
HAL Id: hal-03191875
https://hal.science/hal-03191875

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The covering and boundedness problems for branching
vector addition systems

Stéphane Demri, Marcin Jurdziński, Oded Lachish, Ranko Lazić

To cite this version:
Stéphane Demri, Marcin Jurdziński, Oded Lachish, Ranko Lazić. The covering and boundedness
problems for branching vector addition systems. Journal of Computer and System Sciences, inPress,
79 (1), pp.23-38. �10.1016/j.jcss.2012.04.002�. �hal-03191875�

https://hal.science/hal-03191875
https://hal.archives-ouvertes.fr

The covering and boundedness problems for

branching vector addition systems✩

Stéphane Demria, Marcin Jurdzińskib, Oded Lachishb,1, Ranko Lazićb,∗

aLSV, ENS de Cachan & CNRS & INRIA, 61, avenue du Président Wilson, 94235 Cachan Cedex, France
bDIMAP, Department of Computer Science, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

Abstract

The covering and boundedness problems for branching vector addition systems are shown complete for

doubly-exponential time.

Keywords: Petri nets, branching vector addition systems, covering, boundedness, computational

complexity

1. Introduction

Vector addition systems (shortly, VAS), or equivalently Petri nets (e.g., [2]), are a fundamental model of

computation, which is more expressive than finite-state machines and less than Turing-powerful. Decidability

and complexity of a variety of problems have been extensively studied ([3] is a comprehensive survey).

A k-dimensional VAS consists of an initial vector of non-negative integers, and a finite set of vectors of

integers, all of dimension k. Let us call the initial vector axiom, and the other vectors rules. A computation

can then be thought of as a derivation: it starts with the axiom, and at each step, the next vector is derived

from the current one by adding a rule. The vectors of interest are the ones derived admissibly, i.e. at the

end of a derivation which is such that none of the vectors derived during it contains a negative entry.

Covering and boundedness are two central decision problems for VAS. The former asks whether a vector

that is pointwise greater than or equal to a given vector can be admissibly derived, and the latter asks

whether the set of all admissibly derived vectors is finite. In a landmark article [4], Rackoff showed that

covering and boundedness for VAS are in ExpSpace, matching Lipton’s lower bound of ExpSpace-hardness

[5].2 Considering the expressively equivalent VAS with states (shortly, VASS), Rosier and Yen refined

the proofs of Lipton and Rackoff to obtain almost matching lower and upper bounds in terms of three

✩A preliminary and shorter version of this work was published in the proceedings of FSTTCS 2009 [1].
∗Corresponding author. Tel: +44 24 7652 3193. Fax: +44 24 7657 3024.
Email addresses: demri@lsv.ens-cachan.fr (Stéphane Demri), mju@dcs.warwick.ac.uk (Marcin Jurdziński),

oded@dcs.bbk.ac.uk (Oded Lachish), lazic@dcs.warwick.ac.uk (Ranko Lazić)
1Present address: Computer Science and Information Systems, Birkbeck (University of London), Malet Street, London

WC1E 7HX, UK.
2We recommend http://rjlipton.wordpress.com/2009/04/08/an-expspace-lower-bound/.

Preprint submitted to Journal of Computer and System Sciences April 4, 2011

parameters: the dimension, the binary size of the maximum absolute value of an entry in a rule, and the

number of states [6]. Lipton’s result was also extended by Mayr and Meyer to reversible Petri nets, which are

equivalent to commutative semigroups [7]. Building on Rosier and Yen’s work, Habermehl showed that space

exponential in the size of the system and polynomial in the size of the formula suffices for model checking

the propositional linear-time µ-calculus on VASS, and he obtained a matching lower bound already for LTL

on BPP [8]. Further related developments include the identification by Atig and Habermehl of another

path logic for Petri nets whose model checking problem is ExpSpace-complete [9], and Demri’s proof of

ExpSpace-membership of a generalised boundedness problem which subsumes reversal boundedness, place

boundedness, regularity and several other interesting problems for VASS [10].

The following is a natural extension of VAS: instead of linearly, computation proceeds from the leaves to

the root of a tree. For each node which is not a leaf, its vector is derived by summing the vectors derived

at its children and adding a rule vector.3 The same condition of admissibility applies, i.e. no derived vector

may contain a negative entry. This model of computation is branching VAS (shortly, BVAS).

In recent years, it has turned out that BVAS have interesting connections to a number of formalisms:

• BVAS correspond to a class of linear index grammars in computational linguistics [12, 13];

• reachability (i.e. admissible derivability) for BVAS is decidable iff provability in multiplicative expo-

nential linear logic is decidable [14];

• Verma and Goubault-Larrecq have extended the computation of Karp and Miller trees [15] to BVAS,

and used it to draw conclusions about a class of equational tree automata which are useful for analysing

cryptographic protocols [16];

• if first-order logic with 2 variables on finite data trees (which has applications to the XPath query

language for XML) is decidable, then so is reachability for BVAS [17].

Covering and boundedness for BVAS are decidable easily using the branching extension of Karp and

Miller’s procedure [16]. However, the resulting algorithms do not operate in primitive recursive time or

space, even in the linear case [18].

The main results we report are that, by switching from VAS to BVAS, covering and boundedness move

two notches up the complexity hierarchy, to 2ExpTime-complete.

For the 2ExpTime-memberships, consider the following simple-minded idea for transferring knowledge

about VAS derivations to the branching case:

Every simple path from a leaf to the root in a BVAS derivation is a VAS derivation.

3A different branching extension of VAS was used by Urquhart [11].

2

We show that the idea can give us mileage, but only after the following new insight, which is needed because

the subderivations that grow off the simple path and hence contribute summands to it make the resulting

VAS contain rules with unbounded positive entries.

For VAS, we can obtain similar upper bounds to Rackoff’s, but which depend only on the di-

mension and the minimum negative entry in a rule, i.e. not on the maximum positive entry in a

rule.

The insight is at the centre of our proofs. In the case of covering, we show it essentially by inspecting carefully

a proof of Rackoff, but in the case of boundedness, it relies on proving a new result on small solutions of

integer programming problems, which extends a classical theorem of Borosh and Treybig and may also

be a contribution of wider interest. To complete the proofs of the 2ExpTime-memberships, we provide

arguments for reducing the heights of appropriate BVAS derivations to at most doubly-exponential, and for

why resulting small witnesses can be guessed and verified by alternating Turing machines in exponential

space.

To obtain 2ExpTime-hardness for covering and boundedness for BVAS, we extend the proof of Lipton to

show that computations of alternating machines of size N with counters bounded by 22N

can be simulated

in reverse by BVAS of size O(N2). Although universal branchings of alternating counter machines copy

counter valutations whereas BVAS sum vectors derived at children nodes, the inner workings of Lipton’s

construction enable us to add a bit of machinery by which the BVAS can simulate the copying. We remark

that, as is the case with Lipton’s result, the lower bound is shown already for BVAS whose rules contain

only entries −1, 0 or 1.

After fixing notations and making some preliminary observations in the next section, that covering and

boundedness are in 2ExpTime is shown in Sections 3 and 4, respectively. We then argue in Section 5 that

both problems are 2ExpTime-hard.

2. Preliminaries

Numbers, vectors and matrices. We write N+, N and Z for the sets of all positive, non-negative and arbitrary

integers, respectively. Since we shall only work with integers, let the open interval (a, b) denote (a, b) ∩ Z,

and analogously for half-open and closed intervals.

Given a dimension k ∈ N, let 0 denote the zero vector and, for each i ∈ [1, k], ei denote the ith unit

vector. For v,w ∈ Z
k and B ∈ Z, we write:

• v(1), . . . , v(k) for the entries of v;

• supp(v) for the set of all i ∈ [1, k] such that v(i) 6= 0;

3

• v ≤ w iff v(i) ≤ w(i) for all i ∈ [1, k], and v < w iff v ≤ w and v 6= w;

• min(B,v) for the vector 〈min{B,v(1)}, . . . , min{B,v(k)}〉, and analogously for max;

• v− for the vector −min(0,v), and v+ for the vector max(0,v).

For v ∈ N
k, let max(v) = max{v(1), . . . ,v(k)}, where in case k = 0, we have max(〈〉) = max ∅ = 0. For

finite R ⊆ Z
k, let max(R−/+) denote max{max(r−/+) : r ∈ R}, respectively.

Let Sk×n denote the set of all matrices with k rows, n columns and entries from S. Conveniently albeit

slightly eccentrically, we use −i for an index i to denote all rows or columns other than the ith, and • to

denote all rows or columns. For example, Ai• is row i of A, and A•(−j) is A with column j removed.

Trees. A finite binary tree T , which may contain nodes with one child, is a non-empty finite subset of {1, 2}∗

such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · 2 ∈ T implies n · 1 ∈ T , and n · i ∈ T implies n ∈ T . The

nodes of T are its elements. The root of T is ε, the empty word. All notions such as parent, first child,

second child, subtree and leaf, have their standard meanings. The height of T is the length, i.e. the number

of nodes, of the longest simple path from the root to a leaf.

BVAS. The systems we define are equivalent to the branching vector addition systems with states [16] and

the vector addition tree automata [14, 17]. To simplify our technical life, we work with stateless systems.

In the linear case, it is well-known that states can be eliminated in logarithmic space, e.g. by adding the

number of states to the dimension. For branching systems, the same is true, but computation steps that join

two vectors by addition need to be generalised so that a vector from a fixed finite set (which may contain

negative entries) is added also. Since we are not studying the systems as recognisers of languages, we do not

have to work with alphabets either. Another simplification which costs only a logarithmic amount of space

is in relation to the VATA [14], where branching up to a fixed finite arity was permitted. Hence, adopting

a proof-theoretic terminology like that of Verma and Goubault-Larrecq [16], a system will consist of finite

sets of axioms, unary rules and binary rules, all of which are simply integral vectors. The unary rules are

present for easy compatibility with the linear case.

Let a branching vector addition system (BVAS) be a tuple B = 〈k, A0, R1, R2〉, where:

• k ∈ N is the dimension;

• A0 ⊆ N
k is a non-empty finite set of axioms;

• R1, R2 ⊆ Z
k are finite sets of unary and binary rules, respectively.

A derivation starts with a number of integral vectors, proceeds by applying the rules, and finishes with a

single vector. Applying a unary rule means adding it to a derived vector, and applying a binary rule means

4

adding it to the sum of two derived vectors. For a vector to be considered produced by the system, it needs

to be derived by a derivation which starts with the axioms and whose derived vectors are all non-negative.

Formally, a derivation of B is a labelling D : T → Z
k such that:

• T is a finite binary tree;

• if n has one child in T , then D(n) ∈ R1;

• if n has two children in T , then D(n) ∈ R2.

The vectors that are derived at every node are obtained recursively as follows:

• if n is a leaf in T , then D̂(n) = D(n);

• if n has one child n′ in T , then D̂(n) = D(n) + D̂(n′);

• if n has two children n′ and n′′ in T , then D̂(n) = D(n) + D̂(n′) + D̂(n′′).

Now, we say that D:

• is initialised iff, for each leaf n of T , we have D(n) ∈ A0;

• is admissible iff, for each node n of T , we have D̂(n) ∈ N
k;

• derives D̂(ε), which is the vector derived at the root.

For v ∈ N
k, we say that B produces v iff some initialised admissible derivation of B derives v.

Substitutions and contractions. For finite binary trees T and T ′, and a node n of T , let T [n← T ′] denote

the tree obtained by replacing with T ′ the subtree of T rooted at n. To extend the notation to derivations,

for D : T → Z
k and D′ : T ′ → Z

k, and a node n of T , let D[n← D′] : T [n← T ′]→ Z
k denote the derivation

obtained by replacing with D′ the subderivation of D rooted at n. Observe that the vector derived at node

n† in D[n← D′] is:

• D̂′(n′), if n† corresponds to the node n′ of D′;

• D̂(n†)− D̂(n) + D̂′(ε), if n† is an ancestor of n;

• D̂(n†), otherwise.

When D′ has only one leaf n, we write D;D′ instead of D′[n← D].

For a derivation D and its nodes n and n′ such that n is an ancestor of n′, we write D[n← n′] instead of

D[n← D′], where D′ is the subderivation of D rooted at n′. We call such substitutions contracting. For two

derivations D† and D‡, we say that D‡ is a contraction of D† iff D‡ is obtained from D† by a finite sequence

of contracting substitutions.

5

VAS. The classical vector addition systems can be defined as BVAS of the form V = 〈k, {a}, R, ∅〉, i.e. with

one axiom and no binary rules. We may write them as just 〈k,a, R〉.

All the definitions for BVAS apply to VAS, but they simplify. For each derivation D : T → Z
k, its

underlying tree T is a sequence.

Restrictions and bounds. For k-dimensional X , and I ⊆ [1, k], we write X(I) for the “restriction of X to

the set of places I”, e.g.: v(I) is the vector obtained from v by removing the entries in places outside of I;

〈k,a, R〉(I) is the |I|-dimensional VAS obtained from 〈k,a, R〉 by replacing a with a(I), and by replacing

every rule r ∈ R with r(I); and D(I) is the derivation obtained from D by replacing, for every node n, the

label D(n) of n with D(n)(I).

For v ∈ Z
k and B ∈ N, we say that v is B-bounded iff v ∈ [0, B−1]k. We regard a derivation B-bounded

iff all the vectors derived at its nodes are B-bounded. Thus, B-boundedness implies admissibility.

For a k-dimensional vector or derivation X , and I ⊆ [1, k], we say that X is I-B-bounded iff X(I) is

B-bounded.

Decision problems. We study the complexity of the following problems. As is standard, the input sizes are

with respect to binary representations of integers.

Covering Given a BVAS B and a non-negative vector t of the same dimension, does B produce some v

such that v ≥ t?

Boundedness Given a BVAS, is the set of all vectors that it produces finite?

Theorem 1. [5, 4] Covering and boundedness for VAS are ExpSpace-complete.

Theorem 2. [16] Covering and boundedness for BVAS are decidable.

3. Upper bound for the covering problem

We say that a derivation D of a BVAS B is a covering of a vector t iff the vector that D derives is at least

t, i.e. D̂(ε) ≥ t. Thus, the covering problem asks whether there exists an initialised admissible covering.

For VAS, Rackoff [4] established ExpSpace-membership of the covering problem by showing that, if an

initialised admissible covering exists, then there must exist one of at most doubly-exponential length. Such

a “short” covering can be guessed and verified in non-deterministic exponential space, and determinism is

regained by Savitch’s Theorem.

More precisely, Rackoff proved:

Lemma 3. [4, Section 3] If a VAS 〈k,a, R〉 has an initialised admissible covering of t ∈ N
k, then it has

one whose length is at most 2(3L)k+1

, where L = max{size(R), size(t)}.

6

Now, consider the following proof scheme for showing that, if a k-dimensional BVAS B has an initialised

admissible covering D of t, then it has one of at most doubly-exponential height:

(i) If D has an excessively high leaf n, let V be the VAS whose axiom is D(n) and whose rules R are all

the vectors:

• D(n′), such that n′ is on the path π from n to the root, and has one child;

• D(n′) + D̂(n′′), such that n′ is on π, and n′′ is a child of n′ not on π.

Hence, the sequence obtained from π by relabelling the nodes with two children as specified is a

derivation D† of V . The vectors derived along D† are the same as the vectors derived along π in D, so

D† is an initialised admissible covering of t.

(ii) By Lemma 3, V has an initialised admissible covering D‡ of t with length at most 2(3L)k+1

, where

L = max{size(R), size(t)}.

(iii) Let D′ be a derivation of B obtained from D‡ by undoing the linearisation done in (i), i.e. by unfolding

each rule in D‡ which is not a unary rule of B into a binary rule of B and a subderivation of D. It is

straightforward to check that D′ is also an initialised admissible covering of t. We repeat from (i) with

D′ instead of D, until there are no excessively high leaves.

There are two obstacles to developing the scheme into a valid proof:

• Since the definition of R in (i) involves adding derived vectors (the ones at the nodes one edge away

from the path π), we have no bound on size(R) in terms of size(B) and size(t), and therefore neither

on L in (ii).

• Even if we obtain a bound on L, Lemma 3 gives us no guarantees about the shape of D‡ in (ii) in

relation to the shape of D†. Hence, although the length of D‡ is bounded, we are not able to deduce

that, after the unfolding in (iii), D′ has fewer excessively high leaves than D.

The key to overcoming both obstacles is observing that, essentially, Rackoff’s proof of Lemma 3 shows

more than is stated in that result. Firstly, any initialised admissible covering has a contraction which is a

short initialised admissible covering, and secondly, the length of the latter is bounded by the sizes of the

target vector and only the negative entries in the rules of the VAS. More precisely, we have:

Lemma 4. If a VAS 〈k,a, R〉 has an initialised admissible covering D of t ∈ N
k, then it has one which is

a contraction of D and whose length is at most (max(R−) + max(t) + 2)(3k)!.

Proof. Although this is a reworking of the proof of Lemma 3, we present it in detail to show exactly how

the new conclusions are obtained.

7

For an initialised admissible covering D of t ∈ N
k in a VAS 〈k,a, R〉, let m(D, t, 〈k,a, R〉) be the

smallest length of a contraction of D that is also an initialised admissible covering of t in 〈k,a, R〉. Trivially,

m(D, t, 〈k,a, R〉) is at most the length of D. For L, k ∈ N, we then let:

ML(k) = sup
{
m(D, t, 〈k,a, R〉) : D is an initialised admissible covering of t ∈ N

k

in VAS 〈k,a, R〉, and max(R−) + max(t) ≤ L
}
.

The set of tuples (D, t, 〈k,a, R〉), over which the supremum of the m(D, t, 〈k,a, R〉) values is taken in the

definition of ML(k), is always infinite, and hence it is not a priori clear that the number ML(k) is well

defined. The following lemma implies that, and it paves the way to an easy inductive proof of Lemma 4.

Lemma 5. For all L ∈ N, the following inequalities hold:

ML(k) ≤






1 if k = 0,

(
L ·ML(k − 1)

)k
+ ML(k − 1) if k ≥ 1.

Proof. The case when k = 0 is trivial. For every k ≥ 1, it is sufficient to prove that for every initialised

admissible covering D of t ∈ N
k in a VAS 〈k,a, R〉, where max(R−) + max(t) ≤ L, the following inequality

holds:

m(D, t, 〈k,a, R〉) ≤
(
L ·ML(k − 1)

)k
+ ML(k − 1). (1)

Let B = ML(k − 1) · max(R−) + max(t). We consider the following two cases: (a) D is B-bounded, and

(b) D is not B-bounded.

Assume thatD is B-bounded. Note that if D̂(n) = D̂(n′) and n′ precedes n, then the derivationD[n← n′]

obtained by the contracting substitution is also an initialised B-bounded covering of t. By performing such

substitutions repeatedly, then we will eventually obtain a contraction of D that is an initialised B-bounded

covering of t, and such that the vectors derived at its nodes are mutually distinct; the length of such a

derivation is clearly at most Bk. We have now proved (1) in case (a) because

Bk =
(
ML(k − 1) ·max(R−) + max(t)

)k
≤
(
L ·ML(k − 1)

)k
,

where the inequality follows from the assumption that max(R−) + max(t) ≤ L.

We now handle case (b), i.e., when D is not B-bounded. In this case there are derivations: D1 in the

VAS 〈k,a, R〉, and D2 in the VAS 〈k, D̂1(ε), R〉, such that:

• D = D1;D2,

• D1 is B-bounded except for the vector D̂1(ε) derived at its last node,

• D̂1(ε) is not B-bounded because there is a place i ∈ [1, k] such that D̂1(ε)(i) ≥ B.

8

Observe that, as in case (a), we can choose a contraction D′
1 of D1 that is an initialised derivation of D̂1(ε),

B-bounded except for the vector derived at its last node, and of length at most Bk + 1. Moreover, letting

I = [1, k] \ {i}, note that D2(I) is an initialised admissible covering of t(I) in the VAS 〈k, D̂1(ε), R〉(I), and

hence there is a contraction D′
2 of D2 such that D′

2(I) is also an initialised admissible covering of t(I), and

of length at most ML(|I|) = ML(k − 1).

Observe that D′
1;D

′
2 is a contraction of D, and that it is of length at most

Bk + ML(k − 1) ≤
(
L ·ML(k − 1)

)k
+ ML(k − 1).

In order to establish (1) in case (b) we argue that D′
1;D

′
2 is a initialised admissible covering of t in 〈k,a, R〉.

It suffices to prove that for every node n in D′
2, we have D̂′

2(n)(i) ≥ t(i) ≥ 0. This follows from

D̂′
1(ε)(i) = D̂1(ε)(i) ≥ B ≥

(
ML(k − 1)− 1

)
·max(R−) + max(t),

and the number of applications of rules in D′
2 being at most ML(k − 1)− 1. �

Now, to prove Lemma 4, we show by induction on k ∈ N that Mℓ(k) ≤ ℓ(3k)!, where ℓ = max(R−) +

max(t) + 2. The base case, when k = 0, is trivial.4 If we assume Mℓ(k − 1) ≤ ℓ(3(k−1))! then we have:

Mℓ(k) ≤
(
ℓ ·Mℓ(k − 1)

)k
+ Mℓ(k − 1) ≤

(
ℓ ·Mℓ(k − 1)

)k+1
≤
(
ℓ1+(3(k−1))!

)k+1
≤ ℓ(3k)!,

where the first inequality holds by Lemma 5, the second is true because ℓ ≥ 2, and the third follows from

the inductive hypothesis. �

We are now in a position to show that, indeed, if a given BVAS has an initialised admissible covering

of a given vector of non-negative integers, then it has one of at most doubly-exponential height. Although

that is all that is required in this article, we can easily infer a little more:

Lemma 6. If a BVAS 〈k, A0, R1, R2〉 has an initialised admissible covering D of t ∈ N
k, then it has one

which is a contraction of D and whose height is at most (max((R1 ∪R2)
−) + max(t) + 2)(3k)!.

Proof. We follow the scheme in (i)–(iii) for B = 〈k, A0, R1, R2〉, with “excessively high” replaced by “of

height more than (max((R1∪R2)
−)+max(t)+2)(3k)!”, and with the application of Lemma 3 in (ii) replaced

by an application of Lemma 4.

Let D, n, V = 〈k,D(n), R〉 and D† be as in (i). Since D is admissible, we have that, in particular for

all nodes n′′ that are one edge away from the path π from n to the root, D̂(n′′) ≥ 0. Hence, max(R−) ≤

max((R1∪R2)
−), and so by Lemma 4, V has an initialised admissible covering D‡ of t, which is a contraction

of D† and whose length is at most

(
max(R−) + max(t) + 2

)(3k)!
≤
(
max((R1 ∪R2)

−) + max(t) + 2
)(3k)!

.

4Recall that 0! = 1.

9

As outlined in (iii), D‡ can be unfolded into an initialised admissible covering D′ of t in B. By taking

care that, for each node in D‡ that corresponds to a node n′ in D with a child n′′ not on the path π, the

unfolding is performed so that the subderivation of D rooted at n′′ is attached on the same side as n′′ is in

relation to π, we obtain D′ which is in addition a contraction of D.

Let n′ be the leaf of D′ that was obtained from the unique leaf of D‡. The height of n′ equals the length

of D‡, so it is not excessively high. By the properties of D′, there is an injection ι from the leaves of D′ to

the leaves of D which does not decrease heights and such that ι(n′) = n. Since the height of n is excessively

high, we conclude that D′ has fewer excessively high leaves than D, as required. �

Therefore, to decide the covering problem, it suffices to search for an initialised admissible covering of at

most doubly-exponential height. Note, however, that the size of a binary tree of doubly-exponential height

can be triply exponential, and hence vectors derived in a derivation of doubly-exponential height may contain

triply-exponential entries. In order to prove the main result of this section, i.e., that the covering problem

for BVAS is in 2ExpTime, we need to avoid having to manipulate such large numbers. That is achieved

by our next result, Proposition 7, which shows that whether a derivation is admissible and a covering can

be verified accurately with arithmetic where values that are not less than a sufficiently large bound B are

replaced by ∞.

Let us first, for integral a and B, denote by aB the B-truncation of a:

aB =






a if a < B,

∞ otherwise.

For an integral vector v, we define its B-truncation vB pointwise. We then let, for a derivation D : T → Z
k,

its B-derived vectors D̂B(n) be obtained by B-truncating its derived vectors and propagating ∞ entries

along all simple paths to the root, as follows. Here, the B-truncation of ∞ is ∞, and sums that contain ∞

evaluate to ∞:

• if n is a leaf in T , then D̂B(n) = D(n)
B

;

• if n has one child n′ in T , then D̂B(n) = D(n) + D̂B(n′)
B

;

• if n has two children n′ and n′′ in T , then D̂B(n) = D(n) + D̂B(n′) + D̂B(n′′)
B

.

Proposition 7. Suppose B = 〈k, A0, R1, R2〉 is a BVAS, t ∈ N
k, D is a derivation in B of height at most H,

and B ≥ H ·max((R1 ∪R2)
−) + max(t). Then D is an admissible covering of t iff, for each node n in D,

D̂B(n) ≥ 0, and D̂B(ε) ≥ t.

Proof. That D being admissible and a covering of t implies D̂B(n) ≥ 0 for all n and D̂B(ε) ≥ t is trivial,

since for each n and i, D̂B(n)(i) either equals D̂(n)(i) or is ∞.

10

For the other direction, it suffices to consider n and i such that D̂B(n)(i) =∞. We can also assume (∗)

that D̂(n′)(i) ≥ 0 has been shown for all descendents n′ of n. Since ∞ entries propagate pointwise towards

the root, there must exist n† which is either n or a descendent of n, such that D̂B(n†)(i) = ∞, and which

does not have a descendent with the same property. From the definition of B-derived vectors, we have that

D̂(n†)(i) ≥ B. Recalling the assumption (∗) and that the number of additions of a rule of B along the simple

path from n† to n is less than H , we have

D̂(n)(i) ≥ D̂(n†)(i)−H ·max((R1 ∪R2)
−) ≥ B −H ·max((R1 ∪R2)

−) ≥ max(t) ≥ t(i) ≥ 0,

as required. �

Theorem 8. Covering for BVAS is in 2ExpTime.

Proof. Let B = 〈k, A0, R1, R2〉 be a BVAS and t ∈ N
k. Let N = size(B) + size(t). If

ℓ = max((R1 ∪R2)
−) + max(t) + 2

then ℓ ≤ 2N , and without any loss of generality we can assume that 3k ≤ N .

Lemma 6 implies that if there is an initialised admissible covering of t in B then there is one of height

at most ℓ(3k)! ≤ (2N)N ! ≤ 22C1N log N

, for some constant C1 > 1. If we set H = 22C1N log N

and B = H2, then

from Proposition 7 it follows that in order to establish existence of an initialised admissible covering of t

in B, it suffices to:

• guess an initialised derivation D in B of height at most H ;

• guess the B-derived vectors at all nodes in D, and for every node and its children, verify that they

satisfy the equations defining B-derived vectors, and that they are non-negative;

• verify that the B-derived vector at the root covers t.

We argue that the guessing and verification of such a structure can be carried out by an alternating Turing

machine with exponential space, and hence the covering problem is in 2ExpTime [19]. The alternating

Turing machine starts at the root of the derivation, it uses non-deterministic states to guess the rules

labelling the current node and its children, and their B-derived vectors, and it uses universal states to

proceed with the guessing and verification process to both children (for nodes labelled by binary rules) in

parallel. All those tasks can indeed be carried out by a Turing machine with only exponential space because

it can represent—in binary—and manipulate numbers of doubly-exponential magnitude. �

We remark that, for BVAS whose dimension is fixed, covering is in ExpTime. That follows from the

proof of Theorem 8, where if k is fixed then H and B are only singly exponential in N , so polynomial space

suffices for the alternating Turing machine.

11

4. Upper bound for the boundedness problem

Let us say that a derivation D is self-covering iff, for some node n, the vector derived at n is less than

or equal to the one at the root, and less in at least one place, i.e. D̂(n) < D̂(ε).

The following fact tells us that boundedness is equivalent to non-existence of an initialised admissible self-

covering derivation. The “if” part is easy. The “only if” part was inferred by Verma and Goubault-Larrecq,

using the properties of their extension of Karp and Miller’s procedure.

Theorem 9. [16] A BVAS produces infinitely many vectors iff it has an initialised admissible self-covering

derivation.

In the simpler setting of VAS, to conclude that boundedness is in ExpSpace, Rackoff showed that if

an initialised admissible self-covering derivation exists, then there exists one of at most doubly-exponential

length:

Lemma 10. [4, Section 4] If a VAS V = 〈k,a, R〉 has an initialised admissible self-covering derivation,

then it has one whose length is at most 22C2L log L

, where L = size(R) and C2 is some constant.

Starting from the same simple idea as in Section 3, consider the following scheme for proving that, if a

BVAS B = 〈k, A0, R1, R2〉 has an initialised admissible self-covering derivation D, then it has one of at most

doubly-exponential height:

(I) Let node n be such that D̂(n) < D̂(ε), and pick a simple path π in D which is from a leaf to the root

and passes through n. Let V be the VAS defined as in (i) in Section 3, i.e. its axiom is the label of the

leaf of π and its rules R are obtained by linearising the binary rules on π. Thus, V has a derivation

D† whose sequence of derived vectors is the same as the sequence of derived vectors along π in D. In

particular, D† is initialised, admissible and self-covering.

(II) By Lemma 10, V has an initialised admissible self-covering derivation D‡ whose length is at most

22C2L log L

, where L = size(R).

(III) Let D′ be a derivation of B obtained from D‡ by undoing the linearisation done in (I), as in (iii) in

Section 3, and let π′ be the path in D′ that is from a leaf to the root and corresponds to D‡. It is

straightforward to check that D′ is also initialised, admissible and self-covering.

(IV) Let H be the length of π′, which equals the length of D‡. For each node n′ that is one edge away

from π′ in D′ (i.e., that was attached in (III)), the subderivation of D′ rooted at n′ is an initialised

admissible covering of min((H−1)·max(R−)+1, D̂′(n′)). By Lemma 6, B has an initialised admissible

12

covering D∗
n′ of the same vector, whose height is at most

(
max((R1 ∪R2)

−) + max
(
min

(
(H − 1) ·max(R−) + 1, D̂′(n′)

))
+ 2
)(3k)!

≤
(
max((R1 ∪R2)

−) + (H − 1) ·max(R−) + 3
)(3k)!

≤
(
H ·max((R1 ∪R2)

−) + 3
)(3k)!

.

Let D′′ be obtained from D′ by performing each substitution [n′ ← D∗
n′]. The threshold (H − 1) ·

max(R−) + 1 is such that D′′ is still admissible and self-covering, certainly it is still initialised, and

H + (H ·max((R1 ∪R2)
−) + 3)(3k)! bounds its height.

Of course, we have the same problem as the first one in Section 3: we have no bound on size(R) in terms

of size(B), and therefore neither on H in (IV). Seeking therefore a refinement of Lemma 10, we find that

the key ingredient in its proof is:

Lemma 11. [4, Lemma 4.5] Suppose V = 〈k,a, R〉 is a VAS, I ⊆ [1, k] and B > 1. If V has an initialised

I-B-bounded self-covering derivation, then it has one whose length is at most B(size(R))C3

, where C3 is some

constant.

In turn, at the centre of the proof of Lemma 11, Rackoff invokes the following theorem of Borosh and

Treybig on small solutions of integer linear programming problems. Recall that the interval notations denote

sets of integers.

Theorem 12. [20] Let A ∈ (−m, m)k×n and b ∈ (−m, m)k, where k, n, m ∈ N. If there exists x ∈ N
n such

that Ax ≥ b, then there exists y ∈ [0, (max{n, m})C4k]n such that Ay ≥ b, where C4 is some constant.

When we examine feeding a VAS 〈k,a, R〉 for which we have a bound on max(R−) but not on max(R+)

into Rackoff’s proof of Lemma 11, we discover that Theorem 12 is invoked for bounded k, unbounded n,

A whose entries are bounded below but not above, and b whose entries are bounded above but not below.

Surprisingly, this is where we can make progress. We now show that, if we can afford roughly one exponential

more, small solutions exist for A and b which are only one-sidedly bounded by m. Moreover, the number

of non-zero entries in the small solutions and their values are bounded only in terms of k and m.

Theorem 13. Let A ∈ (−m,∞)k×n and b ∈ (−∞, m)k, where k, n, m ∈ N. If there exists x ∈ N
n such

that Ax ≥ b, then there exists y ∈ [0, L]n such that |supp(y)| ≤ L and Ay ≥ b, where L = m2C5k
2

and C5

is some constant.

In order to reformulate Theorem 13 so that it becomes amenable to a proof by induction on k (cf.

Lemma 15), we define Fk(m), for all integers k ≥ 1 and m ≥ 2, by:

Fk(m) =






m if k = 1,

(
Fk−1(2m)

)4C4k
2

if k > 1,

13

where C4 is the constant from Theorem 12, which we can assume is at least 1.

Proposition 14. For all integers k ≥ 1 and m ≥ 2, we have Fk(m) ≤ m(4C4)
k·(2k)!.

Proof. The proof is by induction on k. The base case, i.e., when k = 1, is trivial. If we assume that

Fk−1(m) ≤ m(4C4)
k−1·(2(k−1))! for all integers m ≥ 2, then we have:

Fk(m) =
(
Fk−1(2m)

)4C4k
2

≤
(
(2m)(4C4)

k−1·(2(k−1))!
)4C4k

2

≤ m(4C4)
k·(2k)!,

where the equality holds by the definition of Fk(m), and the first inequality by the inductive hypothesis. �

Observe that there is a constant C5 such that, for all integers k ≥ 1 and m ≥ 2, we have Fk(m) ≤

m(4C4)
k·(2k)! ≤ m2C5k

2

. Hence, and since Theorem 13 is true trivially when k = 0 or m ≤ 1, Theorem 13

follows from the following lemma.

Lemma 15. Let A ∈ (−m,∞)k×n and b ∈ (−∞, m)k, where k ≥ 1 and m ≥ 2. If there exists x ∈ N
n such

that Ax ≥ b, then there exists y ∈ [0, Fk(m)]n such that |supp(y)| ≤ Fk(m) and Ay ≥ b.

Proof. We can assume without any loss of generality that, for each j ∈ [1, n], there exists x ∈ N
n such that

Ax ≥ b and x(j) ≥ 1. Otherwise, consider A′ = A•(−j), where there exists no x ∈ N
n such that Ax ≥ b

and x(j) ≥ 1.

The proof is by induction on k. First we consider the base case when k = 1. If b ≤ 0 then Ay ≥ b

for y = 0. If, however, b > 0 then the existence of x ∈ N
n such that Ax ≥ b implies that there must be

i ∈ [1, n] such that A(1, i) > 0. Then, we have Ay ≥ b for y = m · ei.

For the inductive step we consider the following three cases. Essentially, if either b contains a large

negative entry or A contains a large positive entry, then we remove that row of A and argue by the

inductive hypothesis and the largeness of the entry. Otherwise, we have a lower bound for all entries of b

and an upper bound for all entries of A, and we invoke Theorem 12.

Case 1: There exists i ∈ [1, k] such that b(i) ≤ −m · (Fk−1(m))2. Let A′ = A(−i)• and let b′ = b−i. By

the inductive hypothesis, there exists y ∈ [0, Fk−1(m)]n—and hence y ∈ [0, Fk(m)]n—such that |supp(y)| ≤

Fk−1(m) < Fk(m) and A′y ≥ b′. The assumption that A(i, j) > −m for all j ∈ [1, n] then implies that

Ai•y > −m · (Fk−1(m))2 ≥ b(i), and hence we have Ay ≥ b.

Case 2: There exist i ∈ [1, k] and j ∈ [1, n] such that A(i, j) ≥ 2m · (Fk−1(2m))2, and there exists x ∈ N
n

such that Ax ≥ b and x(j) ≥ 1. Let A′ = A(−i)•, let b′ = b−i, and let b′′ = b′ − A(−i)j . Note that

A′(x− ej) ≥ b′′ and that, since x(j) ≥ 1, we have x− ej ∈ N
n. Observe also that b′′ ∈ (−∞, 2m)k−1 and

hence, by the inductive hypothesis, there exists y ∈ [0, Fk−1(2m)]n such that |supp(y)| ≤ Fk−1(2m) and

A′y ≥ b′′.

14

Let z = y + ej . Note that then z ∈ [0, Fk−1(2m) + 1]n ⊆ [0, Fk(m)]n and |supp(y)| ≤ Fk−1(2m) + 1 ≤

Fk(m), and hence we only need to establish that Az ≥ b. We have:

(Az)(i) = Ai•(y + ej) ≥ A(i, j)−m · (Fk−1(2m))2 ≥ m · (Fk−1(2m))2 ≥ m ≥ b(i),

where the first inequality follows from A ∈ (−m,∞)k×n, from y ∈ [0, Fk−1(2m)], and from |supp(y)| ≤

Fk−1(2m); and the second inequality follows from the assumption that A(i, j) ≥ 2m·(Fk−1(2m))2. Moreover,

we have:

(Az)−i = A′(y + ej) = A′y + A(−i)j ≥ b′′ + A(−i)j = b′ = b−i.

Case 3: Neither Case 1 nor Case 2 applies. Observe that, in this case, every column of A is in [−m, 2m ·

(Fk−1(2m))2]k, and b ∈ [−m · (Fk−1(m))2, m]k. The number of distinct columns of A is therefore at most

(3m · (Fk−1(2m))2)k ≤ (Fk−1(2m))4k, and so without loss of generality we may assume n ≤ (Fk−1(2m))4k.

By Theorem 12, there exists y ∈ [0, Fk−1(2m)4C4k
2

]n = [0, Fk(m)]n such that |supp(y)| ≤ (Fk−1(2m))4k ≤

Fk(m) and Ay ≥ b. �

Having proved Theorem 13, we can use it to obtain a revision of Lemma 11, where the dependence of

the bound on the size of the set of rules is replaced by dependences on the minimum negative entry in a

rule and the dimension. The price to pay is that the revised bound is doubly exponential in the dimension.

Lemma 16. Suppose V = 〈k,a, R〉 is a VAS, I ⊆ [1, k] and B > 1. If V has an initialised I-B-bounded

self-covering derivation, then it has one of length at most ((max(R−)+1)·B)2
C6k

2

, where C6 is some constant.

Proof. Let d = |I|, and let D be a minimal (i.e., shortest) initialised I-B-bounded self-covering derivation.

By the self-covering property of D, we can decompose it as D1;D2, where D1 and D2 are I-B-bounded

derivations, the vector D̂1(ε) derived at the last node of D1 is the label of the first node of D2, and is

less than the vector D̂2(ε) derived at the last node of D2. By the minimality of D, the length of D1 is at

most Bd ≤ Bk (cf. the proof of Lemma 5).

We claim that the length of D2 is at most

(Bk + 1)2 + Bk ·
((

(max(R−) + 1) · (Bk + 1)2
)2)2C5k

2

,

where C5 is the constant from Theorem 13, which implies the lemma since

Bk + (Bk + 1)2 + Bk ·
((

(max(R−) + 1) · (Bk + 1)2
)2)2C5k

2

≤ ((max(R−) + 1) ·B)2
C6k

2

,

where C6 is some constant.

The argument for the claim follows Rackoff’s proof of Lemma 11, except that it uses Theorem 13 instead

of Theorem 12. We therefore skip some details that are the same as in the original.

The following notions will be useful, where D′ is a derivation of V :

15

• a segment of D′, from a node n to a node n′, is a derivation D† whose first node (i.e., leaf) is labelled

by D̂′(n) and whose remaining nodes are labelled by the sequence of rules in D′ from node n′′ to node

n′, where n′′ is next after n;

• the effect of D′, written ∆(D′), is the sum of its rules, which equals the difference between its last and

first derived vectors;

• D′ is an I-loop iff ∆(D′)(I) = 0;

• D′ is a simple I-loop iff it is an I-loop and no proper segment of it is an I-loop;

• a segment D† of D′ from n to n′ is a light I-loop iff it is an I-loop and, for every node n′′ in the interior

of the segment, there exists n′′′ outside of the interior such that D̂′(n′′)(I) equals D̂′(n′′′)(I);

• deleting a segment of D′, which is from n to n′, results in the contraction D′[n′ ← n];

• inserting a derivation D† of V into D′ at a node n inserts the sequence of rules in D† immediately

after n in D′ (the first node of D† is irrelevant).

The rest of the proof consists of three stages: analysing D2 to obtain a solution to a certain integer

programming problem, applying Theorem 13 to get a small solution to the same problem, and synthesising

from the small solution a short I-B-bounded derivation D′′
2 of V whose initial vector is the same as that of

D2 and is strictly covered by the last derived vector in D′′
2 .

For the first stage, observe that:

• if D2 does not have a segment of length at least 2 which is a light simple I-loop, then its length is at

most (Bd + 1)2 ≤ (Bk + 1)2;

• deleting any light simple I-loop does not alter the set of all I-restrictions of the derived vectors in D2.

Hence, starting with D2, there exists a sequence of deletions of light simple I-loops of length at least 2, which

finishes with a derivation D′
2 whose length is at most (Bk + 1)2 and for which the set of all I-restrictions

of its derived vectors is the same as for D2. Let E ⊆ Z
k be the set of all effects of the deleted I-loops (of

course, their I-restrictions equal 0), and for each e ∈ E:

• let xe be the number of deleted I-loops whose effect is e;

• let D†
e be some deleted I-loop whose effect is e.

By the definition of D′
2 and the self-covering property of D2, we have ∆(D2) = ∆(D′

2) +
∑

e∈E xe · e > 0,

16

i.e., there is i ∈ [1, k] such that:

(
∑

e∈E

xe · e

)
([1, k] \ {i}) ≥ −∆(D′

2)([1, k] \ {i}), (2)

(
∑

e∈E

xe · e

)
(i) ≥ 1−∆(D′

2)(i). (3)

The system of inequalities (2)–(3) states that x ∈ N
|E| satisfies Ax ≥ b, where A ∈ [−max(R−) ·

Bk,∞)k×|E| since the length of any simple I-loop is at most Bk +1, and b ∈ (−∞, max(R−) ·(Bk +1)2 +1]k

since the length of D′
2 is at most (Bk +1)2. Letting m = (max(R−)+1) ·(Bk+1)2 and applying Theorem 13,

we get y ∈ [0, L]|E| such that |supp(y)| ≤ L and Ay ≥ b, where L = m2C5k
2

.

For the last stage, recall that the set of all I-restrictions of the derived vectors in D′
2 is the same as for

D2. Let D′′
2 be obtained from D′

2 by, for each e ∈ E, inserting ye times the I-loop D†
e at some node for

which the I-restriction of its derived vector equals the I-restriction of the first and last derived vectors in

D†
e (those two I-restrictions are the same). It is straightforward to check that D′′

2 is I-B-bounded and that

its initial vector is the same as that of D2. The latter is also strictly covered by the last derived vector

in D′′
2 because y satisfies the inequalities (2)–(3). It remains to observe that the length of D′′

2 is at most

(Bk + 1)2 + Bk · L2, which establishes the claim by the assumed minimality of D. �

The final step in obtaining a revision of Lemma 10 that we can apply to VAS whose rules are bounded

below but not above is to substitute in its proof uses of Lemma 11 by uses of Lemma 16. That yields the

next result, which shows that we could indeed afford the extra exponential in Theorem 13. Although it has

filtered through to Lemma 16, it disappears in the following proof.

Lemma 17. If a VAS V = 〈k,a, R〉 has an initialised admissible self-covering derivation, then it has one

of length at most (2(max(R−) + 1))2
C7k

3

, where C7 is some constant.

Proof. Given a VAS V = 〈k,a, R〉 and I ⊆ [1, k], let m(〈k,a, R〉, I) be the smallest length of an ini-

tialised self-covering derivation D such that D(I) is admissible in V(I). If there is none, by convention

m(〈k,a, R〉, I) = 0.

For L ≥ 2 and i ∈ N, we then let:

mL(i) = sup
{
m(〈k,a, R〉, I) : |I| = i, 〈k,a, R〉 is a VAS and max(R−) + 1 ≤ L

}
.

The set over which the supremum of the m(〈k,a, R〉, I) values is taken in the definition of mL(i) is always

infinite, and hence it is not a priori clear that the number mL(i) is well defined.

By Lemma 16, mL(0) ≤ (2L)2
C6k

2

.

Suppose D is an initialised self-covering derivation in a VAS V = 〈k,a, R〉, such that D(I) is admissible

in V(I), max(R−) + 1 ≤ L and |I| = i + 1. Let B = max(R−) ·mL(i).

17

If D is I-B-bounded, then by Lemma 16, V has an initialised self-covering derivation D′ such that D′(I)

is admissible in V(I) and its length is at most ((max(R−) + 1) ·max(R−) ·mL(i))2
C6k

2

≤ (L2 ·mL(i))2
C6k

2

.

Otherwise, D is not I-B-bounded, so we can write it as D1;D2, where D1 is I-B-bounded except for

its last derived vector D̂1(ε), which is also the first vector in D2. Let j ∈ I be such that D̂1(ε)(j) ≥ B.

Without any loss of generality, we can assume that D2 is self-covering, and that the length of D1 is at most

Bi+1 + 1 ≤ (L ·mL(i))k + 1. Now, letting I ′ = I \ {j}, the VAS V ′ = 〈k, D̂1(ε), R〉 must have an initialised

self-covering derivation D′
2 such that D′

2(I
′) is admissible in V ′(I ′) and its length is at most mL(i). Since

D̂1(ε)(j) ≥ B = max(R−) ·mL(i), we have that (D1;D′
2)(I) is admissible in V(I). Moreover, the length of

D1;D′
2 is at most (L ·mL(i))k + mL(i) ≤ (L2 ·mL(i))2

C6k
2

.

We conclude that mL(0) ≤ (2L)2
C6k

2

and mL(i + 1) ≤ (L2 ·mL(i))2
C6k

2

. It follows that, for all i ∈ [0, k],

mL(i) ≤
(
L21+i·C6k

2)i

· (2L)2
(i+1)·C6k

2

.

Thus, mL(k) ≤ L2log k+k·C6k
2

· (2L)2
(k+1)·C6k

2

≤ (2L)2
C7k

3

for some constant C7. �

Theorem 18. Boundedness for BVAS is in 2ExpTime.

Proof. We fix the proof scheme in (I)–(IV) by using Lemma 17 instead of Lemma 10 in (II), and thus

deduce that every unbounded BVAS 〈k, A0, R1, R2〉 has an initialised admissible self-covering derivation

whose height is at most

H +
(
H ·max((R1 ∪R2)

−) + 3
)(3k)!

≤
(
2(max((R1 ∪R2)

−) + 1)
)2C8k

3

for a constant C8, since H ≤ (2(max(R−) + 1))2
C7k

3

and max(R−) ≤ max((R1 ∪ R2)
−). Moreover, the

argument in (IV) shows that, to establish existence of such an initialised admissible self-covering derivation,

it suffices to guess and verify an admissible self-covering derivation which is a path with single edges attached

to it, all of whose derived vectors are doubly-exponentially bounded, and such that the vectors that label

the nodes off the path are coverable. By Lemma 6 and Proposition 7, as in the proof of Theorem 8, each of

the instances of covering is decidable in alternating exponential space. We conclude that the boundedness

problem is in co-AExpSpace, which equals AExpSpace, which equals 2ExpTime [19]. �

As with Theorem 8, for BVAS whose dimension is fixed, the bounds in the proof of Theorem 18 are only

singly exponential in its size, so we have membership of APSpace, which is included in ExpTime [19].

5. Lower bounds

We shall obtain lower bounds for covering and boundedness for BVAS by reducing from the following

problem, which is for a simple class of programs with natural-valued variables (called counters) and with non-

deterministic and universal branchings. We first introduce the programs, and then state the problem, whose

18

AExpSpace-hardness (and thus 2ExpTime-hardness [19]) is a straightforward consequence of standard

translations from Turing machines to counter machines (e.g., by simulating the tape by two stacks and

encoding the latter by counters).

An alternating counter program is a finite sequence of lines, which are numbered by 1, 2, Each line

contains a command, which is one of: an increment of a counter (x := x + 1), a decrement of a counter

(x := x − 1), a zero test (if x = 0 then L else L′), a non-deterministic jump (goto L or L′), a universal

jump (goto L and L′), or termination (halt). In every program, halt occurs only as the last command.

A computation of such a program is a tree labelled by configurations, each of which is a line number

together with a counter valuation. The root is labelled by the initial configuration: line number 1 with all

counters having value 0. Decrements of counters with value 0 cannot be performed. Nodes with more than

one child are labelled by configurations from which there is a universal jump: they have two children, to

whom they pass their counter valuation unchanged. We say that a configuration is terminated iff its line

number is the last in the program.

Doubly-exponential halting Given an alternating counter program with N lines, does it have a finite

computation in which every counter value is at most 22N

and every leaf configuration is terminated?5

Our main technical goal in the rest of this section is to show how to compute, in polynomial time, BVAS

which simulate alternating counter programs as long as their counters are doubly-exponentially bounded.

Instead of programming the BVAS directly, we use a slightly higher-level formalism. We now define the

latter, and establish a lemma which relates it with BVAS, where the emphasis is on the covering and

boundedness properties.

Branching net programs are defined like alternating counter programs, except that they have no zero tests

and no universal jumps, but they can contain calls of subroutines (gosub L) and returns from subroutines

(return), as well as joinings of computations (gojoin L). The call-return stack involved is bounded, since

we require that each subroutine can be assigned a level so that subroutines of level i can only call subroutines

of level i + 1. That includes the main program, whose level is 0. Moreover, only jumps to commands in

the same subroutine are permitted, and in every subroutine which is not the main program, return occurs

only as the last command. The gojoin L and halt commands may occur only in the main program (i.e.,

at level 0), where such lines L must contain halt. The effect of a gojoin L command is to launch a new

copy of the program and, provided it terminates at line L, add its final counter valuation pointwise to the

current counter valuation.

A computation of a branching net program is therefore also a tree, but of opposite orientation compared

with alternating counter programs. Each leaf is labelled by the initial configuration: empty call-return stack,

5The bound of 22
N

suffices for AExpSpace-hardness since the program can be padded to N
k lines.

19

line number 1, and all counters having value 0. Nodes with more than one child are results of the launches

and joins: the command at the left-hand child’s line number L is gojoin L′ where L′ is the right-hand

child’s line number, the line number at the parent node is L+1, and the value of each counter at the parent

node is the sum of its values at the child nodes (and the three call-return stacks are empty). We say that a

configuration is reachable iff it is at the root of some computation.

Lemma 19. Given a branching net program M with N lines, a BVAS B(M) of size O(N2) is computable

in space logarithmic in N such that:

(a) given a line number L, a vector tL is computable in space logarithmic in N such that M can reach a

configuration whose line number is L iff B(M) can produce some v ≥ tL;

(b) M can reach only finitely many configurations iff B(M) can produce only finitely many vectors.

Proof. A simple translation from net programs with N lines to VAS of size O(N2) was described by

Esparza [21, §7], where the former are the subclass of branching net programs obtained by disallowing the

gojoin L commands. It operates in space logarithmic in N , and outputs VAS which have a separate place

(i.e. vector component) for each counter in the program and for each line in the program. The translation

is straightforward to extend to branching net programs and BVAS: each gojoin L′ command at a line L

results in a binary rule whose −1 entries ensure that the two derived vectors being summed correspond to

lines L and L′. For (a), it suffices to let tL have entry 1 in the place for line L and all other entries 0. For

(b), we recall that the call-return stack of M is bounded and note that vectors produced by B(M) have

only entries 0 or 1 in the places for the lines ofM, soM can reach only finitely many configurations iff all

its counters are bounded, which is the case iff B(M) can produce only finitely many vectors. �

We now present the main technical result in this section. Although it is phrased in terms of the properties

of branching net programs that correspond to covering and boundedness for BVAS (cf. Lemma 19), the bulk

of the proof shows how to construct, in polynomial time, branching net programs that simulate alternating

counter programs as long as their counters are doubly-exponentially bounded.

Lemma 20. Given an alternating counter program C with N lines, we have that a branching net program

M(C) with O(N) lines and a line number Lfin are computable in time polynomial in N such that the following

are equivalent:

• C has a finite computation in which every counter value is at most 22N

and every leaf configuration is

terminated;

• M(C) can reach a configuration whose line number is Lfin ;

• M(C) can reach infinitely many configurations.

20

Proof. We show how to construct M(C) based on the following plan:

• since computations of C are trees that start from the root, whereas those ofM(C) are trees that start

from the leaves,M(C) will simulate C in reverse;

• it is trivial forM(C) to simulate increments and decrements of counters in C, but to simulate zero tests

(which are not available in branching net programs), we can use Lipton’s polynomial-time construction

[5] (cf. the presentation by Esparza [21, Section 7]), which employs O(N) counters and works as long

as values of counters in C are at most 22N

;

• since universal jumps in C copy counter valuations, whereas joinings of computations in M(C) sum

them, M(C) will use auxiliary counters to store one of the counter valuations before each joining and

to verify its equality with the other counter valuation afterwards;

• before each reverse step of C,M(C) can attempt to verify that the current configuration of C is initial,

in which case it will pass through line number Lfin and enter a loop that makes a counter unbounded.

Let x1, . . . , xK be the counters of C. ThenM(C) has counters xj and x̄j for each 1 ≤ j ≤ K, x′
j and x̄′

j

for each 1 ≤ j ≤ K + 1, si and s̄i for each 0 ≤ i ≤ N , and yi, ȳi, zi and z̄i for each 0 ≤ i < N (N is the

number of lines in C). At the beginning, M(C) performs a subroutine InitN (x1, . . . , xK) which for each xj

non-deterministically chooses a value from [0, 22N

], and ensures that:

(1) for all 1 ≤ j ≤ K, xj + x̄j = 22N

;

(2) for all 1 ≤ j ≤ K + 1, x′
j = 0 and x̄′

j = 0;

(3) for all 0 ≤ i ≤ N , si = 0 and s̄i = 22i

;

(4) for all 0 ≤ i < N , yi = 22i

= zi and ȳi = 0 = z̄i.

The rest of the main program inM(C) consists of a segment that begins at a line StepL, for each line L in

C, starting with the last (i.e. N , whose command is halt). For each L, the segment attempts to simulate in

reverse a step of C that leads to line L and to the current values of x1, . . . , xK , which may be an increment,

a decrement, a successful zero test, an unsuccessful zero test, a non-deterministic jump, or a universal jump.

In addition, if L is the first line in C (i.e. 1), the segment may verify that x1, . . . , xK are all zero, and then

pass through Lfin and make a counter unbounded; and if L occurs as the second destination of a universal

jump in C, the segment may terminate M(C), making it ready for joining in a reverse simulation of such a

jump. The segments are programmed so that, at the beginning and at the end (if any) of each, properties

(1)–(4) hold.

More specifically, from each line StepL,M(C) non-deterministically chooses to perform one of the follow-

ing, where line numbers are inserted as appropriate, and goto L′ abbreviates goto L′ or L′. Recalling that

subroutines in branching net programs do not have parameters, we have that M(C) contains, for example,

a separate copy of the subroutine Test i(c, c̄) for each i, c and c̄ that occur in an actual call.

21

• If L > 1 and the command at line L− 1 in C is xj := xj + 1, then do:

xj := xj − 1; x̄j := x̄j + 1;

goto StepL−1.

• If L > 1 and the command at line L− 1 in C is xj := xj − 1, then do:

xj := xj + 1; x̄j := x̄j − 1;

goto StepL−1.

• For any line L† of C whose command is of the form if xj = 0 then L else L′, do:

gosub TestN (xj , x̄j); gosub TestN (x̄j , xj);

goto StepL† ,

where Test i(c, c̄) is a subroutine that transfers a non-deterministic amount from c̄ to si and then

attempts to decrement si exactly 22i

times by a subroutine Deci, while keeping constant c + c̄ and

si + s̄i:

Test i(c, c̄) : c := c + 1; c̄ := c̄− 1;

si := si + 1; s̄i := s̄i − 1;

goto Test i(c, c̄) or exit ;

exit : gosub Deci; return.

Thus, assuming sN = 0, we have that the calls to TestN (xj , x̄j) and TestN (x̄j , xj) can succeed iff

xj = 0, in which case again xj = 0 and sN = 0.

• For any line L† of C whose command is of the form if xj = 0 then L′ else L, do:

xj := xj − 1; xj := xj + 1;

goto StepL† .

• For any line L† of C whose command is of the form goto L or L′, or of the form goto L′ or L, do

goto StepL† .

• For any line L† of C whose command is of the form goto L and L′, do:

gosub MoveN (x1, . . . , xK); gosub FinN ;

gojoin StepL′ ; gosub VerN (x1, . . . , xK);

goto StepL† ,

where MoveN (x1, . . . , xK) transfers xj and x̄j to x′
j and x̄′

j for each 1 ≤ j ≤ K:

22

MoveN (x1, . . . , xK) : gosub TransN (x1, x
′
1); gosub TransN (x̄1, x̄

′
1); gosub DecN ;

. . .

gosub TransN (xK , x′
K); gosub TransN(x̄K , x̄′

K); gosub DecN ;

return;

TransN (c, c′) : goto loop or exit ;

loop : c := c− 1; c′ := c′ + 1;

sN := sN + 1; s̄N := s̄N − 1;

goto TransN (c, c′);

exit : return,

and where FinN empties s̄i for all 0 ≤ i ≤ N , and yi and zi for all 0 ≤ i < N (their duals si, ȳi and

z̄i are already zero, and the emptying is undone by gojoin StepL′), and VerN (x1, . . . , xK) uses the

auxiliary counters x′
K+1 and x̄′

K+1 to check that xj (i.e. its value after the universal jump to L′) equals

x′
j (i.e. xj ’s value after the universal jump to L) and then to empty x′

j and x̄′
j , for all 1 ≤ j ≤ K:

VerN (x1, . . . , xK) : gosub Trans2
N (x1, x

′
1, x

′
K+1); gosub Trans2

N (x̄1, x̄
′
1, x̄

′
K+1); gosub DecN ;

gosub TransN (x′
K+1, x1); gosub TransN (x̄′

K+1, x̄1); gosub DecN ;

. . .

gosub Trans2
N (xK , x′

K , x′
K+1); gosub Trans2

N(x̄K , x̄′
K , x̄′

K+1); gosub DecN ;

gosub TransN (x′
K+1, xK); gosub TransN (x̄′

K+1, x̄K); gosub DecN ;

return;

Trans2
N (c, c′, c′′) : goto loop or exit ;

loop : c := c− 1; c′ := c′ − 1; c′′ := c′′ + 1;

sN := sN + 1; s̄N := s̄N − 1;

goto Trans2
N (c, c′, c′′);

exit : return.

• For any line L† of C whose command is of the form goto L′ and L, do halt.

• If L = 1, then do:

gosub TestN (x1, x̄1); gosub TestN (x̄1, x1);

. . .

gosub TestN (xK , x̄K); gosub TestN (x̄K , xK);

Lfin : xK+1 := xK+1 + 1; goto Lfin .

23

It remains to define the subroutines InitN (x1, . . . , xK), Deci for each 0 ≤ i ≤ N , which attempts to

perform si := si − 1; s̄i := s̄i + 1 exactly 22i

times, and FinN . The code for Dec0 is trivial. For Deci+1,

the auxiliary counters yi, ȳi, zi and z̄i are used to provide two nested loops that count from 22i

to 0 each,

and so iterate 22i

· 22i

= 22i+1

times together. Whether a loop counter has reached zero is checked by the

already defined subroutine Test i(c, c̄), which may call Deci. Its side effect, that c is complemented if it is

zero, ensures that Deci+1 finishes with yi = 22i

= zi and ȳi = 0 = z̄i, which are also assumed at the start

(cf. property (4)).

Deci+1 : yi := yi − 1; ȳi := ȳi + 1;

Dec′i+1 : zi := zi − 1; z̄i := z̄i + 1;

si+1 := si+1 − 1; s̄i+1 := s̄i+1 + 1;

goto Dec′i+1 or exit ′i+1;

exit ′i+1 : gosub Test i(zi, z̄i); goto Deci+1 or exit i+1;

exit i+1 : gosub Test i(yi, ȳi); return

Definitions of InitN (x1, . . . , xK) and FinN are similar, where the former ensures s̄i = 22i

and yi = 22i

= zi

in the increasing order of i, the latter empties those counters in the decreasing order of i, and some further

details can found in Esparza’s presentation of Lipton’s construction [21, Section 7]).

To conclude thatM(C) has O(N) lines and is computable in time polynomial in N , observe that:

• the number of lines of each StepL segment is O(1), except that there are O(N) lines from Step1;

• the number of subroutines Test i(c, c̄) required is O(N) and each has O(1) lines;

• each subroutine Deci has O(1) lines;

• the number of subroutines TransN (c, c′) and Trans2
N (c, c′, c′′) required is O(N) and each has O(1)

lines. �

From the 2ExpTime-hardness of the doubly-exponential halting problem for alternating counter pro-

grams, and Lemmas 20 and 19, we infer the same for the covering and boundedness problems for BVAS.

We remark that, since Esparza’s translation from net programs outputs VAS whose rules contain only en-

tries −1, 0 or 1 [21, §7], the BVAS in Lemma 19 have the same property, and consequently covering and

boundedness are 2ExpTime-hard already for that subclass.

Theorem 21. Covering and boundedness for BVAS are 2ExpTime-hard.

6. Concluding remarks

The extra work in this article in relation to the proofs of Lipton and Rackoff [5, 4], and the recent result

that reachability for BVAS is 2ExpSpace-hard [22] (the highest known lower bound for VAS is Lipton’s),

24

indicate that BVAS are not a trivial extension of VAS.

We would like to thank Serge Haddad (LSV, Cachan) for numerous discussions about VAS and their

extensions, Sylvain Schmitz (LSV, Cachan) for pointing us to Rambow’s work [12], and Alexander Schrijver

(CWI, Amsterdam) for correspondence about integer linear programming.

References

[1] S. Demri, M. Jurdziński, O. Lachish, R. Lazić, The covering and boundedness problems for branching vector addition

systems, in: FSTTCS, volume 4 of LIPIcs, Schloss Dagstuhl, 2009, pp. 181–192.

[2] W. Reisig, Petri Nets: An Introduction, volume 4 of Monographs in Theor. Comput. Sci. An EATCS Series, Springer,

1985.

[3] J. Esparza, M. Nielsen, Decidability issues for Petri nets — a survey, Bull. EATCS 52 (1994) 244–262.

[4] C. Rackoff, The covering and boundedness problems for vector addition systems, Theor. Comput. Sci. 6 (1978) 223–231.

[5] R. J. Lipton, The Reachability Problem Requires Exponential Space, Technical Report 62, Dep. Comput. Sci., Yale Univ.,

1976.

[6] L. Rosier, H.-C. Yen, A multiparameter analysis of the boundedness problem for vector addition systems, J. Comput.

Syst. Sci. 32 (1986) 105–135.

[7] E. W. Mayr, A. R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv.

Math. 46 (1982) 305–329.

[8] P. Habermehl, On the complexity of the linear-time mu-calculus for Petri nets, in: ICATPN, volume 1248 of Lect. Notes

Comput. Sci., Springer, 1997, pp. 102–116.

[9] M. F. Atig, P. Habermehl, On Yen’s path logic for Petri nets, in: RP, volume 5797 of Lect. Notes Comput. Sci., Springer,

2009, pp. 51–63.

[10] S. Demri, On selective unboundedness of VASS, in: INFINITY, volume 39 of El. Proc. Theor. Comput. Sci., pp. 1–15.

2010.

[11] A. Urquhart, The complexity of decision procedures in relevance logic II, J. Symb. Log. 64 (1999) 1774–1802.

[12] O. Rambow, Multiset-valued linear index grammars: imposing dominance constraints on derivations, in: ACL, Morgan

Kaufmann, 1994, pp. 263–270.

[13] S. Schmitz, On the computational complexity of dominance links in grammatical formalisms, in: ACL, The Association

for Computer Linguistics, 2010, pp. 514–524.

[14] P. de Groote, B. Guillaume, S. Salvati, Vector addition tree automata, in: LICS, IEEE, 2004, pp. 64–73.

[15] R. M. Karp, R. E. Miller, Parallel program schemata, J. Comput. Syst. Sci. 3 (1969) 147–195.

[16] K. N. Verma, J. Goubault-Larrecq, Karp-Miller trees for a branching extension of VASS, Discr. Math. and Theor. Comput.

Sci. 7 (2005) 217–230.

[17] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, Two-variable logic on data trees and XML reasoning, J. ACM

56 (2009).

[18] R. Valk, G. Vidal-Naquet, Petri nets and regular languages, J. Comput. Syst. Sci. 23 (1981) 299–325.

[19] A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. ACM 28 (1981) 114–133.

[20] I. Borosh, L. B. Treybig, Bounds on positive integral solutions of linear Diophantine equations, Proc. AMS 55 (1976)

299–304.

[21] J. Esparza, Decidability and complexity of Petri net problems — an introduction, in: Lectures on Petri Nets I: Basic

Models, volume 1491 of Lect. Notes Comput. Sci., Springer, 1998, pp. 374–428.

25

[22] R. Lazić, The reachability problem for branching vector addition systems requires doubly-exponential space, Inf. Process.

Lett. 110 (2010) 740–745.

26

