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Robust tuning of Robbins-Monro algorithm for quantile estimation - Application to
wind-farm asset management

Bertrand Iooss & Jérôme Lonchampt
Department PRISME, EDF R&D, Chatou, France. E-mail: bertrand.iooss@edf.fr - jerome.lonchampt@edf.fr

In uncertainty quantification of numerical simulation model outputs, the classical approaches for quantile estimation
requires the availability of the full sample of the studied variable. This approach is sometimes not suitable as large
ensembles of simulation runs need to gather a prohibitively large amount of data and computer memory. This
problem can be solved thanks to an on-the-fly (iterative) approach based on the Robbins-Monro algorithm. We
numerically study this algorithm for estimating a discretized quantile function from samples of limited size (a few
hundreds observations). We also define “robust” values of the algorithm parameters in two practical situations: when
the final number of the model runs N is a priori fixed and when N is unknown in advance (it can then be minimized
during the study in order to save cpu time cost). This method is applied to the estimation of indicators in the field
of engineering asset management for offshore wind generation. We show how the proposed algorithm improves the
efficiency of the tool to support risk informed decision making in the field of offshore wind generation.

Keywords: Uncertainty, Online statistics, Robbins-Monro, Averaging, Offshore wind, Operations and Maintenance.

1. Introduction
In engineering studies, a numerical simulation
model is often used as a tool to assess the safety
of a complex industrial system (de Rocquigny
et al., 2008). For such a goal, when developing
and using the numerical simulation model, uncer-
tainty quantification (UQ) and global sensitivity
analysis are valuable tools (Smith, 2014). It is
then required to run the simulation model several
(or even many) times with different values of
the model inputs (according to their predefined
probability laws) in order to calculate statistical
quantities of interest (noted QoI) on the model
outputs, i.e. their mean, variance, quantiles, proba-
bility of threshold exceedence, sensitivity indices,
. . . (Baudin et al., 2017). To estimate these QoI,
the usual practice is to run all the simulation and
store all their results before calculating the QoI.

A major difficulty arises when the UQ ensemble
runs produce massive amount of data (e.g. when
state and time variables are simulated) that have
to be statistically aggregated, making them ex-
tremely vulnerable to the storage issues and I/O
bottleneck. This is the case during the indica-
tors’ estimation phase in the field of engineering
asset management for offshore wind generation.
For large windfarms, asset-management Opera-
tions and Maintenance (O&M) models are as-
sessed through Monte-Carlo simulation and risk-
informed indicators such as quantiles are usually
estimated a posteriori based on the results of
all replications (Lonchampt et al., 2019). Saving
these data leads to some issues regarding both
computing time and memory that diminish the

efficiency of the tools to support decision making.
To keep a manageable amount of data, the

classical approach, used in most of the UQ stud-
ies, consists in taking a limited number of out-
puts. In this paper, we adopt the more suitable
technique based on one-pass statistical algorithms
(also called iterative, recursive, update, online or
even parallel statistics). Such algorithms only re-
quire to store the current results that can next be
updated with incoming new samples: the required
storage memory is therefore only the one needed
for the results of one (or a limited number) sim-
ulation. This iterative statistical estimation issue
is a relatively classical subject in the treatment of
large volumes of data, in the so-called big data
framework (Wang et al., 2016). However, iterative
estimation issues have been little explored in UQ
of numerical models (see Ribés et al. (2021) for
an overview of the different underlying update
statistical issues in UQ).

In this paper, we focus on the estimation of
quantiles, as often required in simulation-based
risk assessment, but in an iterative fashion. Indeed,
quantiles are essential elements for the calcula-
tion of prediction or tolerance intervals, and for
the detection of outliers, in particular in safety
studies. As shown in Ribés et al. (2021), the
Robbins-Monro based estimators of quantiles are
robust and then good candidates to fix computing
issues for wind-turbines O&M models. Indeed,
the chosen algorithm has to be capable to deal
with complex stochastic variables as the outputs
may be multimodal, mixed discrete-continuous or
supported on bounded or semi-infinite intervals.
This paper shows how the proposed algorithm
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improves the efficiency of the tool to support risk
informed decision making in the field of offshore
wind generation.

The following section presents the Robbins-
Monro (RM) algorithm for quantile estimation.
It allows to introduce the tuning RM parameters
issue that is studied in this paper by the way of
intensive numerical tests. Two different situations
are then distinguished. First, the final number of
iterations (i.e. number of computer model runs)N
is a priori fixed, which is a classical way to deal
with UQ problems. Section 3 defines well-tuned
choices for the RM parameters in this context.
Second, N is unknown in advance. Indeed, in
practical situations, it is strongly interesting to
stop the quantile estimation process when a suf-
ficient precision has been reached in order to save
cpu time cost. Section 4 shows the interest to use a
stochastic adaptive stepsize rule associated to the
averaged RM estimator in this context. Section 5
gives our application in the field of offshore wind
generation and Section 6 concludes the work.

2. Quantile estimation
For the presentation of the algorithm, we consider
a scalar output Y ∈ R which writes

Y = G(X) (1)

where G(·) is the model function and X ∈ Rd is
the vector of the d random input variables (defined
by their joint probability density function). We
look for an estimator q̂α of α-quantiles qα (of the
random variable Y ) defined by:

qα = inf{y ∈ R |P(Y ≤ y) ≥ α} , (2)

with α ∈ [αmin, αmax] where αmin (∈]0, 1[) and
αmax (∈]0, 1[) are the minimal and maximal val-
ues of the orders of the estimated quantiles. In our
study, αmin (resp. αmax) will be equal to 5% (resp.
95%). The empirical estimator of qα writes

q̂Nα = Y(bαNc+1) , (3)

where (Y(1), . . . , Y(N)) is the ordered sample
associated with the i.i.d. sample (Y1, . . . , YN ).
The sample (Y1, . . . , YN ) comes from a so-called
Monte Carlo uncertainty propagation of N i.i.d.
values of X through the model G(·) (see Eq. (1)).

Instead of this empirical estimator, the RM al-
gorithm (Robbins and Monro, 1951) is devoted to
iterative quantile estimation. It consists in updat-
ing the current quantile estimator (noted qα(n))
with each new observation Yn+1 with n ≥ 1 by
the recurrence formula

qα(n+ 1) = qα(n)− C

nγ
(
1Yn+1≤qα(n)

− α
)
,

(4)
with qα(1) = Y1 (initialization step from the first
data), C > 0 a constant and γ ∈]0, 1] governing

the rate of descent of the stochastic algorithm.
The required memory storage for this estimator is
two values (one realization of Y and one quantile
estimate).

At finite sample size N , the RM estimator of
the α-quantile of Y is therefore q̂α = qα(N).
This estimator is consistent and asymptotically
Gaussian for γ ∈]0.5, 1] (Duflo, 1997); this prop-
erty provides essential guarantees of convergence.
The value of γ does not therefore seem to be of
crucial importance but, for low N , we will see
that its adjustment is important. Indeed, in a lot
of industrial studies, we have to deal with limited
number of simulations (de Rocquigny et al., 2008)
(typically a few hundreds) and, in this case, the
asymptotic regime is not reached (Tierney, 1983).

3. Fixed number of model evaluations
In this section, the final size N of available real-
izations of the model output Y is fixed. The tuning
of the γ parameter is first considered; then, the
tuning of the C constant is studied.

3.1. Robust tuning of γ via a linear profile
We are looking for a value of γ which gives “ac-
ceptable” results whatever the distribution of Y
(unknown in practice). Our numerical test consid-
ers the cases Y ∼ N (0, 1) and Y ∼ U [0, 1], with
N = 1000, C = 1 and three orders of quantile
α (0.05, 0.5 et 0.95). For each of these cases,
Figures 1 and 2 show 50 independent trajectories
of the RM estimator qα(n) for n = 1, . . . , N by
considering three different choices of γ: 0.6, 1 and
a linear variation as a function of n (Ribés et al.,
2021) which is written

γ(n) = 0.5 + 0.5
n− 1

N − 1
. (5)

The theoretical and asymptotic properties of the
RM algorithm are preserved using Eq. (5), be-
cause the γ values lie in ]0.5, 1].

The idea of the γ(n) profile, given by Eq.
(5), is to have strong fluctuations of the estima-
tor at the beginning of the algorithm (to remove
its dependence on the values of Y drawn first)
then weak fluctuations at the end of the algorithm
(to stabilize the estimator at the last iterations).
This so-called search-then-converge learning rule
(Powell, 2011) ensures a regular decrease of the
mixing (from strong to weak) all along the RM
iterations. Indeed, we can see on Figures 1 and 2
that the fluctuations with γ = 1 are too small in
the Gaussian case (γ = 0.6 is satisfactory in this
case) and the fluctuations with γ = 0.6 are too
strong in the uniform case (γ = 1 is satisfactory
in this case). The profile of a linear variation of
γ achieves a compromise between these two ex-
treme cases (and in many other tests carried out).
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3.2. Robust tuning of C
In the previous section, the constant C has been
set to 1. This choice turns out to be catastrophic
when the variable considered has a dispersion
which is not of this order of magnitude. It should
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(a) γ = 0.6.
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(b) γ = 1.
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(c) Linear γ evolution.

Fig. 1.: Simulations of trajectories of the RM algo-
rithm (N = 1000, Y ∼ N (0, 1)). Red lines give
exact order quantiles 0.05, 0.5 and 0.95.

be remembered that in practice this dispersion
of the studied variable Y is unknown. Then, as
for γ, we look for a choice of C which gives
“acceptable” results whatever the distribution of
Y (unknown in practice).
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(a) γ = 0.6.
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(c) Linear γ evolution.

Fig. 2.: Simulations of trajectories of the RM al-
gorithm (N = 1000, Y ∼ U [0, 1]). Red lines give
exact order quantiles 0.05, 0.5 and 0.95.
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Figure 3 shows 50 independent trajectories of
the RM estimator qα(n) for n = 1, . . . , 1000, Y
following a lognormal law (log(Y ) ∼ N (0, 1))
and three orders of quantile α (0.05, 0.5 et 0.95).
γ has a linear profile and different settings ofC are
tested: 1, 10 and an adaptive tuning which writes

C(n) = |qαmax(n− 1)− qαmin(n− 1)| , (6)

where n ≥ 2 and C(1) = |Y2 − Y1|. In Figure
3, it is clear that, for the quantile of order 0.95,
C must be large enough to obtain sufficiently
large fluctuations from the beginning of the RM
algorithm. The adaptive fit of C via Eq. (6) allows
to automatically regulate these fluctuations. Other
numerical tests on distributions of different types
have confirmed the correctness of this choice.

4. Non-fixed number of model
evaluations

From a user point of view, fixing the number N
of model evaluations at the beginning at the study
can be quite impractical. Indeed, the user has often
no idea of the sample size that is needed to com-
pute the QoI with a sufficient precision. Moreover,
the profile that has been chosen in Section 3.1
for γ (Eq. (5)) depends on N . To get rid of the
linear profile for γ, we first introduce an averaged
RM version; then, a stochastic adaptive stepsize is
proposed; finally, a simple stopping rule is given.

4.1. Averaged version of Robbins-Monro
It is well known that the averaged version of RM
(noted ARM) converges faster than the classical
RM algorithm of Eq. (4) (Polyak and Juditsky,
1992). The idea is to exploit the recursive formula
for computing a mean, to keep a quantile mean up-
date (after applying the RM estimator) at each iter-
ation. By preliminary numerical tests (not shown),
we have however noted that, if an averaged quan-
tile is introduced into (4), the fluctuations of the
estimator along the iterations are not of sufficient
magnitude to converge to the exact value. It is
thus necessary to preserve the formulation (4) for
qα(n) and to store in addition, at each iteration,
the averaged estimator (noted q̄α(n)):

q̄α(n+ 1) = q̄α(n) +
qα(n+ 1)− q̄α(n)

n+ 1
, (7)

with n ≥ 1 and q̄α(1) = Y1. The required mem-
ory storage for the ARM estimator is three values
(one realization of Y and two quantile estimates).

Figure 4 compares the RM and ARM algo-
rithms in the case Y ∼ N (0, 1), N = 1000 and
the adaptive tuning of C (Eq. (6)). The quantiles
are estimated for orders α discretized inside the
interval [0.05, 0.95] by step of 0.01. The metric
used (on the ordinate) is the mean square error
between the exact quantiles and the estimated

quantiles. Estimates are repeated 100 times in-
dependently in order to capture the variability of
errors due to sampling. The reference estimator is
the empirical estimator (which is not iterative). In
these examples, the performances of ARM with
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(a) C = 1.
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(c) Adaptative C.

Fig. 3.: Simulations of trajectories of the RM al-
gorithm (N = 1000, Y ∼ LN (0, 1)). Red lines
give exact order quantiles 0.05, 0.5 and 0.95.
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a γ-linear profile (γ(n)) are similar and close
to those of the empirical estimator, and better
than those of RM. A constant and low γ (equals
to 0.6) gives even better results with ARM (but
not with RM) for both distribution cases (nor-
mal and uniform). In fact, the averaging in ARM
(which makes the quantile estimator converges
more quickly) makes it unnecessary to increase
the γ towards 1 that we have with the linear
profile.

Other tests with different distributions present
similar conclusions. They also confirm that it is
necessary to keep the adaptive tuning of C.

4.2. Application of the Kesten’s rule
Another way of improvement of the RM algorithm
would be to apply a stochastic adaptive stepsize
rule (instead of a moving γ). The old and simple
Kesten’s rule (Kesten, 1958; Powell, 2011) allows
to do so by incrementing n (in the stepsize 1/n)
only if the two last errors have different signs.
It is based on the idea that “if we are far from
the optimal, the errors tend to all have the same
sign; as we get close, the errors tend to alternate”.
Then, it slows down the stepsize reduction at the
beginning of the algorithm.

The RM estimator using the Kesten’s rule
(noted KRM) writes

qα(n+1) = qα(n)− C
kγn

(
1Yn+1≤qα(n)

− α
)
, (8)

with n ≥ 1, qα(1) = Y1 and

if n > 2, kn = kn−1 + 1δ(n)δ(n−1)<0 ,
if n ≤ 2, kn = n , (9)
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Fig. 4.: Mean square errors of discrete quantile
functions for the empirical, RM and ARM estima-
tors (Y ∼ N (0, 1), N = 1000).

with δ(n) = qα(n) − qα(n − 1). The required
memory storage for the KRM estimator is four
values (one realization of Y and three quantile es-
timates). If ARM (see section 4.1) is used instead
of RM, the estimator is noted KARM and requires
a memory storage of five values (one realization
of Y and four quantile estimates).

Our numerical test considers the case Y ∼
N (0, 1), with N = 1000, γ = 1, C = 1 and three
orders of quantile α (0.05, 0.5 et 0.95). Figure
5 shows 50 independent trajectories of the RM
estimator qα(n) for n = 1, . . . , N by applying
Kesten’s rule or not. Results clearly show that
the Kesten’s rule applies the search-then-converge
learning rule (Powell, 2011) which led us to con-
sider a γ-linear profile in Section 3.1. In this case,
the KARM estimates provide similar result than
the KRM (results not shown here).
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(b) Without Kesten’s rule.

Fig. 5.: Simulations of trajectories of the RM algo-
rithm (N = 1000, Y ∼ N (0, 1)). Red lines give
exact order quantiles 0.05, 0.5 and 0.95.
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Other tests with different distributions for Y
(uniform, triangular, exponential, lognormal, mul-
timodal, etc.) have been performed. The main con-
clusion is that KARM (Kesten’s rule applied on
the averaged RM estimator), associated to γ = 1
and the adaptive tuning of C, is the most robust
approach.

4.3. Stopping rule
The algorithm has to be stopped by an automatic
(and robust) rule. We look at the differences be-
tween two successive quantile estimates (using
KARM) during a predefined number l0 (≥ 1) of it-
erations. IfNt is the limit budget, for l = 1, . . . , l0
with 2 + l0 ≤ n ≤ Nt, the stopping rule is:

|q̄α(n− l + 1)− q̄α(n− l)| < ε ∀α. (10)

If it is not fulfilled at n = Nt, algorithm stops.

5. Application to engineering asset
management for offshore wind farm

Asset management processes, focused on realiz-
ing value from physical assets, have been devel-
oped for years. For the last one or two decades,
these methods have been going from qualitative or
semi-qualitative ones to quantitative management
methods to support decision making. The generic
framework is to build a model that describes both
the technical and economic systems. For offshore
wind generation, the main sources of uncertainty
are failure dates and weather conditions that may
impact access to the turbines (vessel transits) and
working conditions on site. In order to help engi-
neers optimize the hyperparameters of their O&M
strategy, EDF has developed a tool that provides
risk informed evaluations through Monte-Carlo
simulation (Lonchampt et al., 2019). The approx-
imated cumulative distribution functions (cdf) are
built according to samples generated through out
the simulation. However, the large number of data
combined with the samples sizes needed for good
convergence may lead to both memory (RAM
memory for calculation and storage memory for
results) and computing time (especially writing
the results files) issues. In this section, we study
the possibility for the RM algorithm to be used
in this context, to provide quantile functions and
improve the computing performance of the code.

The main indicators the engineers are inter-
ested in are the durations of maintenance tasks
(stochastic due to weather conditions simulated
with a probabilistic artificial neural network), as
well as the availabilities of the wind turbines with
an uncertainty associated to the failures dates and
the task durations. Depending on the type of data,
the stochastic variable will have different features
regarding its bounds, its modes or its support con-
tinuity. Among all indicators, we focus on five typ-
ical ones with different features listed in Table 1,
with examples of cdf given in Figures 6 and 7.

Two settings of the RM algorithm described
above are implemented in the tool:

• The standard algorithm with a γ linear profile
and an adaptive C parameter (RM), well suited
to this application as the number of replications
in the simulation is set by the user and therefore
known a priori;

• The averaged version of the algorithm with the
same dynamic parameters and the Kesten’s rule
(KARM).

All calculations are performed to evaluate all
quantiles with a step of 0.01. Simulations are
done on 1000 replications, leading to very large
streamed samples (from 2× 104 to 106 depending
on the variable). The global performance of the
algorithm is measured with the L2-distance to the
empirical quantile function (which corresponds
to the Wasserstein distance) obtained with entire
samples with the same sizes as the ones used in
Robbins-Monro calculations (F being the empiri-
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Table 1.: List of variables and types (“s-i” means “semi-infinite”).

Variable Support Modes Residual Risk

Farm annual availability (FAA) bounded continuous overlapping modes no
Turbines overall availability (TOA) bounded continuous disjoint modes no
Farm overall availability (FOA) bounded continuous unimodal yes
Major repair duration (MRD) s-i continuous overlapping multimodes no
Small repair duration (SRD) s-i mixed continuous/discrete overlapping multimodes no

cal cdf):

W2 =

(∑
α

(
qα − F−1(α)

)2)1/2

. (11)

The Figures 8 and 9 present examples of com-
parisons of the empirical evaluation of quantiles
and the results obtained with the Robbins-Monro
algorithms (RM and KARM).

From the results shown in Table 2, while the
performance is globally good, it can be noticed
that:

• RM and KARM algorithms are efficient for
continuous and bounded variable, even multi-
modal if the modes are overlapping;

• Both algorithms have some difficulties when
the quantiles are not well defined due to sep-
arated modes, as illustrated in Figure 8;

• Both algorithms have difficulties when evalu-
ating the quantiles at singularities for mixed
variables, especially for KARM (see Fig. 9);

• Globally there is little benefit in using the
KARM algorithm over the simple RM one in
this application. Mean values over 100 trials
presented in 2 are lower with the RM imple-
mentation on all variables. The only benefit
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Fig. 8.: QQ plot of RM/KARM vs empirical re-
sults for TOA.

coming from KARM is on its robustness with
a range of W2 from 1.5 to 3 time smaller.

Table 2.: Robbins-Monro algorithms performance
on all variables as W2 distance with empirical
results, mean over 100 trials with minimal and
maximal values.

Variable RM KARM

FAA 0.011 [0.006;0.0193] 0.012 [0.0102;0.0149]
TAA 0.034 [0.003;0.12] 0.04 [0.02;0.1]
TOA 0.052 [0.018;0.089] 0.054 [0.03;0.075]
SRD 0.08 [0.042;0.143] 0.102 [0.087;0.121]
MRD 0.09 [0.049;0.174] 0.111 [0.093;0.143]

If the performance of the RM seems good
enough to make it an alternative to empirical
quantification of risk indicators for offshore wind
O&M, the goal to reach is the decrease in com-
puting duration for simulation. Table 3 shows the
computing times for both methods implemented
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in the calculation engine on a real farm model
with 50 turbines simulated on 1000 replications.
These results demonstrate the important benefit
given by RM methods as the total calculation time
is reduced by over 35. Most of the differences
come from the export function (2820 seconds vs 4
seconds with the RM method), with a very small
increase of the simulation time due to the update
process of the quantiles at each replication, even
though it remains negligible compared with all
the calculations done otherwise (4960 seconds in
total for RM compared with 4860 for the current
implementation).

Table 3.: Computing times comparison.

Empirical estimate RM estimate

Calculation (s.) 4860 4960
Export (s.) 2820 4

An additional computing benefit is the storage
memory needed for a study. The largest models
need up to 230 Mo with the current code when
using the RM method brings the size of the output
file down to 50 ko.

6. Conclusion
In order to avoid the storage of large amount of
data during the stage of uncertainty propagation
in computer models, this paper has proposed sev-
eral robust versions of the RM algorithm. Some
heuristics have been found for the iterative esti-
mation of quantile of model outputs (Eq. (4)) with
a finite-size sample N (a few hundreds values).
Firstly, the choice of an adaptive C (Eq. (6)) is
beneficial in all cases. Secondly, if N is known,
the choice of a γ-linear profile (Eq. (5)) with RM
or ARM (averaged version of RM) is robust and
must be privileged. In this case, our applications
has shown that RM methods give accurate enough
performance regarding quantiles evaluation of key
indicators for offshore wind engineering studies.
Moreover, the important decrease in computing
time makes it a promising alternative method that
will be implemented in the next version of the
code. Thirdly, the introduction of the stochastic
adaptive stepsize Kesten’s rule, which led to de-
fine the KARM estimator, gives good results (with
γ = 1), while avoiding to define N at the begin-
ning of the study. In such cases, a simple stopping
rule is available.

These results need to be further investigated.
For example, the use of well distributed point se-
quences instead of i.i.d. samples (tests not shown
here) allow to greatly improve the precision of the

different RM estimators. It will also be fruitful to
combine the RM algorithm and the techniques of
simulation of rare events, as already studied by
Kohler et al. (2014).
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