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Abstract. The generation of referring expressions is one of the most extensively
explored tasks in natural language generation, where a description that uniquely
identifies an instance is to be provided. Some recent approaches aim to discover
referring expressions in knowledge graphs. To limit the search space, existing
approaches define quality measures based on the intuitiveness and simplicity of
the discovered expressions. In this paper, we focus on referring expressions of
interest for data linking task and present RE-miner, an algorithm tailored to auto-
matically discover minimal and diverse referring expressions for all instances of
a class in a knowledge graph. We experimentally demonstrate on several bench-
mark datasets that, compared to existing data linking tools, referring expressions
for data linking substantially improve the results, especially the recall without
decreasing the precision. We also show that the RE-miner algorithm can scale to
datasets containing millions of facts.

Keywords: Knowledge Graphs · Referring Expressions · Data Linking.
Springer Reference Format: Khajeh Nassiri, A., Pernelle, N., Saı̈s, F., Quercini,
G.: Generating referring expressions fromrdf knowledge graphs for data link-
ing. In: Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K.,Fu, B., Polleres, A.,
Seneviratne, O., Kagal, L. (eds.) The Semantic Web – ISWC 2020. pp.311–329.
Springer International Publishing, Cham (2020) 1

1 Introduction

A referring expression (RE) is a description in natural language or a logical formula
that can uniquely identify an entity. For instance, the statement “president of the United
States who was born in Hawaii” is a referring expression that unambiguously character-
izes Barack Obama. There may potentially exist many logical expressions for uniquely
identifying an entity. Referring expressions find applications in disambiguation, data

1 This work is licensed under the Creative Commons AttributionNonCommercial-NoDerivatives
4.0 International License. Request permissions from bookpermissions@springernature.com
The final authenticated publication is available online at https://doi.org/10.1007/
978-3-030-62419-4_18
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anonymization, query answering, and data linking. The generation of referring expres-
sions is a well-studied task in natural language generation [22], and various algorithms
with different objectives have been proposed to discover REs automatically. These ap-
proaches vary depending on the expressivity of the logical formulas they can generate.
For instance, in [8, 21], REs are created as conjunctions of atoms, while [27] presents
an approach that discovers more complex REs represented in description logics that can
involve the universal quantifier. To ensure efficiency and reduce the search space, some
of these methods focus on the minimality of the expression they discover and others on
predicate preferences [16]. However, most of these methods are neither able to scale to
large knowledge graphs such as YAGO or DBpedia with millions of instances nor are
suited for the data linking task.

This paper embarks on automatically discovering REs for each entity within
a class of a knowledge graph. These REs are conjunctions of atoms, e.g.,
isPresident(x) ∧ isPoliticianOf(x, #USA)∧ bornIn(x, #Hawaii)2, and can also
contain existentially quantified variables, e.g., isPresident(x) ∧ marriedTo(x, y) ∧
hasName(y, “Michelle”). Such conjunctions of atoms are not all relevant when they
are exploited in a data linking task. As knowledge graphs are built independently and
autonomously, individual IRIs are rarely re-used in different knowledge graphs. This is
the reason why a referring expression that involves a specified IRI may not be useful
for the task of linking instances. Additionally, since data are usually incomplete and
generally several referring expressions can be associated with an individual, to foster
the utility of REs, it is preferable to diversify the sets of properties that are involved in
the referring expressions of a given individual.

In order to reduce the enormous search space of referring expressions, our approach
relies on defining types of graph patterns and quality measures that focus on REs that
are more suitable in a data linking task. Moreover, we direct our attention to REs that
cannot be found by instantiating the keys. As a reminder, the keys of a class are sets
of properties whose values can uniquely identify one entity of that class. Hence, if
the properties for the keys are instantiated, they can each be considered as a referring
expression. For instance, take the class “book” and imagine that ISBN is key to this
class. If we instantiate the books with their corresponding ISBNs, we can be sure to find
them each uniquely. Recent approaches in the literature can efficiently discover keys in
knowledge graphs [30, 31, 28], some of which do so by first finding the maximal non-
keys [30, 31]. Hence, our proposed RE-miner algorithm is based on the search space
defined by these non-keys. Furthermore, we use the discovered REs in a data linking
task and evaluate our approach on three benchmark datasets.

More precisely, our contributions are as follows:

– Defining graph patterns and several quality criteria that set forth REs, potentially
relevant for data linking, discovered by our algorithm.

– Proposing an efficient algorithm, RE-miner, that computes complementary REs
with regards to those REs that correspond to instantiated OWL2 keys.

2 #USA and #Hawaii are IRIs (Internationalized Resource Identifier) that refer to the country
USA and to the state of Hawaii, respectively.
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– An extensive set of experiments showing that: (i) the approach scales to datasets
consisting of millions of facts; (ii) the discovered REs, when used in a data linking
task, can significantly increase the recall when compared to other approaches.

The remainder of this paper is organized as follows. We discuss the related work
in section 2. Section 3 details the formal problem statement. Section 4 describes the
RE-miner algorithm, and section 5 outlines how REs can be used for the data linking
task. Section 6 shows our quantitative and data linking experiments, and finally, section
7 concludes the paper.

2 Related Work

Both the generation of referring expressions and link discovery has been an area of
active research in past years. The task of generating referring expressions, also known
as REG, finds applications in fundamental fields such as natural language generation,
text summarization, and query generation. Link discovery is rooted in record linkage,
deduplication, and data integration. Existing methods for link discovery alleviate this
task by matching the schema, instances, or both. In this paper, we focus on rule-based
instance matching.
Referring Expression Generation. Robert Dale is first to frame REG as the problem
of determining the properties that must be used to identify an entity [7]. The Full Brevity
algorithm, outputs the shortest possible description by incrementally testing all combi-
nations of properties to find the RE for the target. Later, acknowledging that finding the
shortest RE is NP-hard, Dale approximated Full Brevity into a greedy algorithm that
generates a RE by iteratively adding to an empty expression the property with the most
discriminative power [8]. This algorithm does not necessarily produce the shortest RE
but is much more efficient than Full Brevity.
As much as the length of a RE is important (people tend to prefer short ones), at times,
a slightly longer and more informative RE is preferable. The Incremental Algorithm
adds properties to an expression based on a preference order and does not necessar-
ily produce the shortest RE [9]. Although logic optimization techniques are used to
shorten the resulting REs, in some cases this algorithm might produce overly lengthy
REs; a problem addressed in further research [17, 19]. Incremental algorithms do not
lend themselves well to generating relational REs [22], that identify a target through a
relation to another entity (e.g., “the dog near the house”). Relational REs are best mod-
elled with a graph (the scene graph), where relations between entities are represented
as edges that link the corresponding nodes; the generation of referring expressions re-
duces to searching a subgraph (the description graph) that uniquely identifies the target
[21]. Croitoru and van Deemter take this graph approach a step further and propose
the use of conceptual graphs, a logic-based knowledge representation model that en-
riches the factual knowledge with ontological knowledge (i.e., background knowledge,
e.g., “a cup is a vessel”) [6]. The ontological knowledge is particularly useful to per-
form automatic inference. Other approaches turn to description logics as an alternative
knowledge representation model [2, 26]. Similar to conceptual graphs, description log-
ics can model background knowledge and apply reasoning.
Nevertheless, the approaches discussed earlier have difficulties scaling to today’s
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knowledge graphs. Galárraga et al. introduced an algorithm named REMI that mines
intuitive REs from a knowledge base [16]. The intuitiveness of a RE is computed with
the Kolmogorov distance as a trade-off between its length and the use of properties
which people are familiar with (e.g., Paris is better described as the capital of France
than the birth place of Voltaire). REMI represents expressions that describe a target
entity x in a tree that represents conjunctions of atoms (e.g., cityIn(x,y) ∧ officialLan-
guage(y, z) ∧ langFamily(z, Romance)) and identifies the RE that has the least cost in
terms of intuitiveness through a depth first search with backtracking. Our proposed RE-
miner algorithm differs from the previous ones by addressing some of the challenges
in the field. It discovers not just one, but all referring expressions complementary to
those that can be obtained by instantiating key properties. Moreover, to the best of our
knowledge, this is the first work that exerts REs that are useful for linking instances of
two knowledge graphs.

Link Discovery. Schema matching is the task of deriving alignments between classes
and relation in two different knowledge graphs [11]. Instance matching, or data linking,
is the ability to determine – with a certain degree of confidence – that two individ-
uals refer to the same real-world object [15]. Many different approaches for schema
matching and instance matching have been proposed [25, 11]. These link discovery ap-
proaches can fall into 3 different categories regarding how they include schema and
instance matching in their workflow.
Some systems only focus on instance matching. Among these systems, some depend
on declared linkage rules that can be used to logically infer identity links [1, 12] while
others compute a similarity score thanks to complex rules that can involve simple sim-
ilarity measures and aggregation functions, like LIMES or Silk [24, 34]. Such rules are
generally based on sets of discriminative properties or more complex graph patterns,
such as OWL2 keys, and schema mappings. Since such properties are not so easy to
specify, some approaches aim to discover discriminative properties using one or sev-
eral knowledge graphs, assuming that the mappings are known [32, 30, 31], or allowing
to discover keys that involve property mappings [4]. Other approaches can efficiently
discover linkage points which are related property paths sharing values between het-
erogeneous data sources. Indeed, it has been shown that such properties can enhance
the performance of linkage algorithms [18]. However, the efficiency of such rule-based
approaches is strongly related to the quality of the discriminative properties and to the
proportion of instances that can be covered by them. Some approaches have defined
the quality of a key with respect to a specified linking task. In [32], keys obtained in
two datasets can be merged to generate valid keys on both datasets, while in [13], keys
that involve syntactically similar literals in both datasets are chosen. Nevertheless, no
approach has been defined to discover and exploit linkage rules that are based on REs.
Other systems only focus on schema matching. These systems usually exploit termino-
logical similarities, structural similarities, similarity of instances, external resources, or
logical axioms to discover more or less complex schema mappings (e.g., [10, 5]).
Finally, some systems do instance and schema matching in their ontology matching pro-
cesses (e.g., [20, 14, 29, 33]). Some of these systems like PARIS and ILIADS perform
interleaved schema matching and instance matching in iterations where the mappings
from one task help refine those of the other task [29, 33].
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In this paper, we focus on the instance matching task, and more precisely, we aim
to discover REs that can be useful for data linking. We assume that a link discovery
approach has provided a subset of class and property mappings. It’s worth mentioning
that in data linking approaches where schema matching is to be known, the mappings do
not necessarily have to be the complete set of mappings between properties and classes,
and very simple approaches can be used. For instance, in the Knowledge Graph track of
OAEI 20193, the baseline solution adopting a terminological approach, and using only
schema labels, has achieved an F-measure of 0.79 for mapping properties.

3 Problem Statement

Knowledge Graph. A knowledge graph G is defined by a couple (O,F) where:
the ontology O = (C,DP,OP,A) is defined by a set of classes C, a set of
owl:DataTypeProperty DP , a set of owl:ObjectPropertyOP , and a set of axiomsA; F
is a collection of triples (subject, property, object) ∈ (I ∪ B) × (OP ∪ DP) × (I ∪
C ∪ L ∪ B)4 where I is a set of individuals, B is a set of blank nodes, and L is a set of
Literals.

In this work, we consider referring expressions that are valid for an individual u of
a class C in a knowledge graph G, that are defined as follows:

Definition 1. (Referring Expression). A referring expression, denoted by REk(u) for
the kth RE of a given individual u, of a class C can be expressed by the following first
order logic formula:

C(x)
∧

pi∈OP∪DP
pi(w, y)

such that the formula, existentially closed, is restricted to those conjunctions of atoms
that form a connected graph pattern rooted at x with the leaves being either an individ-
ual in I or a literal in L, and the other nodes being variables.

Definition 2. (Referring Expression Validity). A referring expression REk(u) is valid
in a dataset D if it holds when x is instantiated by u and does not hold for any other
individual v 6= u of C in D.

Example. Two graph patterns G1(x) and G2(x) are shown in Fig. 1 where (-) indicates
a variable. G1(x) is compliant with definition 1 and is a valid referring expression for
Mozart: a musician who was born in a city named Salzburg and who died in Vienna.
Musician(x)∧wasBornIn(x, c)∧cityName(c, “Salzburg”)∧diedInCity(x,#V ienna)

Nevertheless, G2(x) is not compliant with definition 1, since in this work we do not
consider referring expressions that include variables appearing in the leaves of the graph
pattern; hence, the following cannot be discovered as a RE.
Musician(x) ∧ wasBornIn(x, c) ∧ cityName(c, “Salzburg”) ∧ diedInCity(x, z)

Propelled by data linking, we aim to discover minimal referring expressions; that are
the simplest graph patterns allowing to distinguish one individual from all the others.

3 http://ceur-ws.org/Vol-2536/oaei19_paper0.pdf
4 We do not consider blank nodes in this work.
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Fig. 1. Two graph patterns. G1(x) is compliant with definition 1 and G2(x) is not.

Definition 3. (Referring Expression Minimality). A referring expression REk(u) is
minimal iff:

6 ∃ REj(u) s.t. (REk(u) ∪ F ∪ A) |= REj(u)

To focus on REs that are of interest to link data when datasets are incomplete, we ex-
ploit various properties while limiting the number of REs and their complexity. Hence,
we do not construct REs that involve different instantiations of the same property, and
we only consider diversified REs, simply meaning that when a valued property appears
in a RE for an individual, it cannot reappear in another RE for the same individual
having more atoms. This should not be confused with the notion of minimality.
Example. Take the valid RE1(u) for the film Ocean’s Eleven: Film(x) ∧
hasActor(x,#George Clooney) ∧ wasCreatedOnY ear(x, “2001”). Then the fol-
lowing RE2(u), although valid for this movie and minimal, will not be discov-
ered. Film(x) ∧ hasActor(x,#Julia Roberts) ∧ wasCreatedOnY ear(x, “2001”) ∧
editedBy(x,#Stephen Mirrione). Because RE2(u) is not diversified;
since it has more atoms than RE1(u) while sharing the subgraph pattern
wasCreatedOnY ear(x, “2001”) with it.

Definition 4. (Diversified Referring Expression) A referring expression REi(u) is di-
versified if there is no REj(u) with fewer number of atoms that contains a subgraph
p1(x, t1) ∧ . . . ∧ pi(ti−1, ti) ∧ pm(tm−1, vm) of REi(u), where vm ∈ L ∪ I.

Additionally, in the data linking task, one might argue that graph patterns that in-
volve mostly IRIs of individuals are not relevant. Indeed, individuals that are described
in two knowledge graphs are rarely represented with the same IRI. This is why we also
consider Expanded REs that are not minimal but where the individuals’ IRIs in a RE
are replaced by a description constructed from instantiated key properties.

Definition 5. (Referring Expression Expansion). The expansion exp(REk(u)) of a
referring expression REk(u) is a set of referring expressions in which, each leaf node
ni of REk(u) that represents an individual i is replaced by an existential variable xj .
These variables are recursively expanded by a subgraph G rooted by ni representing
one possible instantiation of a key K for the class typing i, such that exp(REk(u))
leads to a graph pattern whose leaves are only literals.
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Example. Consider the following referring expression for Marie Curie:
Scientist(x) ∧ wasBornOnY ear(x, “1867”) ∧ isCitizenOf(x,#Poland). We ob-
serve that Poland is a leaf node representing an individual, thus we can expand
it by creating keys for the class country (range of the property isCitizenOf ).
Suppose it has two sets of keys, namely {hasName} and {hasArea,
isLocatedIn}. We obtain the following RE when #Poland is replaced by an
instantiation of the first key set: Scientist(x) ∧ wasBornOnY ear(x, “1867”) ∧
isCitizenOf(x, y) ∧ hasName(y, “Poland”). And the following RE, when us-
ing the second set of key for country, and subsequently expanding #europe by
considering {hasName} as a key for the class location (range of the property
isLocatedIn): Scientist(x) ∧ wasBornOnY ear(x, “1867”) ∧ isCitizenOf(x, y) ∧
hasArea(y, “312, 696 < km2 > ”) ∧ isLocatedIn(y, z) ∧ hasName(z, “europe”).

4 Referring Expression Generation Approach

In this section, we present an approach to automatically discover minimal and diversi-
fied REs for each instance within a class of a knowledge graph.

Our generation approach is composed of two successive steps. We first generate
the set of minimal and diversified REs for each instance using the algorithm RE-miner.
Since recent approaches have been developed to discover keys, we focus on comple-
mentary REs that do not represent an instantiated key. In a second step, we can generate
the expansion of each RE.

4.1 Keys, Non-keys and Complementary REs

In a knowledge graph, an OWL2 key can be defined as follows:

Definition 6. (Key). A key {p1, . . . , pn} for a class C expresses that:

∀x∀y∀z1...zn(C(x) ∧ C(y) ∧
∧n

i=1(pi(x, zi) ∧ pi(y, zi))→ x = y)

By definition, each instantiation of the key properties for a class C will uniquely
identify an individual present in C. This instantiation will potentially yield many REs.
Nevertheless, this does not represent the complete set of possible minimal REs that can
be discovered. We are thus interested in enriching this set with those REs that only
involve non-key properties. To this end, we will only exploit sets of properties that are
included in one of the maximal non-keys of class C to construct complementary REs.

Definition 7. (Maximal Non-Key). A maximal non-key for a class C in a knowledge
graph G is a set of properties P such that P is not a key, but the addition of any property
to P makes it a key for that class.

4.2 RE-miner algorithm

We outline the procedure of mining the complete set of complementary, minimal, and
diversified REs in Algorithm 1. To retain a reasonable search space and to prevent
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the REs from becoming too complex for data linking, the depth of the aimed REs is
restricted to 2. Nevertheless, this restriction can be dropped by applying a recursive
adaptation of the function existentialRE(G, REnew) (see line 10 of algorithm 1). The
algorithm takes as input a knowledge graph G, a class C, and a Boolean E which is set
to True if we aim to mine REs at depth 2 (i.e., REs that contain at least an existential
quantifier). If the E is False, the REs will not contain any existential quantifiers.

To generate the set of REs for a given class C of knowledge graph G, we first
create the dataset for that class. This dataset will serve as the search space SS (line
1), and is created by keeping all the facts (s, p, o) in G whose subjects s belong to
C. Then using SAKey [30], a key discovery approach, we create the maximal non-
key sets NK of the dataset SS (line 2). We build the powerset, excluding the empty
set, of each set in NK, and group them based on their cardinality (line 3). For in-
stance, imagine that NK = {{p1, p2}, {p3, p4, p5}}; then level 1, includes subsets
of cardinality 1, composed of {{p1}, {p2}, {p3}, {p4}, {p5}}, level 2 composed of
{{p1, p2}, {p3, p4}, {p3, p5}, {p4, p5}}, and level 3 containing {{p3, p4, p5}}.

Since we desire to find minimal REs, the algorithm proceeds level by level (line 4),
starting from level 1, which results in REs containing only one atom. To mine REs at
level l, we take one set of properties P within that level at a time (line 6). The algorithm
generates subgraph patterns from the search space with instantiated properties P (e.g.
p1(x, v) for level 1 and p1(x, y) ∧ p2(x, z) for level 2) as candidate expressions (line
7). We keep the valid REs, among the candidates in REnew (line 8); these expressions
are compliant with definition 2 and hence uniquely identify an individual of the class
C. If we also aim to find REs of depth 2, i.e., if E is True, the existentialRE algo-
rithm detailed in 2 is called on the knowledge graph G and REs found at level l with
properties P (line 10). We add all the recently discovered REs composed of properties
P , to RElevel (line 12), and reiterate until all sets of properties at this level are cov-
ered. Then RElevel is added to the resulting REs (line 14), and all the facts (s, p, o)
involved in these referring expressions are removed from the search space; to ensure
both minimality and diversity (line 14).

As stated in algorithm 1, we can mine more complex REs containing the existential
quantifier where the depth of the subgraph patterns will be 2. To do so, all the REs at a
level l composed of properties P , are passed to the existentialRE algorithm. The output
of this algorithm will be a set of referring expressions, each containing one or more
existential quantifiers. The details are sketched in algorithm 2.

This algorithm starts by keeping a copy of REnew in the RE existential candidate
set (line 1). This candidate set will grow as the algorithm proceeds. We iterate over
each property p in P (line 2) and get its range using G’s schema (line 3). Let the range
of p be the class C′. If not all the instances of the class C′ are literals, we can expand
the leaf node with a subgraph pattern; else, we move on to the next property (line 4).
These subgraph patterns should be chosen such that when replaced, the whole pattern
remains a valid RE. To this end, using RE-miner, algorithm 1, we construct REs of
depth 1, by setting E to False, for the class C′ (line 5). It should be noted that to have
the complete and minimal resulting REexistential, when creating the dataset for C′
(line 1 of algorithm 1), we only keep those instances o ∈ C′ that are involved in such
facts (s, p, o)|s ∈ C. The resulting REs from RE-miner are kept in inducedSubgraphs
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Algorithm 1: RE-miner
Input: A knowledge graph: G, a class: C, a Boolean:E
Output: The set of minimal REs for instances of type C: REset

1 SS ← createData (G, C) // serves as the search space
2 NK← generateNK(SS)
3 createRankedPowerset(NK) // Dictionary level to props
4 for level = 1 to |longestNonKey| do
5 RElevel = ∅
6 foreach P ∈ props.level do
7 REcandidates← constructSubgraphs (SS, P)
8 REnew = validSubgraphs(REcandidates)
9 if E = True then

10 REnew.add(existentialRE(G), REnew)
11 end
12 RElevel.add(REnew)
13 end
14 REset.add(RElevel)
15 SS← suppressFacts (SS, RElevel) // reduce the search space to

preserve minimality and diversity

16 end
17 return REset

(line 5). Then for each referring expression in the candidate set (line 6), we replace
the applicable node, based on p, with the appropriate subgraph in inducedSubgraphs
(line 7). In the end, we remove the REs of depth one REnew we had added initially to
the existential candidate set (line 10), and return the unique subgraphs, which are valid
referring expressions having depth 2 (line 11).

Algorithm 2: existentialRE
Input: A knowledge graph: G, a set of REs having properties P : REnew

Output: The set of REs with existential variable : REexistential

1 REexistentialCands = REnew.copy()
2 foreach p ∈ P do
3 C′ ← getRange(G, p)
4 if exists an instance of C′ ∈ I then
5 inducedSubgraphs← RE-miner(G, C′, E= False)
6 foreach RE ∈ REexistentialCands do
7 REexistentialCands.add(replaceNodeSubgraph(RE, p,

inducedSubgraphs))
8 end
9 end

10 REexistentialCands.remove(REnew)
11 REexistential = validSubgraphs(REexistentialCands)

12 end
13 return REexistential
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4.3 RE Expansion

We have developed a post-processing step to obtain the expansion of referring expres-
sions discovered by RE-miner, as defined in definition 5. To do so, given a RE, for
every IRI u appearing in the leaves of RE, we exploit the set of minimal keys of the
class u belongs to and expand the RE by instantiating properties of every minimal key.
If the keys involve object properties, this step is re-performed recursively on the gen-
erated IRIs until either reaches a maximum depth d specified beforehand, or the leaves
only correspond to literal values. The sets of minimal keys are generated each time a
new class is considered, and are stored on the disk so that there’s no need to regenerate
them to expand another RE. The graphs resulting from the expansion of one IRI are
then combined to other IRI expansions to finally construct expanded REs.

5 Data Linking with REs

Each RE(u) declared for an individual u in the source dataset D1 can be expressed by
a linking rule as follows :

∀xRE(x)→ sameAs(x, u)

where RE(x) can be rewritten using the classes and properties of a target dataset D2

at the linking step. These rules can be represented in SWRL5. Hence, to discover iden-
tity links between individuals described in two given datasets, we focus on referring
expressions that only involve mapped properties, and individuals belonging to classes
that have been aligned. Such mappings can be obtained using existing schema matching
techniques discussed in section 2.

The linkage rules introduced above can be used either logically to deduce identity
links, or by linking tools where simple similarity measures and aggregation functions
can be introduced. Since available existing linking tools like [24, 34, 23] do not consider
such intricate graph patterns (i.e., not just paths of properties), we have developed a
simple bottom-up approach explained in Figure 2, where normalizations or classical
similarity measures can be declared and applied to datatype properties.

We consider a data linking problem between a source dataset in which the REs are
discovered and other target datasets that have a non-empty set of properties mapped
to the source dataset (that can be obtained using ontology alignment tools [11]). The
linking process is comprised of exploiting for every individual u in the source dataset,
the set of distinct RE(u)s to find all the individuals x in the target datasets that check
RE(u). When a RE is discovered in the source dataset, it cannot necessarily be assumed
valid for other target datasets. Indeed, even if the source dataset is voluminous, several
distinct individuals that can instantiate a RE may exist in the other dataset. Theoreti-
cally, when the unique name assumption (UNA) is fulfilled, only one sameAs(u, x)
link can be found for a given RE(u) in the target dataset. If this is the case, the qual-
ity of RE(u) has to be weakened. Therefore, we assign to every RE(u) a confidence
degree inverse proportional to the number of distinct links the RE(u) finds.

5 https://www.w3.org/Submission/SWRL/
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Fig. 2. Bottom-up linking with REk(u). (a) is a valid RE for the film Ocean’s Eleven in the
source dataset. We adopt a bottom-up approach where the traversal begins from leaf nodes. (b,c)
For each of the RE’s leaf nodes ni in (x, p, ni), verifies the matches (s, p, o) in the target dataset
for the class of x; such that o has a high similarity with ni. (d) The matches are intersected at the
internal nodes, until those intersections at the root are reported as the links.

To pick the best identity link(s), we adopt a voting strategy that assigns a weight to
each link. This weight is the sum of the RE confidence degrees that can be instantiated
to generate the link. Eventually, the instance(s) associated with the link(s) having the
highest score is selected. The RE confidence degrees can then be stored and updated
when another data linking task is performed on the source dataset.

6 Experimental Evaluation

To evaluate RE-miner, we conducted two series of experiments. The first is quantitative
that is dedicated to studying the scalability of the proposed algorithm. In the second
series of experiments, we explored how REs can contribute to the data linking task.

All experiments are run on a single machine with processor 2.7GHz, 8 cores, and
16GB of RAM that runs Mac OS X 10.13. The source code of our approach is publicly
available6.

6.1 Datasets

We summarize the characteristics of the 3 datasets on which we did our experiments.
DBpedia-YAGO.7 We use 10 different classes of YAGO and DBpedia knowledge
graphs. The data for these 10 classes are the same data used in VICKEY [31], where
the properties of the two knowledge graphs have been aligned manually. Moreover, the
properties of YAGO have been rewritten using their DBpedia counterparts. This dataset
contains 206,736 ground truth entity pairs.

6 https://github.com/iswc2020/REGeneratipnAndLinking
7 https://github.com/lgalarra/vickey
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IM@OAEI2019.8 We use the Sandbox SPIMBENCH dataset of the instance matching
track at OAEI 2019, its gold standard is available and consists of 300 entity pairs. This
dataset is composed of a Tbox and an Abox for each of the source and target ontologies.
The goal of the task is to match instances describing the same Creative Work, which can
be a news item, blog post, or a program.
IM@OAEI2011.9 We use IIMB (ISLab Instance Matching Benchmark) dataset which
consists of a set of interlinking tasks used by the instance matching track of OAEI 2011.
The source dataset (File 000) describes movies, locations, actors, etc. Files 001 to 080
are generated by applying several transformations to the source dataset. For each of
these files, a gold standard containing around 12.3k identity links has been provided.

6.2 Quantitative Results

Here, we study the scalability of our approach and will report the number of REs found
on average for each individual in the considered knowledge graph, as well as the average
number of nodes in the graphs representing the discovered REs; first at depth 1 and then
at depth 2.

Initially, we run RE-miner on the 10 classes of YAGO at depth 1, i.e., without al-
lowing for any existential variables. Table 1 details the characteristics of each of these
10 classes. Furthermore, this table shows the number of discovered referring expres-
sions for each class as well as their run time. We can observe that the process takes less
than 2 minutes for all classes except for organization, which took more than 3 hours to
complete10. On average, there are less than 7 REs per individual for all classes, except
for the most voluminous class organization with almost 158 REs for each individual.
Without having limited the number of discovered REs’ atoms, these expressions do not
tend to be complex; the maximum number of atoms among all 10 classes is 4 and on
average, each RE has 2 atoms or less11.
Example. The following examples translated to natural language, have been chosen
among the REs of depth 1: (i) Yellow Submarine is an album created by the Beatles
on date 1966-05-26. (ii) MIT university’s motto is mind and hand. (iii) Charles Louis
Alphonse Laveran is a scientist who was born on year 1845 in Paris, graduated from
university of Strasbourg and has won the Nobel prize in Physiology or Medicine.

Similar results have been obtained on OAEI2011 and OAEI2019 datasets with 1.19
and 3.75 average atoms and a maximum of 4 and 8 atoms, respectively (see Table 4) .

To show how many more REs can be found at depth 2 (i.e., REs that contain at
least an existential quantifier), we run RE-miner with the Boolean E set to True, on
the 3 classes of YAGO having the least number of referring expressions at depth 1.
As described in section 4.2, the algorithm should create the dataset for the class the
variable belongs to. To this end, we use instances of this class and all its sub-classes

8 https://project-hobbit.eu/challenges/om2019/
9 http://oaei.ontologymatching.org/2011/instance/index.html

10 Note that the non-key sets had been computed beforehand in all experiments.
11 Note that the rdf:type properties are not being counted in number of atoms.
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Table 1. Class statistics, number of non-keys (#NKs), number of discovered REs at depth 1
(#REs), runtime, and size of the REs

Class #triples #instances #properties #NKs #REs runtime max#atoms avg#atoms

Museum 81.6k 21.1k 7 5 53.5k 2.6s 3 1.23
Mountain 116.7k 32.9k 6 4 59.2k 1.4s 3 1.28

Book 123.6k 41.8k 7 6 66.3k 3.5s 3 1.27
University 131.8k 23.3k 9 9 161.8k 17.7s 3 1.62
Scientist 335.6k 93.1k 18 92 309.9k 64.0s 4 1.58
Album 381.1k 137.1k 5 2 212.1k 14.7s 3 1.30
Actor 514.7k 108.4k 16 69 725.6k 95.1s 3 1.74
Film 533.5k 123.9k 9 7 690.9k 102.3s 4 1.77
City 1.1M 83.5k 17 29 1.2M 109.7s 3 1.23

Organization 2.2M 430.3k 17 43 68.3M 3.48h 4 2.05

in the non-saturated (i.e., no OWL2 entailment rule has been applied) YAGO version
3.112 to ensure having a dataset with at least 1000 instances whenever possible.

Table 2 shows that as expected, many additional REs can be generated at depth 2.
However, the proportion of REs that have only literals values at leaf nodes is rather
small, and we can use those REs for data linking. On average, these referring expres-
sions have 2 atoms more than REs of depth 1.

Table 2. Number of additional REs detected at depth 2 (#REs), runtime, percentage of REs having
only literals in leaf nodes, maximum and average number of atoms.

Class #REs runtime %AllLiterals max#atoms avg#atoms

Mountain 150.8k 3006s 13.4% 6 3.03
Museum 1.4M 3143s 5.2% 5 3.57

Book 1.3M 1.2h 2.50% 6 3.47

6.3 Data Linking

Here, we evaluate data linking on the 3 datasets, each time comparing the results with
the previous works in the literature that used the same datasets. We study the advan-
tage of using REs of depth 1 and 2, REs plus keys (i.e., the complete set of referring
expressions), and expanded REs. For each of the datasets, we compare the results with
a baseline approach that picks random subgraph patterns (i.e., random expressions) and
uses them for linking just as it is done with referring expressions. To be fair when com-
paring the random baseline results to that of REs for data linking, for each dataset, a)
the number of generated random expressions is the same as that of discovered REs. b)

12 http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yago3.1_
entire_tsv.7z
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the size of the random baseline’s subgraphs comes from the same distribution as the dis-
covered referring expressions. In other words, the same number of random subgraphs
and referring expressions with n atoms exist. c) the results for the random baseline are
averaged over three runs.
DBpedia-YAGO. We report our linking results on those 8 classes of this dataset for
which other approaches had previously published results. We have used all REs of depth
1 whose statistics were delineated in Table 1, with strict string equality. The quality of
linking results is reported in terms of precision, recall and F-measure, and is compared
to the results of linking with keys (Ks), keys and conditional keys (Ks + CKs) reported
in [31], ontological graph keys (OGK) reported in [23], and the random baseline (RBL).
A conditional key is a valid key for a specified part of a class’s instances [31]. Ontolog-
ical graph keys defined in [23] are a variant of keys defined by a graph pattern extended
by ontological pattern matching. Table 3 shows that RE-miner outperforms the other
approaches in terms of recall and F-measure on all classes except book. More precisely,
only using REs of depth 1, we can detect much more correct links without having a
significant change to the precision. We also observe that the baseline solution – taking
thousands to million of random subgraphs, depending on the dataset, and using them
for linking – results in much lower scores than REs; showcasing that using the referring
expressions discovered through RE-miner are indeed effective for linking.

Table 3. Linking results with keys (Ks), conditional keys and keys (Ks+CKs), ontological graph
keys (OGK) , random baseline (RBL), and REs of depth 1.

Class
Recall Precision F1

Ks Ks+CKs OGK RBL REs Ks Ks+CKs OGK RBL REs Ks Ks+CKs OGK RBL REs
Actor 0.27 0.60 0.66 0.19 0.69 0.99 0.99 1.00 0.37 0.99 0.43 0.75 0.79 0.25 0.81
Album 0.00 0.15 - 0.35 0.65 1.00 0.99 - 0.22 0.98 0.00 0.26 - 0.27 0.78
Book 0.03 0.13 0.85 0.12 0.80 1.00 0.99 0.97 0.38 0.98 0.06 0.23 0.90 0.18 0.88
Film 0.04 0.39 - 0.30 0.73 0.99 0.98 - 0.73 0.94 0.08 0.55 - 0.43 0.82

Mountain 0.00 0.29 - 0.05 0.78 1.00 0.99 - 0.08 0.99 0.00 0.45 - 0.06 0.87
Museum 0.00 0.29 0.42 0.20 0.85 1.00 0.99 0.99 0.34 0.99 0.00 0.45 0.58 0.25 0.91
Scientist 0.00 0.29 0.67 0.24 0.70 1.00 0.99 0.99 0.14 0.99 0.00 0.45 0.80 0.18 0.82

University 0.09 0.25 0.50 0.29 0.68 0.99 0.99 0.96 0.64 0.98 0.16 0.40 0.66 0.40 0.80

IM@OAEI2011. We first evaluate our data linking results on the entire IIMB dataset.
IIMB is made of 13 different classes (e.g., person, actor, location, etc.); 5 of which are at
the top of the ontology according to the schema. We create the saturated dataset for these
5 classes and discover all minimal and diversified REs of depth 1 and 2 on the source file
000. We use these REs to find identity links in each of the files 001 to 010. The accuracy
measures reported in Table 4 are averaged over these 10 files to compare to the results
of the Combinatorial Optimization for Data Integration (CODI) system [20], which
reformulates the alignment problem as a maximum-a-posteriori optimization problem.
We can observe that RE-miner outperforms CODI by a large margin of 12% to 7%
in recall and F-measure. Also the baseline solution, which generates 1.3 M random
expressions regardless of being RE or not, exhibits poor results. Similar to the previous
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datasets, this performance reassures us that RE-miner algorithm is indeed beneficial
for linking. We also investigated the effects of using expanded RE and observed that it
helps increase the recall by 5.1% on average, over REs of depth 1.

Moreover, we compare data linking results using the discovered REs, on the class
Film, against data linking with keys reported in [3]. We obtained a high F-measure of
99% and gained about 70% increase in the recall.

Table 4. Class statistics and linking results of REs + keys, random baseline (RBL), and other
systems compared to results with REs of depth 1 and 2 on IM@OAEI2011 dataset and the class
Film of IM@OAEI2011, and with REs of depth 1 on IM@OAEI2019 dataset.

Dataset #classes #triples #properties #NKs #REs System Precision Recall F-measure

IIMB
OAEI 2011

13 87.3k 23 17 1.3M

REs 0.92 0.87 0.90
REs+Ks 0.93 0.88 0.91
CODI 0.94 0.76 0.84
RBL 0.69 0.29 0.41

Film
OAEI 2011

1 11.8k 13 4 1.2M

REs 0.99 0.98 0.99
Ks 1.00 0.27 0.43

REs +Ks 0.99 0.98 0.99
RBL 0.89 0.03 0.06

SPIMBENCH
OAEI 2019

1 6.2k 18 3 1.6k

REs 0.98 0.84 0.91
REs + Ks 0.99 0.99 0.99

Lily 0.84 1.00 0.91
AML 0.83 0.89 0.86

FTRLIM 0.85 1.00 0.92
RBL 0.78 0.87 0.82

IM@OAEI2019. We report the linking results using the discovered REs of depth 1 for
the Creative Work class on the source dataset of SPIMBENCH; as the datasets were
not saturated, we could not mine and use REs of depth 2 for linking. We compare our
results to the 3 systems with the best performances in the competition13: Lily, AML,
and FTRLIM, as well as the baseline solution. Looking at Table 4, we observe that the
random baseline approach is the least effective and that REs alone have comparable
performance to the other 3 systems. However, when combined with the instantiation of
keys, resulting in the full set of REs, they outperform all other systems achieving an F-
measure of 99%. The average confidence of the discovered links is 85.5%, whereas this
number increases to 97.9% among the links that are picked through the voting strategy
described in section 5.
Relevancy of diversity. We also performed another set of experiments to observe
the effects discovering diversified REs brings to the data linking task. By modifying
the RE-miner algorithm, we discovered all minimal REs on the same 3 classes of
DBpedia-YAGO dataset presented in table 2. We observed a considerable increase in
the number of discovered REs (e.g., it almost doubled for the class book); whereas the
recall and F-measure of the linking task either remained the same or slightly decreased

13 http://ceur-ws.org/Vol-2536/oaei19_paper0.pdf



16 Khajeh Nassiri et al.

(e.g., for the class book, it dropped by 2%). These results support that the use of
diversity as a quality criterion for referring expressions proves beneficial in limiting the
number of REs while preserving the quality of data linking.

To sum, we showed that using REs improves data linking results compared to pre-
vious works and the random baseline. The results were verified on different datasets
containing classes with 5 to 23 properties and 300 to 137k instances.

7 Conclusion

In this paper, we proposed an approach that efficiently discovers referring expressions
by reducing the search space thanks to the use of maximal non-keys. The generated REs
are adapted to a data linking task through the notions of minimality and diversification
and the post-processing step of expansion.

We showed that RE-Miner can scale to classes consisting of millions of triples and
that the defined REs can significantly improve the performance of instance matching
and increase the recall of rule-based data linking methods.

As future work, we aim to refine REs by virtue of data linking, whereby if a RE
finds more than one match in the target dataset, we can deduce that some information
had been missing in the source dataset and hence can add the new relevant facts to the
source knowledge graph.
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