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1 Continuum approach to porous media 

2.2]

A porous medium is formed by a solid matrix and a void space (pore space), which is occupied by one or more fluids. A constituent (or a phase) is a part of the porous medium that is separated from other such parts by sharp interfaces (e.g., a solid, water, air).

At the microscopic level, state variables that describe the behaviour of a particular constituent are defined only within subdomains occupied by the constituent. To treat the porous medium with the methods of continuum mechanics, one introduces a macroscopic level, where the variables and quantities are defined at every point in the porous medium domain.

There are two major approaches that can be used to pass to macroscopic quantities from the microscopic ones: the volume fraction concept and homogenisation. We shall introduce only the first one briefly here.

In the volume fraction concept, each point of a control space of a porous medium is considered to be a centroid of a so-called representative elementary volume or average volume element dv. In addition, it is assumed that each volume element is composed of microscopic volume elements dv m of real constituents (see Figure 1). Let π denote individual constituents of the porous material. In particular, π = s marks a solid whereas π = f is used for fluids. The partial volume element dv π is the volume of constituent π within dv. Similarly we write da π for the part occupied by constituent π of the area da of the volume element, and da m for microscopic area elements.

To describe the microstructure of a porous medium in the macroscopic manner, neglecting the real topology of the pore structure and the exact location of the individual constituents, one defines 

ξ π = η π ξ π π Moreover if the microscopic mass density ρ is constant =⇒ ξ π π = ξ π if the microscopic variable ξ is constant =⇒ ξ π π = ξ
Delesse's law: the surface ratio of each constituent must be equal to its volume ratio on each cut surface in an isotropic mixture. =⇒ The volume and area averages differ only slightly from each other for an isotropic distribution of constituents.

Associating the average volumes dv and the average areas da with each point of the control space in the definitions above, one obtains macroscopic quantities which are defined in the total control space, and which can be interpreted as local statistical averages of values at the underlying microscale. Within this context, the porous material under consideration is theoretically substituted by a model where each constituent is "smeared" over the control space, and it occupies the total volume simultaneously with the other constituents. One then speaks of overlapping partial continua.

Two strategies are used to arrive at a description of the mechanical and thermodynamic behaviour of these substitute continua: Mixture theory treats the porous medium as a mixture of all constituents directly from a macromechanics viewpoint. On the other hand in averaging theories, averaging is used for introducing the macroscopic description from the microscopic one. Especially, macroscopic quantities such as the velocity, external body force, internal energy or external supply of heat are obtained through volume or mass averaging, whereas the macroscopic mass densities are volume-averaged ones. Area averaging is then employed to derive macroscopic quantities such as the stress tensor or heat flux.

In each approach of porous media theory in general, a variety of simplifying assumptions and constraints is introduced, e.g., that the pores and mass of all constituents are statistically uniformly or even periodically distributed. Nevertheless, we shall deal directly with a common macroscopic description with macroscopic quantities, and we shall tacitly suppose that it is relevant for all the physical phenomena involved in the intended applications. In particular, the complete governing equations of the models in the following sections are derived from macroscopic balance equations, which are closed by a sufficient number of constitutive relationships.

Eventually, let us emphasise that rigorous constitutive relations require a consistent theory established on mechanical and thermodynamic principles such as the material objectivity or the entropy principle. However, most of the constitutive models presented below result from experiments and they can be regarded as mere approximations of models developed from fundamentals of mechanics and thermodynamics. Hence one has to be aware of their limited applicability to various problems! 2 Saturated flow The entire void space is occupied by water (index w).

Balance equations

Mass balance equation for water

∂(φρ w ) ∂t = -div(ρ w q w ) + Q w (2.1)
ρ w -the mass density of water t -the time q w ≡ φv w -the water specific discharge v w -the water velocity Q w -an external source (or a sink if negative) of water mass (= added mass of water per unit volume of porous medium, per unit time)

Introducing v s -the solid velocity v rw ≡ v w -v s -the water relative velocity q rw ≡ φv rw -the water specific discharge relative to the solid (Darcy velocity) (= water volume passing through a unit area of porous medium per unit time) D s Dt ≡ ∂ ∂t + v s • ∇ -the total (or material ) time derivative with respect to the solid phase one can rewrite (2.1) in the form

∂(φρ w ) ∂t = -div(φρ w (v w -v s )) -div(φρ w v s ) + Q w = -div(ρ w q rw ) -v s • ∇(φρ w ) -φρ w div v s + Q w D s (φρ w ) Dt = -div(ρ w q rw ) -φρ w div v s + Q w (2.2)
where we have used div(φρ

w v s ) = ∇(φρ w ) • v s + φρ w div v s
Mass balance equation for solid

∂((1 -φ)ρ s ) ∂t = -div((1 -φ)ρ s v s ) (2.3)
ρ s -the solid mass density -It is needed in the case of a deformable porous medium (v s = 0, ∂φ/∂t = 0) Similarly as before, (2.3) can be rewritten in the form

D s ((1 -φ)ρ s ) Dt = -(1 -φ)ρ s div v s (2.4)

Constitutive relationships

Water density

We consider that the water is compressible and its density depends on the pressure: ρ w = ρ wo e cw(pw-pwo) (2.5) c w -the coefficient of water compressibility p w -the pressure in the water (positive for compression) ρ wo , p wo -initial values of the water density and pressure (steady states at standard conditions)

Assuming that c w is constant (over a certain range of pressures) yields

D s ρ w Dt = dρ w dp w D s p w Dt = ρ w c w D s p w Dt (2.6)
Darcy's law

q rw = k µ (-∇p w + ρ w f ) (2.7)
k -the permeability (tensor) of the porous medium µ -the dynamic viscosity of water f -a body force density per unit mass (usually due to gravity: f = -g∇z with g -the gravity acceleration, z -the elevation above some datum level, ∇z = a unit vector directed vertically upward)

• Obtained empirically first, but can be also derived from the water momentum balance equation under certain simplifying assumptions.

Solid phase

In the case of D s φ/Dt = 0 (a deformable porous medium), we have to investigate stresses:

The total stress tensor in a porous medium is given by (the stresses are taken positive for tension unlike the water pressure)

σ = (1 -φ)σ s + φσ w , σ w = -p w I + τ w
σ s , σ w -the stress tensors in the solid and water τ w -the shear (or deviatoric) stress in the water

Neglecting τ w , one obtains approximately

σ = (1 -φ)σ s -φp w I = (1 -φ)(σ s + p w I) -p w I = σ s -p w I (2.8) σ s ≡ (1 -φ)(σ s + p w I) -the effective stress tensor
In a granular porous medium with an incompressible grain material, the pressure in the water (or in the fluids in a multiphase system) that almost completely surrounds each solid grain produces no deformation of the grains and does not contribute to deformation of the solid skeleton. Instead, the deformation occurs mainly by rearrangement of grains due to the forces at the points of contact between the grains. Hence, σ s is the strain-producing part of the stress.

Assumption 1. The horizontal stresses are negligible, so it suffices to consider the vertical ones only. In this case, (2.8) reduces to σ = σ s -p w (2.9)

Assumption 2. The deformation of the solid phase is volume preserving (not of the solid skeleton -voids may be rearranged). This can be expressed by ∂v s ∂σ s = 0, v s -the volume of solid of a given fixed mass m s or in terms of the porous medium volume

v containing v s (v = v s /(1 -φ)) ∂v s ∂σ s = (1 -φ) ∂v ∂σ s + v ∂(1 -φ) ∂σ s = 0 1 v ∂v ∂σ s = 1 1 -φ ∂φ ∂σ s
Now assume, that we deal with relatively small volume changes and the solid behaves as an elastic material. For this case of vertical stresses only, one can define

c ≡ 1 v ∂v ∂σ s = 1 1 -φ ∂φ ∂σ s
-the compressibility coefficient of the solid skeleton

Finally assuming no change in the total stress, i.e., ∂σ = 0, hence ∂σ s = ∂p w according to (2.9), we get

c = 1 1 -φ ∂φ ∂p w (2.10) D s φ Dt = (1 -φ)c D s p w Dt (2.11)
By integrating (2.10) we obtain φ = 1 + (φ o -1)e -c(pw-pwo) , φ o -an initial porosity (2.12)

Remark 1. The resulting relations for the porosity can be employed also in more general cases, where flow and solid deformation do not occur mainly in the vertical direction. However, this simplified approach is not always sufficient, and three-dimensional solid deformation has to be included in the model generally (poromechanics).

Flow equations

The balance laws are now transformed and the constitutive equations applied for obtaining complete flow equations: Dividing the solid mass balance equation (2.4) by (1 -φ)ρ s yields

1 1 -φ D s (1 -φ) Dt = - 1 ρ s D s ρ s Dt -div v s (2.13)
(the left-hand side may be interpreted as the relative rate of expansion of the volume occupied by the solid phase) Under Assumption 2, D s ρ s /Dt = 0 (not div v s = 0 at the macroscopic level!), and (2.13) reduces to 1 1 -φ

D s φ Dt = - 1 1 -φ D s (1 -φ) Dt = div v s (2.14)
Consequently one can develop the total time derivative in the water mass balance equation (2.2) and eliminate div v s :

φ D s ρ w Dt + ρ w D s φ Dt = -div(ρ w q rw ) -φρ w div v s + Q w (2.15) φ D s ρ w Dt + ρ w 1 1 -φ D s φ Dt = -div(ρ w q rw ) + Q w (2.16)
Expressing the material derivatives of ρ w and φ by (2.6) and (2.11) one obtains 

φ D s ρ w Dt + ρ w 1 1 -φ D s φ Dt = φρ w c w D s p w Dt + ρ w c D s p w Dt = -div(ρ w q rw ) + Q w c ms D s p w Dt = -div(ρ w q rw ) + Q w (2.
∂t = -div ρ w k µ (-∇p w + ρ w f ) + Q w (2.20)
In addition, the following assumption may also be justified in practice:

Assumption 4. The temporal rate of density change at a point is much larger than the spatial one:

∂ρ w ∂t |v rw • ∇ρ w | Then φ D s ρ w Dt |q rw • ∇ρ w |
and (2.16), (2.17) and (2.20) may be reduced approximately to

φ D s ρ w Dt + ρ w 1 1 -φ D s φ Dt = -ρ w div q rw + Q w c s D s p w Dt = -div q rw + Q w ρ w , c s ≡ φc w + c c s ∂p w ∂t = -div k µ (-∇p w + ρ w f ) + Q w ρ w Remark 2. (i)
The last two equations are derived under the assumption that the water density behaves approximately constant, except in the expression for c s , where one takes into account water compressibility.

(ii) Deformation of the porous medium is not really considered in the above derivation either. It is assumed that its effect can be incorporated in the coefficient of specific storativity, as well.

Remark 3. Assume that one can take div(ρ w q w ) = div(ρ w q rw ) (2.21) which can be justified in one of the following cases:

• the solid velocity is negligible with respect to the water one:

|v w • ∇(φρ w )| |v s • ∇(φρ w )| and |div v w | |div v s |
• the solid matrix is stationary or the coordinate system moves with the solid phase, thus v s = 0.

Then the Darcy law (2.7) can be introduced directly into the water mass balance equation (2.1), and one gets 

∂(φρ w ) ∂t = div ρ w k µ (∇p w + ρ w g∇z) + Q w ∂(
c * ms ≡ ρ w (φc w + (1 -φ)c) (under Assumptions 1, 2) c * ms ∂p w ∂t = -div ρ w k µ (-∇p w + ρ w f ) + Q w
where c * ms is another form for the specific storativity. Eventually in the case of Assumption 4 one obtains approximately

c * s ∂p w ∂t = -div k µ (-∇p w + ρ w f ) + Q w ρ w , c * s ≡ φc w + (1 -φ)c
Moreover taking into account the physical interpretation of the left-hand side of (2.22), one can see that c * ms is the mass of water released from (or added to) storage in a unit volume of a deformable porous medium per unit decline (or rise) in water pressure. Hence the term specific storativity. In addition under Assumption 3 one has approximately

c ms ∂p w ∂t = c ms D s p w Dt =
(2.17)

= -div(ρ w q rw ) + Q w and in consequence of (2.21)

c ms ∂p w ∂t = -div(ρ w q w ) + Q w (2.1) = ∂(φρ w ) ∂t
Accordingly, the previous verbal definition of the specific storativity can be applied to c ms as well.

3 Unsaturated flow

[BC10, Ch. 6]
Let the void space be partly filled by water and partly by air (index a) -an unsaturated zone.

Balance equations

Mass balance equation for water

∂(φS w ρ w ) ∂t = -div(ρ w q w ) + Q w (3.1)
q w ≡ φS w v w -the specific discharge of water

• No exchange of mass between water and air. Introducing q rw ≡ φS w v rw = φS w (v w -v s ) -the water specific discharge relative to the solid (Darcy velocity)

one can transform (3.1) into ∂(φS w ρ w ) ∂t = -div(φS w ρ w (v w -v s )) -div(φS w ρ w v s ) + Q w = -div(ρ w q rw ) -v s • ∇(φS w ρ w ) -φS w ρ w div v s + Q w D s (φS w ρ w ) Dt = -div(ρ w q rw ) -φS w ρ w div v s + Q w (3.2)
Mass balance equation for solid -in the form (2.4) or (2.13)

Constitutive relationships

Retention curve

Introduce the capillary pressure (also called matric suction)

p c ≡ p a -p w (3.3)
p a -the air pressure and the suction head

ψ ≡ p c gρ w (3.4)
(this one should be employed only when ρ w is constant) There is a relationship between S w and p c or ψ -water retention curves S w = S w (p c ) or S w = S w (ψ).

• Retention curves usually depend on the direction and history of drainage and wetting (hysteresis). However, we assume that these dependencies may be neglected. Then An instance of a retention curve proposed in [vG80] (Figure 2):

S e ≡ S w -S r S s -S r = S e (ψ) = (1 + (c vg ψ) n ) -m if ψ ≥ 0, 1 if ψ < 0 (3.5)
S e -the effective water saturation S r -the residual water saturation (after drying) S s -the level of full saturation c vg , n, m > 0 -coefficients Assumption 5 (stationary air). The resistance to flow in the air phase is everywhere negligible, so that the air is at a constant (hydrostatic) atmospheric pressure, taken as the (reference) zero datum: p a = 0. Then (3.3) and (3.4) reduce to p c = -p w , ψ = -p w gρ w and water retention curves lead to relationships S w = S w (p w ) and

D s S w Dt = dS w dp w D s p w Dt = c m φ D s p w Dt , c m = φ dS w dp w (3.6)
Water density -the relations (2.5), (2.6) Darcy's law for water

q rw = k µ (-∇p w + ρ w f ) (3.7) k = k(S w
) -the effective permeability (tensor) of the porous medium to water

• It can be derived from the momentum balance equation for water under certain simplifying assumptions.

We assume k(S w ) = k s k r (S w ) (3.8) k s -the permeability of the porous medium at full saturation (also called intrinsic permeability) k r (S w ) -the relative permeability to water or in terms of hydraulic conductivities

K(S w ) ≡ k(S w )ρ w g µ = K s K r (S w )
A relationship suggested in [vG80] for S e given by (3.5) with m = 1 -1/n ∈ (0, 1) (Figure 3):

K r (S w ) = K r (S e ) = S 1/2 e 1 -(1 -S 1/m e ) m 2
(3.9)

(3.5) = [1-(cvgψ) nm (1+(cvgψ) n ) -m ] 2 (1+(cvgψ) n ) m/2 if ψ ≥ 0, 1 if ψ < 0 (3.10)

Solid phase

We extend the introduction of the effective stress σ s from saturated flow: Neglecting the shear stress in the fluids in the unsaturated zone, one can express the total stress tensor σ as

σ = (1 -φ)σ s -φp v I = (1 -φ)(σ s + p v I) -p v I = σ s -p v I (3.11) σ s ≡ (1 -φ)(σ s + p v I)
p v -an average pore pressure of the fluids in the void space Consequently under Assumptions 1 and 2, the relations (2.10)-(2.12) for the porosity can be extended to pv-pvo) , p vo -an initial average fluid pressure (3.13) For example, one can use the relationship

c = 1 1 -φ ∂φ ∂p v D s φ Dt = (1 -φ)c D s p v Dt (3.12) φ = 1 + (φ o -1)e -c(
p v = χ(S w )p w + (1 -χ(S w ))p a
where Bishop's coefficient χ is some differentiable function with χ(1) = 1 (e.g., χ(S w ) = S w , which corresponds to the mean pressure S w p w + S a p a ). Then under Assumption 5

p v = χ(S w )p w (3.14) D s p v Dt = χ(S w ) D s p w Dt + p w χ (S w ) D s S w Dt (3.15) (3.6) = χ(S w ) + p w χ (S w ) c m φ D s p w Dt (3.16)

Flow equations

Due to the solid mass balance equation (2.13) reduced to (2.14) under Assumption 2, the water mass balance equation (3.2) becomes

φS w D s ρ w Dt + S w ρ w D s φ Dt + φρ w D s S w Dt = -div(ρ w q rw ) -φS w ρ w div v s + Q w (3.17) φS w D s ρ w Dt + S w ρ w 1 1 -φ D s φ Dt + φρ w D s S w Dt = -div(ρ w q rw ) + Q w
Introduction of (2.6), (3.12) with (3.16), and (3.6) for the material derivatives of ρ w , φ and S w gives

φS w ρ w c w D s p w Dt + S w ρ w c χ(S w ) + p w χ (S w ) c m φ D s p w Dt + ρ w c m D s p w Dt = -div(ρ w q rw ) + Q w c ms D s p w Dt = -div(ρ w q rw ) + Q w c ms ≡ ρ w φS w c w + S w c χ(S w ) + p w χ (S w ) c m φ + c m (3.18)
where we have extended the definition (2.18) of the specific mass storativity c ms (with S w = 1, or S w = S s ? and c m := 0 for the saturated zone).

Inserting Darcy's law (3.7) yields

c ms D s p w Dt = -div ρ w k(S w ) µ (-∇p w + ρ w f ) + Q w
and under Assumption 3 approximately

c ms ∂p w ∂t = -div ρ w k(S w ) µ (-∇p w + ρ w f ) + Q w (3.19)
In the case of Assumption 4, (3.19) reduces further approximately to

c s ∂p w ∂t = -div k(S w ) µ (-∇p w +ρ w f ) + Q w ρ w , c s ≡ φS w c w +S w c χ(S w )+p w χ (S w ) c m φ +c m
4 Saturated flow and deformation of the porous medium

[LS98, Ch. 2]

Balance equations

Mass balance equation for water -in the form (2.2) or (2.15)

Mass balance equation for solid -in the form (2.4) or (2.13)

Equilibrium equation

By summing up the equilibrium equations for water and solid one obtains

div σ + ρf = 0 (4.1) ρ = (1 -φ)ρ s + φρ w -the average density of the multiphase medium (4.2)

Constitutive relationships

Water density -the relations (2.5), (2.6)

Darcy's law for water -in the form (2.7)

Stresses Assumption 6. The solid phase can be restricted to the small-strain framework.

The effective stress σ s is given by (2.8). A modified effective stress is introduced for a compressible grain material:

The water pressure p w induces an equal stress distribution in the solid phase. The ensuing deformation is a purely volumetric strain. Denoting it ε p v , one has

ε p v = - p w K s , K s = 1 ρ s ∂ρ s ∂p w -1
-the bulk modulus of the solid phase (grains)

or in an incremental and tensorial form

dε p v = 1 3 Idε p v = -I dp w 3K s (4.3) 
The effective stress σ s causes all other relevant deformations of the solid skeleton. The constitutive relationship may be written as dσ s = D(dε -dε p v -dε 0 ) (4.4) D -a fourth-order tangent constitutive tensor for the solid skeleton ε ≡ 1 2 ∇u + (∇u) -the linear strain tensor of the skeleton u -the displacement of the skeleton ε 0 -all other strains in the skeleton not directly associated with stress changes

The modified effective stress tensor σ s takes the form (cf. (2.8))

σ s = σ + αp w I, α -the Biot-Willis coefficient (4.5) so that dσ s = D(dε -dε 0 ) (4.6)
One needs a constitutive equation of the solid phase for determination of α: By substituting (4.6) and (4.3) into (4.4) one obtains

dσ s = dσ s + DI dp w 3K s dσ + αIdp w = dσ s = dσ s -DI dp w 3K s (3.11) = dσ + Idp w -DI dp w 3K s αIdp w = Idp w -DI dp w 3K s (4.7)
Assumption 7. Let the solid matrix be elastic and isotropic.

In this case Ddε = λ(tr dε)I + 2µdε (4.8) λ, µ -the Lamé coefficients of the solid skeleton (porous medium) DI = 3KI K = (3λ + 2µ)/3 -the bulk modulus of the solid skeleton (4.9)

Hence (4.7) yields

αIdp w = Idp w - K K s Idp w α = 1 - K K s (4.10)
For an incompressible grain material 1/K s = 0, α = 1.

Solid density

When considering the solid phase as compressible, a relationship for the total time derivative of the solid density ρ s is needed. Assuming ρ s = ρ s (p w , tr σ s ) leads to

1 ρ s D s ρ s Dt = 1 ρ s ∂ρ s ∂p w D s p w Dt + 1 ρ s ∂ρ s ∂(tr σ s ) D s (tr σ s ) Dt = 1 K s D s p w Dt - 1 3(1 -φ)K s D s (tr σ s ) Dt
Using the constitutive relationship for tr σ s (cf. (4.4) with (4.8), (4.9), (4.3) and dε 0 omitted -under Assumptions 6 and 7) 

D s (tr σ s ) Dt = 3K D s ε v Dt + 1 K s D s p w Dt ε v = div u -the volumetric strain of the solid skeleton one gets 1 ρ s D s ρ s Dt = 1 K s - 1 (1 -φ)K s K K s D s p w Dt - K (1 -φ)K s D s ε v Dt (4.10) = 1 1 -φ (α -φ) 1 K s D s p w Dt -(1 -α) D s ε v Dt (4.10) = 1 1 -φ (α -φ) 1 -α K D s p w Dt -(1 -α) D s ε v Dt (4.
D s ρ s Dt = 1 1 -φ (α -φ) 1 -α K D s p w Dt -(1 -α) div v s (4.13)

Complete equations

By (4.13) for the material derivative of ρ s , the solid mass balance equation (2.13) can be further transformed into

D s φ Dt = 1 -φ ρ s D s ρ s Dt + (1 -φ) div v s (4.14) = (α -φ)(1 -α) K D s p w Dt + (α -φ) div v s (4.15)
which inserted into the water mass balance equation (2.15) gives

φ D s ρ w Dt + ρ w (α -φ)(1 -α) K D s p w Dt + ρ w α div v s = -div(ρ w q rw ) + Q w
Introduction of (2.6) for D s ρ w /Dt, and the Darcy law (2.7) leads to

ρ w φc w + (α -φ)(1 -α) K D s p w Dt + ρ w α div v s = -div ρ w k µ (-∇p w + ρ w f ) + Q w
Under Assumption 6 (Assumption 3) this can be approximately reduced with the aid of (4.12) for div v s to

ρ w φc w + (α -φ)(1 -α) K ∂p w ∂t + ρ w α div ∂u ∂t = -div ρ w k µ (-∇p w + ρ w f ) + Q w (4.16)
Moreover, the equilibrium equation (4.1) with (4.2) and (4.5) results in div σ s -αp w I + (1 -φ)ρ s + φρ w f = 0 + a stress-strain relationship in the form (4.6) (4.17)

Remark 4. The time scale of the structural response is generally many orders of magnitude faster than the time scale of the flow. When the coupled process is studied on the time scale of the flow, one can therefore assume that the solid reaches a new equilibrium immediately in response to a change in flow conditions, and apply the equilibrium equation (4.17) (with all inertial effects neglected) to the time-dependent flow model (4.16).

Remark 5 (Evaluation of the solid density and porosity). Replacing the total time derivatives with the corresponding partial ones and using (4.12) (both under Assumption 6), one can reduce (4.11) and (4.15) approximately to

1 ρ s ∂ρ s ∂t = 1 -α 1 -φ α -φ K ∂p w ∂t - ∂ε v ∂t (4.18) ∂φ ∂t = (α -φ) 1 -α K ∂p w ∂t + ∂ε v ∂t (4.19) Integration of (4.19) gives φ = α + (φ o -α) exp - 1 -α K (p w -p wo ) -(ε v -ε vo ) ε vo -an initial volumetric strain
and its first-order Taylor approximation

φ α + (φ o -α) 1 - 1 -α K (p w -p wo ) -(ε v -ε vo ) = φ o + (α -φ o ) 1 -α K (p w -p wo ) + (ε v -ε vo )
Similarly from (4.18)

ρ s = ρ so exp t 0 1 -α 1 -φ α -φ K ∂p w ∂t - ∂ε v ∂t ρ so exp 1 -α 1 -φ o α -φ o K (p w -p wo ) -(ε v -ε vo ) ρ so 1 + 1 -α 1 -φ o α -φ o K (p w -p wo ) -(ε v -ε vo )
ρ so -an initial solid density 5 Unsaturated flow and deformation of the porous medium • No momentum exchange with air.

Constitutive relationships

Retention curve -a relationship S w = S w (p w ), which leads to (3.6) (Assumption 5)

Water density -the relations (2.5), (2.6) Darcy's law for water -in the form (3.7) with the effective permeability in the form (3.8)

Stresses

• Under Assumption 6. The effective stress σ s is given by (3.11) with the relations (3.14) and (3.16) for the average fluid pressure p v in the void space (under Assumption 5). By replacing the water pressure p w with p v , one extends the expression for the modified effective stress σ s from saturated flow as

σ s = σ + αp v I
(5.3) so that (4.6) still holds. Under Assumption 7, the Biot-Willis coefficient α is given by (4.10) with

K s = 1 ρ s ∂ρ s ∂p v -1
-the bulk modulus of the solid phase (grains) (5.4)

For an incompressible grain material 1/K s = 0, α = 1.

Solid density

When considering the solid phase as compressible, the relationship (4.13) for the total time derivative of the solid density ρ s can be extended from saturated flow as follows: By assuming ρ s = ρ s (p v , tr σ s ) with (5.9)

Remark 6 (Evaluation of the solid density and porosity). In an analogous way to Remark 5, one can get approximately from (5.5), (5.7) and (4.12) (under Assumption 6)

1 ρ s ∂ρ s ∂t = 1 -α 1 -φ α -φ K ∂p v ∂t - ∂ε v ∂t ∂φ ∂t = (α -φ) 1 -α K ∂p v ∂t + ∂ε v ∂t
and consequently

φ = α + (φ o -α) exp - 1 -α K (p v -p vo ) -(ε v -ε vo ) α + (φ o -α) 1 - 1 -α K (p v -p vo ) -(ε v -ε vo ) = φ o + (α -φ o ) 1 -α K (p v -p vo ) + (ε v -ε vo ) ρ s ρ so exp 1 -α 1 -φ o α -φ o K (p v -p vo ) -(ε v -ε vo ) ρ so 1 + 1 -α 1 -φ o α -φ o K (p v -p vo ) -(ε v -ε vo )

[ BB90 ,

 BB90 Chs. 1, 2], [LS98, Chs. 1, 2], [dB00, Ch. 5], [KGSW12, Sec.

Figure 1 :ξξ

 1 Figure 1: Average volume element dv of a porous medium consisting of three constituents.

[ BC10 ,

 BC10 Chs. 4, 5] 

DFigure 2 :

 2 Figure 2: The function ψ → S e (ψ) given by (3.5) with c vg = 2e-8, n = 2 and m = 1/2.

Figure 3 :

 3 Figure 3: The functions S e → K r (S e ) (left) and ψ → K r (S e (ψ)) (right) given by (3.9) and (3.10), respectively, with c vg = 2e-8, n = 2 and m = 1/2.

[ LS98 ,

 LS98 Ch. 2] Balance equations Mass balance equation for water -in the form (3.2) or (3.17) Mass balance equation for solid -in the form (2.4) or (4.14) Equilibrium equation By summing up the equilibrium equations for water and solid one obtains div σ + ρf = 0 (5.1) ρ = (1 -φ)ρ s + φS w ρ w -the average density (5.2)

  -φ)K s D s (tr σ s ) Dt and using the constitutive relationship for tr σ sD s (tr σ s ) (α -φ) 1 -α K D s p v Dt -(1 -α) div v s (5.6)Complete equationsThe solid mass balance equation (4.14) with (5.6) for the material derivative of ρ s becomesD s φ Dt = (α -φ)(1 -α) K D s p v Dt + (α -φ) div v s (5.7)which inserted into the water mass balance equation (3.17) givesφS w D s ρ w Dt + S w ρ w (α -φ)(1 -α) K D s p v Dt + φρ w D s S w Dt + S w ρ w α div v s = -div(ρ w q rw ) + Q wIntroduction of (2.6), (3.16), (3.6) for the material derivatives of ρ w , p v and S w , and the Darcy law (3.7) leads toρ w φS w c w + S w (α -φ)(1 -α) K χ(S w ) + p w χ (S w ) c m φ + c m D s p w Dt + ρ w αS w div v s = -div ρ w k(S w ) µ (-∇p w + ρ w f ) + Q wUnder Assumption 6 (Assumption 3) this can be approximately reduced with the aid of (4.12) for div v s toρ w φS w c w + S w (α -φ)(1 -α) K χ(S w ) + p w χ (S w ) c m φ + c m ∂p w ∂t + ρ w αS w div ∂u ∂t = -div ρ w k(S w ) µ (-∇p w + ρ w f ) + Q w (5.8)Moreover, the equilibrium equation (5.1) with (5.2), (5.3) and (3.14) results in div σ s -αχ(S w )p w I + (1 -φ)ρ s + φS w ρ w f = 0 + a stress-strain relationship in the form (4.6)
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