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Abstract   Human pose estimation (HPE) methods based on convolutional neural 

networks (CNN) have demonstrated significant progress and achieved state-of-the-

art results on human pose datasets. In this study, we aimed to assess the perfor-

mance of CNN-based HPE methods for measuring anthropometric data. A Vicon 

motion analysis system as the reference system and a stereo vision system recorded 

ten asymptomatic subjects standing in front of the stereo vision system in a static 

posture. Eight HPE methods estimated the 2D poses which were transformed to the 

3D poses by using the stereo vision system. Percentage of correct keypoints, 3D 

error, and absolute error of the body segment lengths are the evaluation measures 

which were used to assess the results. Percentage of correct keypoints – the stand-

ard metric for 2D pose estimation – showed that the HPE methods could estimate 

the 2D body joints with a minimum accuracy of 99%. Meanwhile, the average 3D 

error and absolute error for the body segment lengths are 5 cm. 
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Introduction 

Work on Convolutional Neural Network (ConvNet, or CNN) as a neural network 

model to imitate the ability of human being for pattern recognition has already be-

gun since the late seventies [1], [2]. However, the computational costs of ConvNets 

had restricted its extensive use. Nowadays, the GPU-accelerated computing tech-

niques have made the training procedure more efficient [3], resulting in the wide 

applications of CNNs in handwriting recognition [4], behavior recognition [5], hu-

man pose estimation [6], and medical image analysis [7].  

Human Pose Estimation (HPE) methods are computer vision techniques to lo-

calize the human body joints. HPE methods, depending on the interpretation of the 

body structure are categorized into generative, discriminative and hybrid methods 

[8]. Generative methods match the image observations – or image features which 

are the most representative information, e.g., edges, silhouettes – with the projection 

of the employed human body model to the image by adjusting the body model. On 



the other hand, discriminative methods model the relations between the image ob-

servations and human poses [6]. For the moment, the most popular method for fea-

ture extraction is ConvNet. HPE methods based on ConvNets have demonstrated 

significant progress on challenging benchmarks (e.g. MPII [9]). The success of HPE 

methods based on ConvNets justifies investigation for specific applications such as 

anthropometry measurement. 

The current applications of anthropometry measurements can be found in ergo-

nomics. For instance, for designing fitting materials, such as the workspace and 

clothing to improve the safety and comfortability [10]. This study aimed to evaluate 

the CNN-based HPE methods for measuring anthropometric data. A stereo vision 

system combined with 2D HPE methods were used to recover the 3D body joint 

positions. Also, a marker-based motion capture system was used to assess the va-

lidity of the results. 

Materials and Methods 

Ten healthy subjects (5 males, 5 females) after informed consent participated in 

this study. The work has been approved by the relevant ethics committee (CPP 

06036). Subjects were on average 24 years old (SD: 2, range: 21-27), mean height 

was 173 cm (SD: 9 cm, range: 160-187 cm), mean body mass was 64 kg (SD: 9 kg, 

range: 53-80 kg), and mean Body Mass Index (BMI) was 21 (SD: 2, range: 19-25). 

Two calibrated and synchronized devices, a Vicon motion capture system (Vicon 

Motion Systems Ltd, UK) equipped with twelve Vicon Vero cameras as the refer-

ence system and a stereo vision system, were used to capture the data with the fre-

quency of 100 Hz. The stereo vision system consisted of two GoPro Hero 7 Black 

cameras (GoPro, Inc., US) which recorded videos with the resolution of 1080p and 

linear field of view. The relative distance and angle between the two cameras were 

75 cm and 15 deg, respectively, mounted on a tripod with a height of 120 cm. 

Forty-eight reflective markers, according to a designed marker-set compatible 

with [11], [12], were attached to the subject’s body segments. As shown in Figure 

1Erreur ! Source du renvoi introuvable., subjects were asked to stand in a static 

posture in front of the stereo vision system, approximately 3.5 m away from the 

device, for 3 seconds. Table 1Erreur ! Source du renvoi introuvable. shows the 

detail of the estimation of the morphological data using the reconstructed 3D posi-

tions of the reflective markers. 

The 3 seconds of the videos recorded by the stereo vision system resulted in 300 

frames. For the first frame of each video, a bounding box was manually defined to 

crop the frame in which the subject was at the center. Then, for each next frame, a 

dynamic bounding box was determined based on the estimated pose of the previous 

frame so that the height of the subject was equal to 75% of the bounding box height. 

Then, the cropped frames were resized to the resolution of 256 × 256 pixels and 368 

× 368 pixels which are compatible with the size of the input image of the selected 

HPE methods. The cropped and subsequently resized images were saved to be used 



as the input of HPE methods. Eight HPE methods [13]–[20] based on convolutional 

neural networks for which codes were publicly available, achieving the state-of-the-

art results on challenging benchmarks (e.g., MPII [9]), have been selected to esti-

mate the 2D poses. The 2D poses consist of 16 body keypoints including upper and 

lower head, neck, shoulders, elbows, wrists, torso, hips, knees and ankles (Wei et 

al., 2016 [17] estimate 14 keypoints; excluding lower head and torso). After 2D 

pose estimation for all the captured frames, since the subjects were standing in a 

static posture across the 300 frames, the mean values of the estimated body key-

points were computed. 2D to 3D pose lifting has been accomplished with the stereo 

vision system. After the intrinsic and extrinsic calibration of the stereo vision sys-

tem, the 3D positions can be recovered using the perspective projection of the 3D 

point on the image planes. Herein, the retrieved 2D body keypoints were assumed 

to be the perspective projection of the corresponding 3D point on the left and right 

image plane; Thereby, the 3D positions of the body keypoints were obtained by 

using the linear triangulation method [21]. Hence, the morphological data were sub-

sequently computed, as shown in Table 1Erreur ! Source du renvoi introu-

vable..Three metrics evaluate the accuracy of the HPE methods, PCKh, 3D error 

and absolute error of the body segments lengths. Percentage of Correct Keypoints 

normalized with the head segment length (PCKh) defines an estimated keypoint to 

Figure 1. One of the subjects standing in front of the stereo vision system 

(This image has been taken by the left camera of the stereo vision system). 



be correct if the distance to the corresponding reference value is less than a threshold 

which is a function of the head segment length – for instance PCKh@0.5 considers 

the 50% of the head segment length as the threshold. 3D error measures the Eu-

clidean distance between a reconstructed 3D keypoint and its reference value. Ab-

solute error which have been used to compare the segment lengths consists of the 

absolute difference between the measured values by the Vicon and stereo vision 

system. 

Table 1. The acronyms stand for: HLE = Humeral Lateral Epicondyle, HME = 

Humeral Medial Epicondyle, USP = Ulnar Styloid Process, RSP = Radial Styloid 

Process, HJC = Hip Joint Center (femoral head based on the method of Bell et al 

[22]), FLE = Femoral Lateral Epicondyle, FME = Femoral Medial Epicondyle, LM 

= Lateral Malleolus, MM = Medial Malleolus. 

Body segment Vicon system stereo vision system 

Forearm 0.5×(HLE+HME) – 0.5×(USP+RSP) Elbow – Wrist 

Thigh HJC – 0.5×(FLE+FME) Hip – Knee 

Leg 0.5× (FLE+FME) – 0.5×(LM+MM) Knee – Ankle 

Results 

Figure 1Erreur ! Source du renvoi introuvable. shows the 2D pose estimation 

accuracy using the PCKh metric. The accuracy of all the selected HPE methods for 

2D pose estimation was above 99% using the standard metric PCKh@0.5 [9]. Table 

2 shows the 3D errors for body keypoints. The mean value of the 3D error is 5 cm. 

Table 3 shows the absolute error for the body segment lengths which were obtained 

based on the estimated 3D poses. The mean error for the lengths of the body seg-

ments, same as the 3D error, is 5 cm. 



Figure 2. Quantitative results on 2D estimated keypoints using PCKh metric. 



Table 2. Quantitative results on 3D reconstructed keypoints using 3D error. Mean (Min, Max) values are reported in millimeter. 

left ankle left knee left hip left elbow left wrist 

Bulat et al., 2017 [13] 46 (16, 100) 43 (24, 78) 52 (25, 126) 68 (34, 140) 95 (31, 207) 

Rafi et al., 2016 [14] 28 (8, 68) 48 (12, 182) 59 (30, 96) 88 (22, 598) 118 (25, 667) 

Belagiannis et al., 2017 [15] 24 (8, 48) 44 (21, 81) 47 (28, 66) 34 (19, 62) 47 (10, 111) 

Wei et al., 2016 [16] 23 (10, 42) 44 (19, 80) 51 (26, 101) 44 (21, 73) 60 (11, 106) 

Bulat et al., 2016 [17] 32 (14, 73) 25 (7, 42) 36 (12, 64) 45 (30, 58) 36 (19, 56) 

Newell et al., 2016 [18] 41 (32, 68) 64 (44, 99) 58 (44, 78) 61 (27, 122) 64 (23, 121) 

Chu et al., 2017 [19] 37 (30, 61) 60 (34, 115) 50 (27, 69) 60 (37, 83) 46 (17, 127) 

Yang et al., 2017 [20] 35 (24, 64) 54 (35, 83) 51 (32, 76) 52 (33, 91) 41 (14, 76) 

right ankle right knee right hip right elbow right wrist 

Bulat et al., 2017 [13] 41 (18, 79) 41 (12, 74) 49 (20, 117) 95 (31, 207) 104 (35, 288) 

Rafi et al., 2016 [14] 49 (22, 126) 53 (17, 167) 58 (21, 152) 118 (25, 667) 126 (21, 790) 

Belagiannis et al., 2017 [15] 29 (4, 53) 32 (16, 55) 51 (28, 67) 47 (10, 111) 51 (19, 83) 

Wei et al., 2016 [16] 24 (5, 45) 29 (7, 52) 51 (33, 85) 60 (11, 106) 42 (17, 77) 

Bulat et al., 2016 [17] 40 (12, 70) 43 (9, 80) 35 (13, 62) 36 (19, 56) 41 (14, 78) 

Newell et al., 2016 [18] 36 (22, 61) 41 (25, 85) 45 (21, 83) 64 (23, 121) 54 (26, 93) 

Chu et al., 2017 [19] 33 (19, 52) 52 (21, 85) 63 (26, 148) 46 (17, 127) 53 (26, 101) 

Yang et al., 2017 [20] 32 (14, 59) 41 (17, 73) 42 (18, 100) 41 (14, 76) 42 (18, 65) 



Table 3. Quantitative results on the body segment lengths using absolute error. 

Mean (Min, Max) values are reported in millimeter. 

left forearm left thigh left leg 

Bulat et al., 2017 [13] 83 (8, 195) 38 (1, 78) 34 (5, 87) 

Rafi et al., 2016 [14] 63 (8, 173) 74 (14, 125) 47 (11, 142) 

Belagiannis et al., 2017 [15] 32 (3, 64) 60 (11, 138) 42 (0, 140) 

Wei et al., 2016 [16] 44 (3, 93) 49 (3, 130) 55 (21, 131) 

Bulat et al., 2016 [17] 21 (3, 73) 30 (0, 65) 56 (24, 145) 

Newell et al., 2016 [18] 58 (3, 215) 69 (15, 132) 71 (25, 123) 

Chu et al., 2017 [19] 35 (3, 72) 33 (7, 87) 69 (1, 129) 

Yang et al., 2017 [20] 33 (2, 78) 53 (0, 106) 54 (10, 118) 

right forearm right thigh right leg 

Bulat et al., 2017 [13] 81 (11, 147) 43 (2, 114) 59 (4, 149) 

Rafi et al., 2016 [14] 37 (0, 92) 40 (2, 124) 47 (0, 115) 

Belagiannis et al., 2017 [15] 30 (8, 84) 54 (1, 126) 29 (4, 59) 

Wei et al., 2016 [16] 33 (3, 89) 57 (13, 110) 25 (0, 59) 

Bulat et al., 2016 [17] 46 (7, 97) 51 (11, 110) 43 (17, 98) 

Newell et al., 2016 [18] 37 (21, 65) 29 (4, 82) 33 (0, 83) 

Chu et al., 2017 [19] 53 (18, 104) 79 (5, 165) 49 (0, 112) 

Yang et al., 2017 [20] 45 (5, 87) 44 (14, 78) 40 (0, 93) 

Discussion 

In this study, with the goal of evaluation of CNN-based HPE methods for measuring 

body segment lengths, eight HPE methods were employed to estimate the 2D poses 

which were subsequently transformed to 3D poses using a stereo vision system. The 

body segment lengths were computed based on the estimated 3D poses. The results 

show the errors of 2D pose estimation, 3D reconstruction, and anthropometric data 

– following the selected hierarchy to compute the anthropometric data.

Table 4 shows the accuracy of the HPE methods on the MPII dataset using the 

PCKh metric. These results showed that the most demanding body keypoints to 

estimate were the ankle, knee, and wrist. However, Figure 2, which shows the ac-

curacy of the HPE methods on the dataset of this study, shows that the knee, hip, 

and elbow were the most difficult keypoints to locate accurately. Also, evaluation 

using PCKh@0.5 metric that measures the accuracy of all methods for all keypoints 

to be higher than 99% indicates that this value is comparably higher than the values 

reported in the literature. These two points highlight the role of the training and 

testing dataset. In the dataset of this study, there was no occlusion – neither self-

occlusion nor occlusion by other entities – or challenging pose. Now, comparing all 



the HPE methods may underline that one method cannot outperform all other meth-

ods for all the body keypoints. For instance, Wei et al. 2016 [16] achieve the best 

performance for estimating the positions of the ankle, knee, elbow, and wrist, but 

its accuracy for the hip is significantly less than the other HPE methods – i.e., there 

is no universal method outperforming all the other methods. 

The results showed that the main  parameters influencing the accuracy of an HPE 

method based on CNNs can be, the architecture of the convolutional neural network, 

the training and testing dataset, and the training strategy. Size of the input image of 

Wei et al., 2016 [17], which is the most accurate methods for the estimation of wrist 

and ankle based on the results shown in Figure 2, is 368 × 368 while for the others 

is 256 × 256. Thus, it strengthens the hypothesis that the resolution of the input 

image could also be a prominent factor in determining the accuracy of the HPE 

methods. Also, there are minor parameters which affect the output of the HPE meth-

ods and thereby their accuracies, such as the noise of the input image, the position, 

and scale of the subject inside the cropped frames. 

Table 4. Quantitative results on the MPII dataset using the PCKh@0.5 metric. 

ankle Knee hip elbow wrist 

Bulat et al., 2017 [13] 64.0 70.5 79.1 78.8 71.5 

Rafi et al., 2016 [14] 73.4 80.6 86.8 86.4 81.3 

Belagiannis et al., 2017 [15] 78.4 82.6 87.9 88.2 83.0 

Wei et al., 2016 [16] 79.4 82.8 88.4 88.7 84.0 

Bulat et al., 2016 [17] 81.9 85.7 89.4 89.9 85.3 

Newell et al., 2016 [18] 83.6 87.4 90.1 91.2 87.1 

Chu et al., 2017 [19] 85.0 88.0 90.6 91.9 88.1 

Yang et al., 2017 [20] 85.3 88.6 91.1 91.9 88.2 

3D pose recovery has been made using the linear triangulation method by as-

suming that the estimated 2D poses are the perspective projection of the 3D pose. 

However, the deviation of the 2D poses from their reference value may be exacer-

bated through triangulation. Figure 3 shows an explicit example that the estimated 

ankle joints on the left and right images are not stereo correspondent – i.e., the esti-

mated ankles (either left or right ankle) do not refer exactly to the same anatomical 

point. 

Table 2 shows the 3D error for the body keypoints. The mean 3D error for the 

estimation of body keypoints is 5 cm. In a similar study [23] which has used Mi-

crosoft Kinect™ for 3D pose estimation in a static posture, the average 3D error in 

standing posture has been reported to be 8 cm and 9 cm for the first- and second-

generation Kinect sensor, respectively. 

The 3D error, reported in Table 2, shows that the maximum errors, for the elbow 

and wrist using the HPE method of Rafi et al., 2016 [14], are 60 cm and 67 cm, 



respectively. This occurrence is because of the false 2D detections of the HPE 

method for several frames of the static acquisition for one of the subjects. 

Figure 3. 2D estimation of the ankle joints for a single frame. The red, green, and 

blue dots, represent the estimation of the right ankle, left ankle, and the reference 

values, respectively. 

Table 3 shows the absolute error for the body segment lengths, while the mean 

error for the length of the body segments is 5 cm. A deeper look at this table shows 

that some methods cannot estimate the left and right body segment with the same 

accuracy. For instance, in the meanwhile that the 3D error for ankle and knee esti-

mation, by Bulat et al., 2017 [13], is 4 cm, the absolute error for the left leg is 3 cm, 

and for the right leg is 6 cm. It also may highlight that post-processing could im-

prove the uniformity of the results. 

In conclusion, even though a stereo vision system combined with HPE methods 

can provide a cost-effective, easy to use, time efficient tool to measure the morpho-

logical data, the mean error is 5 cm that may not be adequate for applications in 

ergonomics. However, HPE methods may open new perspectives for measuring 

morphological data. 
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