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Abstract

• Comparing the architecture of interaction networks in space or in time is crucial to un-
derstand community assembly, trajectory, functioning and persistence. Graph embeddings,
that map networks into a vector space where close networks have similar architectures,
might represent ideal tools for that purposes.

• Here, we evaluated the capacity of seven graph embedding approaches to disentangle the
architectural similarities of interactions networks for posterior supervised and unsuper-
vised analytic tasks. The evaluation was carried out over a large number of simulated
trophic networks representing variations around six trophic architectural properties and
sizes.

• We did not find an overall best approach and instead showed that the performance of the
approaches depended on the targeted architectural properties and thus on the research ques-
tions. We also highlighted the importance of a network size normalization of the embed-
ding to avoid meaningless variability blurring posterior unsupervised analysis.

• We concluded by orientating potential users to the most suited approaches given the ques-
tion, the targeted architectural property, and outlined links between those properties and
three ecological processes: robustness to extinction, community persistence and ecosystem
functions. This study should enhance the appropriation of graph embedding approaches
by ecologists.

Keywords: dimension reduction; ecological interaction networks; evaluation; food-webs; graph
embedding; species interactions; trophic networks; trophic groups
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1 Introduction

We are entering a new era in community ecology, where data are becoming multi-species, multi-
trophic, and integrate species interactions [Pellissier et al., 2018]. So far, ecologists have compared
community composition data on the basis of species identity, functional traits or phylogenetic prox-
imities (reviewed in Münkemüller et al. [2020]). With the ever-increasing availability of interaction
knowledge, we are now facing the opportunity to also compare communities based on the architec-
ture of their interaction network, i.e. its topology. This might provide crucial insights to describe
biodiversity variations across environments [Pellissier et al., 2018], unveil architectural constants
across communities composed of different species [Ohlmann et al., 2019] or understand the assem-
bly rules behind multi-trophic assemblages [Münkemüller et al., 2020]. In addition, trophic networks
architectural properties such as omnivory, generalism, trophic levels and compartmentalization are
important to characterize ecosystem functioning, resilience and robustness to extinctions [Monteiro
and Faria, 2016, Tylianakis et al., 2010]. To address these various objectives, network analytic meth-
ods called graph embeddings, that cast many networks into a common vector space reflecting archi-
tectural variations across the networks, are appealing. They enable to apply standard multivariate
statistical methods to a sample of networks, including supervised learning and descriptive analyses
(e.g. dimension reduction techniques for visualization). However, despite recent developments in
network science, a small diversity of methods have been applied to trophic networks, and they have
not been evaluated on their ability to analyse ecologically-relevant architectural properties.

Amongst the few approaches used to analyse the spatial variation of interaction networks, most
measure the dissimilarity of networks by quantifying interaction turnover (i.e. turnover of links) be-
tween pairs of species [Ohlmann et al., 2019, Poisot et al., 2012]. These approaches do not take into
account the architectural properties that involve more than two species like omnivory and generalism
degrees, trophic levels, loops, or compartmentalization. Yet, it is crucial to compare these architec-
tural properties across distant ecosystems, independently of pure species turnover. Measuring more
general architectural properties requires to look at sub-structures composed of more than two species,
which are not easy to explicit, often interlinked and very numerous. These complex characteriza-
tions of network architectures may be simplified by finding a suited vector space where each network
will be represented as a vector, which is exactly the purpose of graph embedding methods. Some
common network metrics in ecology (e.g. connectance) may be seen as graph embeddings [Braga
et al., 2019, Kortsch et al., 2019, Thompson and Townsend, 2005, Wood et al., 2015]. Ecologists
have indeed already used node level metrics (e.g. average number of links per node), node distances
(e.g. diameter, mean distance), and whole networks characteristics (e.g. connectance, modularity or
nestedness) that measure specific properties of the network architecture. However, it is notoriously
difficult to select the proper metric to measure the variability of an architectural concept [Braga et al.,
2019] and one may also miss variations that are not explicitly accounted for by usual metrics. In
addition, counts of subgraphs with fixed number of nodes, called motifs, are also used in ecology.
For instance, counts of triangular and bipartite motifs were applied to compare either trophic net-
work structures [Camacho et al., 2007] and plant-pollinator mutualistic networks [Simmons et al.,
2019]. However, these methods are restricted to small motif sizes due to computational complexity
(i.e. up to 4-nodes in foodwebs, see Monteiro and Faria [2016], up to 6-nodes in bipartite mutualistic
networks, see Simmons et al. [2019]).

Interestingly, a spectrum of efficient graph embeddings have been developed in other domains.
These approaches represent networks based on different types of sub-structures. Some approaches
may further integrate information on node labels to which we could feed information on trophic
groups [Cirtwill et al., 2018], i.e. sets of species sharing similar preys and predators, or any other
relevant external information that classifies species into groups. Several sophisticated unsuper-
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vised machine learning algorithms (e.g. UGRAPHEMB Bai et al. [2019], Graph2Vec Narayanan
et al. [2017]) have been proposed to produce graph embeddings. More particularly, Graph2Vec
[Narayanan et al., 2017] is an interesting candidate for ecological applications. In this method,
networks composed of similar node neigborhoods are represented by vectors that are close in the
embbeding. Comparing shortest-paths lengths across trophic networks is also interesting from a
functional point of view. Indeed, shortest-paths lengths encode information related to trophic chain
lengths or energy flows and are at the root of centrality measures [Costa et al., 2019]. These methods
might bring different and relevant perspectives for ecological network analyses, but they require a
comprehensive and contextual understanding to be successfully applied.

To compare graph embedding approaches for their use in ecology, we need to define their usage
scenarios. They may be used for different posterior analytic tasks on networks including supervised
and unsupervised learning. An unsupervised learning task would typically consist in identifying
clusters or gradients of variation through visualization after reducing the embedding dimensionality
(e.g., 2 dimensions). This task requires to depict the main patterns of variation of network archi-
tectures in the embedding while reducing the effects of non-interesting sources of variability (e.g,
network size). Alternatively, supervised learning aims to predict a given property of a network (e.g.
omnivory degree) as a function of its coordinates in the embedding. We therefore appraise the abil-
ity of graph embedding approaches to represent important architectural variations across trophic
networks and for posterior supervised and unsupervised analyses. We first introduce five graph em-
bedding approaches that are relevant to trophic network analyses and based on different architectural
structures (e.g. motifs or paths lengths). Since two of these approaches can handle node labels infor-
mation, we thus moreover test the use of known trophic groups as node labels. Second, we illustrate
the dimension reduction step for visualization with a recent method called UMAP [McInnes et al.,
2018]. Third, we detail our simulation procedure of trophic networks where we control the varia-
tion of six important categorical architectural properties (maximum trophic length, trophic groups
composition, compartmentalization, omnivory, generalism and intra-trophic group predation) and,
independently, species richness. Fourth, we introduce several measures to evaluate the relative per-
formances of the embeddings for supervised and unsupervised scenarios, including robustness to
species richness variability for the latter. We finally propose a guide to orientate the user towards the
most suited approach given the general aim of the analysis and the architectural properties focused
on, and further relate these properties to important ecological processes.

2 Material and Methods

2.1 Embedding approaches

Among the available graph embedding approaches, we selected five of them that should prove useful
for ecological data and are relatively easy to use (Table 1). Two of them (Graph2Vec and Short-
Paths2Vec) can also use prior information on species like the belonging to a trophic group. These
methods all apply to directed unweighted graphs and thus account for the asymmetry of interac-
tions between species’ pairs. We consider by convention that interactions are directed from preys to
predators. Note that species may also be implicitly labelled with categorical labels.
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Acronym Principle Reference
Groups2Vec Trophic group proportions This study
Metrics2Vec Seventeen classic foodweb metrics Thompson and Townsend [2005]
Motifs2Vec Directed triangular motif proportions Camacho et al. [2007]
Graph2Vec Decomposition into local neighborhoods Narayanan et al. [2017]
Graph2Vec_lab Graph2Vec + trophic groups as node labels Narayanan et al. [2017]
ShortPaths2Vec Shortest-paths lengths distribution This study
ShortPaths2Vec_lab ShortPaths2Vec + trophic groups as node labels This study

Table 1: Graph embedding methods tested in this study.

Groups2Vec. The underlying idea is that all species of the metanetwork (which describes potential
interactions between the union of species over all networks) can be sorted by their belonging to
trophic groups, meant to represent their topological role in the metanetwork [Cirtwill et al., 2018].
In general, there exist many ways to define a partition of species into trophic groups. For instance,
one could rely on predefined known guilds or trophic groups, constructed from species functional
traits or obtained by applying a statistical approach that group species behaving in the same way in
the network, like a Stochastic Block Model (SBM, see Allesina et al. [2008], Kéfi et al. [2016]) to the
metanetwork as done by Ohlmann et al. [2019]. In this study, for the sake of simplicity, we rely on
the trophic groups used for the construction of the simulated networks. Thus, we do not infer those
groups from the networks but rather use the already known groups structure. Groups2Vec simply
builds its embedding by computing the vector of group proportions (species richness in the group
divided by total richness) for each network.

Metrics2Vec. Several metrics have long been used to characterize variations of trophic networks
in space (see e.g. Braga et al. [2019], Kortsch et al. [2019], Thompson and Townsend [2005], Wood
et al. [2015]) or in time [Albouy et al., 2014]. We selected a total of 17 classical metrics (detailed in
Table 1 of the Supporting Information) including the average trophic level [Williams and Martinez,
2004], the average generalism, the frequency of omnivore species (defined as species that predate
other species across more than one trophic level), proportions of top and basal species, modularity
[Newman, 2006] and trophic length. Note that for our following analyses, we centered and scaled
each metric (i.e. each column of the embedding) so that metrics had equivalent contributions in
analyses based on Euclidean distances.

Motifs2Vec. This embedding gathers the frequencies of the 13 directed connected triangular motifs
(see Figure 3 in Supporting Information), without self-loop (i.e. their count divided by the number
of possible species triplets which is n(n−1)(n−2)/6 for a network of size n). These small motifs
have been regularly used to characterize local architectures in trophic networks [Camacho et al.,
2007]. The normalization allows to correct for the effect of network size on motifs counts when
comparing different networks. Larger motifs would give more precise representation of the whole
network structure, but the computational complexity of motifs count, O(nk) for k-nodes motifs, is
prohibitive [Shervashidze et al., 2009].

Graph2Vec. Graph2Vec [Narayanan et al., 2017] is an approach based on the description of the
local neighborhood of each node. Practically, the algorithm decomposes each network into trees
rooted at each of its nodes. It takes as input a maximal depth, which corresponds to the distance up to
which the neighbors of each node will be explored. Then, the description of the local neighborhood
of each node is used to generate an embedding, whose dimension is chosen a priori by the user and
where networks with similar node neighborhoods tend to be close (more details in Section A.3 of
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Supporting Information). Graph2Vec has the possibility to account (or not) for prior information
on node labels. In the case of no prior information, it takes the node degree as a label. In this
study, we compared the embedding (hereafter called Graph2Vec) with no prior information on node
labels, with Graph2Vec_lab that directly uses the species trophic group as node label (the same than
in Groups2Vec). Since Graph2Vec was originally designed for undirected graphs, we forced the
method to take into account edges direction when building a node neighborhood. By default, it
explores the network from preys to predators. We also tested to concatenate this default embedding
with the one derived from the transposed adjacency matrix (exploration from predators to preys)
to better represent the directed architecture of the trophic network. We compared the concatenated
version to the default embedding and also the effect of the maximal depth choice (Section A.4
from Supporting Information). In the following application, we used the concatenated version of
Graph2Vec (with an embedding dimension of 30 for both the default and transposed version) with a
maximal depth of 2.

ShortPaths2Vec. This embedding gathers the frequencies of the directed shortest paths lengths.
For a network, we first computed the length of the shortest-path between all pairs of nodes, follow-
ing edges direction. When there is no path between two nodes, it is counted as an infinite length.
Then, the frequency vector of this set of lengths is constructed (for each length, its occurrence count
is divided by n(n−1), the total number of ordered pairs of distinct nodes for a size-n graph). When
considering several networks, the columns of this embedding correspond to the set of all lengths ob-
served across the different networks. This embedding contains information related to the notion of
trophic length, sometimes computed as the length of the longest directed shortest-path. The ratio of
shortest-paths with infinite length may also encode information on compartmentalization in the net-
work. As for Graph2Vec, our proposed ShortPaths2Vec approach is generalized to account for prior
information on node label in a second version called ShortPaths2Vec_lab. In ShortPaths2Vec_lab,
the counts of shortest-paths of any given length is decomposed per combination of source and target
node labels. In other words, any column of this embedding corresponds to the count of shortests-
paths of a given length k starting from a node with a given label l and going to a node with a given
label l′ divided by n(n−1), as for ShortPaths2Vec. We again use trophic groups as node labels (the
same than in Groups2Vec).

2.2 From embeddings to visualization using UMAP dimension reduction

Once an embedding is obtained from a set of networks, dimension reduction techniques can be used
to visualize the networks in a lower dimensional vector space (here 2 dimensions). Indeed, the graphs
embedding methods we presented could be of dimensions 13 (Motifs2vec) up to 60 (Graph2Vec
in both directions) and above (dimension of ShortPaths2Vec/ShortPaths2Vec_lab depends on the
networks shortest paths). We thus used a non-linear dimension reduction technique called Uniform
Manifold Approximate Projection (UMAP, McInnes et al. [2018]) that was recently popularized for
the analysis of biological data [Becht et al., 2019]. UMAP relies on a predefined distance metric (e.g.
here the Euclidean distance) computed between all pairs of networks using their coordinates in the
full dimensional space of the embedding. For any embedded network, UMAP considers its closest
neighbors (we selected 150 neighbors here), and aims to find a projection into a lower-dimensional
space such that, in this new space, these neighboring networks are also close to the targeted one. This
property has to be satisfied for every embedded network, and a mathematical criterion is numerically
optimized to achieve this goal.
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2.3 Simulation experiment
To compare these seven embedding approaches, we carried out a simulation study to generate 5000
trophic interaction networks (i.e. food webs). Each network was drawn from a parametric random
network model, called a group model, where species are divided into trophic groups and where the
probabilities of interaction between species depend on their belonging to trophic groups. A group
model is defined by the presence of trophic groups (here, between 2 and 10 groups), the interaction
probabilities between groups and the distribution of nodes (species) in groups. For each simulated
network, we first specified its associated group model through the random draw of six parameters,
hereafter called architectural properties (Table 2), and network size. As architectural properties
varied across the networks, our procedure allowed generating networks with contrasted ecological
characteristics. More details on the construction of the group models are provided in Section B
from Supporting Information. We defined the number of species (network size) in {60,120} and
independently of the other properties. We first affected one species per group (to avoid emptiness)
and then randomly distributed the remaining species among the groups. Lastly, we randomly drew
the interactions between each ordered pair of species using the probability of interaction of their
groups as defined in the group model. Figure 1 illustrates the variety of our simulated networks and
the effects of the variations in architectural properties through some examples.

Property acronym Effect Possible values
nModules Number of modules (compartments) {1,2}
trophLens Trophic length in each module see Section B from Supp. Info.
maxTrophLen Maximal trophic length across modules {2,3,4,5}

omni
Activates interactions for

non-successive levels in a module {T RUE,FALSE}

generalism
Favors interactions between

successive groups in a module {T RUE,FALSE}

loop Allows intra-group interactions {T RUE,FALSE}

Table 2: The six trophic architectural properties controlled in our networks simulation.

We then applied the seven embedding approaches to the 5000 simulated networks. Practically,
the 10 trophic groups resulting from the largest possible group model (see details in Section B from
Supporting Information) were used as the groups for Groups2Vec embedding and also as the node
labels in Graph2Vec_lab and ShortPaths2Vec_lab.

2.4 Quality assessment of the embedding approaches
We evaluated the ability of the seven embeddings to disentangle the architectural properties (maxTrophLen,
trophlens, nModules, generalism, omni and loop) of the simulated networks for posterior super-
vised and unsupervised analysis tasks with several criteria (detailed in Section D from Supporting
Information). For posterior supervised learning tasks, we used the predictive accuracy as a mea-
sure of quality to measure how well each property is predicted from the network position in the full
embedding. It is defined as the accuracy of a Random Forest [Breiman, 2001] learnt to predict the
category (e.g. 2,3,4 or 5 for property maxTrophLen) from the network coordinates in the full em-
bedding. For unsupervised analyses, we evaluated how well the segregation between categories can
be detected by human eyes. We expected that if each category forms a cluster of networks separated
from other categories in the embedding, the user has more chances to detect it with a clustering
method or from visualization after dimension reduction. For that purpose, three criteria were used.
First, we measured how well networks of the same category aggregate into clusters, i.e. how well
distinct categories were segregated, in (i) the embedding space using a metric called R2-ebd and (ii)
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Figure 1: Figure 1. Examples of simulated trophic networks of size 60 along with their group model
parameters (Trophic architectural properties). These networks span the 4 possible combinations of
values for nModules (compartmentalization) and loop (intra-group predation). Nodes are colored
according to their trophic group.

in a 2D plane obtained from dimension reduction of the embedding using UMAP using a metric
called R2-umap (see Sections D.2 and D.3 from Supporting Information). The third criterion eval-
uated how the segregation of categories (in the embedding and in the UMAP plane, respectively)
is blurred due to network sizes variability (see Section D.4 from Supporting Information for the
definitions of the two metrics R2-loss-ebd and R2-loss-umap). Note that, given the simulation de-
sign, Groups2Vec, Graph2Vec_lab and ShortPaths2Vec_lab were unfairly favored for all criteria on
properties maxTrophLen, trophlens and nModules compared to other embeddings because they
directly encoded trophic groups composition that generated the network. Groups2Vec was also dis-
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favored compared to other approaches for the omni, generalism and loop properties because, by our
simulation design the trophic groups proportions were independent of those three properties.

3 Results

Evaluation for supervised learning task: predictive accuracy. The relative ability of the differ-
ent embeddings to predict the categories varied across architectural properties (Table 3). Amongst
the different embeddings, Metrics2Vec had the highest predictive accuracy for maxTrophLen, trophlens
and nModules (excluding embeddings that integrate a priori information on trophic groups), closely
followed by ShortPaths2Vec. For omni, the embeddings with the highest predictive accuracy were
Graph2Vec_lab, ShortPaths2Vec_lab and Motifs2Vec. Metrics2Vec and ShortPaths2Vec had the
best predictive accuracy for generalism, and the latter was even more efficient when using trophic
groups as node labels (ShortPaths2Vec_lab, Table 3). loop was almost perfectly predicted by all
embeddings. Unlike its extension with node labels, we found that Graph2Vec had a relatively weak
predictive accuracy for all properties except loop (Table 3, also visible on Figure 2D). This rela-
tively low predictive accuracy persisted when applying the algorithm with more iterations (higher
order neighborhood exploration, see Section A.4 from Supporting Information).

Evaluation for unsupervised learning task: segregation of categories. Motifs2Vec had the
best segregation of categories in the full embedding space (highest R2-ebd) for maxTrophLen,
trophlens and nModules (Table 4). However, this relative performance was not consistently pre-
served in the UMAP plane. Indeed, its R2-umap was significantly inferior to the one of Metrics2Vec
for nModules (Table 4, and see Figure 2B/F). Even though the categories of maxTrophLen and
nModules were well separated in the UMAP plans of Metrics2Vec, ShortPaths2Vec and Motifs2Vec,
this separation was always non-linear and would not allow us to distinguish visually the categories
without knowing them a priori (see respectively Figures 7 and 8 from Supporting Information).
Specifically, Motifs2Vec had a higher R2-ebd than Metrics2Vec (Table 4) whereas it had a lower pre-
dictive accuracy for the same three properties (Table 3). These apparent conflicting results showed
that the most suited approach clearly depends on the research questions and the task scenario (un-
supervised vs supervised analysis). Surprisingly, categories of maxTrophLen seemed much less
segregated in the full embedding than in the UMAP plane for ShortPaths2Vec (R2-ebd < R2-umap,
Table 4). This shows that even though a small portion of this embedding variability was related
to maxTrophLen, it was well retained after UMAP compression (see Figure 3D). Properties omni
and generalism had an overall much weaker effect on the embedding structures than nModules,
loop and n (R2-ebd and R2-umap close to 0, see Table 4), even if they had the same number of
categories. Here, the heterogeneity of results between methods was not meaningful enough to rec-
ommend one method over another. This result might arise from our simulation model and might not
be generalised to other datasets. For loop, the segregation of categories was heterogeneous across
methods both in the full embeddings and UMAP planes. ShortPaths2Vec showed the highest per-
formance in the embedding (R2-ebd, Table 4), but not in the UMAP plane where Graph2Vec and
Graph2Vec_lab had the highest R2-umap. Visually, all embeddings except ShortPaths2Vec_lab ex-
hibited a clean segregation of categories for loop in their UMAP plane, as shown in Figure 2D/E and
Figure 3B/C/E. Note, however, that it is certain that ShortPaths2Vec_lab separates linearly loop in its
embedding (non-infinite shortest paths lengths exist between species of a same trophic group when
loop is activated), but its R2-ebd does not reflect it and remains relatively small probably because
this embedding contains mostly dimensions unrelated to loop.
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Robustness to size variability. Groups2Vec and Motif2Vec were almost insensitive to network
sizes variability and were thus the most robust approaches both in the embedding and UMAP plane
(R2-loss-ebd and R2-loss-umap almost null in Tables 3 and 4 from Supporting Information) for all
architectural properties, revealing the efficiency of their normalization for size. For other approaches,
network sizes variability decreased more or less the segregation of categories in their embedding and
UMAP plane for all properties (R2-loss-ebd> 0 and R2-loss-umap> 0). Indeed, for Metrics2Vec,
ShortPaths2Vec and ShortPaths2Vec_lab, the segregation of categories decreased by around 10%
in the embedding and UMAP plane (i.e. R2-loss-ebd and R2-loss-umap are around 10 in Tables
3 and 4 from Supporting Information) when networks of size 60 and 120 were all considered to-
gether compared to the average segregation of categories when considering only one size at a time.
This shows that ShortPaths2Vec normalization for size is not fully working. Finally, Graph2Vec
and Graph2Vec_lab appeared as the least robust approaches as they showed the highest R2-loss-ebd
and R2-loss-umap for all properties (resp. Tables 3 and 4 from Supporting Information). For in-
stance, networks with the same size tended to be clustered in the UMAP plane of Graph2Vec (see
Figure 2D). This strongly suggested that Graph2Vec and Graph2Vec_lab are not suitable to com-
pare networks with different sizes (when the effect of size was not a feature of interest) in posterior
unsupervised analysis tasks. On the other hand, one can observe how the positions of networks of
different size were mixed on the UMAP planes of Groups2Vec and Motif2Vec (e.g. Figure 6 from
Supporting Information for Groups2Ved and Figure 2A for Motifs2Vec).

method maxTrophLen trophlens nModules omni generalism loop
Groups2Vec 100 100 100 52 50 49
Metrics2Vec 93 71 99 89 95 100
Motifs2Vec 85 64 98 90 93 100
Graph2Vec 67 49 89 83 75 100
Graph2Vec_lab 100 99 100 92 88 100
ShortPaths2Vec 93 69 99 82 94 100
ShortPaths2Vec_lab 100 99 100 91 96 100

Table 3: Predictive accuracy percentage for each trophic architectural property and embedding
method. This is the Out-Of-Bag classification accuracy of a Random Forest learnt to predict the
category of the architectural property from the coordinates of the network in the embedding. Some
coefficients are shaded because their comparison with other embeddings would be unfair, see our
methodology. Bold values correspond to the best performance for each property (per column).

4 Discussion
Through a simulation experiment, this study proposed a critical and objective evaluation of the abil-
ity of different graph embedding approaches to detect architectural variations between trophic net-
works. We introduced two approaches that have never been used to analyse ecological networks
(Graph2Vec and ShortPaths2Vec) and proposed to use trophic groups as node labels to enrich the
description of architectural variations for these two methods. We evaluated the performance of seven
embedding approaches for posterior use in supervised and unsupervised analysis tasks focusing on
six important trophic architectural properties, and testing their robustness to network sizes variability
for the unsupervised setting.

Depending on the type of task, supervised or not, and the architectural property targeted, we
showed that the relative performances of the approaches differ. We noticed that, overall, the em-
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Figure 2: Figure 2. UMAP 2D plans, Part 1. Each plane is the 2 dimensional output from UMAP
applied to an embedding of the simulated networks. Each point represents a network and the color
(resp. shape) indicates the category of the architectural property at stake (resp. species richness n
∈ {60,120}). For visualization clarity, we randomly subsampled 600 points out of 5000.
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Figure 3: Figure 3. UMAP 2D plans, Part 2.
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maxTrophLen trophlens nModules omni generalism loop
Method ebd umap ebd umap ebd umap ebd umap ebd umap ebd umap

Groups2Vec 0.42 0.60 0.90 0.99 0.38 0.30 0.00 0.00 0.00 0.00 0.00 0.00
Metrics2Vec 0.19 0.10 0.32 0.20 0.20 0.14 0.02 0.00 0.02 0.00 0.30 0.48

Motifs2Vec 0.39 0.19 0.62 0.25 0.32 0.05 0.01 0.00 0.07 0.01 0.09 0.25

Graph2Vec 0.06 0.08 0.12 0.13 0.07 0.08 0.00 0.00 0.01 0.01 0.09 0.61
Graph2Vec_lab 0.10 0.09 0.30 0.13 0.09 0.07 0.04 0.00 0.00 0.00 0.08 0.61

ShortPaths2Vec 0.03 0.21 0.15 0.24 0.13 0.04 0.01 0.01 0.01 0.00 0.61 0.48
ShortPaths2Vec_lab 0.35 0.04 0.64 0.35 0.22 0.22 0.01 0.01 0.00 0.00 0.10 0.15

Table 4: Segregation of categories for each trophic architectural property (column) in each embed-
ding and 2D UMAP plane derived from this embedding (measured through R2-ebd and R2-umap).
This measure reflects the level of clustering of similar networks in embedding compared to the av-
erage distance. Shaded values shouldn’t be compared with other embeddings (in the same column)
as it would be unfair, see 2.4. Bold values correspond to the best performance for each property (per
column).

bedding approaches Motifs2Vec and ShortPaths2Vec, which have a relatively small dimensionality
(here 13, 17 and 15), interpretable dimensions, and are relatively robust to network sizes variabil-
ity, often proved to be more suitable for unsupervised analysis. Other embedding approaches either
poorly captured the properties of interest (e.g. Graph2Vec), or captured them in a non-linear way
which reduces their potential interpretability in visualization steps of unsupervised task (e.g. Short-
Paths2Vec_lab in Figure 3F). Metrics2Vec, ShortPaths2Vec_lab and Graph2Vec_lab, revealed their
potential for posterior supervised learning tasks (Table 3). Moreover, predictive accuracy increased
when architecturally relevant information (here trophic groups) was integrated as node labels in the
embeddings (ShortPaths2Vec_lab and Graph2Vec_lab, Table 3). In the following paragraphs, we
suggest the most appropriate approach for a given targeted architectural property, and further moti-
vate the study of a given property in the light of the ecological processes of interest (Table 5).

Property Supervised Unsupervised Ecological processes
maxTrophLen Metrics2Vec Motifs2Vec CP, CFB

TrophLens Metrics2Vec Motifs2Vec RE, CP, CFB
nModules Metrics2Vec Motifs2Vec RE, PC

omni
Graph2Vec_lab /

ShortPaths2Vec_lab /
Motifs2Vec

CP, PC

generalism ShortPaths2Vec(_lab) RE, CP, PC

loop
ShortPaths2Vec /

Metrics2Vec

Table 5: Guide table summarizing which embedding method to use according to the architectural
property that is targeted, the supervised or unsupervised nature of the analysis. Ecological processes
demonstrably linked to each property are listed in the last column. We used the following acronyms,
CP: Community persistence, RE: Robustness to extinctions, CFB: Carbon Flux balance, PC: Popu-
lation control,

Motifs2Vec and Metrics2Vec proved to be the most suitable, respectively for unsupervised and
supervised tasks, for maximum trophic length, trophic groups composition and compartmentaliza-
tion. These properties are related to many ecological processes including robustness to extinctions,
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community persistence, parasitism rate and global carbon fluxes balance. There are numerous ev-
idences that a higher compartmentalization favors robustness to extinctions in food webs because
it limits the effect of extinctions cascades across modules [Thébault and Fontaine, 2010, Tylianakis
et al., 2010]. Currently, the relationships between compartmentalization and robustness to extinction
(see a definition in [Dunne et al., 2002]) are mainly studied theoretically and many predictions re-
main to be tested on real data. For this purpose, supervised methods could be applied to predict the
robustness to extinctions from an embedding that contains compartmentalization descriptors (e.g.
modularity, clustering coefficient, nestedness). It should be noted that the distribution of species
across trophic levels in a network impacts its robustness to extinctions [Pimm et al., 1991]. For ex-
ample, a lower proportion of basal species induces less preys per predators in higher trophic levels
and thus increases the likelihood of secondary extinctions and extinctions cascades. Besides, regard-
ing community persistence, longer trophic chains are also known to decrease the recovering rate of
species population after environmental disaster [Pimm et al., 1991], which explains shorter chains in
unpredictable environments as for insect food webs. To test these hypotheses, we suggest to apply
ShortPaths2Vec combined with dimension reduction to a large set of trophic networks in order to
test if the main variations in network architectures are associated with the frequency of environmen-
tal perturbations. The length of trophic chains may also impact the global balance of carbon fluxes
in the ecosystem through compensation of primary production and respiration as shown for lake
ecosystems [Schindler et al., 1997]. Another type of ecosystem function, the parasitism rate, was
decreased by compartmentalization in a plants-herbivore-parasites system [Montoya et al., 2003].

As for generalism, ShortPaths2Vec_lab and Metrics2Vec were the most suitable methods for su-
pervised analysis while there was no significantly efficient approach for unsupervised analyses (but
Motifs2Vec performed best in R2-ebd, Table 4). Indeed, the effect of generalism appeared as a mi-
nor driver of the embeddings structure. To better analyse the variability of this property, one might
instead specify an embedding targeted to this property by combining statistics on generalism and
vulnerability per species. For example, it would be interesting to better understand the particular
relationship between generalism and robustness to extinctions. Overall, robustness to extinctions
increases with connectance [Thébault and Fontaine, 2010], but decreases with the vulnerabilities of
species that are removed [Dunne et al., 2002], especially vulnerable basal species. We could learn
more by building a graph embedding that combines the average species’ generalism and vulnerabil-
ity (already present in Metrics2Vec) along with the correlation between generalism and vulnerability
across all species. When combined with an high average generalism, we expect that the stronger the
correlation between generalism and vulnerability across species, the more robust are the trophic net-
works. Morever, theory suggests a strong link between generalism and the long-term persistence of
community [Pimm et al., 1991, Thébault and Fontaine, 2010, Tylianakis et al., 2010], but the pre-
cise mechanism behind this phenomenon still appears ambiguous. While it is often documented that
generalism negatively affect community persistence [Thébault and Fontaine, 2010, Torres-Alruiz
and Rodríguez, 2013], it may also provide a buffer in the response of predators to stochastic fluc-
tuations of prey abundances [Tylianakis et al., 2010]. This paradox is apparently resolved when
high generalism is composed of many weak links which favors persistence [McCann et al., 1998].
Generalism and vulnerability degrees also optimise the rates of ecosystem processes and improve
ecosystem resilience. For instance, the vulnerability of herbivores to many predators improved their
population control in a collard-aphid system [Snyder et al., 2006], but excessive competition can
lead to the opposite effect [Montoya et al., 2003]. For omnivory, Graph2Vec_lab appears as the
most adapted approach for supervised learning, while no approach yielded significant performances
for posterior unsupervised analyses. We might improve unsupervised analysis applications by com-
bining omnivory related triangular motifs proportions to some dedicated metrics (e.g. omnivore
proportion, average degree of omnivory) in order to unveil contrasts in omnivory patterns across net-
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works that are known to influence parasitism rate [Montoya et al., 2003] and community persistence
[Pimm et al., 1991]. Finally, the predictive accuracy for the loop property was almost perfect for
all approaches, so that we cannot discriminate between them for a supervised learning application.
For the unsupervised case, ShortPaths2Vec turned out to be the most suitable. Lastly, it might be
important to note that the tested food web Metrics and Graph2Vec require less computational ef-
fort than the Shortest-Paths embeddings. Indeed, the complexity of the former is linear with the
number of nodes, while it is cubic for the latter using the Floyd-Warshall algorithm [Floyd, 1962].
Most graph embedding developments concerned supervised learning problems and especially graph
classification [Li et al., 2017, Xu et al., 2018]. Even the unsupervised graph embeddings [Ivanov
and Burnaev, 2018, Taheri et al., 2018, Verma and Zhang, 2017] have been mostly evaluated on
supervised learning tasks. Further, the evaluation is most often done on multiple benchmark datasets
coming from different research domains (e.g. bioinformatics or social networks) and weakly related
to research questions of these domains, thus questioning the relevance of the evaluation for the end-
users of these methods. Here, we took a different perspective since our comparative analysis and
evaluation focused on the usefulness of graph embeddings to address explicit research questions for
trophic network analyses, especially in the unsupervised context, which is probably the common
case in ecology. This perspective comes at the price of some questions regarding the generality of
our evaluation methodology and the potential limits of our simulation experiments. First, we may
wonder how general is our method evaluations, especially for specific architectural properties like
omnivory and generalism that appeared difficult to separate for all embedding approaches and re-
main undetectable after dimension reduction (UMAP plane). In our study, the UMAP dimension
reduction step has sometimes drastically reduced the segregation of categories of some property in
the 2D plane compared to the full embedding, while preserving it for others (e.g. nModules with
Motifs2Vec, see Table 4). This behavior might have been different with another dimension reduction
technique.

Some lessons have been learnt and some questions have been raised on different embedding ap-
proaches during this study. First, Groups2Vec did not allow us to segregate omnivory, generalism
and loop because they were considered independently to generate the simulated trophic groups in our
design. However, in real cases, some trophic groups may have differences in architectural properties
such as omnivory, presence of loops or generalism. For example, Kéfi et al. [2016] fitted a stochastic
block model (SBM) on a large interaction network including trophic interactions and showed that
some identified groups included more omnivore species than others. Then, networks having higher
species richness for these groups would have a higher degree of omnivory. We therefore point out
that the relevance of the Groups2Vec embedding entirely depends on the architectural properties
captured by the trophic groups. Results for this approach are thus very context-dependent. We also
showed that Graph2Vec was strongly affected by network size and thus not suitable for unsupervised
analyses. Indeed, the distribution of the local neighborhoods that are present in a network is affected
by network size. For instance, deeper node neighborhoods are more likely in larger networks. How-
ever, to our knowledge, no suitable size normalization method is available for this embedding. Even
though ShortPaths2Vec was more robust to size variability, finding the right normalisation for this
embedding is not simple either. The normalisation we used revealed to not be fully efficient. This is
probably because the frequencies of shortest-paths lengths are affected by network size, and not only
their average count. Another important lesson regarding Graph2Vec concerns its parameterization.
It is crucial to adapt the number of iterations (depth) to the average size of networks because the
diversity of subtrees increases exponentially with the number of iterations. Then, applying a large
depth to small graphs will tend to induce approximately equally spaced points in the embedding. In
our experiment, we standardized each column of the Metrics2Vec embedding so that they have equal
contribution to the Euclidean distance computed in the embedding. This impacts the arrangement of
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networks in the UMAP plane and the measure of segregation of categories. Without standardization,
we would have favored properties discriminated by the columns with highest variance. Interestingly,
we can use standardization to control the relative importance of the metrics by multiplying each
column by a specific coefficient depending on the targeted architectural contrasts that we want to
distinguish in the 2D plan derived from the embedding for visualization. Recently, Graph Neural
Networks (GNNs, see e.g. Gilmer et al. [2017], Kipf and Welling [2016]) have been proposed to
produce more expressive and flexible graph embeddings. Most GNNs are designed for supervised
learning tasks, such as graphs classification, rather than unsupervised graphs embedding (but see
e.g. Bandyopadhyay et al. [2020]). Supervised graph embedding with GNNs may be a way for-
ward to find even more useful representations of interaction networks. Indeed, we could for example
learn supervised graph embeddings to identify ecological features, such as dynamical behaviors or
robustness to extinctions, from networks architecture. The possibility is all the more interesting as
there already exist methods to interpret GNNs embeddings, e.g. by determining the smallest network
providing a given prediction [Ying et al., 2019].
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A Graph embeddings

A.1 Foodweb metrics in Metrics2Vec

Table 1 describes the 17 network metrics used in Metrics2Vec, relying on the following notation.
Consider a directed network G = (V,E) where V is the set of species (nodes) and E the set
of directed interactions where each element has the form (u, v) with u, v ∈ V 2. In Table 1,
we call G′ the undirected network derived from G. In other words G′ = (V,E ′) where ∀v, u ∈
V 2, (v, u) ∈ E ′ ⇔ ((v, u) ∈ E or (u, v) ∈ E).
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Name Description Used in

Density
Ratio of number of edges on number of
possible edges for the undirected network:
2|E′|/(|V |(|V | − 1))

Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Directed density
Ratio of number of edges on
number of node pairs: |E|/|V |2

Kortsch et al. [2019]
Wood et al. [2015]
Thompson and Townsend [2005]

Average generality Average number of preys per predator Kortsch et al. [2019]
Braga et al. [2019]

Generality s.d. Standard deviation of generality
Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]

Vulnerability s.d. Standard deviation of number
of predators per prey

Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]

Mean trophic level Average of species Trophic levels Braga et al. [2019]
Trophic length Maximum minus minimum trophic levels

Proportion of omnivores Proportion of species who consume
species at various trophic levels)

Kortsch et al. [2019]
Braga et al. [2019]

Level of omnivory Standard deviation of
preys trophic levels Kortsch et al. [2019]

Top species ratio Ratio of species with no predators
Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Basal species ratio Ratio of species with no preys
Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Intermediate species ratio Ratio of species that are
neither basal nor top

Kortsch et al. [2019]
Braga et al. [2019]
Thompson and Townsend [2005]

Modularity Measure of compartmentalization
see Newman [2006]

Kortsch et al. [2019]
Tylianakis et al. [2010]

Transitivity
/clustering coefficient

Probability that two species linked
to a third are also linked
together in the undirected network
[Wasserman et al., 1994]

Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]

Diameter Length of the longest shortest-
path in the (directed) network

Mean distance
/ Characteristic path length
/ Mean Shortest-Path length

Mean length of the directed
shortest-paths between
all pairs of species

Kortsch et al. [2019]
Braga et al. [2019]
Wood et al. [2015]
Thompson and Townsend [2005]

Assortativity of degrees Correlation between out and in
degrees of nodes pairs [Newman, 2002]

Table 1: Common network metrics to describe and compare foodwebs architecture.

Moreover, we plot in Figure 1 (resp. in Figure 2) the values of each pairs of metrics for
a subsample of 800 simulated networks (resp. Pearson’s correlation coefficient between each
pairs of metrics over all simulated networks). Figure 2 exhibits 4 groups where each metric is
either highly correlated or highly anti-correlated to all others. The first group shows a high
connection between modularity and various metrics related to the distribution of degrees. The
second group shows a high correlation between all metrics built from the same computation

2



of trophic levels [Williams and Martinez, 2004]. The third group is composed of statistics of
the distribution of distances (diameter, mean_distance), proportions of basal, intermediate
and top species and transitivity, which are all linked to nodes pairs distances in the network.
The fourth is composed of assortativity alone, which is decoupled from all other metrics. Note
that combining a diversity of redundant metrics in the embedding may be useful, as long as
they are not fully correlated, because each metric may compensate biases of others in certain
cases leading to an overall better separation of a targeted architectural property.

Figure 1: Multi-scatter plots of foodweb metrics used in this study (subsample of 800 simulated
networks).

A.2 Triangular motifs in Motifs2Vec

Figure 3 shows the 13 directed triangular motifs whose occurrence proportions are used in
Motifs2Vec.
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Figure 2: Correlations between foodweb metrics used in this study, computed over all simulated
networks.

A.3 Introduction to Graph2Vec

Graph2Vec [Narayanan et al., 2017] is a graph embedding that is based on the decomposition
of a network into its nodes rooted subtrees. A node rooted subtree represent the local neigh-
borhood around a node and is constructed from an iterative algorithm, as in the Weisfeiler-
Lehman graph kernel computation [Shervashidze et al., 2011]. At each iteration, the algorithm
concatenates, for each node, its label with those of its neighbors, determining the structure
of a (labelled) tree, compresses the character string into a hash-code and relabels the original
node with this hash-code. At the end of iteration i, each node has a label (hash-code) that is
uniquely associated with a tree of depth i, whose root is the initial node label and the forks of
level k have the labels of the neighbors of order k [Shervashidze et al., 2011]. The method then
lists for each network all the hash-codes found from iterations 0 up to a user-chosen maximal
depth.

Then, Graph2Vec generates an embedding of predetermined dimension where networks
having many common hash-codes and sharing the absence of many hash-codes (held by other
networks from the dataset) are close together. In this second step, the embedding is optimized
using the Skipgram model and negative sampling [Mikolov et al., 2013]. It creates at the same
time a vector representation for each network of the dataset and for any subtree found across
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Figure 3: The 13 directed triangular motifs without self-loops used in Motifs2Vec.

all networks. The optimisation of the objective function (Equation (5) in Narayanan et al.
[2017]) maximises the proximity between a network vector and the vectors of subtrees that
it contains while pushing away the network vector and the vectors of subtrees that it doesn’t
contain but exist elsewhere in the networks dataset.

A.4 Evaluation and selection of Graph2Vec parameterizations

To simplify the main manuscript, we selected only two versions of Graph2Vec parameteriza-
tions. Table 2 reports the predictive accuracy obtained on more diverse parameterizations of
Graph2Vec including: various number of iterations (or depth, identified by the prefix "dp" in
row names of Table 2), default embedding that relies on the directed network with directions
from preys to predators (identified by suffix recto in row names of Table 2) versus its concate-
nation with the embedding obtained on the transposed networks (no suffix), the integration
of trophic groups as node labels (identified by the suffix ’lab’ in row names of Table 2) versus
no node labels (no suffix).

The predictive accuracy is overall significantly increased when concatenating the recto and
verso embeddings compared to the recto embedding alone (Table 2). Also, the predictive accu-
racy decreased slightly with increasing number of iterations for non-node labelled Graph2Vec
versions and for all architectural properties. It is likely that Graph2Vec with higher number
of iterations couldn’t exhibit consistent patterns of similarities across networks because high
order neighborhoods are potentially much more diverse, making each network more dissimilar
to the others. No obvious trend appeared among node-labelled Graph2Vec parameterizations,
and those were approximately equivalent for all properties. In the main manuscript, we kept
only parameterizations with 2 iterations, which were among the best parameterizations in
most cases: Graph2Vec_lab_dp2 and Graph2Vec_dp2.
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method maxTrophLen TrophLens nModules omni generalism loop n
Graph2Vec_dp2_recto 50 33 84 67 66 98 83

Graph2Vec_lab_dp2_recto 100 99 100 91 84 100 98
Graph2Vec_dp1_recto 50 32 85 65 66 98 83

Graph2Vec_lab_dp1_recto 99 98 100 91 87 100 99
Graph2Vec_dp4_recto 47 30 83 67 66 98 81

Graph2Vec_lab_dp4_recto 100 99 100 90 83 100 98
Graph2Vec_dp1 70 51 91 83 78 100 93

Graph2Vec_lab_dp1 99 99 100 92 90 100 99
Graph2Vec_dp2 67 50 89 82 76 100 93

Graph2Vec_lab_dp2 100 99 100 92 88 100 99
Graph2Vec_dp4 64 45 88 81 75 99 91

Graph2Vec_lab_dp4 100 99 100 91 86 100 99

Table 2: Predictive accuracy computed for different Graph2Vec configurations and all prop-
erties.

B Trophic networks simulation

We describe how we generate, for each network, a group model (a Stochastic Blockmodel,
SBM, see Allesina and Pascual [2009]) based on the drawing of six architectural properties,
and how we draw a random network from it.

Prior to generate a network, we parameterized its group model. We started by defining the
trophic groups of the group model, which are parameterized by three architectural properties.
First, we draw nM uniformly in {1, 2} (labelled nModules) which is the number of modules
in the network. Species that belong to a given module are more likely to interact together
than with species from other modules. Second, for each possible module i ∈ {1, nM}, we inde-
pendently and uniformly draw li in {1, 2, 3, 4} the trophic length in that module (= number of
trophic levels minus one). Each trophic level inside each module represents one trophic group.
The list (li)i∈J1,nM K is another architectural property, called TrophLens, which determines
the trophic groups composition. Then, the group model has nb =

∑nM

i=1(li + 1) ∈ {2, ..., 10}
trophic groups. TrophLens has 20 possible values (one unique module with four possible val-
ues for the number of trophic levels, or two modules each one with four possible values). We
also introduce maxTrophLen, the maximum trophic length across the modules, i.e. max-
TrophLen=maxi∈[1,nM ] li. For example, Figure 4 illustrates a potential group model with
nModules= 2 and TrophLens= (2, 1). Trophic groups composing the group model are la-
belled with the number of the module they belong to and with their trophic level, starting
from the basal species and the interactions go from the prey to the predator.

Then, we allowed (directed) interaction probabilities only between specific pairs of groups
as follows: the probability Ppred of interaction between successive trophic levels in a same
module is based on a constant term Pbase = 0.7 and modulated by other variable terms (see
Equation (1) below). Three independent architectural properties parameterize the interaction
probabilities. Each is drawn as 1 (activated) or 0 (non-activated) with uniform probabil-
ity. First, Io ∈ {0, 1} (labelled omni) indicates the apparition of omnivory patterns: when
activated (Io=1), the probability of interaction between species from a given trophic group
to species from other groups at least two levels higher, inside the same module, was set to
Pomni = 0.2. Secondly, Ig ∈ {0, 1} (labelled generalism) increases the predation probability
(Ppred) by Pgeneralism = 0.2. Third, Il ∈ {0, 1} (labelled loop) determines the apparition of
an interaction probability PLoop = 0.15 between species of a same group (cannibalism was
excluded). We also allowed inter-module interactions and only between successive trophic
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levels, with a probability Pinter = 0.1. We apply a corrective term to Ppred to compensate
the effects of omni and loop on the expected connectance of the network simulated from the
group model. The derivation of this corrective term is shown in the next paragraph and leads
to

Ppred := Pbase + IgPgeneralism − IoPomni

∑nM

i=1 1li>1

(
li
2

)
nb − nM

− IlPloop
n(n− nb)n

2
b

n2(nb − nM)
. (1)

The network size (species richness) was the last parameter of our group model: over the
5000 generated group models, half had n = 60 species while the rest had n = 120 species to
introduce size variability across networks.

Once a group model was parameterized, we draw a trophic network from it. We associated
one species to each group and then randomly distributed the remaining species uniformly
across the groups. Then, for each pair of species, we independently draw the realisation of an
interaction as defined by the group model given their respective groups.

Figure 4: A schematic representation of a group model. It has nb = 5 trophic groups named
g1.1 (basal species in module 1), g1.2, g1.3 (top predators in module 1), g2.1 (basal species
in module 2), g2.2 (top predators in module 2). Solid black arrows indicate non-null inter-
group interaction probabilities. Red and green arrows represent interaction probabilities that
would appear if respectively omni and loop were activated. The group model has two mod-
ules (nModules=2) composed by 3 and 2 trophic groups respectively (TrophLens=(2,1),
maxTrophLen=2). Each group represents a trophic level inside a module. Ppred controls
intra-module predation while Pinter controls inter-module predation.

Controlling networks connectance through predation link probability. Variables
omni and loop would induce a variation in the expected connectance of the simulated net-
works if Ppred was defined independently of those random properties. We introduced a cor-
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rective term in Ppred so that the network expected connectance is not affected by omni and
loop. Then, this corrective term insures that connectance of the simulated networks does not
vary too much except by the activation of generalism, and the effect due to trophic group
composition and compartmentalisation.

To justify this corrective term, we firstly establish the expected connectance of simulated
networks from an arbibtrary group model setting. Let us denote the following elements of the
group model:

• Let G = (V,E) be the random network to be simulated, we denote by n its number of
nodes.

• nM ∈ {0, 1} (nModules property) is the number of compartments or Modules in the
group model.

• Let (li)i∈J1,nM K (TrophLens property) be the numbers of trophic levels in each compart-
ment, i.e. the number of groups that they contain. The group model thus contains a
total number of nb =

∑nM

i=1 li groups.

• Let λ ∈ V nb be a random partition of nodes V such that every node is affected to one
of the groups and the group of a node is drawn according to a uniform multinomial
distribution.

• Let Io ∈ {0, 1} (omni property) be the variable indicating a non-null linking probability
Pomni = 0.2 of omnivory links in the group model.

• Let Il ∈ {0, 1} (loop property) be the variable indicating a non-null probability Ploop =
0.15 of intra-group linking in the group model.

• Let Ppred be the simple predation probability between successive trophic groups inside a
compartment of the group model.

• Let Ig ∈ {0, 1} (generalism property) be the variable indicating the increase of Ppred

by Pgeneralism = 0.2, inducing a higher number of preys per predator in average.

Then, the expected connectance of G may be additively decomposed as:

C = Cpred + 1nM=2Cinter + Io Comni + Il Cloop.

Every term is developed further, and the total expected connectance is thus approximated
by (see paragraphs below for details on each contribution):

C ≈ 1

n2

[
(Ppred + 1nM=2Pinter)

n2

n2
b

(nb − nM) + IoPomni
n2

n2
b

nM∑
i=1

1li>2

(
li − 1

2

)
+ IlPloop

n(n− nb)

nb

]

=
1

n2

n2

n2
b

(nb − nM)
[
Ppred + 1nM=2Pinter + IoPomni

∑nM

i=1 1li>2

(
li − 1

2

)
nb − nM

+ IlPloop
n(n− nb)nb

n2(nb − nM)

]
.
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Thus, as we want to define Ppred such that the expected connectance is not affected by
loop and omni, and given that Ploop et Pomni are constant, it must be decomposed as:

Ppred := P ′pred − IoPomni

∑nM

i=1 1li>2

(
li − 1

2

)
nb − nM

− IlPloop
n(n− nb)nb

n2(nb − nM)
.

Where P ′pred is independent of loop and omni. We then defined P ′pred := Pbase+IgPgeneralism,
where Pbase = 0.7, to introduce a positive influence of generalism on the number of preys
per predator. Note that nModules and TrophLens will impact the expected connectance of
the network. We implicitly assume that this impact is realistic and should not be corrected.

Contribution of simple predation Cpred.
We compute the approximated expectation of the number of simple predation interaction,

i.e. interaction from any group to the group that is just one trophic level above in the same
module, divided by the maximum number of interactions in the network n2. It is computed
as follows:

E(Cpred) ≈ 1
n2

∑nM

i=1

∑li
j=2 Ppred E(ni

j n
i
j+1) ≈ 1

n2Ppred
n2

n2
b
(nb − nM)

We made, here and in the following paragraphs, the approximate assumption that the
number of species n′ in a given group follows a binomial distribution, n′ ∼ B(1/nb, n), and
that is is independent of the number of species in other groups. Note also that this formula
assumes that species are distributed uniformly and independently across groups, whereas in
our simulation we first distributed one species per group before distributing the remaining
species uniformly. The error brought by our assumption is minor because the probability
that there exists a group without any species is always inferior to 0.02 even in the worst case
where there are 60 species and the group model has the maximum number of 10 groups. This
assumption also applies to the following contributions.

Contribution of omni, Comni.
We compute the approximated expectation of the number of interactions appearing across

a non-successive pair of trophic levels inside a same module, divided by the maximum number
of interactions in the network n2. It is computed as follows:

E(Comni) ≈ 1
n2

∑nM

i=1 1li>2

∑li−2
j=1

∑li
k=j+2 E(ni

jn
i
k)Pomni

≈ 1
n2

∑nM

i=1 1li>2
n2

n2
b
Pomni

∑li−2
j=1

∑li
k=j+2 =

1
n2

n2

n2
b
Pomni

∑nM

i=1 1li>2

(
li − 1

2

)
This is because:∑li−2

j=1

∑li
k=j+2 =

∑li−2
j=1

∑li−2
k=j =

∑li−2
j=1 li − 1− j =

∑li−2
j=1 j =

li−2+1
2

(li − 2) =

(
li − 1

2

)

Contribution of loop, Cloop.
We computed the expectation of the number of interactions appearing across a pair of

species inside a same group, divided by the maximum number of interactions in the network
n2. It is computed as follows:

E(Cloop) =
1
n2

∑nM

i=1

∑li
j=1 PloopE

(
(ni

j)
2 − ni

j

)
= 1

n2

∑nM

i=1

∑li
j=1 Ploop

n
nb
( n
nb
− 1)

= 1
n2

n(n−nb)
nb

Ploop
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Contribution of inter-module interactions, Cinter.
We compute the approximated expectation of the number of interactions appearing across a

successive trophic levels in distinct modules, divided by the maximum number of interactions
in the network n2. is computed in the following expression which is conditional to ‘nM = 2‘,
otherwise, the contribution is 0.

E(Cinter) =
1
n2 (
∑l1−1

j=1 Pinter E(n1
j n

2
j+1) +

∑l2−1
j=1 Pinter E(n2

j n
1
j+1))

= 1
n2Pinter

n2

n2
b
(nb − nM)

To conclude this section, we show in Figure 5 boxplots of the networks density against
3 quantities: the total number of trophic groups nb ∈ {2, . . . , 10} and the binary values of
generalism and nModules.

Figure 5: Boxplot of simulated networks density versus number of trophic groups (nb), gen-
eralism and nModules.

C UMAP plans and architectural properties

Figures 6,7, 8, 9 and 10 hereafter show the UMAP plans of all 7 tested embedding meth-
ods where, respectively, the points are colored according to the category of maxTrophLen,
nModules, omni, generalism and loop. Also, the size of the network (60 or 120) is indi-
cated by the shape of the point. In each plan we represented the same random sample of 600
networks taken from the 5000 total simulated random networks.
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Figure 6: UMAP plans of all tested embeddings colored for maxTrophLen.
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Figure 7: UMAP plans of all tested embeddings colored for nModules.
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Figure 8: UMAP plans of all tested embeddings colored for omni.

13



Figure 9: UMAP plans of all tested embeddings colored for generalism.

14



Figure 10: UMAP plans of all tested embeddings colored for loop.
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D Criterions to measure the quality of the embeddings

D.1 Predictive accuracy

We measured whether the position of a network in an embedding can be related to the category
of an architectural property (e.g. the value 2, 3, 4 or 5 for the property maxTrophLens).
To do so, we relied on Random Forests [Breiman, 2001] trained to predict the category of a
network from its position in the embedding. Then, we measured the Out-Of-Bag classification
accuracy of this classifier, namely the ratio of well classified networks over the total number
of networks (when each tree is trained on all but one network and then used to predict the
category of this network). In the following, this measure is simply called predictive accuracy. It
quantifies how well some optimized (and non necessarily linear) boundaries in the embedding
space may separate the categories of the networks. The predictive accuracy can thus be very
good even if networks from a same category are distributed in several disconnected subspaces
of the embedding. The Random Forest (R-package randomForest) was built with 300 trees
and the number of variables available to each tree branch (argument mtry) was optimized to
minimize the average Out-Of-Bag prediction error. Note also that the Random Forest trained
on the embedding obtained from ShortPaths2Vec_lab was learnt after reducing the dimension
of this embedding (originally 499) to 60 using Singular Value Decomposition, preserving most
of the embedding variability (otherwise the predictive accuracy would have been unfairly
reduced compared to other approaches because of overfitting of the random forest).

D.2 Segregation of categories in the embedding

Our second criterion asks, given an architectural property, how well networks from a same
category are aggregated in the embedding compared to networks from distinct categories.
We measured it with the partial R-squared (R2-ebd herafter) of the nonparametric multi-
variate analysis of variance [Anderson, 2001] of the embedding, with the grouping of net-
works given by their architectural category. For a property with K categories, it is given
by R2

ebd = Q2
∑

k,k′∈J1,KK2 ‖ck − c′k‖/(K2
∑

i,i′∈J1,QK2 ||ei − ej||), where Q is the number of net-
works, (ei)i∈J1,QK is the embedding vector of network i, the vector ck is the geometric center
of category k, and ‖ · ‖ is the Euclidean distance. Thus, R2

ebd ∈ [0, 1], with R2
ebd = 0 if and

only if all centers are confounded, and R2
ebd = 1 if and only if the points of each category are

concentrated at their respective center and at least two centers are distinct. We can say that
the highest is the aggregation of categories in the embedding, the closest to 1 is the R2-ebd. A
high R2-ebd therefore increases the chances that the user will discover these groups regardless
of the clustering or dimension reduction method.

D.3 Measuring segregation of categories in 2D after dimension re-
duction

We applied UMAP to reduce the dimension of the embeddings to 2, relying on 150 neighbours
and the Euclidean distance as hyperparameters of the method. This was done for each of the
seven embedding approaches. We used a large number of neighbors to preserve the large scale
distances among points and to best reveal the separation of large clusters of networks. Our
third criterion, which best approaches the embedding method suitability (in combination with
UMAP) for unsupervised analysis, consisted in calculating again the partial R-squared in the
two-dimensional UMAP plane obtained from the embedding. We call this metric R2-umap.
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D.4 Decrease in segregation of categories due to size variability

This last criterion concerns the robustness of segregation of the architectural categories to the
variability of network sizes. We propose a measure of this phenomenon that is the relative
decrease of the partial R-square when the size is variable (i.e. R2-ebd and R2-umap) compared
to the corresponding value when the size is constant. To compute that we use the R2-ebd
and R2-umap described earlier, which are computed on all networks, i.e. with sizes 60 and
120 together. We also computed the partial R-squared on the networks of size 60 only, called
R2-ebd_60 (resp. R2-umap_60) and on networks of size 120 only, called R2-ebd_120 (resp.
R2-umap_120). Then, we computed the percent of loss in segregation in the embedding (resp.
UMAP plane) due to size variability R2-loss-ebd (resp. R2-loss-umap) with the following
formulas

R2− loss-ebd = 100
(R2-ebd60 + R2-ebd120)/2− R2-ebd

(R2-ebd60 + R2-ebd120)/2
.

R2− loss-umap = 100
(R2-umap60 + R2-umap120)/2− R2-umap

(R2-umap60 + R2-umap120)/2
.

This R2-loss-ebd (resp. R2-loss-umap) is most likely superior to 0 and always inferior
to 100. If it equals 0, there is no effect of size variability on the segregation of categories,
whereas if it equals 100, then the segregation is totally lost due to network sizes variability. In
other words, the higher is the R2-loss-ebd (R2-loss-umap), the less robust is the embedding
(resp. UMAP plane obtained from the embedding) to size variability for the segregation of
the targeted property. The R2-loss-ebd are given for each method and property in Table 3
while the R2-loss-umap are given in Table 4.

method maxTrophLen TrophLens nModules omni generalism loop
Groups2Vec 0 0 0 26 60 51
Metrics2Vec 10 11 9 9 10 10
Motifs2Vec 0 0 0 0 0 0
Graph2Vec 61 65 64 72 52 23
Graph2Vec_lab 26 21 22 20 43 15
ShortPaths2Vec 9 7 6 3 7 2
ShortPaths2Vec_lab 1 1 1 1 4 2

Table 3: R2-loss on embeddings (R2-loss-ebd): Loss of aggregation of categories (in %) due
network sizes variability for each architectural property and each embedding.

method maxTrophLen TrophLens nModules omni generalism loop
Groups2Vec 0 0 0 25 52 40
Metrics2Vec 9 10 4 -3 21 12
Motifs2Vec 0 1 0 -1 3 0
Graph2Vec 13 14 12 55 12 14
Graph2Vec_lab 16 18 15 16 21 10
ShortPaths2Vec 4 7 8 2 18 2
ShortPaths2Vec_lab 3 0 0 0 100 0

Table 4: R2-loss on Umap plans (R2-loss-umap): Loss of aggregation of categories (in %) due
network sizes variability for each architectural property and each Umap plan.
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E Agreements between embeddings

One complementary question that may be asked is: what is the level of agreement between
embedding methods? In other words, what is the degree of similarity between their placement
of the simulated networks in their respective embeddings? To answer this question, we use the
distance correlation [Székely and Rizzo, 2009] with the Euclidean Distance. This metric varies
between 0 and 1. An agreement of 1 means that the Euclidean Distance Matrices (EDMs) of
the two embeddings are equals up to a constant factor. In other words, an agreement of 1means
that the two embeddings are equal up to a composition of a rigid transformation (composition
of rotation, translation, reflection) and homogeneous dilation (homothety) [Dokmanic et al.,
2015]. More generally, this metric is insensitive to those compositions of transformations,
which is an important property for our application. For example Graph2Vec may produce
unstable embeddings that are equivalent up to those transformations. The distance correlation
between all pairs of embeddings of the simulated networks is represented in Figure 11.

We can clearly see from correlations in Figure 11, that are all superior to 0.45, and form
the scatter-plots of distances in the lower triangle of the same Figure, that the distances
between networks are overall highly correlated between embeddings. It means that each
network position relatively to others is somehow consistent from one embedding to another.
This may be explained because one can find dimensions that quantify approximately the same
topological features across embeddings. For instance, the assortativity column in Metrics2Vec
measures the frequency of closed triangles which is highly correlated with several columns of
Motifs2Vec.
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Figure 11: Agreements between embeddings. In the upper triangle, we represent the distance
correlation between each pair of embeddings. On the diagonal, we plot the histogram of
networks pairs distances per embedding. In the lower triangle, we scatter-plot the networks
pairs Euclidean distances for each pair of embeddings: The higher the distance correlation,
the more the points are aggregated along a straight line.
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