
HAL Id: hal-03191606
https://hal.science/hal-03191606v1

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DESIGN OF AN INTELLIGENT NAVIGATION
STRATEGY TO DEAL WITH UNEXPECTED

DYNAMIC OBSTACLES
A Renak, D Leca, Viviane Cadenat, Carine Jauberthie, A Durand-Petiteville

To cite this version:
A Renak, D Leca, Viviane Cadenat, Carine Jauberthie, A Durand-Petiteville. DESIGN OF AN IN-
TELLIGENT NAVIGATION STRATEGY TO DEAL WITH UNEXPECTED DYNAMIC OBSTA-
CLES. Brazilian Symposium on Intelligent Automation, Oct 2019, Ouro Preto, Brazil. �hal-03191606�

https://hal.science/hal-03191606v1
https://hal.archives-ouvertes.fr

DESIGN OF AN INTELLIGENT NAVIGATION STRATEGY TO DEAL WITH
UNEXPECTED DYNAMIC OBSTACLES

A. Renak∗, D. Leca†, V. Cadenat†, C. Jauberthie†, A. Durand-Petiteville‡

∗Univ de Toulouse, UPS, F-31400, Toulouse, France

†Univ de Toulouse, UPS, LAAS, F-31400, Toulouse, France
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

‡Universidade Federal de Pernambuco, Departamento de Engenharia de Mecânica,
Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, 50670-901, Brazil

Emails: mameziane.renak@gmail.com, dleca@laas.fr, cadenat@laas.fr, cjaubert@laas.fr,

ajsd@cin.ufpe.fr

Abstract— This paper deals with the problem of navigating through a poorly known environment cluttered
with both static and dynamic obstacles. The proposed strategy relies on two controllers allowing to reach the
goal and to avoid the obstacles. Two contributions can be highlighted: (i) the definition of a safe avoidance
distance which can be adequately modified during the mission if a moving obstacle is encountered; and (ii) the
choice of a sense of motion depending on the obstacle motion. Simulation results validate the proposed strategy.

Keywords— Mobile robotics, Obstacle avoidance, Navigation strategy, Decision making, Adaptive threshold.

1 Introduction

The problem of making a mobile robot au-
tonomously navigate has been the focus of numer-
ous researches over the last decades. The proposed
approaches can be divided into two categories: the
map- based ones and the reactive ones (Choset
et al., 2005). The first set of methods relies on
a metric representation of the environment which
is then used to plan a path/trajectory to follow.
This navigation strategy is widely used and allows
to perform long range navigation, i.e. when the
goal to reach cannot be seen from the initial robot
pose. However, when considering a dynamic nav-
igation environment, it becomes more challenging
to rely on these methods. Indeed, the model of the
scene has to be updated while navigating, in order
to include the dynamic elements, and the path to
follow has to be re-computed. For these reasons,
such approaches seem to reach certain limits when
considering a dynamic environment.

The second set of methods relies on reactive
controllers, which drive a robot based on local
knowledge of the environment obtained by the
embedded sensors. Such controllers offer suit-
able performances when dealing with unknown
environment. For this reason, navigation frame-
works based on reactive controllers have been de-
signed to deal with challenging navigation envi-
ronments (Segvic et al., 2007; Durand-Petiteville
et al., 2015). Among the issues to overcome,
one concerns the avoidance of unforeseen obsta-
cles present in the scene. One of the common
solution consists of coupling the navigation con-
troller to a reactive controller performing obstacle
avoidance. Thus, depending on the robot location
relative to the obstacles, one uses either the navi-
gation controller or the obstacle avoidance one to

safely achieve the task.

In order to select the appropriate controller,
most of the methods relies on a fixed threshold
(Cadenat et al., 2012). For example, an obstacle
avoidance controller is triggered when the mea-
sured distance to an obstacle is smaller than a
predefined value. Similarly, one uses a fixed dis-
tance to define a path around the obstacle which
is safe for the robot. This approach has been effi-
ciently used in the past to deal with static environ-
ment, but it does not seem to be fully appropri-
ate to manage dynamic obstacles. For example, a
moving object passing at the predefined distance
of the robot will trigger the avoidance controller,
although it might not represent any danger for
the robot and the navigation could be achieved
without avoiding it. Thus, in order to success-
fully perform a safe and efficient navigation, it is
mandatory to consider more advanced methods
to compute the parameters of the obstacle avoid-
ance controller and to switch from one controller
to the other. In this paper, it is proposed to
extend our set of works presented in (Futterlieb
et al., 2014; Durand-Petiteville et al., 2017; Leca
et al., 2019) which are still restricted to static en-
vironments. The idea is to compute the resid-
ual value (Shi et al., 2005) between the predicted
and measured distances and orientations to dif-
ferentiate a static obstacle from a dynamic one.
These values are then used to modify online the
safety distance to the moving obstacle as well as
the switching criteria. Thus, it becomes possible
for the robot to efficiently avoid mobile obstacles.

The paper is organized as follows. Section II
introduces the necessary preliminaries, namely the
robot model, the spiral avoidance controller and
the navigation controller. Section III and IV fo-
cus on the main contributions: the computation

Figure 1: The robot model

of the adaptive distance and the strategy decision
making. Section V presents the obtained simu-
lation results. The paper ends with a conclusion
and some prospects.

2 Preliminaries

2.1 The robot model

Here, we consider the differential robot pre-
sented in figure 1. It is equipped with a
laser range finder and with classical localization
sensors (IMU, odometry). Let define Fw =
(Ow,

−→x w,−→y w,−→z w) and Fr = (Or,
−→x r,−→y r,−→z r)

the frames respectively attached to the world and
the robot. The robot configuration is defined
as Q = [x(t) y(t) θ(t)]T , where x(t) and y(t)
are the coordinates of Or in Fw, whereas θ(t)
is the angle between −→x w and −→x r (see figure 1).
The robot is controlled using the input vector
u(t) = [v(t) ω(t)]T where v(t) is the linear veloc-
ity along−→x r, and ω(t) the angular velocity around
−→z r. The other elements which appear in this fig-
ure (namely, ~d, point Os and angles α and β) will
be described later.

2.2 The avoidance controller

A wide variety of techniques allow to perform ob-
stacle avoidance in the literature. A very com-
plete review can be found in (Hoy et al., 2015).
The chosen approach is a reactive one, where no
map is provided to the robot prior to the naviga-
tion. It is inspired by works where spirals are used
to avoid obstacles (Mcfadyen et al., 2014; Futter-
lieb et al., 2014; Leca et al., 2019) or perform
U-turn in agricultural fields (Durand-Petiteville
et al., 2017). We briefly present the control law
which will be used in this paper.

2.2.1 The spiral definition

Spirals have been studied in (Boyadzhiev, 1999).
From this work, a spiral can be seen as the path
described by a point Op moving on a plane with
respect to a fixed point Os as shown in figure 2.

Figure 2: Model of a spiral

Two vectors can be introduced: ~v∗ the velocity
vector of the point Op, and ~d∗ the distance vector
which connects the two points Op and Os. From
this, α∗(t) can be defined by the angle between

the two vectors ~v∗ and ~d∗. When v∗(t) and α∗(t)
are constant (that is, v∗(t) = v∗ and α∗(t) = α∗),
point Op follows a spiral whose center is defined
by point Os. The dynamics of d∗ is defined by the
following equation (Boyadzhiev, 1999):

ḋ∗(t) = −v∗ cos(α∗) (1)

This equation shows that the sense of motion and
the spiral type (inward or outward) only depend
on parameter α∗. Indeed, if 0 < α∗ < π, Op
turns counter-clockwise with respect to Os. If 0 <
α∗ < −π it turns clockwise. The spiral is inward
if 0 ≤ α∗ < π/2 or 0 ≤ α∗ < −π/2. It is outward
if π/2 < α∗ ≤ π or −π/2 < α∗ ≤ −π Finally, if
α∗ = π/2 or α∗ = −π/2, d∗(t) = d∗(0). Op then
describes a circle of radius d∗(0) around Os.

The previous analysis shows the interest of
using spirals to avoid obstacles. Indeed, let us
consider again figure 1 and let us adapt the spi-
ral to the robot model. To do so, we introduce−→
d =

−−−→
OsOr and α(t) the angle between −→x r and

−→
d . From the previous reasoning, it follows that,
by making converging α and d towards α∗ and d∗,
it is possible to make the vehicle follow a dedi-
cated spiral. α and d being given by laser data,
this spiral is designed to guarantee obstacle avoid-
ance. Now, it remains to design a control law al-
lowing to make (α, d) converge towards (α∗, d∗).
Such a controller has been proposed in (Durand-
Petiteville et al., 2017).

2.2.2 The spiral controller design

As a first step, we express the dynamics of d and
α (Durand-Petiteville et al., 2017):

ḋ(t) = −v(t) cos(α(t)) (2)

α̇(t) = −θ̇(t) + β̇(t) = −ω(t) +
v(t)

d(t)
sin(α(t)) (3)

A controller allowing to drive the robot to-
wards the spiral is given by (Durand-Petiteville

et al., 2017):

ω(t) = λses(t) +
v(t)

d(t)
sin(α(t))− αD ∗ ε̇(t) (4)

where the linear velocity v is fixed to a nonzero
constant value, λs is a positive scalar vector. es(t)
is the error to be vanished. It is made of two
separate terms respectively related to the error in
α and d:

es(t) = α(t)− α∗ − αDε(t) (5)

ε(t) is the normalized error between d∗(t) and d(t).
It has been saturated to ±1:

ε(t) = sign(d∗(t)− d(t))
min(||d∗(t)− d(t)||, n)

n
(6)

where n ∈ N∗+. ε(t) belongs to the domain [0, 1]
if d∗(t) > d(t) or [−1, 0] if d∗(t) < d(t). Indeed,
ε(t) has its norm equal to 1 when ||d(t) − d∗(t)||
is greater than an arbitrary value n, and equal to
0 when d(t) = d∗(t). Additionnally, αD is defined
as:

αD =

{
sign(α∗) ∗ π − α∗ if d∗(0) > d(0)

α∗ if d∗(0) < d(0)
(7)

The control law (4) makes possible for the
robot to converge towards any specific spiral
(Durand-Petiteville et al., 2017). More details can
be found in (Durand-Petiteville et al., 2017).

2.3 The navigation controller

This controller is intended to make the robot reach
the given goal. Depending on the way it is de-
fined, several solutions can be considered: vi-
sual servoing controller (Chaumette and Hutchin-
son, 2006), attractive potential field based con-
troller (Ren et al., 2008), etc. Here, for the sake
of simplicity, we have chosen to design a basic pro-
portional controller to converge towards a goal Og
whose coordinates in the world frame are defined
by (xG yG) The idea is to correct the heading of
the robot towards the goal, while maintaining a
nonzero constant linear velocity v0. The following
control inputs allow to fulfill these objectives:{

v(t) = v0
ω(t) = arctan(yG(t)−y(t)

xG(t)−x(t))− θ(t)
(8)

Now that both controllers are available, it re-
mains to define the adequate spiral parameters for
a secure avoidance motion before presenting the
navigation strategy.

3 Defining the spiral parameters

This section focuses on the spiral parameters al-
lowing to guarantee a safe motion around the ob-
stacle. They are three: the SCP (spiral center

point), the angle α∗, and the distance d∗. The
first two parameters have been defined following
our previous works (Futterlieb et al., 2014; Leca
et al., 2019). The SCP has been chosen as the
closest point between the robot and the obstacle
detected by the embedded lasers while angle α∗

has been fixed to a constant value equal to π/2.
The main difference arises with the definition of
d∗. Indeed, it was kept constant in our above
mentioned works, which was suitable while dealing
with static obstacles only. To extend the method
to dynamic scenes, it is necessary to consider a
variable d∗. Our idea is to modify on-line its value
when a mobile obstacle is encountered. More pre-
cisely, in this paper, it is proposed to dynamically
compute the value of d∗ thanks to the residual
value between the predicted and measured dis-
tances between the robot and the SCP. From this
residual, an adaptive threshold is computed (Shi
et al., 2005), allowing to discriminate the static
and dynamic obstacles and to adequately update
d∗ depending on the case. We first explain how
to determine the residual before detailing the d∗

value adaptation.

3.1 Computation of the residual

To compute the residual, the first step is to pre-
dict the distance between the robot and the ob-
stacle at the current instant using previous laser
informations. To state the problem, we consider
two laser scans. The first one is acquired at the
current time ti and is denoted by Fr(ti)P (ti). It
allows to determine the Spiral Center Point Oc(ti)
(chosen as the closest detected point on the obsta-
cle surface) and to extract the current measures
of the distance d(ti) between Or and Oc(ti) and
the angle α(ti). The second laser scan denoted by
Fr(tp)P (tp) is obtained at a previous time tp < ti.
Our goal is to use this latter laser scan to predict
the value of the distance between the robot and
the SCP at time ti and compare it to its above
measured value d(ti). To this aim, we first com-
pute Fr(ti)P (tp) which denotes the set of points
that would be perceived at time ti if only the
robot had been moving during the time interval
[tp, ti]. To do so, the transformation matrix be-
tween two frames Fr(ti)TFr(tp) is expressed using
local localization methods (i.e odometry, IMU)1.
Thus, the predicted coordinates of the laser points
from the previous acquisition in the current robot
frame can be computed as follows:

Fr(ti)P (tp) = Fr(ti)TFr(tp)
Fr(tp)P (tp) (9)

From Fr(ti)P (tp), it is possible to compute the pre-
dicted closest point Opredictedc (ti), and to deduce
the predicted distance dpredicted(ti). From these

1As the time interval between tp and ti will not be cho-
sen too large, the localisation drifting – intrinsic to local
localisation methods – is considered to be negligible.

latter, we propose to define the residual r(ti) as
follows:

r(ti) =
dpredicted(ti)

−d(ti)

tp − ti
(10)

This residual value will help to decide whether the
obstacle is static or not. Indeed, in the first case,
r(ti) will be close to 0, whereas in the second case
a greater value is expected. However, it might not
be sufficient to obtain a robust discrimination be-
cause several phenomenons such as measurement
noise, a too small motion of the mobile obstacle,
modelling errors, etc. In this context, the defini-
tion of an adaptive threshold may be interesting
to clearly classify dynamic and static objects.

3.2 Definition of the adaptive threshold and of
the adaptive distance d∗

Adaptive threshold procedures summarized in
(Emami-Naeini et al., 1988) or (Ding and Frank,
1991) are generally used to detect system faults
and rely on a statistical study of the residual sig-
nal. See for example (Wang et al., 2003; Shi
et al., 2005). In our case, the goal is to de-
cide whether the encountered obstacle is static
or dynamic, despite the above mentioned phe-
nomenons. In (Shi et al., 2005), an adaptive
threshold is computed from the mean and vari-
ance of the residual signal to detect faults in a
nonlinear electro-hydraulic installation. Following
a similar reasoning, we have computed the mean
and variance of our own residue by considering its
variation on q sample times:

η(ti) =
1

q

q∑
i=1

r(ti), (11)

σ2(ti) =
1

q − 1

q∑
i=1

(r(ti)− η(ti))
2. (12)

From the above equations, the adaptive threshold
δ at instant ti is calculated as follows (Shi et al.,
2005):

δ(ti) = η(ti)± 2.17σ(ti) (13)

where the coefficient 2.17 corresponds to a 97%
confidence level. Thus, if r(ti) belongs to the
interval [δ+(ti), δ

−(ti)] where δ+(ti) = η(ti) +
2.17σ(ti) and δ−(ti) = η(ti)− 2.17σ(ti), then the
obstacle is considered to be static. Otherwise, a
dynamic obstacle is expected.

In addition, the upper bound of the adaptive
threshold can be used to adjust the reference dis-
tance d∗ as follows:

d∗(ti) = dnominal + δ(ti) (14)

where dnominal is a suitable avoidance distance
one would like to maintain in a static environ-
ment. This leads to a safer robot behavior. If

a moving obstacle is going toward the robot, at
each iteration, the real distance d(ti) is going to
be smaller than the predicted one dpredicted(ti).
Thus, the residual r(ti) will start increasing, and
so will δ(ti). Consequently, the desired distance
d∗(ti) will increase, and the robot will avoid the
obstacle at a greater distance than it would have
done if the obstacle would have been static. Note
that, in this particular use of the adaptive thresh-
old, it may occur that d∗(ti) drops and reaches
values which might be dangerous for the robot. To
avoid such issues, a minimal bound corresponding
to lowest acceptable distance has been added.

4 Navigation strategy

Now that the spiral parameters have been chosen,
it remains to describe the navigation strategy. To
define it, it is necessary to decide when switch-
ing between both controllers and which sense of
motion is the most suitable. These two issues are
addressed in the sequel.

4.1 Switching procedure

As presented before, two controllers may be
applied to the robot: the navigation controller
(or Go-To-Goal (GTG)) to reach the goal and the
Spiral Avoidance controller (SA) when a collision
risk occurs. To define the guarding conditions,
the two following angles αc and αg are considered:

α = (−→xr,
−−−→
OrOc)

αg = (−→xr,
−−−→
OrOg) = atan2(yg − y, xg − x)− θ.

They respectively provide the orientation of
the robot towards the obstacle and towards the
goal. The proposed guarding conditions are given
as follows:

dc < 2d∗ and | αg − αc |< π/2 (15)

Condition (15) is true if an obstacle lies within a
2d∗ diameter half-circle heading toward the goal.
In this way, the spiral avoidance controller is en-
abled only if an obstacle really lies on the robot
trajectory towards the goal, leading to a true col-
lision threat. Furthermore, because of the online
modification of d∗ when an dynamical obstacle is
encountered, the robot is given some anticipation
capacities. Indeed, if the obstacle is moving to-
wards the robot, d∗ will increase and condition
(15) will be triggered earlier and so is the spiral
avoidance controller.

Finally, note that the same conditions are
used to switch from the navigation controller to
the avoidance one and conversely. A smoothening
procedure based on an averaging sliding window
allows to avoid discontinuities in the control law
applied to the robot at the switching time.

4.2 Sense-of-motion computation

When the obstacle avoidance controller is enabled,
the robot has to choose its sense-of-motion (SOM)
around the obstacle. In the case of static objects,
the method consists in checking if it is on the right
or on the left hand side of the robot. The following
conditions are proposed: (Leca et al., 2019):

• If α ≤ αg, use a counter-clockwise SOM.

• Else if α > αg, use a clockwise SOM.

These conditions appear to be limited in dynamic
environments. Indeed, in such a scene, they could
lead to a collision threat because they do not take
into account the obstacles motion. To overcome
this issue, we propose to use the residual on α,
denoted by δα(t). It is computed using the same
method as the residual on the distance δ(t). It
provides a basic knowledge of the direction of the
obstacle motion with respect to the robot. In
other words, it allows to determine whether the
obstacle is coming from the left to the right rela-
tively to the vehicle or the opposite. This infor-
mation allows to compute a more suitable SOM:

• If |δα(t)| ≤ δαthreshold, use the above men-
tioned conditions for static obstacles.

• Else if δα(t) < −δαthreshold, use a counter-
clockwise SOM.

• Else if δα(t) > δαthreshold, use a clockwise
SOM.

where δαthreshold is a constant value chosen so that
it can make the difference between static and dy-
namic obstacles. Additionally, the SOM is reset
and reassessed if the robot switches back to the
navigation controller, or if the distance between
two consecutive SCP is greater than 2d∗. This
latter case occurs when the SCP has switched on
another obstacle.

5 Simulation results

The method has been implemented using Matlab
software. The considered environment is displayed
in Figure 3. The robot starts from Or(0) = Ow,
and has to reach its goal Og = [33, 0]T . Its ve-
locity has been set to v∗ = 1.5m.s−1. Between
the robot starting position and the goal, lie three
round obstacles. The two first ones denoted by
(1) and (2) are dynamic, and respectively move at
1.5m.s−1 and 1.25m.s−1, while the last one (3) is
static. The control gains and parameters are set
as λS = 1, n = 5, and dnominal = 3m. In order
to simulate the noise coming from the laser range
finder, an additive gaussian noise with σ = 0.03
has been added to the laser output. The main loop
runs at a rate time TS = 0.02s. To compute the
residual, the interval between ti and tp has been

chosen such as ti − tp = 0.2s, and the amount of
samples used to compute the residuals in equa-
tion (12) is q = 30. To highlight the interest of

0 5 10 15 20 25 30 35
X(m)

-10

-5

0

5

10

Y
(m

)

OgOw

1

2

3

Figure 3: Simulated environment

our approach with respect to more classical ones,
we have first implemented a navigation strategy
based on a static d∗ (no online adaptation of this
distance). We present hereafter the corresponding
results.

5.1 Results with a static d∗

In this case, we consider that d∗ = dnominal = 3m
all along the simulation. The threshold allowing
to enable the avoidance is then set to 2d∗ = 6m.
Furthermore, the SOM is chosen thanks to the
method used in (Leca et al., 2019). Figures 4 and 5
respectively show the robot trajectory, its control
inputs, the errors and the evolution of the dis-
tance. At t = 2s, obstacle (1) enters the 2d∗ = 6m
safe zone around the robot, and the avoidance is
triggered. Since at this time the obstacle is at the
right of the robot, a clockwise SOM is selected.
At t ' 4.5s, the obstacle is avoided and the GTG
controller is applied. However, it can be seen that
the robot has reached a distance close to 2 meters
from the obstacle. At t ' 6.5s, the robot starts
avoiding the second obstacle. At this time, this
obstacle is at the right of the robot, but is mov-
ing from its right to the left. Hence, based on the
static SOM condition, a clockwise SOM is chosen.
The robot tries to move around the obstacle, but
their velocities are close and the avoidance can-
not be completed because the SOM cannot be re-
assessed. The robot ”is then dragged” by the mov-
ing obstacle far from its goal, inducing a mission
failure and highlighting the d∗ constant approach
limitations in a dynamic environment.

5.2 Results with the adaptive d∗

Here, we have simulated our approach based on
the adaptive reference distance d∗ combined with
the new SOM choice condition. The minimal
bound for d∗ has been fixed to 2 m. Figures 6, 7
and 8 respectively present the robot trajectory,
the control laws, the errors, the measured distance

Figure 4: Robot (black line) and obstacles (pink
dots) trajectories. [Static d∗].

Figure 5: Angular control ω(t) – Errors ed(t),
eα(t), eS(t) – Distances d(t) and d∗(t) [Static d∗]

and its threshold, and the residual on angle α.
They show that the task is successfully performed.

As the obstacle is moving toward the robot
at a velocity of 1.5m.s−1, d∗(t) quickly rises to
around 4 meters. Thus, the trigger distance be-
comes close to 2d∗(t) ' 8m, and is reached at
t ' 1s. The avoidance controller is then en-
abled earlier than previously, which will insure
a more efficient avoidance motion. Indeed, the
distance between the obstacle and the robot does
not drop below 3m instead of 2m in the previous
case. As the residual δα belongs to the interval
[−δαthreshold, δαthreshold], the static algorithm is ap-
plied and a clockwise SOM is chosen. The first
obstacle is successfully avoided. At t = 7.5s, the
second obstacle is encountered and the avoidance
is enabled anew. At this time, δα is negative and

less than −δαthreshold. This means that the object
is coming from right to left. Thanks to this infor-
mation, the SOM is chosen as counter-clockwise,
in order to move around it by the right hand side.
At t ' 12s, obstacle (2) is successfully avoided and
the navigation controller is applied to the robot
until obstacle (3) is met. This latter being static,
d∗ remains constant and equal to dnominal ' 3m.
As |δα| ≤ δαthreshold, a clockwise SOM is fixed.
This obstacle (3) does not present any danger at
t ' 20s, and the robot reaches its goal at t ' 24s.
Finally, as it can be seen on figure 7, the spiral
avoidance controller was able to bring eS(t) close
to zero, while keeping the robot at a safe distance
from the obstacle. The control law sent to the
robot has remained in an acceptable range.

Figure 6: Robot (black line) and obstacles (pink
dots) trajectories. [Adaptive distance]

6 Conclusion

This paper deals with the problem of navigating
through a poorly known dynamic environment.
The proposed strategy relies on two controllers al-
lowing to reach the goal and to avoid both static
and mobile obstacles. In order to cope with mov-
ing objects, the strategy has been enhanced with
two features. The first one consists in adapting the
value of the safe avoidance distance d∗ during the
mission whenever needed. To do so, an adaptive
threshold has been computed thanks to the resid-
ual value of the difference between the predicted
and current measured distances. The second con-
tribution is related to the sense of motion which is
now computed using a second dedicated adapted
threshold allowing to take into account the obsta-
cle motion. The proposed navigation strategy has
been validated using Matlab. The simulation re-
sults show its relevance and efficiency to deal with
both static and dynamic obstacles.

The proposed approach can be used with any
kind of navigation controllers. It does not require
any model of the environment and is particularly
adapted to sensor-based navigation. For future
works, we plan to experiment this solution on our

Figure 7: Angular control ω(t) – Errors ed(t),
eα(t), eS(t) – Distances d(t) and d∗(t) – Alpha
residual δα(t) [Adaptive distance]

Figure 8: Alpha residual δα(t)

real robot Air-cobot which is intended to navigate
through an airport to perform preflight inspection.

References

Boyadzhiev, K. N. (1999). Spirals and conchospi-
rals in the flight of insects, The college math-
ematics Journal 30(1): 23.

Cadenat, V., Folio, D. and Petiteville, A. D.
(2012). Comparison of two sequencing tech-
niques to perform a vision-based navigation
task in a cluttered environment, Advanced
Robotics 26(5-6): 487–514.

Chaumette, F. and Hutchinson, S. (2006). Vi-
sual servo control, Part I: Basic approaches,
IEEE Robotics and Automation Magazine
13(4): 82–90.

Choset, H., Lynch, K., Hutchinson, S., Kantor,
G., Burgard, W., Kavraki, L. and Thrun,
S. (2005). Principles of Robot Motion, MIT
Press, Boston.

Ding, X. and Frank, P. (1991). Frequency do-
main approach and threshold selector for ro-
bust model-based fault detection and iso-
lation, Proceedings of the IFAC symposium
SAFEPROCESS, Baden-Baden, Germany,
pp. 307–312.

Durand-Petiteville, A., Cadenat, V. and Ouadah,
N. (2015). A complete sensor-based system
to navigate through a cluttered environment,
2015 12th International Conference on Infor-
matics in Control, Automation and Robotics
(ICINCO), Vol. 02, pp. 166–173.

Durand-Petiteville, A., Le Flecher, E., Cadenat,
V., T., S. and S., V. (2017). Design of a
sensor-based controller performing u-turn to
navigate in orchards, Informatics in Control,
Automation and Robotics.

Emami-Naeini, A., Akhter, M. M. and Rock,
S. M. (1988). Effect of model uncertainty
on failure detection: the threshold selec-
tor, IEEE Transactions on Automatic Con-
trol 32(12): 1106–1115.

Futterlieb, M., Cadenat, V. and Sentenac, T.
(2014). A navigational framework combin-
ing visual servoing and spiral obstacle avoid-
ance techniques, International Conference
on Informatics in Control, Automation and
Robotics.

Hoy, M., Matseev, A. S. and Savkin, A. V.
(2015). Algorithms for collision-free naviga-
tion of mobile robots in complex cluttered en-
vironments: a survey, Robotica 33: 463–497.

Leca, D., Cadenat, V., Sentenac, T., Durand-
Petiteville, A., Gouaisbaut, F. and Flecher,
E. L. (2019). Sensor-based obstacles avoid-
ance using spiral controllers for an air-
craft maintenance inspection robot, Euro-
pean Control Conference (ECC).

Mcfadyen, A., A. and Mejias, L. (2014). Deci-
sion strategies for automated visual collision
avoidance, International Conference on Un-
manned Aircraft Systems (ICUAS), pp. 715–
725.

Ren, J., McIsaac, K. and Patel, R. (2008). Modi-
fied newton method applied to potential field
navigation for nonholonomic robots in dy-
namic environments, Robotica 26(1): 117 –
127.

Segvic, S., Remazeilles, A., Diosi, A. and
Chaumette, F. (2007). A framework for
scalable vision-only navigation, Advanced
Concepts for Intelligent Vision Systems,
ACIVS’07, Delft, The Netherlands, pp. 112–
124.

Shi, Z., Gu, F., Lennox, B. and A.D., B. (2005).
The development of an adaptive threshold for
model-based fault detection of a nonlinear
electro-hydraulic system, Control Engineer-
ing Practice 13: 1357–1367.

Wang, X., Kruger, U. and Lennox, B. (2003).
Recursive partial least square algorithms
for monitoring complex industrial processes,
Control Engineering Practice pp. 613–632.

