outbreak cost about US$76 million to the healthcare system (Cardano
et al., 2015). Mosquitoes can also lead to economic losses associated
with recreation and tourism, as they discourage people from carrying
out certain activities or visiting certain sites (Claeys-Mekdade and
Morales, 2002). In the present study, damages to sectors such as health
comprised 73% of mosquito costs, with just 4% spent on management.
Future range expansions of invasive mosquitoes are expected to in-
crease their economic impact (Iwamura et al., 2020). Althoughmosqui-
toes vector diseases in their terrestrial-based adult life stage, wheremost
costs are incurred, larval and pupal life stages are invariably spent in
water where management is often targeted, with the characteristics
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and distribution of aquatic habitat patches determining mosquito distri-
butions at various scales via key trait- and density-mediated processes
(Pintar et al., 2018; Cuthbert et al., 2019).

The Eurasian ruffe (G. cernua) was second most costly and has
caused declines of native fish by predation and competition, with con-
siderable economic impacts through reductions in commercially- and
recreationally-valuable fish species (Leigh, 1998). In turn, the zebra
and quagga mussels (Dreissena polymorpha and Dreissena bugensis)
are hyper-successful macrofouling freshwater bivalves, which are
highly costly to infrastructure through impeding navigation structures,
obstruction of water flow in pipes and occlusion of water filters
(Sousa et al., 2014). The coypu (M. coypus) has caused substantial eco-
nomic losses through agricultural impacts, as well as infrastructural
damage (Panzacchi et al., 2007). The primroses (Ludwigia spp.) are
known to reduce water quality that can affect economically important
taxa such as fish, and can be extremely costly to control (Williams
et al., 2010).

Costs attributed to invasive aquatic invertebrates such as the zebra
and quagga mussels were deemed highly reliable and mostly based on
empirical observations rather than extrapolations. In contrast, a large
share of vertebrate costs was potential costs, as in the case of the
three most costly vertebrate taxa, Eurasian ruffe G. cernua, coypu
M. coypus and American bullfrog L. catesbeianus. Therefore, realised ver-
tebrate costs require improved validation and reporting to the extent
possible from their actual invaded habitat. Similarly, reported costs of
plants, including the highly damaging Ludwigia species and broad-
leaved paper bark M. quinquenervia, were primarily potential costs,
not incurred at the time of estimation. Although ecological impacts of
aquatic plants have been well-studied by invasion scientists (Pyšek
et al., 2008; Gallardo et al., 2016), there is scope for more thorough re-
cording of realised economic impacts.

4.2. Cost distributions across geographic regions and types

The costs of aquatic IAS were also unevenly distributed across
geographic regions, with particularly high reported costs in North
America (US$166 billion) and Asia (US$45 billion). In turn, a substantial
proportion (26%) of the costs were unattributed to specific geographic
regions. Moreover, most costs were driven by damages (74%), whilst
management (principally control-related) costs were just 6%. It may
be expected that management costs are lower than damage or loss
costs: if the inverse were true, management would not be economically
justifiable. However, the InvaCost search strategymay have exacerbated
this difference. Reports ofmanagement costsmay have been dispropor-
tionatelymissed by the systematic literature searches becausemanage-
ment studies often do not mention costs, economics or other InvaCost
search terms (Diagne et al., 2020b) in their title, abstract or keywords
(e.g. Sandodden and Johnsen, 2010).

At the country scale, the USA exhibited both the highest magnitude
of costs and the greatest number of studies compared to all other coun-
tries. The high degree of cost reporting in the USA is unsurprising given
that early estimates of costs focused on this country (Pimentel et al.,
2000, Pimentel et al., 2005), which sparked research efforts to better
understand costs and provide a more refined spatial and temporal de-
scription for those costs. The USA also scores highly on several socio-
economic variables that have been found to correlate positively with re-
ported costs of IAS (Haubrock et al., 2021; Kourantidou et al., 2021),
such as GDP (1st inworld), human population (3rd), international tour-
ism arrivals (3rd) and research expenditure (9th).

In contrast, the InvaCost database contains no aquatic IAS costs at all
for many countries, particularly in Asia and Africa. However, even in
countries such as South Africa, where research on biological invasion is
leading (van Wilgen et al., 2020), large gaps in our knowledge of eco-
nomic costs are evident. For example, South Africa is a global invasion
hotspot for freshwater fish and has been invaded by numerous inverte-
brate taxa in freshwater, estuarine and marine environments, with
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well-known impacts on human wellbeing (Appleton et al., 2009;
Ellender and Weyl, 2014; Weyl et al., 2020; Robinson et al., 2020).
However, we captured no monetary costs for such taxa. Similarly,
in other African countries, IAS without formally documented or
quantified costs are known to affect human societies via impacts
to biological communities, local fisheries and water storage infra-
structures (e.g. Nile perch in East Africa; Harris et al., 1995; Kwena
et al., 2012; Aloo et al., 2017, and crayfish in Lake Naivasha, Kenya;
Kafue River, Zambia; Madzivanzira et al., 2020). Limited cost
reporting in Africa and Asia is likely reflective of a low priority
given to IAS research, or capabilities (Pyšek et al., 2008), despite
high levels of introduction via, for example, aquaculture (Lin
et al., 2015). However, there may have been some bias introduced
by the original InvaCost search string, as no currencies from these
continents were explicitly included as search terms (even if
searches were performed in 15 non-English languages, Angulo
et al., 2021).

Nonetheless, limited cost reporting in Africa and Asia is alarming
given that invasions in these countries may disproportionately impact
livelihoods, given high levels of poverty, limited resources for research
and management, and an overall limited preparedness to meet chal-
lenges brought by IAS (Early et al., 2016). Limited cost reporting also
hinders management actions, as the extent of IAS cost is not fully
realised by managers.

Network analyses additionally revealed a distinct lack of global
structuring of costs, whereby clustering appeared disparate across
taxa and countries, insinuating a largely random distribution of costs
and vast gaps in cost reporting of well-known aquatic IAS. That is, for
many countries, there was generally only one cluster, indicating unique
combinations of economic impacts associated with particular species,
despite some of these species being highly widespread. One example
of an exception to this is Aedes spp., which had a consistent and pan-
tropical impact, resulting in a distinct cost cluster. Nonetheless, other
context-dependencies, such as differences in climate and pathways,
likely also influence IAS compositions.

4.3. Temporal trends in costs

The majority of fitted models indicated exponentially increasing
annual costs of aquatic IAS since 1960 over several magnitudes, to a
best-fit extrapolated annual global cost of US$23 billion in 2020.
Model differences in recent years likely reflect differential sensitivities
to time lags in cost reporting. Model predictions of cost increases over
time align with increasing rates of biological invasions worldwide
(Seebens et al., 2017), as globalisation and intensification of trade and
transport networks result in high propagule and colonisation pressures
from novel source pools (Seebens et al., 2018). Given that invasion rates
will increase further in future (Seebens et al., 2020), we can expect fur-
ther increases in economic costs – although investments in manage-
ment, especially prevention and rapid eradication, could limit realised
costs (Leung et al., 2002). Moreover, these results align with the find-
ings of Bradshaw et al. (2016) who have suggested, specifically for
invasive insects such as mosquitoes, that costs are generally largely
underestimated and are expected to increase through time. Our
mathematically-modelled density-impact curves also suggest that
costs of IAS to the global economy will continue to increase, as
they were far from an asymptotic plateau, even where extreme
values were removed and time lags not incorporated. Moreover,
this population-level approach does not account for unreported
costs or those arising from future IAS spread, and this likely results
in further underestimation.

4.4. Reporting of invasion costs of aquatic IAS compared to terrestrial IAS

Despite over one quarter of known alien species using aquatic envi-
ronments, only 5% of the total cost in the InvaCost database was
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attributed to aquatic species. Further, the majority (54%) of these costs
were from semi-aquatic rather than fully aquatic species. On one
hand, this finding potentially reflects a bias in cost reporting towards
terrestrial systems, in line with ecological research in general (Menge
et al., 2009; Richardson and Poloczanska, 2008). With respect to man-
agement costs of IAS, if investments of equivalent magnitude to terres-
trial were made for aquatic systems, one would anticipate a further US
$39 billion to have been spent to date. Note that this extrapolation
does not consider potentially lower costs in aquatic ecosystems (i.e.
less infrastructure to damage) or differences in management efficien-
cies between terrestrial and aquatic environments. On the other hand,
the disparity between aquatic and terrestrial costsmay thus reflect gen-
uinely lower costs of aquatic – particularly marine – IAS relative to ter-
restrial IAS. There are limited human assets and infrastructures in aquatic
systems, limiting the scope for easily-quantifiable damages and resulting
in minimal investments in prevention and management. For example,
terrestrial agricultural practices are heavily impacted by crop pests
(Paini et al., 2016; Ahmed and Petrovskii, 2019), whereas agricultural ac-
tivities in aquatic systems (e.g. rice fields) are relatively scarce. However,
aquatic systems do offer highly valuable ecosystem services that could be
affected by IAS, such as aquaculture, and often through cascading effects
that are difficult to predict (Walsh et al., 2016). Thus, we encourage in-
vestment in management of IAS in aquatic systems to limit future costs
that stem from damage and loss (Leung et al., 2002).

5. Conclusions

Urgent and coordinatedmanagement actions are required globally to
reduce economic and ecological impacts fromaquatic IAS.Whilst costs of
aquatic IAS are escalating, knowledge of impacts acrossmajor taxonomic
groupings, geographic regions and habitat types remains diffuse. These
knowledge gaps suggest costs of aquatic IAS are underestimated, partic-
ularly relative to their ecological impacts and to the more intensively-
studied terrestrial species. Equally, geographical biases in reported
costs highlight the need for increased and improved cost reporting,
given that allocation of finite resources to manage IAS is underpinned
by adequate understandings of costs. We urge our results to be applied
as an incentive for managers, stakeholders and scientists to increase
and improve cost reporting and invest in a more adequate protection
of aquatic ecosystems.
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