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Abstract

1. Comparing the architecture of interaction networks in space or time is essential for un-
derstanding the assembly, trajectory, functioning and persistence of species communities.
Graph embedding methods, which position networks into a vector space where nearby
networks have similar architectures, could be ideal tools for this purposes.

2. Here, we evaluated the ability of seven graph embedding methods to disentangle archi-
tectural similarities of interactions networks for supervised and unsupervised posterior
analytic tasks. The evaluation was carried out over a large number of simulated trophic
networks representing variations around six ecological properties and size.

3. We did not find an overall best method and instead showed that the performance of the
methods depended on the targeted ecological properties and thus on the research questions.
We also highlighted the importance of normalizing the embedding for network sizes for
meaningful posterior unsupervised analyses.

4. We concluded by orientating potential users to the most suited methods given the ques-
tion, the targeted network ecological property, and outlined links between those ecological
properties and three ecological processes: robustness to extinction, community persistence
and ecosystem functioning. We hope this study will stimulate the appropriation of graph
embedding methods by ecologists.

Keywords: dimension reduction; ecological interaction networks; evaluation; food-webs; graph
embedding; species interactions; trophic networks; trophic groups

1



1 Introduction

Community ecology is entering a new era, where data are becoming multi-species, multi-trophic,
and integrate species interactions [Pellissier et al., 2018]. So far, ecologists have compared commu-
nity composition data on the basis of species identity, functional traits or phylogenetic similarities
(reviewed in Münkemüller et al. [2020]). With the ever-increasing availability of interaction knowl-
edge, we are now facing the opportunity to also compare communities based on their interaction
network architecture, i.e. the configuration of the interaction links between species of a commu-
nity. This might provide crucial insights to describe biodiversity variations across environments
[Pellissier et al., 2018], unveil network architecture similarities across communities composed of
different species [Ohlmann et al., 2019] or understand the assembly rules behind multi-trophic as-
semblages [Münkemüller et al., 2020]. In addition, the ecological properties that can be described
from the architecture of a trophic network (e.g. degree of omnivory, generalism, compartmentaliza-
tion, number of trophic levels) are important to characterize ecosystem functioning, resilience and
robustness to extinctions [Monteiro and Faria, 2016, Tylianakis et al., 2010]. To address these objec-
tives, graph embedding methods that cast many networks into a common multi-dimensional vector
space reflecting many aspects of architectural variations across the networks (e.g. Narayanan et al.
[2017]), are appealing. They allow standard multivariate analyses to be applied a posteriori to a set
of networks, including descriptive analyses (e.g. dimension reduction techniques for visualization)
and supervised learning (i.e. predicting an external characteristic from a network embedding coor-
dinates based on knowledge of its values over a sample of network examples). Despite the diversity
of individual network metrics or motifs studied in ecology [Lau et al., 2017], a small number of
multi-dimensional graph embedding methods have been applied to trophic networks, and there has
been no comparison of their abilities to capture the signatures of ecological processes on network
architectures.

The ecological properties of a trophic network partially determines its dynamics, especially its
persistence, its robustness to extinctions and other ecological processes. The distribution of species
across trophic levels in a network especially impacts its robustness to extinctions [Pimm et al., 1991].
For example, a lower proportion of basal species induces less prey per predators in higher trophic
levels and thus increases the likelihood of secondary extinctions and extinction cascades. Regard-
ing community persistence, longer trophic chains are also suggested to decrease the recovering rate
of species populations after disturbance [Pimm et al., 1991], which explains shorter chains in fluc-
tuating environments like for insect food webs. The length of trophic chains may also impact the
global balance of carbon fluxes in the ecosystem through compensation of primary production and
respiration as shown for lake ecosystems [Schindler et al., 1997]. Compartmentalization has been
theoretically shown to favor robustness to extinctions in food webs because it limits the effect of
extinction cascades across modules [Thébault and Fontaine, 2010, Tylianakis et al., 2010]. Com-
partmentalization can also impact ecosystem functioning, for instance by decreasing parasitism rate
in plant-herbivore-parasite system [Montoya et al., 2003]. Regarding more local ecological proper-
ties, predator generalism (number of preys), which is related to connectance, increases robustness to
extinctions [Thébault and Fontaine, 2010]. Morever, theory suggests a strong link between general-
ism and the long-term persistence of community [Pimm et al., 1991, Thébault and Fontaine, 2010,
Tylianakis et al., 2010], even though the precise mechanism behind this phenomenon still appears
ambiguous. While it is often documented that generalism negatively affects community persistence
[Thébault and Fontaine, 2010, Torres-Alruiz and Rodríguez, 2013], it may also provide a buffer in
the response of individual predators to stochastic fluctuations of prey abundances [Tylianakis et al.,
2010]. This paradox is apparently resolved when high generalism is composed of many weak links
which favors persistence [McCann et al., 1998]. While generalism makes a species less sensitive
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to varying prey populations, vulnerability increases its population control. When both increase, the
biomass transfer rates are optimised at the network scale and may improve ecosystem resilience.
For instance, the vulnerability of herbivores to many predators improved their population control
in a collard-aphid system [Snyder et al., 2006], but excessive competition can lead to the opposite
effect [Montoya et al., 2003]. Omnivory is another local property known to influence parasitism rate
[Montoya et al., 2003] and community persistence [Borrelli, 2015, Pimm et al., 1991]. Loop patterns
are suggested to destabilize trophic networks and decrease the persistence of species participating
in them. Indeed, triangular motifs containing loops are less stable compared to other triangular mo-
tifs which was proposed as an explanation of their rarity in empirical food webs [Borrelli, 2015,
Monteiro and Faria, 2016]. As those ecological properties can be measured from network architec-
tures and are important for many ecological processes, they provide a solid ground for comparing
networks through graph embedding methods.

Amongst the few methods used to analyse the spatial variation of interaction networks, most
quantify interaction turnover (i.e. turnover of links) between pairs of species [Ohlmann et al., 2019,
Poisot et al., 2012]. However, these methods do not account for the ecological properties that involve
more than two species like omnivory and generalism degrees, trophic levels, loops, or compartmen-
talization. Yet, it is crucial to compare these properties across distant ecosystems, independently of
pure species and interaction turnover. Thus, measuring more complex network ecological properties
requires to look at sub-structures composed of more than two species, often interlinked and very
numerous. These characterizations of network architectures may be simplified by finding a suited
vector space where each network will be represented as a vector, which is exactly the purpose of
graph embedding methods. Some common network metrics in ecology (e.g. connectance) may be
seen as components of graph embedding methods [Braga et al., 2019, Kortsch et al., 2019, Thomp-
son and Townsend, 2005, Wood et al., 2015]. Ecologists have indeed already used node level metrics
(e.g. average number of links per node), node distances (e.g. diameter, mean distance), and whole
networks metrics (e.g. connectance, modularity or nestedness) that measure specific properties of
the network architecture. However, it is notoriously difficult to select the right metric to measure
the variability of an ecological property [Braga et al., 2019] and one may also miss variations that
are not explicitly dealt with the selected metrics. Counts of subgraphs with fixed number of nodes,
called motifs, are also used in ecology. For instance, counts of triangular and bipartite motifs were
applied to compare either trophic network architectures [Camacho et al., 2007] and plant-pollinator
mutualistic networks [Simmons et al., 2019]. However, these methods are restricted to small motif
sizes due to computational complexity (i.e. up to 4-nodes in food webs, see Monteiro and Faria
[2016], up to 6-nodes in bipartite mutualistic networks, see Simmons et al. [2019]).

Interestingly, a spectrum of efficient graph embedding methods have been developed in other
domains to represent networks based on different types of sub-structures. Some methods may further
integrate information on node labels to which we could feed information on trophic groups [Cirtwill
et al., 2018], i.e. sets of species sharing similar prey and predators, or any other relevant external
information that classifies species into groups. Several sophisticated unsupervised machine learning
algorithms (e.g. UGRAPHEMB Bai et al. [2019], Graph2Vec Narayanan et al. [2017]) have been
proposed to produce graph embeddings. Particularly, Graph2Vec [Narayanan et al., 2017] is an
interesting candidate for ecological applications. In this method, networks composed of similar
node neigborhoods are represented by embedding coordinates that are close in terms of Euclidean
distance. Shortest-paths lengths have also been used to compare network architectures [Borgwardt
and Kriegel, 2005]. Comparing shortest-paths lengths across trophic networks is also interesting
from a functional point of view. Indeed, shortest-paths lengths encode information related to trophic
chain lengths or energy flows and are at the root of centrality measures [Costa et al., 2019]. These
methods might bring different and relevant perspectives to ecological network analyses, but they
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require a comprehensive and contextual understanding to be successfully applied.
To compare graph embedding methods for their use in ecology, we need to define their usage

scenarios. They may be used for different posterior analytic tasks on networks including supervised
and unsupervised learning. An unsupervised learning task would typically consist in identifying
gradients or clusters of variation through visualization after reducing the embedding space dimen-
sionality (e.g., 2 dimensions). In this visualization space, a set of networks that appear clustered,
are thus neighbors in the embedding and share similarities in their architectures. This task requires
depicting, in the embedding matrix, the main architectural variations existing across networks while
reducing the effects of non-interesting sources of variability (e.g, network size). Alternatively, su-
pervised learning aims to predict a given property of a network as a function of its embedding
coordinates. For instance, one may want to predict the robustness to extinction [Dunne et al., 2002]
as a function of the counts of shortest-path lengths. We therefore appraise the ability of graph
embedding methods to represent important architectural variations across trophic networks and for
posterior supervised and unsupervised analyses. We first introduce five graph embedding methods
that are relevant to trophic network analyses and based on different architectural characteristics (e.g.
motifs or paths lengths). Since two of these methods can handle node labels information, we thus
moreover test the use of known trophic groups as node labels. Second, we illustrate the dimension
reduction step for visualization (unspervised learning) with a recent non-linear dimension reduc-
tion technique called Uniform Manifold Approximate Projection (UMAP, McInnes et al. [2018]).
Third, we detail our simulation procedure of trophic networks where we control the variation of six
important categorical ecological properties (maximum trophic length, trophic groups composition,
compartmentalization, omnivory, generalism and intra-trophic group predation) and, independently,
species richness. Fourth, we introduce several measures to evaluate the relative performances of
the embedding methods for supervised and unsupervised scenarios, including robustness to species
richness variability for the latter. This methodological workflow is summarized by Figure 1. We
finally guide the user towards the most suited method given the general aim of the analysis and the
network ecological properties focused on, and further relate these properties to important ecological
processes.

2 Material and Methods

2.1 Embedding methods
Among the available graph embedding methods, we selected five of them that should prove useful
for ecological data and are relatively easy to use (Table 1). Two of them (Graph2Vec and Short-
Paths2Vec) can also use prior information on species (node labels) like the belonging to a trophic
group. These methods all apply to directed unweighted graphs and thus account for the asymmetry
of interactions between species’ pairs. We consider by convention that interactions are directed from
prey to predators.

Acronym Principle Reference
Groups2Vec Trophic group proportions This study
Metrics2Vec Seventeen classic foodweb metrics Thompson and Townsend [2005]
Motifs2Vec Directed triangular motif proportions Camacho et al. [2007]
Graph2Vec Decomposition into local neighborhoods Narayanan et al. [2017]
Graph2Vec_lab Graph2Vec + trophic groups as node labels Narayanan et al. [2017]
ShortPaths2Vec Shortest-paths lengths distribution This study
ShortPaths2Vec_lab ShortPaths2Vec + trophic groups as node labels This study

Table 1: Graph embedding methods tested in this study.
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Figure 1: Study workflow. We used a group model to simulate 5000 trophic networks with controlled
ecological properties, cast them in a graph embedding matrix using various methods, reduced the
embedding matrix dimension to generate a 2D visualization space, and compare the embedding
methods qualities for supervised and unsupervised posterior analysis tasks.
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Groups2Vec. The underlying idea is that all species of the metanetwork (which describes potential
interactions between the union of species over all networks) can be sorted by their belonging to
trophic groups, meant to represent their topological role in the metanetwork [Cirtwill et al., 2018].
In general, there exist many ways to define a partition of species into trophic groups. For instance,
one could rely on predefined known guilds or trophic groups, build a classification from species
functional traits or use a statistical approach that group species behaving in the same way in the
network, like a Stochastic Block Model (SBM, see Allesina et al. [2008], Kéfi et al. [2016]) applied
on the metanetwork as done by Ohlmann et al. [2019]. In this study, for the sake of simplicity, we
rely on the trophic groups used for the construction of the simulated networks. Thus, we do not infer
those groups from the data but rather use the already known group structure. Groups2Vec simply
builds its embedding matrix by computing the vector of group proportions (species richness in each
group divided by total richness) for each network.

Metrics2Vec. Several metrics have long been used to characterize variations of trophic networks
in space (see e.g. Braga et al. [2019], Kortsch et al. [2019], Thompson and Townsend [2005], Wood
et al. [2015]) or in time [Albouy et al., 2014]. We selected a total of 17 classical metrics (detailed in
Table 1 of the Supporting Information) including the average trophic level [Williams and Martinez,
2004], the average generalism, the frequency of omnivore species (defined as species that predate
other species across more than one trophic level), proportions of top and basal species, modularity
[Newman, 2006] and trophic length. Note that for our following analyses, we centered and scaled
each metric (i.e. each column of the embedding matrix) so that metrics had equivalent contributions
in analyses based on Euclidean distances.

Motifs2Vec. This embedding method gathers the frequencies of the 13 directed connected trian-
gular motifs (see Figure 3 in Supporting Information), without self-loop (i.e. their count divided by
the number of possible species triplets which is n(n− 1)(n− 2)/6 for a network of size n). These
small motifs have been regularly used to characterize local architectures in trophic networks [Ca-
macho et al., 2007]. This normalization allows to correct for the effect of network size on motifs
counts when comparing different networks. Larger motifs would give more precise representation
of the whole network structure, but the computational complexity of motifs count, O(nk) for k-nodes
motifs, is prohibitive [Shervashidze et al., 2009].

Graph2Vec. Graph2Vec [Narayanan et al., 2017] is an approach based on the description of the
local neighborhood of each node. Practically, the algorithm decomposes each network into trees
rooted at each of its nodes. It takes as input a maximal depth, which corresponds to the distance up
to which the neighbors of each node will be explored. Then, the description of the local neighbor-
hood of each node is used to generate an embedding matrix, whose dimensionality is chosen a priori
by the user and where networks with similar node neighborhoods tend to be close (more details in
Section A.3 of Supporting Information). Graph2Vec has the possibility to account (or not) for prior
information on node labels. In the case of no prior information, it takes the node degree as a label. In
this study, we compared the embedding method (hereafter called Graph2Vec) with no prior informa-
tion on node labels, with Graph2Vec_lab that directly uses the species trophic group as node label
(the same than in Groups2Vec). Since Graph2Vec was originally designed for undirected graphs,
we forced the method to take into account edges direction when building a node neighborhood. By
default, it explores the network from prey to predators. We also tested to concatenate this default
embedding matrix with the one derived from the network transposed adjacency matrix (exploration
from predators to prey) to better represent the directed architecture of the trophic network. We com-
pared the concatenated version to the default embedding matrix and also the effect of the maximal
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depth choice (Section A.4 from Supporting Information). In the following application, we used the
concatenated version of Graph2Vec (with an embedding matrix dimension of 30 for both the default
and transposed version) with a maximal depth of 2.

ShortPaths2Vec. This embedding method gathers the frequencies of the directed shortest paths
lengths. For a network, we first computed the length of the shortest-path between all pairs of nodes,
following edges direction. When there is no path between two nodes, it is counted as an infinite
length. Then, the frequency vector of this set of lengths is constructed (for each length, its occur-
rence count is divided by n(n− 1), the total number of ordered pairs of distinct nodes for a size-n
graph). When considering several networks, the columns of this embedding matrix correspond to
the set of all lengths observed across the different networks. This embedding method gathers in-
formation related to the notion of trophic length, sometimes computed as the length of the longest
directed shortest-path. The ratio of shortest-paths with infinite length may also encode informa-
tion on compartmentalization in the network. As for Graph2Vec, our proposed ShortPaths2Vec
approach is generalized to account for prior information on node label in a second version called
ShortPaths2Vec_lab. In ShortPaths2Vec_lab, the counts of shortest-paths of any given length is de-
composed per combination of source and target node labels. In other words, any column of the
embedding matrix corresponds to the count of shortests-paths of a given length k starting from a
node with a given label l and going to a node with a given label l′ divided by n(n− 1), as for
ShortPaths2Vec. We again use trophic groups as node labels (the same than in Groups2Vec).

2.2 From embedding space to visualization space using UMAP dimension re-
duction

Once an embedding matrix is obtained from a set of networks, dimension reduction techniques can
be used to visualize the networks in a lower dimensional vector space (here 2 dimensions) called
the visualization space. Indeed, our embedding matrices have dimensionality ranging from 13 (Mo-
tifs2vec) up to 60 (Graph2Vec in both directions) and above (dimension of ShortPaths2Vec/ShortPaths2Vec_lab
depends on the networks shortest paths). We thus used a non-linear dimension reduction technique
called Uniform Manifold Approximate Projection (UMAP, McInnes et al. [2018]) that was recently
popularized for the analysis of biological data [Becht et al., 2019]. UMAP relies on a user-defined
distance metric (e.g. here the Euclidean distance) computed between all pairs of networks using their
embedding coordinates. For any embedded network, UMAP considers its closest neighbors (we se-
lected 150 neighbors here), and aims to find a projection into the visualization space such that, in
this new space, these neighboring networks are also close to the targeted one. This property has to
be satisfied for every embedded network, and a mathematical criterion is numerically optimized to
achieve this goal.

2.3 Simulation experiment
To compare these seven embedding methods, we carried out a simulation study to generate 5000
trophic interaction networks (i.e. food webs). Each network was drawn from a parametric random
network model (a SBM, see Allesina et al. [2008]), hereafter called a group model, where species
are divided into trophic groups and where the probabilities of interaction between species depend on
their belonging to trophic groups. A group model is defined by its trophic groups (here, between 2
and 10 groups), the interaction probabilities between groups and the distribution of nodes (species)
in groups. For each simulated network, we first randomly draw the network size and six parameters,
hereafter called ecological properties (Table 2), determining the group model structure. As illustrated
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in Figure 2, our group model splits species in trophic groups which organize the network vertically
in trophic levels and horizontally in one or two modules, in which case there are less interactions
between modules than inside modules. As ecological properties varied across the networks, our
procedure allowed generating networks with contrasted ecological characteristics. More details on
the construction of the group models are provided in Section B from Supporting Information. We
defined the number of species (network size) in {60,120} and independently of the other properties.
We affected one species per group (to avoid emptiness) and then randomly distributed the remaining
species among the groups. Lastly, we randomly drew the presence of a directed interaction between
each ordered pair of species through the probability of interaction of their groups as defined by
the group model. Figure 2 illustrates the variety of our simulated networks and the effects of the
variations in ecological properties through some examples.

Property acronym Effect Possible values (categories)
nModules Number of modules (compartments) {1,2}
trophLens Trophic length in each module see Section B from Supp. Info.
maxTrophLen Maximal trophic length across modules {2,3,4,5}

omni
Activates interactions between

non-successive trophic levels in a module {T RUE,FALSE}

generalism
Favors interactions between

successive trophic levels in a module {T RUE,FALSE}

loop
Allows intra-group interactions

and thus favors loops {T RUE,FALSE}

Table 2: The six ecological properties controlled in our networks simulation and their categories.

We then applied the seven embedding methods to the 5000 simulated networks. Practically, the
10 trophic groups resulting from the largest possible group model (see details in Section B from
Supporting Information) were used as the groups for Groups2Vec and also as the node labels in
Graph2Vec_lab and ShortPaths2Vec_lab.

2.4 Quality assessment of the embedding methods
We evaluated the ability of the seven embedding methods to disentangle the network ecological
properties (maxTrophLen, trophlens, nModules, generalism, omni and loop) of the simulated
networks for posterior supervised and unsupervised analysis tasks with several criteria (detailed in
Section D from Supporting Information). In all that follows, we call categories the possible values
taken by an ecological property as shown in the right column of Table 2, e.g. 1 and 2 are the cat-
egories of the property nModules. For posterior supervised learning tasks, we used the predictive
accuracy as a measure of quality to evaluate how well each property is predicted from network em-
bedding coordinates. For a given property, we used the classification accuracy of a Random Forest
[Breiman, 2001] trained to predict the category of a network from its coordinates in the embedding
(e.g. predict the category of nModules using the 13 motifs proportions provided by Motifs2Vec).
For unsupervised analyses, we aimed at evaluating how well the segregation between categories can
be detected by human eyes in the visualization space. We assumed that if each category forms a
cluster of networks well separated from other categories in the embedding space, the user has more
chances to detect a structure with a clustering method or visually on the visualization space. For
that purpose, three criteria were used. First, we measured how well networks of the same category
aggregate into clusters, i.e. how well distinct categories were segregated, in (i) the embedding space
using a metric called R2-ebd and (ii) in the 2D visualization space obtained from dimension reduc-
tion of the embedding matrix using UMAP using a metric called R2-umap (see Sections D.2 and D.3
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Figure 2: Figure 1. Examples of simulated trophic networks of size 60 and their group model
parameters (ecological properties). These networks span the 4 possible combinations of values for
nModules (compartmentalization) and loop (intra-group predation). Nodes are colored according
to their trophic group.

from Supporting Information). The third criterion evaluated how the segregation of categories (in the
embedding space and in the visualization space, respectively) is blurred due to variation in network
sizes (see Section D.4 from Supporting Information for the definitions of the two metrics R2-loss-
ebd and R2-loss-umap). Note that, given the simulation design, Groups2Vec, Graph2Vec_lab and
ShortPaths2Vec_lab were unfairly favored for all criteria on properties maxTrophLen, trophlens
and nModules compared to other embedding methods because they directly encoded trophic groups
composition that generated the network. Groups2Vec was also disfavored compared to other meth-
ods for the omni, generalism and loop properties because, by our simulation design the trophic
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groups proportions were not affected by changes in these three properties.

3 Results

Evaluation for supervised learning task: predictive accuracy. The relative ability of the dif-
ferent embedding methods to predict the categories varied across ecological properties (Table 3).
Amongst the different methods, Metrics2Vec had the highest predictive accuracy for maxTrophLen,
trophlens and nModules (excluding methods that integrate a priori information on trophic groups),
closely followed by ShortPaths2Vec. For omni, the methods with the highest predictive accuracy
were Graph2Vec_lab, ShortPaths2Vec_lab and Motifs2Vec. Metrics2Vec and ShortPaths2Vec had
the best predictive accuracy for generalism, and the latter was even more efficient when using
trophic groups as node labels (ShortPaths2Vec_lab, Table 3). loop was almost perfectly predicted by
all embedding methods. Unlike its extension with node labels, we found that Graph2Vec had a rel-
atively weak predictive accuracy for all properties except loop (Table 3, also visible on Figure 3D).
This relatively low predictive accuracy persisted when applying the algorithm with more iterations
(higher order neighborhood exploration, see Section A.4 from Supporting Information).

Evaluation for unsupervised learning task: segregation of categories. Motifs2Vec had the best
segregation of categories in the embedding space (highest R2-ebd) for maxTrophLen, trophlens
and nModules (Table 4). However, this relative performance was not consistently preserved in the
UMAP plane. Indeed, its R2-umap was significantly inferior to the one of Metrics2Vec for nMod-
ules (Table 4, and see Figure 3B/F). Even though the categories of maxTrophLen and nModules
were well separated in the UMAP plans of Metrics2Vec, ShortPaths2Vec and Motifs2Vec, this sep-
aration was always non-linear and would not allow us to distinguish visually the categories without
knowing them a priori (see respectively Figures 7 and 8 from Supporting Information). Specifically,
Motifs2Vec had a higher R2-ebd than Metrics2Vec (Table 4) whereas it had a lower predictive ac-
curacy for the same three properties (Table 3). These apparent conflicting results showed that the
most suited approach clearly depends on the research questions and the task scenario (unsupervised
vs supervised analysis). Surprisingly, categories of maxTrophLen seemed much less segregated in
the embedding space than in the visualization space for ShortPaths2Vec (R2-ebd < R2-umap, Table
4). This shows that even though a small portion of this embedding matrix variability was related to
maxTrophLen, it was well retained after UMAP compression (see Figure 3D). Properties omni and
generalism had an overall much weaker effect on the embedding matrix structures than nModules,
loop and n (R2-ebd and R2-umap close to 0, see Table 4), even if they had the same number of
categories. Here, the heterogeneity of results between methods was not meaningful enough to rec-
ommend one method over another. This result might arise from our simulation model and might not
be generalised to other datasets. For loop, the segregation of categories was heterogeneous across
methods both in the embedding spaces and visualization spaces. ShortPaths2Vec showed the highest
performance in the embedding space (R2-ebd, Table 4), but not in the visualization space where
Graph2Vec and Graph2Vec_lab had the highest R2-umap. Visually, all embeddings except Short-
Paths2Vec_lab exhibited a clean segregation of categories for loop in their visualization space, as
shown in Figure 3D/E and Figure 3B/C/E. Note, however, that it is certain that ShortPaths2Vec_lab
separates linearly loop in its embedding space (non-infinite shortest paths lengths exist between
species of a same trophic group when loop is activated), but its R2-ebd does not reflect it and re-
mains relatively small probably because this embedding space contains mostly dimensions unrelated
to loop.
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Robustness to size variability. Groups2Vec and Motif2Vec were almost insensitive to network
sizes variability and were thus the most robust methods both in the embedding and visualization
spaces (R2-loss-ebd and R2-loss-umap almost null in Tables 3 and 4 from Supporting Informa-
tion) for all ecological properties, revealing the efficiency of their normalization for size. For other
methods, network size variability decreased more or less the segregation of categories in their em-
bedding and visualization spaces for all properties (R2-loss-ebd> 0 and R2-loss-umap> 0). Indeed,
for Metrics2Vec, ShortPaths2Vec and ShortPaths2Vec_lab, the segregation of categories decreased
by around 10% in the embedding space and visualization space (i.e. R2-loss-ebd and R2-loss-umap
are around 10 in Tables 3 and 4 from Supporting Information) when networks of size 60 and 120
were all considered together compared to the average segregation of categories when considering
only one size at a time. This shows that ShortPaths2Vec normalization for size is not fully work-
ing. Finally, Graph2Vec and Graph2Vec_lab appeared as the least robust methods as they showed
the highest R2-loss-ebd and R2-loss-umap for all properties (resp. Tables 3 and 4 from Supporting
Information). For instance, networks with the same size tended to be clustered in the UMAP plane
of Graph2Vec (see Figure 3D). This strongly suggested that Graph2Vec and Graph2Vec_lab are not
suitable to compare networks with different sizes (when the effect of size was not a feature of inter-
est) in posterior unsupervised analysis tasks. On the other hand, one can observe how the positions
of networks of different size were mixed on the visualization planes of Groups2Vec and Motif2Vec
(e.g. Figure 6 from Supporting Information for Groups2Ved and Figure 3A for Motifs2Vec).

method maxTrophLen trophlens nModules omni generalism loop
Groups2Vec 100 100 100 52 50 49
Metrics2Vec 93 71 99 89 95 100
Motifs2Vec 85 64 98 90 93 100
Graph2Vec 67 49 89 83 75 100
Graph2Vec_lab 100 99 100 92 88 100
ShortPaths2Vec 93 69 99 82 94 100
ShortPaths2Vec_lab 100 99 100 91 96 100

Table 3: Predictive accuracy percentage for each ecological property and embedding method. This
is the Out-Of-Bag classification accuracy of a Random Forest trained to predict the category of the
ecological property from the coordinates of the network in the embedding. Some coefficients are
shaded because their comparison with other embedding methods would be unfair, see our method-
ology. Bold values correspond to the best performance for each property (per column).

4 Discussion
This study proposed a critical evaluation of the ability of different graph embedding methods to
detect ecological property variations between simulated trophic networks. We introduced two meth-
ods that have never been used to analyse ecological networks (Graph2Vec and ShortPaths2Vec) and
proposed to use trophic groups as node labels to enrich the description of network architecture for
these two methods. We evaluated seven embedding methods for posterior use in supervised and un-
supervised analysis tasks focusing on six important network ecological properties, and testing their
robustness to network sizes variability for the unsupervised setting.

Depending on the type of task, supervised or not, and the ecological property targeted, the rel-
ative performances of the embedding methods differed. Overall, Motifs2Vec and ShortPaths2Vec,
which have a relatively small dimensionality (here 13 and 15), interpretable dimensions, and are
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Figure 3: Figure 2. UMAP 2D plans, Part 1. Each plane, i.e. visualization space, is output by UMAP
applied to an embedding of the simulated networks. Axes UMAP1 and UMAP2 may be read as the
principal axes in multivariate linear analyses, without notion of importance ranking. Each point
represents a network and the color (resp. shape) indicates the category of the ecological property at
stake (resp. species richness n ∈ {60,120}). For visualization clarity, we randomly subsampled 600
points out of 5000.
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Figure 4: Figure 3. UMAP 2D plans, Part 2.
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maxTrophLen trophlens nModules omni generalism loop
Method ebd umap ebd umap ebd umap ebd umap ebd umap ebd umap

Groups2Vec 0.42 0.60 0.90 0.99 0.38 0.30 0.00 0.00 0.00 0.00 0.00 0.00
Metrics2Vec 0.19 0.10 0.32 0.20 0.20 0.14 0.02 0.00 0.02 0.00 0.30 0.48

Motifs2Vec 0.39 0.19 0.62 0.25 0.32 0.05 0.01 0.00 0.07 0.01 0.09 0.25

Graph2Vec 0.06 0.08 0.12 0.13 0.07 0.08 0.00 0.00 0.01 0.01 0.09 0.61
Graph2Vec_lab 0.10 0.09 0.30 0.13 0.09 0.07 0.04 0.00 0.00 0.00 0.08 0.61

ShortPaths2Vec 0.03 0.21 0.15 0.24 0.13 0.04 0.01 0.01 0.01 0.00 0.61 0.48
ShortPaths2Vec_lab 0.35 0.04 0.64 0.35 0.22 0.22 0.01 0.01 0.00 0.00 0.10 0.15

Table 4: Segregation of categories for each ecological property (column) in each embedding space
and 2D visualization space (measured through R2-ebd and R2-umap). This measure reflects the
level of clustering of networks of a same category compared to the average distance. Shaded values
shouldn’t be compared with other embeddings (in the same column) as it would be unfair, see 2.4.
Bold values correspond to the best performance for each property (per column).

relatively robust to network sizes variability, often proved to be more suitable for unsupervised anal-
ysis. Other embedding methods either poorly captured the properties of interest (e.g. Graph2Vec), or
captured them in a non-linear way which reduces their potential interpretability in visualization steps
of unsupervised task (e.g. ShortPaths2Vec_lab in Figure 3F). Metrics2Vec, ShortPaths2Vec_lab and
Graph2Vec_lab, revealed their potential for posterior supervised learning tasks (Table 3). Moreover,
predictive accuracy increased when architecturally relevant information (here trophic groups) was
integrated as node labels in the embedding methods (ShortPaths2Vec_lab and Graph2Vec_lab, Ta-
ble 3). In the following paragraphs, we suggest the most appropriate approach for a given targeted
ecological property, and further motivate the study of a given property in the light of the ecological
processes of interest (Table 5).

Property Supervised Unsupervised Ecological processes
maxTrophLen Metrics2Vec Motifs2Vec CP, CFB

TrophLens Metrics2Vec Motifs2Vec RE, CP, CFB
nModules Metrics2Vec Motifs2Vec RE, PC

omni
Graph2Vec_lab /

ShortPaths2Vec_lab /
Motifs2Vec

CP, PC

generalism ShortPaths2Vec(_lab) RE, CP, PC

loop
ShortPaths2Vec /

Metrics2Vec

Table 5: Guide table summarizing which embedding method to use according to the network eco-
logical property that is targeted, the supervised or unsupervised nature of the analysis. Ecological
processes demonstrably linked to each property are listed in the last column. We used the following
acronyms, CP: Community persistence, RE: Robustness to extinctions, CFB: Carbon Flux balance,
PC: Population control,

Motifs2Vec and Metrics2Vec proved to be the most suitable, respectively for unsupervised and
supervised tasks, for maximum trophic length, trophic groups composition and compartmentaliza-
tion. As relationships between compartmentalization and robustness to extinction are mainly theo-
retical [Dunne et al., 2002, Thébault and Fontaine, 2010], supervised methods could be applied to
predict the robustness to extinctions from an embedding coordinates that contains compartmentaliza-
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tion descriptors (e.g. modularity, clustering coefficient, nestedness). As noted earlier, trophic levels
were suggested to impact resilience to perturbations and carbon fluxes balance [Pimm et al., 1991,
Schindler et al., 1997]. To test hypotheses on the effect of these environmental factors, we could
apply ShortPaths2Vec combined with dimension reduction to a large set of trophic networks spa-
tially distributed in various conditions of perturbation frequency and primary productivity in order
to visualize potential patterns of association with trophic chain lengths.

Concerning generalism, ShortPaths2Vec_lab and Metrics2Vec were the most suitable methods
for supervised analysis while there was no efficient approach for unsupervised analyses (but Mo-
tifs2Vec performed best in R2-ebd, Table 4). This suggests that the effect of generalism appeared
as a minor driver of the embedding matrices and one might probably specify another embedding
method describing the joint distribution of in/out degrees across species to better capture variations
of generalism. It might enable to better understand the still ambiguous relationship between gener-
alism, vulnerability and robustness to extinctions [Dunne et al., 2002, Thébault and Fontaine, 2010].
For instance, we hypothesise that a stronger negative relationship between species generalism and
vulnerability within a network, for a fixed connectance, makes it more robust to extinctions. Further,
the change of these relationships in trophic networks along long time scales have the potential to
reveal signatures of community level selection related to mass extinction events [Roopnarine et al.,
2007]. For omnivory, Graph2Vec_lab appears as the most adapted method for supervised learning,
while no approach yielded significant performances for posterior unsupervised analyses. We might
improve unsupervised analysis applications by combining some triangular motifs proportions related
to omnivory and some dedicated metrics (e.g. omnivore proportion, average degree of omnivory) in
order to unveil contrasts in omnivory patterns across networks that are known to influence parasitism
rate [Montoya et al., 2003] and community persistence [Pimm et al., 1991]. Finally, the predictive
accuracy for the loop property was almost perfect for all methods, so that we cannot discriminate be-
tween them for a supervised learning application. For the unsupervised case, ShortPaths2Vec turned
out to be the most suitable. Lastly, it might be important to note that the tested food web Metrics
and Graph2Vec require less computational effort than the Shortest-Paths embeddings. Indeed, the
complexity of the former is linear with the number of nodes, while it is cubic for the latter using the
Floyd-Warshall algorithm [Floyd, 1962].

Most graph embedding developments concerned supervised learning problems and especially
graph classification [Li et al., 2017, Xu et al., 2018]. Even the unsupervised graph embedding
methods [Ivanov and Burnaev, 2018, Taheri et al., 2018, Verma and Zhang, 2017] have been mostly
evaluated on supervised learning tasks. Further, the evaluation is most often done on multiple bench-
mark datasets coming from different research domains (e.g. bioinformatics or social networks) and
weakly related to research questions of these domains, thus questioning the relevance of the evalua-
tion for the end-users of these methods. Here, we took a different perspective since our comparative
analysis and evaluation focused on the usefulness of graph embedding methods to address explicit
research questions based on trophic network analyses, especially in the unsupervised context which
is probably the most common case in ecology. This perspective comes at the price of some questions
regarding the generality of our evaluation methodology and the potential limits of our simulation ex-
periments. Regarding network simulation, omnivory and generalism were especially difficult to
segregate for all embedding methods suggesting that our simulation model didn’t make their vari-
ations salient. Besides, two species belonging to the same trophic group in our simulation model
tend to interact with the same other groups and with an equal proportion of species in each of these
groups. This is a way to model trophic Eltonian niches [O’Connor et al., 2020], but it induces very
similar positions of species belonging to a given group in the network. Regarding the evaluation
methodology, the UMAP dimension reduction step has sometimes drastically reduced the segrega-
tion of categories of some property in the visualization space compared to the embedding space,
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while preserving it for others (e.g. nModules with Motifs2Vec, see Table 4). This behavior might
have been different using another dimension reduction technique.

Some lessons have been learnt and some questions have been raised on different embedding
methods during this study. First, Groups2Vec did not allow us to segregate omnivory, generalism
and loop because these properties were considered independently to generate the simulated trophic
groups in our design. However, real studies demonstrated that some trophic groups can highlight
differences in omnivory, presence of loops or generalism. For example, Kéfi et al. [2016] fitted
a stochastic block model (SBM) on a large interaction network including trophic interactions and
showed that some identified groups included more omnivore species than others. Then, networks
having higher species richness for these groups would have a higher degree of omnivory. We there-
fore point out that the relevance of Groups2Vec entirely depends on the ecological properties cap-
tured by the trophic groups so that results for this approach are very context-dependent. We also
showed that Graph2Vec was strongly affected by network size and thus not suitable for unsuper-
vised analyses. Indeed, the distribution of the local neighborhoods that are present in a network is
affected by network size. For instance, deeper node neighborhoods are more likely in larger net-
works. However, to our knowledge, no suitable size normalization procedure is available for this
embedding method and its use in unsupervised analyses should thus be restricted to the compari-
son of networks with similar size. Even though ShortPaths2Vec was more robust to size variability,
finding the right normalisation for this embedding method is not simple either. The normalisation
we used revealed to not be fully efficient. This is probably because the frequencies of shortest-paths
lengths are affected by network size, and not only their average count. Another important lesson
regarding Graph2Vec concerns its parameterization. It is crucial to adapt the number of iterations
(depth) to the average size of networks because the diversity of subtrees increases exponentially with
the number of iterations. Then, applying a large depth to small graphs will tend to increase simi-
larities between networks and thus induce approximately equally spaced points in the embedding
space. In our experiment, we standardized each column of the Metrics2Vec embedding matrix so
that they have equal contribution to the Euclidean distance computed in the embedding space. This
impacts the arrangement of networks in the UMAP plane and the measure of segregation of cate-
gories. Without standardization, we would have favored properties discriminated by the columns
with highest variance. Interestingly, we can use standardization to control the relative importance of
the metrics by multiplying each column by a specific coefficient depending on the targeted network
ecological contrasts that we want to distinguish in the visualization space. Recently, Graph Neu-
ral Networks (GNNs, see e.g. Gilmer et al. [2017], Kipf and Welling [2016]) have been proposed
to produce more expressive and flexible graph embedding methods. Most GNNs are designed for
supervised learning tasks, such as graphs classification, rather than unsupervised graph embedding
methods (but see e.g. Bandyopadhyay et al. [2020]). Supervised graph embedding with GNNs may
be a way forward to find more general representations of interaction networks, as a GNN embed-
ding may be trained, for instance, to predict several network ecological features such as dynamical
behaviors or robustness to extinctions.
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A Graph embeddings

A.1 Foodweb metrics in Metrics2Vec

Table 1 describes the 17 network metrics used in Metrics2Vec, relying on the following notation.
Consider a directed network G = (V,E) where V is the set of species (nodes) and E the set
of directed interactions where each element has the form (u, v) with u, v ∈ V 2. In Table 1,
we call G′ the undirected network derived from G. In other words G′ = (V,E ′) where ∀v, u ∈
V 2, (v, u) ∈ E ′ ⇔ ((v, u) ∈ E or (u, v) ∈ E).
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Name Description Used in

Density
Ratio of number of edges on number of
possible edges for the undirected network:
2|E′|/(|V |(|V | − 1))

Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Directed density
Ratio of number of edges on
number of node pairs: |E|/|V |2

Kortsch et al. [2019]
Wood et al. [2015]
Thompson and Townsend [2005]

Average generality Average number of prey per predator Kortsch et al. [2019]
Braga et al. [2019]

Generality s.d. Standard deviation of generality
Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]

Vulnerability s.d. Standard deviation of number
of predators per prey

Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]

Mean trophic level Average of species Trophic levels Braga et al. [2019]
Trophic length Maximum minus minimum trophic levels

Proportion of omnivores Proportion of species who consume
species at various trophic levels)

Kortsch et al. [2019]
Braga et al. [2019]

Level of omnivory Standard deviation of
prey trophic levels Kortsch et al. [2019]

Top species ratio Ratio of species with no predators
Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Basal species ratio Ratio of species with no prey
Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Intermediate species ratio Ratio of species that are
neither basal nor top

Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Modularity Measure of compartmentalization
see Newman [2006]

Kortsch et al. [2019]
Tylianakis et al. [2010]

Transitivity
/clustering coefficient

Probability that two species linked
to a third are also linked
together in the undirected network
[Wasserman et al., 1994]

Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]

Diameter Length of the longest shortest-
path in the (directed) network

Mean distance
/ Characteristic path length
/ Mean Shortest-Path length

Mean length of the directed
shortest-paths between
all pairs of species

Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]
Thompson and Townsend [2005]

Assortativity of degrees Correlation between out and in
degrees of nodes pairs [Newman, 2002]

Table 1: Common network metrics to describe and compare foodwebs architecture.

Moreover, we plot in Figure 1 (resp. in Figure 2) the values of each pairs of metrics for
a subsample of 800 simulated networks (resp. Pearson’s correlation coefficient between each
pairs of metrics over all simulated networks). Figure 2 exhibits 4 groups where each metric is
either highly correlated or highly anti-correlated to all others. The first group shows a high
connection between modularity and various metrics related to the distribution of degrees. The
second group shows a high correlation between all metrics built from the same computation
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of trophic levels [Williams and Martinez, 2004]. The third group is composed of statistics of
the distribution of distances (diameter, mean_distance), proportions of basal, intermediate
and top species and transitivity, which are all linked to nodes pairs distances in the network.
The fourth is composed of assortativity alone, which is decoupled from all other metrics. Note
that combining a diversity of redundant metrics in the embedding may be useful, as long as
they are not fully correlated, because each metric may compensate biases of others in certain
cases leading to an overall better separation of a targeted ecological property.

Figure 1: Multi-scatter plots of foodweb metrics used in this study (subsample of 800 simulated
networks).

A.2 Triangular motifs in Motifs2Vec

Figure 3 shows the 13 directed triangular motifs whose occurrence proportions are used in
Motifs2Vec.
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Figure 2: Correlations between foodweb metrics used in this study, computed over all simulated
networks.

A.3 Introduction to Graph2Vec

Graph2Vec [Narayanan et al., 2017] is a graph embedding that is based on the decomposition
of a network into its nodes rooted subtrees. A node rooted subtree represent the local neigh-
borhood around a node and is constructed from an iterative algorithm, as in the Weisfeiler-
Lehman graph kernel computation [Shervashidze et al., 2011]. At each iteration, the algorithm
concatenates, for each node, its label with those of its neighbors, determining the structure
of a (labelled) tree, compresses the character string into a hash-code and relabels the original
node with this hash-code. At the end of iteration i, each node has a label (hash-code) that is
uniquely associated with a tree of depth i, whose root is the initial node label and the forks of
level k have the labels of the neighbors of order k [Shervashidze et al., 2011]. The method then
lists for each network all the hash-codes found from iterations 0 up to a user-chosen maximal
depth.

Then, Graph2Vec generates an embedding of predetermined dimension where networks
having many common hash-codes and sharing the absence of many hash-codes (held by other
networks from the dataset) are close together. In this second step, the embedding is optimized
using the Skipgram model and negative sampling [Mikolov et al., 2013]. It creates at the same
time a vector representation for each network of the dataset and for any subtree found across
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Figure 3: The 13 directed triangular motifs without self-loops used in Motifs2Vec.

all networks. The optimisation of the objective function (Equation (5) in Narayanan et al.
[2017]) maximises the proximity between a network vector and the vectors of subtrees that
it contains while pushing away the network vector and the vectors of subtrees that it doesn’t
contain but exist elsewhere in the networks dataset.

A.4 Evaluation and selection of Graph2Vec parameterizations

To simplify the main manuscript, we selected only two versions of Graph2Vec parameteriza-
tions. Table 2 reports the predictive accuracy obtained on more diverse parameterizations of
Graph2Vec including: various number of iterations (or depth, identified by the prefix "dp" in
row names of Table 2), default embedding that relies on the directed network with directions
from prey to predators (identified by suffix recto in row names of Table 2) versus its concate-
nation with the embedding obtained on the transposed networks (no suffix), the integration
of trophic groups as node labels (identified by the suffix ’lab’ in row names of Table 2) versus
no node labels (no suffix).

The predictive accuracy is overall significantly increased when concatenating the recto and
verso embeddings compared to the recto embedding alone (Table 2). Also, the predictive accu-
racy decreased slightly with increasing number of iterations for non-node labelled Graph2Vec
versions and for all ecological properties. It is likely that Graph2Vec with higher number
of iterations couldn’t exhibit consistent patterns of similarities across networks because high
order neighborhoods are potentially much more diverse, making each network more dissimilar
to the others. No obvious trend appeared among node-labelled Graph2Vec parameterizations,
and those were approximately equivalent for all properties. In the main manuscript, we kept
only parameterizations with 2 iterations, which were among the best parameterizations in
most cases: Graph2Vec_lab_dp2 and Graph2Vec_dp2.
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method maxTrophLen TrophLens nModules omni generalism loop n
Graph2Vec_dp2_recto 50 33 84 67 66 98 83

Graph2Vec_lab_dp2_recto 100 99 100 91 84 100 98
Graph2Vec_dp1_recto 50 32 85 65 66 98 83

Graph2Vec_lab_dp1_recto 99 98 100 91 87 100 99
Graph2Vec_dp4_recto 47 30 83 67 66 98 81

Graph2Vec_lab_dp4_recto 100 99 100 90 83 100 98
Graph2Vec_dp1 70 51 91 83 78 100 93

Graph2Vec_lab_dp1 99 99 100 92 90 100 99
Graph2Vec_dp2 67 50 89 82 76 100 93

Graph2Vec_lab_dp2 100 99 100 92 88 100 99
Graph2Vec_dp4 64 45 88 81 75 99 91

Graph2Vec_lab_dp4 100 99 100 91 86 100 99

Table 2: Predictive accuracy computed for different Graph2Vec configurations and all prop-
erties.

B Trophic networks simulation

We describe how we generate, for each network, a group model (a Stochastic Blockmodel,
SBM, see Allesina and Pascual [2009]) based on the drawing of six ecological properties, and
how we draw a random network from it.

Prior to generate a network, we parameterized its group model. We started by defining
the trophic groups of the group model, which are parameterized by three ecological properties.
First, we draw nM uniformly in {1, 2} (labelled nModules) which is the number of modules
in the network. Species that belong to a given module are more likely to interact together
than with species from other modules. Second, for each possible module i ∈ {1, nM}, we
independently and uniformly draw li in {1, 2, 3, 4} the trophic length in that module (= number
of trophic levels minus one). Each trophic level inside each module represents one trophic
group. The list (li)i∈J1,nM K is another ecological property, called TrophLens, which determines
the trophic groups composition. Then, the group model has nb =

∑nM

i=1(li + 1) ∈ {2, ..., 10}
trophic groups. TrophLens has 20 possible values (one unique module with four possible
values for the number of trophic levels, or two modules each one with four possible values).
We also introduce maxTrophLen, the maximum trophic length across the modules, i.e.
maxTrophLen=maxi∈[1,nM ] li. For example, Figure 4 illustrates a potential group model
with nModules= 2 and TrophLens= (2, 1). Trophic groups composing the group model are
labelled with the number of the module they belong to and with their trophic level, starting
from the basal species and the interactions go from the prey to the predator.

Then, we allowed (directed) interaction probabilities only between specific pairs of groups
as follows: the probability Ppred of interaction between successive trophic levels in a same
module is based on a constant term Pbase = 0.7 and modulated by other variable terms (see
Equation (1) below). Three independent ecological properties parameterize the interaction
probabilities. Each is drawn as 1 (activated) or 0 (non-activated) with uniform probabil-
ity. First, Io ∈ {0, 1} (labelled omni) indicates the apparition of omnivory patterns: when
activated (Io=1), the probability of interaction between species from a given trophic group
to species from other groups at least two levels higher, inside the same module, was set to
Pomni = 0.2. Secondly, Ig ∈ {0, 1} (labelled generalism) increases the predation probability
(Ppred) by Pgeneralism = 0.2. Third, Il ∈ {0, 1} (labelled loop) determines the apparition of
an interaction probability PLoop = 0.15 between species of a same group (cannibalism was
excluded). We also allowed inter-module interactions and only between successive trophic
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levels, with a probability Pinter = 0.1. We apply a corrective term to Ppred to compensate
the effects of omni and loop on the expected connectance of the network simulated from the
group model. The derivation of this corrective term is shown in the next paragraph and leads
to

Ppred := Pbase + IgPgeneralism − IoPomni

∑nM

i=1 1li>1

(
li
2

)
nb − nM

− IlPloop
n(n− nb)n

2
b

n2(nb − nM)
. (1)

The network size (species richness) was the last parameter of our group model: over the
5000 generated group models, half had n = 60 species while the rest had n = 120 species to
introduce size variability across networks.

Once a group model was parameterized, we draw a trophic network from it. We associated
one species to each group and then randomly distributed the remaining species uniformly
across the groups. Then, for each pair of species, we independently draw the realisation of an
interaction as defined by the group model given their respective groups.

Figure 4: A schematic representation of a group model. It has nb = 5 trophic groups named
g1.1 (basal species in module 1), g1.2, g1.3 (top predators in module 1), g2.1 (basal species
in module 2), g2.2 (top predators in module 2). Solid black arrows indicate non-null inter-
group interaction probabilities. Red and green arrows represent interaction probabilities that
would appear if respectively omni and loop were activated. The group model has two mod-
ules (nModules=2) composed by 3 and 2 trophic groups respectively (TrophLens=(2,1),
maxTrophLen=2). Each group represents a trophic level inside a module. Ppred controls
intra-module predation while Pinter controls inter-module predation.

Controlling networks connectance through predation link probability. Variables
omni and loop would induce a variation in the expected connectance of the simulated net-
works if Ppred was defined independently of those random properties. We introduced a cor-
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rective term in Ppred so that the network expected connectance is not affected by omni and
loop. Then, this corrective term insures that connectance of the simulated networks does not
vary too much except by the activation of generalism, and the effect due to trophic group
composition and compartmentalisation.

To justify this corrective term, we firstly establish the expected connectance of simulated
networks from an arbibtrary group model setting. Let us denote the following elements of the
group model:

• Let G = (V,E) be the random network to be simulated, we denote by n its number of
nodes.

• nM ∈ {0, 1} (nModules property) is the number of compartments or Modules in the
group model.

• Let (li)i∈J1,nM K (TrophLens property) be the numbers of trophic levels in each compart-
ment, i.e. the number of groups that they contain. The group model thus contains a
total number of nb =

∑nM

i=1 li groups.

• Let λ ∈ V nb be a random partition of nodes V such that every node is affected to one
of the groups and the group of a node is drawn according to a uniform multinomial
distribution.

• Let Io ∈ {0, 1} (omni property) be the variable indicating a non-null linking probability
Pomni = 0.2 of omnivory links in the group model.

• Let Il ∈ {0, 1} (loop property) be the variable indicating a non-null probability Ploop =
0.15 of intra-group linking in the group model.

• Let Ppred be the simple predation probability between successive trophic groups inside a
compartment of the group model.

• Let Ig ∈ {0, 1} (generalism property) be the variable indicating the increase of Ppred

by Pgeneralism = 0.2, inducing a higher number of prey per predator in average.

Then, the expected connectance of G may be additively decomposed as:

C = Cpred + 1nM=2Cinter + Io Comni + Il Cloop.

Every term is developed further, and the total expected connectance is thus approximated
by (see paragraphs below for details on each contribution):

C ≈ 1

n2

[
(Ppred + 1nM=2Pinter)

n2

n2
b

(nb − nM) + IoPomni
n2

n2
b

nM∑
i=1

1li>2

(
li − 1

2

)
+ IlPloop

n(n− nb)

nb

]

=
1

n2

n2

n2
b

(nb − nM)
[
Ppred + 1nM=2Pinter + IoPomni

∑nM

i=1 1li>2

(
li − 1

2

)
nb − nM

+ IlPloop
n(n− nb)nb

n2(nb − nM)

]
.
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Thus, as we want to define Ppred such that the expected connectance is not affected by
loop and omni, and given that Ploop et Pomni are constant, it must be decomposed as:

Ppred := P ′pred − IoPomni

∑nM

i=1 1li>2

(
li − 1

2

)
nb − nM

− IlPloop
n(n− nb)nb

n2(nb − nM)
.

Where P ′pred is independent of loop and omni. We then defined P ′pred := Pbase+IgPgeneralism,
where Pbase = 0.7, to introduce a positive influence of generalism on the number of prey per
predator. Note that nModules and TrophLens will impact the expected connectance of the
network. We implicitly assume that this impact is realistic and should not be corrected.

Contribution of simple predation Cpred.
We compute the approximated expectation of the number of simple predation interaction,

i.e. interaction from any group to the group that is just one trophic level above in the same
module, divided by the maximum number of interactions in the network n2. It is computed
as follows:

E(Cpred) ≈ 1
n2

∑nM

i=1

∑li
j=2 Ppred E(ni

j n
i
j+1) ≈ 1

n2Ppred
n2

n2
b
(nb − nM)

We made, here and in the following paragraphs, the approximate assumption that the
number of species n′ in a given group follows a binomial distribution, n′ ∼ B(1/nb, n), and
that is is independent of the number of species in other groups. Note also that this formula
assumes that species are distributed uniformly and independently across groups, whereas in
our simulation we first distributed one species per group before distributing the remaining
species uniformly. The error brought by our assumption is minor because the probability
that there exists a group without any species is always inferior to 0.02 even in the worst case
where there are 60 species and the group model has the maximum number of 10 groups. This
assumption also applies to the following contributions.

Contribution of omni, Comni.
We compute the approximated expectation of the number of interactions appearing across

a non-successive pair of trophic levels inside a same module, divided by the maximum number
of interactions in the network n2. It is computed as follows:

E(Comni) ≈ 1
n2

∑nM

i=1 1li>2

∑li−2
j=1

∑li
k=j+2 E(ni

jn
i
k)Pomni

≈ 1
n2

∑nM

i=1 1li>2
n2

n2
b
Pomni

∑li−2
j=1

∑li
k=j+2 =

1
n2

n2

n2
b
Pomni

∑nM

i=1 1li>2

(
li − 1

2

)
This is because:∑li−2

j=1

∑li
k=j+2 =

∑li−2
j=1

∑li−2
k=j =

∑li−2
j=1 li − 1− j =

∑li−2
j=1 j =

li−2+1
2

(li − 2) =

(
li − 1

2

)

Contribution of loop, Cloop.
We computed the expectation of the number of interactions appearing across a pair of

species inside a same group, divided by the maximum number of interactions in the network
n2. It is computed as follows:

E(Cloop) =
1
n2

∑nM

i=1

∑li
j=1 PloopE

(
(ni

j)
2 − ni

j

)
= 1

n2

∑nM

i=1

∑li
j=1 Ploop

n
nb
( n
nb
− 1)

= 1
n2

n(n−nb)
nb

Ploop
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Contribution of inter-module interactions, Cinter.
We compute the approximated expectation of the number of interactions appearing across a

successive trophic levels in distinct modules, divided by the maximum number of interactions
in the network n2. is computed in the following expression which is conditional to ‘nM = 2‘,
otherwise, the contribution is 0.

E(Cinter) =
1
n2 (
∑l1−1

j=1 Pinter E(n1
j n

2
j+1) +

∑l2−1
j=1 Pinter E(n2

j n
1
j+1))

= 1
n2Pinter

n2

n2
b
(nb − nM)

To conclude this section, we show in Figure 5 boxplots of the networks density against
3 quantities: the total number of trophic groups nb ∈ {2, . . . , 10} and the binary values of
generalism and nModules.

Figure 5: Boxplot of simulated networks density versus number of trophic groups (nb), gen-
eralism and nModules.

C UMAP plans and ecological properties

Figures 6,7, 8, 9 and 10 hereafter show the UMAP plans of all 7 tested embedding meth-
ods where, respectively, the points are colored according to the category of maxTrophLen,
nModules, omni, generalism and loop. Also, the size of the network (60 or 120) is indi-
cated by the shape of the point. In each plan we represented the same random sample of 600
networks taken from the 5000 total simulated random networks.
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Figure 6: UMAP plans of all tested embeddings colored for maxTrophLen.
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Figure 7: UMAP plans of all tested embeddings colored for nModules.
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Figure 8: UMAP plans of all tested embeddings colored for omni.
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Figure 9: UMAP plans of all tested embeddings colored for generalism.
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Figure 10: UMAP plans of all tested embeddings colored for loop.
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D Criterions to measure the quality of the embeddings

D.1 Predictive accuracy

We measured whether the position of a network in an embedding can be related to the category
of an ecological property (e.g. the value 2, 3, 4 or 5 for the property maxTrophLens). To do
so, we relied on Random Forests [Breiman, 2001] trained to predict the category of a network
from its position in the embedding. Then, we measured the Out-Of-Bag classification accuracy
of this classifier, namely the ratio of well classified networks over the total number of networks
(when each tree is trained on all but one network and then used to predict the category of
this network). In the following, this measure is simply called predictive accuracy. It quantifies
how well some optimized (and non necessarily linear) boundaries in the embedding space
may separate the categories of the networks. The predictive accuracy can thus be very good
even if networks from a same category are distributed in several disconnected subspaces of the
embedding. The Random Forest (R-package randomForest) was built with 300 trees and the
number of variables available to each tree branch (argument mtry) was optimized to minimize
the average Out-Of-Bag prediction error. Note also that the Random Forest trained on the
embedding obtained from ShortPaths2Vec_lab was learnt after reducing the dimension of this
embedding (originally 499) to 60 using Singular Value Decomposition, preserving most of the
embedding variability (otherwise the predictive accuracy would have been unfairly reduced
compared to other approaches because of overfitting of the random forest).

D.2 Segregation of categories in the embedding

Our second criterion asks, given an ecological property, how well networks from a same category
are aggregated in the embedding compared to networks from distinct categories. We measured
it with the partial R-squared (R2-ebd herafter) of the nonparametric multivariate analysis
of variance [Anderson, 2001] of the embedding, with the grouping of networks given by their
ecological category. For a property withK categories, it is given by R2

ebd = Q2
∑

k,k′∈J1,KK2 ‖ck−
c′k‖/(K2

∑
i,i′∈J1,QK2 ||ei− ej||), where Q is the number of networks, (ei)i∈J1,QK is the embedding

vector of network i, the vector ck is the geometric center of category k, and ‖ · ‖ is the
Euclidean distance. Thus, R2

ebd ∈ [0, 1], with R2
ebd = 0 if and only if all centers are confounded,

and R2
ebd = 1 if and only if the points of each category are concentrated at their respective

center and at least two centers are distinct. We can say that the highest is the aggregation of
categories in the embedding, the closest to 1 is the R2-ebd. A high R2-ebd therefore increases
the chances that the user will discover these groups regardless of the clustering or dimension
reduction method.

D.3 Measuring segregation of categories in 2D after dimension re-
duction

We applied UMAP to reduce the dimension of the embeddings to 2, relying on 150 neighbours
and the Euclidean distance as hyperparameters of the method. This was done for each of the
seven embedding approaches. We used a large number of neighbors to preserve the large scale
distances among points and to best reveal the separation of large clusters of networks. Our
third criterion, which best approaches the embedding method suitability (in combination with
UMAP) for unsupervised analysis, consisted in calculating again the partial R-squared in the
two-dimensional UMAP plane obtained from the embedding. We call this metric R2-umap.
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D.4 Decrease in segregation of categories due to size variability

This last criterion concerns the robustness of segregation of the ecological property categories
to the variability of network sizes. We propose a measure of this phenomenon that is the
relative decrease of the partial R-square when the size is variable (i.e. R2-ebd and R2-umap)
compared to the corresponding value when the size is constant. To compute that we use the
R2-ebd and R2-umap described earlier, which are computed on all networks, i.e. with sizes
60 and 120 together. We also computed the partial R-squared on the networks of size 60
only, called R2-ebd_60 (resp. R2-umap_60) and on networks of size 120 only, called R2-
ebd_120 (resp. R2-umap_120). Then, we computed the percent of loss in segregation in the
embedding (resp. UMAP plane) due to size variability R2-loss-ebd (resp. R2-loss-umap) with
the following formulas

R2− loss-ebd = 100
(R2-ebd60 + R2-ebd120)/2− R2-ebd

(R2-ebd60 + R2-ebd120)/2
.

R2− loss-umap = 100
(R2-umap60 + R2-umap120)/2− R2-umap

(R2-umap60 + R2-umap120)/2
.

This R2-loss-ebd (resp. R2-loss-umap) is most likely superior to 0 and always inferior
to 100. If it equals 0, there is no effect of size variability on the segregation of categories,
whereas if it equals 100, then the segregation is totally lost due to network sizes variability. In
other words, the higher is the R2-loss-ebd (R2-loss-umap), the less robust is the embedding
(resp. UMAP plane obtained from the embedding) to size variability for the segregation of
the targeted property. The R2-loss-ebd are given for each method and property in Table 3
while the R2-loss-umap are given in Table 4.

method maxTrophLen TrophLens nModules omni generalism loop
Groups2Vec 0 0 0 26 60 51
Metrics2Vec 10 11 9 9 10 10
Motifs2Vec 0 0 0 0 0 0
Graph2Vec 61 65 64 72 52 23
Graph2Vec_lab 26 21 22 20 43 15
ShortPaths2Vec 9 7 6 3 7 2
ShortPaths2Vec_lab 1 1 1 1 4 2

Table 3: R2-loss on embeddings (R2-loss-ebd): Loss of aggregation of categories (in %) due
network sizes variability for each ecological property and each embedding.

method maxTrophLen TrophLens nModules omni generalism loop
Groups2Vec 0 0 0 25 52 40
Metrics2Vec 9 10 4 -3 21 12
Motifs2Vec 0 1 0 -1 3 0
Graph2Vec 13 14 12 55 12 14
Graph2Vec_lab 16 18 15 16 21 10
ShortPaths2Vec 4 7 8 2 18 2
ShortPaths2Vec_lab 3 0 0 0 100 0

Table 4: R2-loss on Umap plans (R2-loss-umap): Loss of aggregation of categories (in %) due
network sizes variability for each ecological property and each Umap plan.
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E Agreements between embeddings

One complementary question that may be asked is: what is the level of agreement between
embedding methods? In other words, what is the degree of similarity between their placement
of the simulated networks in their respective embeddings? To answer this question, we use the
distance correlation [Székely and Rizzo, 2009] with the Euclidean Distance. This metric varies
between 0 and 1. An agreement of 1 means that the Euclidean Distance Matrices (EDMs) of
the two embeddings are equals up to a constant factor. In other words, an agreement of 1means
that the two embeddings are equal up to a composition of a rigid transformation (composition
of rotation, translation, reflection) and homogeneous dilation (homothety) [Dokmanic et al.,
2015]. More generally, this metric is insensitive to those compositions of transformations,
which is an important property for our application. For example Graph2Vec may produce
unstable embeddings that are equivalent up to those transformations. The distance correlation
between all pairs of embeddings of the simulated networks is represented in Figure 11.

We can clearly see from correlations in Figure 11, that are all superior to 0.45, and form
the scatter-plots of distances in the lower triangle of the same Figure, that the distances
between networks are overall highly correlated between embeddings. It means that each
network position relatively to others is somehow consistent from one embedding to another.
This may be explained because one can find dimensions that quantify approximately the same
topological features across embeddings. For instance, the assortativity column in Metrics2Vec
measures the frequency of closed triangles which is highly correlated with several columns of
Motifs2Vec.
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Figure 11: Agreements between embeddings. In the upper triangle, we represent the distance
correlation between each pair of embeddings. On the diagonal, we plot the histogram of
networks pairs distances per embedding. In the lower triangle, we scatter-plot the networks
pairs Euclidean distances for each pair of embeddings: The higher the distance correlation,
the more the points are aggregated along a straight line.
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