Einstein Relation for Random Walk in a One-Dimensional Percolation Model - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2019

Einstein Relation for Random Walk in a One-Dimensional Percolation Model

Résumé

We consider random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. In a companion paper, we have shown that if the random walk is pulled to the right by a positive bias λ > 0, then its asymptotic linear speed v is continuous in the variable λ > 0 and differentiable for all sufficiently small λ > 0. In the paper at hand, we complement this result by proving that v is differentiable at λ = 0. Further, we show the Einstein relation for the model, i.e., that the derivative of the speed at λ = 0 equals the diffusivity of the unbiased walk.
Fichier principal
Vignette du fichier
1812.10776.pdf (393.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03191766 , version 1 (09-01-2024)

Identifiants

Citer

Nina Gantert, Matthias Meiners, Sebastian Müller. Einstein Relation for Random Walk in a One-Dimensional Percolation Model. Journal of Statistical Physics, 2019, 176 (4), pp.737-772. ⟨10.1007/s10955-019-02319-y⟩. ⟨hal-03191766⟩
32 Consultations
13 Téléchargements

Altmetric

Partager

More