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The design of an adaptive observer for a class of multi-input Multi-output (MIMO) Lipschitz nonlinear systems with uncertainties and multi-rated outputs is proposed in this paper. The sampling instants of the different outputs can be asynchronous and irregular. The exponential convergence of the proposed observer is proved with the help of a Lyapunov approach. The stability is ensured, provided that some conditions, including a persistent excitation condition and a maximum value condition on the sample rate of each output, are verified. The performances of the observer are illustrated through simulations of the attitude estimation problem using sensors from an inertial measurement unit and considering gyro bias.

INTRODUCTION

Adaptive observers have received a lot of attention during the last decades. These observers are used to simultaneously estimate the state of a system and some unknown parameters. Their various applications such as fault detection, adaptive control or signal transmission show the importance of the given problem (see for instance [START_REF] Baldi | Fault diagnosis for satellite sensors and actuators using nonlinear geometric approach and adaptive observers[END_REF][START_REF] Stefanopoulou | Pressure and temperature-based adaptive observer of air charge for turbocharged diesel engines[END_REF]).

Most of the works dedicated to adaptive observer design consider systems whose output is available continuously with respect to time. Early contributions have been concerned with linear invariant systems such as in [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] and [START_REF] Luders | An adaptive observer and identifier for a linear system[END_REF], and thereafter with linear time-varying systems such as in [START_REF] Zhang | Adaptive observer with exponential forgetting factor for linear time varying systems[END_REF][START_REF] Zhang | Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems[END_REF]. A consequent number of papers has then dealt with non-linear systems with linear parametrization. A first idea has been to seek for new coordinates such that the error dynamics are linear. Such changes of coordinates are usually related to some canonical forms (see [START_REF] Bastin | Stable adaptive observers for nonlinear time-varying systems[END_REF][START_REF] Marino | Global adaptive observers and output-feedback stabilization for a class of nonlinear systems[END_REF][START_REF] Marino | Robust adaptive observers for nonlinear systems with bounded disturbances[END_REF]). Using Lyapunov functions, some other approaches do not require to linearize the systems. For example, delayed observers have been used in [START_REF] Stamnes | Redesign of adaptive observers for improved parameter identification in nonlinear systems[END_REF] or high gain design in [START_REF] Xu | Nonlinear system fault diagnosis based on adaptive estimation[END_REF][START_REF] Besançon | On adaptive observers for state affine systems[END_REF][START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF]. Then the consideration of a larger class of system with non-linear parametrization has received much attention. In fact, in order to deal with this problem, several approaches have been considered in the literature. Indeed, a min-max optimization algorithm has been used in [START_REF] Loh | Adaptation in the presence of a general nonlinear parameterization: an error model approach[END_REF] to overcome the limits of the gradient descent method for adaptive systems with concave/convex parametrization. Similarly, an optimization approach for adaptive control has been used in [START_REF] Kojić | Adaptive control of nonlinearly parameterized systems with a triangular structure[END_REF]. Some high-gain based observers have been proposed for systems with a triangular structure. Indeed, Single-Input Single-Output (SISO) systems have been considered in [START_REF] Grip | Estimation of states and parameters for linear systems with nonlinearly parameterized perturbations[END_REF] and [START_REF] Menard | Adaptive high gain observer for uniformly observable systems with nonlinear parametrization[END_REF] and MIMO systems in [START_REF] Farza | Adaptive observer design for a class of nonlinear systems. Application to speed sensorless induction motor[END_REF]. An observer based on the concept of weakly attracting sets has also been presented in [START_REF] Tyukin | Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters[END_REF], but which does not guarantee the asymptotic stability.

While most of the works consider continuous-time measurements, for real systems, the sensor measurements are usually available only at discrete instants. Following this paradigm, a full discrete-time approach which allows to reconstruct both the state and the unknown parameters in discrete time has been used for linear systems in [START_REF] Guyader | Adaptive Observer for Discrete Time Linear Time Varying Systems[END_REF] and for nonlinear systems in [START_REF] Caccavale | Adaptive Observer for Fault Diagnosis in Nonlinear Discrete-Time Systems[END_REF][START_REF] Srinivasarengan | An adaptive observer design approach for discrete-time nonlinear systems[END_REF], for example. Another approach is to consider a continuous estimation using the continuous-time model which is fed by the discrete-time measurements. This allows to obtain global convergence in many cases, contrary to a full discrete-time approach which usually lead to only semi-global convergence [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF]. Therefore, several observers which estimate continuously the state from discrete-time measurements have been proposed. Indeed, a class of state affine MIMO systems with linear parametrization has been considered in [START_REF] Hann | Continuous adaptive observer for state affine sampled-data systems[END_REF] and state-affine SISO systems with non-linear parametrization in [START_REF] Farza | Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs[END_REF]. Similarly, an adaptive observer for another class of MIMO systems has been designed in [START_REF] Zhao | Continuous-discrete-time adaptive observers for nonlinear systems with sampled output measurements[END_REF].

In all the aforementioned works, convergence has been obtained for large classes of systems, however no uncertainty on the dynamics is considered while it is rather common in practice. Furthermore, the outputs are supposed to be synchronized, which means that the measurements of the different outputs are all obtained at the same sampling instants. This may not be the case in practice, since the considered sensors might not be synchronized or have different sampling rates. Thus, one considers in this paper, the design of an adaptive observer for a class of uniformly observable non-linear MIMO systems with a triangular structure, dynamic uncertainties and multi-rated outputs. In particular, the outputs can be asynchronous and can have irregular sampling instants. Using a high-gain approach, the proposed adaptive observer estimates continuously the state of the system from discrete time measurements. The exponential convergence of the observer is proved with a Lyapunov approach under a persistent excitation condition and provided that for each output, the corresponding sampling periods are over-valued by a given bound. An advantage of the followed approach is that it is fairly easy to tune since there are only a few parameters to set.

The remaining of the paper is organized as follows. First, the considered model is presented in Section 2. The proposed observer and the convergence result are given in Section 3. Simulations of an attitude estimation system using sampled sensors commonly found in inertial measurement units are provided in Section 4 in order to illustrate the proposed approach. Finally, Section 5 concludes the article.

In the rest of the paper, one respectively denotes min ( ) and max ( ) the minimum and maximum eigenvalues of , where is a square symmetric matrix. For a continuous matrix valued function  → ( ) where for each ≥ 0, ( ) is a square symmetric matrix, one denotes max ( ) = sup ≥0 max ( ( )) and min ( ) = inf ≥0 min ( ( )).

PROBLEM STATEMENT

One considers, in this paper, the class of nonlinear systems whose dynamics are given by

̇ ( ) = ( ) + Ψ( ( ), ( )) + ( ( ), ( ), ) + ( ) (1) 
where ∈ ℝ is the state, ∈ ℝ is the input, ∈ ℝ is the vector of unknown parameters and ∈ ℝ the unknown time varying uncertainties.

In particular, one assumes that the state , the unknown parameters and the uncertainties can be partitioned as

= ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 2 ⋮ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ with = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 2 ⋮ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , ∈ ℝ , = 1, … , , = 1, … , , (2) 
= ⎡ ⎢ ⎢ ⎣ 1 ⋮ ⎤ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎣ 1 ⋮ ⎤ ⎥ ⎥ ⎦ ∈ ℝ , = 1, … , = ⎡ ⎢ ⎢ ⎣ 1 ⋮ ⎤ ⎥ ⎥ ⎦ with ∈ ℝ , (3) 
and that the dynamics of , = 1, … , are given by:

̇ = + Ψ ( , ) + ( , , ) + , if is not empty + ( , , ) + , if is empty (4) with = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 … 0 ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ 0 ⋮ ⋱ 0 … … … 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 ⋮ 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , (5) 
Ψ = ⎡ ⎢ ⎢ ⎢ ⎣ Ψ 1,1 … Ψ 1, ⋮ ⋮ Ψ ,1 … Ψ , ⎤ ⎥ ⎥ ⎥ ⎦ with Ψ , ∈ ℝ , = ⎡ ⎢ ⎢ ⎣ 1 ⋮ ⎤ ⎥ ⎥ ⎦ with ∈ ℝ , ( 6 
)
Remark 1. It should be noted that contains the sub-components of that were not present in the dynamics of 1 , … , -1 and that first appear in the dynamics of . Then, some may be empty if no new unknown parameter appears in the dynamics of . Furthermore, when a new unknown parameter appears in the dynamics of , it is supposed to appear in a linear way.

Structure of the nonlinearities

Let ∈ {1, … , }, one now details the structure of the nonlinear functions Ψ and contained in the dynamics of . In particular, one specifies the dependence of Ψ and with respect to both the state and the unknown parameters . First, the functions Ψ and are supposed to have a triangular structure according to the state both between the sub-states 1 , … , and for each sub-state between 1 , … , , that is, for = 1, … , , = 1, … , , = 1, … , :

( , , ) = ( , 1 , … , -1 , 1 , … , , ) (7) 
Ψ , ( , ) = Ψ , ( , 1 , … , -1 , 1 , … , ) (8) 
In order to state the structure of according to the unknown parameters , one first introduces the indices ∈ ℕ, = 1, … , , representing the sub-components where appears for the first time, that is such that

Ψ , ≢ 0 and Ψ , ≡ 0 if ≠ (9) 
Similarly to the structure of the nonlinearities with respect to the state, the function is supposed to have a triangular structure between the sub-components 1 , … , and a special structure for each sub-component between 1 , … , , that is, for = 1, … , , = 1, … , , = 1, … , :

( , , ) ≡ 0 if > and ( , , ) ≡ 0 if ≥ (10) 
Remark 2. The first condition of [START_REF] Grip | Estimation of states and parameters for linear systems with nonlinearly parameterized perturbations[END_REF] means that cannot depend on sub-components of that did not appear linearly for the first time in the dynamics of 1 , … , while the second condition means that cannot depend on sub-components of that did not appear linearly for the first time in the dynamics of 1 , … , -1 .

Measurements of the considered class of systems

One assumes that only the first sub-components 1 of each sub-state are measured. That is, the measured outputs ∈ ℝ are given by

= 1 = , with = 0 … 0 (11) 
Moreover, each output is supposed to be sampled at independent and possibly irregular sampling instants, that is:

1 ( 1 ) = 1 1 ( 1 ) (12) 
⋮

( ) = ( ) (13) 
for ∈ ℕ, and the sampling instants are assumed to verify

1 0 < 1 1 < 1 2 < …, lim →+∞ 1 = +∞ and | | | 1 +1 -1 | | | < 1 (14) ⋮ 0 < 1 < 2 < …, lim →+∞ = +∞ and | | | +1 - | | | < (15)
3 MAIN RESULTS

Observer design

In order to design the observer that both reconstruct the state and the unknown parameters of system (1), one first needs to introduce some notations.

Let us define first a sequence of integers ( ) =1,…, that will be used for the design of the observer:

• ∈ ℕ, = 1, … , is defined such that = 1 and ≥ +1 +1 .
Let us further define

• Δ ( ) = , 1 , … , 1 ( -1) • Ω ( ) = 1 1 , … , 1
where is a parameter of the observer. One now states some identities that will be used in the following for the proof of convergence. The proof of these identities are given in the appendices.

Proposition 1. The following identities hold true for = 1, … , :

(i) Δ -1 ( ) = , (ii) Δ ( ) Δ -1 ( ) = , (iii) Δ ( ) = 1 ( -1) , (iv) Δ ( )Ψ Ω -1 ( ) = Ψ .
Define the observer state ̂ = ̂ 1 … ̂ ∈ ℝ with ̂ ∈ ℝ , = 1, … , . Then, for = 1, … , and ∈ [ , +1 )

• if is not empty, the dynamics of ̂ is given by

̇̂ ( ) = ̂ ( ) + Ψ ( ( ), ̂ ( )) ̂ ( ) + ( ( ), ̂ ( ), ̂ ( )) -Δ -1 ( ) -1 + Υ ( ) ( )Υ ( ) ( ) (16) ̇̂ ( ) = -Ω -1 ( ) ( )Υ ( ) (17) 
̇ ( ) = - ( -1 + Υ ( ) ( )Υ ( )) ( ) (18) Υ ( ) = --1 Υ ( ) + Ψ ( ( ), ̂ ( )) (19) ̇ ( ) = - ( )Υ ( ) Υ ( ) ( ) + ( ) (20) 
with ( ) = ̂ 1 ( ) -( ) , Υ (0) = 0, (0) = (0) > 0, ̂ (0) ∈ ℝ and ̂ (0) ∈ ℝ which can be chosen arbitrarily.

• if is empty, the dynamics of ̂ is given by

̇̂ ( ) = ̂ ( ) + ( ( ), ̂ ( ), ̂ ( )) -Δ -1 ( )Γ -Γ 1 ( -) ̂ 1 ( ) -( ) (21) 
with ̂ (0) ∈ ℝ , ̂ (0) ∈ ℝ which can be chosen arbitrarily

The matrix is the Symmetric Definite Positive Matrix solution of

+ + - = 0 (22)
Finally, Γ is define by Γ = -1 . It can be shown that Γ can be written in the following form:

Γ = ⎡ ⎢ ⎢ ⎣ Γ 1 ⋮ Γ ⎤ ⎥ ⎥ ⎦ (23) with Γ = = ! !( -)! ∈ ℝ the binomial coefficient.
Remark 3. Equations ( 16) and ( 21) can look quite different, but it can actually be noted that if Ψ ≡ 0 in ( 16), then equations ( 16) and ( 21) are strictly equivalent. Indeed, given the structure of Γ , it can be shown that if

Ψ ≡ 0, then ̇ ( ) = -Γ 1 ( ) and then ( ) = -Γ 1 ( -) ̂ 1 ( ) -( ) for ∈ [ , +1 ).

Convergence result

In order to obtain the convergence of the proposed observer, one first needs to make some assumptions about system (1) and the observability of the unknown parameters of system (1).

Assumption 1. The state , the control input and the unknown parameters are bounded, that is, there exists some compact sets ⊂ ℝ , ⊂ ℝ and Λ ⊂ ℝ such that for all ≥ 0, ( ) ∈ , ( ) ∈ and ∈ Λ. 

‖ ( )‖ ≤ , ∀ ≥ 0. ( 24 
)
Assumption 6. For = 1, … , there exists > 0 (independent of ) such that for all ≥ 0 and > 0

( -1 ( )) ≥ ( ) (25) 
where ( ) is a positive function satisfying for all > 0 ( ) ≥ 1 and lim

→∞ ( )∕ 2 = 0 (26) 
Remark 4. As it was shown in [START_REF] Farza | Adaptive observer design for a class of nonlinear systems. Application to speed sensorless induction motor[END_REF][START_REF] Boker | Nonlinear observers comprising high-gain observers and extended Kalman filters[END_REF], the assumption 6 is satisfied under a classical persistent excitation condition as the following one. For = 1, … , such that is not empty, the input is such that for any trajectory of system ( 16)-( 20) starting from ( ̂ (0), ̂ (0)) ∈ × Λ, there exists ̄ > 0 (independent of ) and > 0 such that for all ≥ 0 and > 0

+ ∫ Υ ( ) Υ ( ) ≥ ̄ ( ) (27) 
One can also note that the assumption 6 can be checked online by computing the minimum of the eigenvalues of -1 .

Remark 5. In the rest of the paper, the following notations will be used.

Ψ max = sup ≥0 ‖Ψ ( ( ), ̂ ( ))‖ ( 28 
) max = max =1,…, | | | | (29) 
The result of the observer convergence proposed in this chapter can now be established.

Theorem 1. Consider the system (4) under the assumptions 1 to 6. Assume that ≥ 1 satisfies

4 √ ( ) ≥ √ max ( ) √ (1 + (Υ max ) 2 ) √ min( min ( ), ) + √ max ( ) Ψ max √ max(1, Υ max ) √ min( min ( ), ) (30) 
with the number of sub-components of the -th block state , Υ max the upper bound of Υ , the Lipschitz constant of , Ψ the Lipschitz constant of Ψ , max the maximum value of | | and defined in [START_REF] Xu | Nonlinear system fault diagnosis based on adaptive estimation[END_REF]. Then, if, for each block = 1, … , , the upper bound on the sampling periods is chosen such that

< 8 + min min ( ), √ ( ) (max(1, Ψ max + Υ max )) + (1 + Υ max ) + Ψ max max 1, Υ max √ 2 (31) 
with Ψ max the upper bound of Ψ , then there exists ( ) ≥ 0 and ≥ 0, with independent of and the uncertainties, such that the following inequality holds true

‖ ‖ ̃ ( ) ‖ ‖ + ‖ ‖ ̃ ( ) ‖ ‖ ≤ ( ) - 8 + -( 1 + ⋯ + ) (32) 
with ̃ = ̂ -, ̃ = ̂ -and an upper bound of .

Before proceeding to the proof of this theorem, lemmas necessary for the proof of convergence must first be presented. The proof of both lemmas are given in the appendices. Lemma 1. For each = 1, … , such that is not empty, the corresponding vector Υ is norm bounded, that is

Υ max = sup ≥0 ‖Υ ( ( ), ̂ ( ))‖ < +∞ (33) Lemma 2. Let ∶ [-, +∞) → ℝ be a 1 function verifying the following inequality ( 2 ( )) ≤ -2 ( ) + ∫ - 2 ( ) + -+ (34) 
with > 0, ≥ 0, > 0, ≥ 0, > 0, ≥ 0 and < min

√ 2-1 2 , 1 √ 2
. Then there exists ̄ ≥ 0 such that the following inequality holds true

2 ( ) ≤ ̄ -̄ + 2 (35) 
where ̄ = min 2 , . Let us now move on to the proof of the main result.

Proof of Theorem 1. The proof of convergence is split into three parts. First, some adapted coordinates are defined and their corresponding dynamics are derived. In a second part, some candidate Lyapunov functions are defined and some over-valuations involving their derivatives along the error dynamics are obtained. Finally, an induction reasoning is applied in order to obtain the convergence.

Part 1: Equation error Let ≥ 0 and denote for = 1, … , :

̃ = ̂ -, ̃ = ̂ -and = max ∈ ℕ| ≤ , then ̇̃ = ̃ + ̃ ( , ̂ , ̂ , , ) + Ψ ( , ̂ ) ̂ -Ψ ( , ) - ( ) -Δ -1 ( ) -1 + Υ Υ ( ) (36) ̇̃ = -Ω -1 ( ) Υ (37) 
where ̃ ( , ̂ , ̂ , , ) = ( , ̂ , ̂ ) -( , , ). In order to simplify the notations in the proof, one does not make difference in writing between the case empty and non empty. Indeed, according to remark 3, it is direct to see that the error equation for the case empty can also be written as equations ( 36)-(37) by considering that Ψ = 0 and ̃ = 0.

Denote now ̄ = Δ ( ) ̃ and ̄ = Ω ( ) ̃ , then

̇̄ = ̄ ̄ + Δ ( ) ̃ ( , ̂ , ̂ , , ) + Δ ( ) Ψ ( , ̂ , ) + Δ ( )Ψ( , ̂ )Ω -1 ( ) ̄ - -1 + Υ Υ -Υ Υ ̄ --( -1) ( ) (38) ̇̄ = - Υ ̄ - Υ (39) 
where ̄ = --1 , = ( ) -̄ ( ) and Ψ ( , ̂ , ) = Ψ ( , ̂ ) -Ψ( , ). Finally, one obtains

̇̄ = ̄ ̄ + Δ ( ) ̃ ( , ̂ , ̂ , , ) + Ψ ( , ̂ , ) + Ψ ( , ̂ ) ̄ - -1 + Υ ̇̄ --( -1) ( ) (40) 
Define = ̄ -Υ ̄ , then ̇ = ̇̄ -Υ ̄ -Υ ̇̄ (41) = ̄ + Δ ( ) ̃ ( , ̂ , ̂ , , ) + Ψ ( , ̂ , ) - -1 --( -1) ( ) (42) 
Part 2: Lyapunov function Let us now define the candidate Lyapunov functions ( , ̄ ) = 1 ( ) + 2 ( ̄ ) with 1 ( ) = and 2 ( , ̄ ) = ̄ -1 ( ) ̄ . These functions are valid candidate Lyapunov functions since each and -1 ( ) are symmetric definite positive matrices and thanks to assumption 6, the eigenvalues of -1 ( ) are lower bounded independently of . Then, the following equalities hold

̇ 1 = ( --1 ) + ( --1 ) + 2 + 2 Δ ( ) ̃ + 2 Δ ( ) Ψ -2 -( -1) ( ) (43) 
= --

+ 2 + 2 Δ ( ) ̃ + 2 Δ ( ) Ψ -2 -( -1) ( ) (44) 
where equality (44) is obtained by using equation [START_REF] Stamnes | Redesign of adaptive observers for improved parameter identification in nonlinear systems[END_REF]. Now, by using the Cauchy-Schwartz inequality, the fact that ‖ ‖ = ‖ ‖ = 1 and assumption 5, one further has

̇ 1 ( ) ≤ - - + 2 √ max ( ) √ 1 ( )‖Δ ( ) ̃ ‖ + 2 √ max ( ) √ 1 ( )‖Δ ( ) Ψ ‖ + 2 √ min ( ) √ 1 ( )‖ ‖ + 2 -( -1) √ max ( ) √ 1 ( ) (45) 
Using the following facts, whose proof is given in the appendices:

Fact 1. ‖Δ ( ) ̃ ‖ ≤ √ ( ) 1 √ max ( ) √ ( , ̄ ) + 2 √ max ( ) ∑ -1 =1 (‖ ̃ ‖ + ‖ ̃ ‖), with 1 = √ max ( ) √ (1 + (Υ max ) 2 ) √ min( min ( ), ) (46) 2 
= √ √ max ( ) (47) 
Fact 2. ‖Δ ( ) Ψ ‖ ≤ √ ( ) 3 √ max ( ) √ ( , ̄ ) + 4 √ max ( ) ∑ -1 =1 (‖ ̃ ‖ + ‖ ̃ ‖) with 3 = √ max ( ) Ψ max √ max(1, Υ max ) √ min( min ( ), ) (48) 
4 = Ψ max √ √ max ( ) (49) 
Fact 3. ‖ ‖ ≤ 5 ( ) ∫ - √ ( ) + 6 ∑ -1 =1 ∫ - ‖ ‖ ̃ ( ) ‖ ‖ + ‖ ‖ ̃ ( ) ‖ ‖ with 5 ( ) = √ ( ) (max(1, Ψ max + Υ max )) + (1 + Υ max ) + Ψ max max 1, Υ max min √ min ( ), √ √ 2 (50) 6 = + Ψ max (51) 
one obtains

̇ 1 ( ) ≤ - - + 2 √ ( )( 1 + 3 ) ( , ̄ ) + 2( 2 + 4 ) √ 1 ( ) -1 ∑ =1 ‖ ‖ ‖ ̃ ‖ ‖ ‖ + ‖ ‖ ‖ ̃ ‖ ‖ ‖ + 2 5 ( ) √ min ( ) √ 1 ( ) ∫ - √ ( ) + 2 6 √ min ( ) √ 1 ( ) ∫ - -1 ∑ =1 ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ + ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ + 2 -( -1) √ max ( ) √ 1 ( ) (52) 
Now, let us obtain an over-valuation of the derivative of 2 . One has

̇ 2 = ̇̄ -1 ̄ + ̄ -1 ̄ -̄ -1 ̇ -1 ̄ (53) = -̄ Υ -1 ̄ - ̄ -1 Υ ̄ + 2 ̄ -1 Υ + ̄ -1 Υ Υ - -1 ̄ (54) = - Υ ̄ - ̄ Υ Υ ̄ - ̄ Υ - ̄ Υ Υ ̄ + 2 ‖Υ ‖ ‖ ̄ ‖ ‖ ‖ + ̄ Υ Υ ̄ - ̄ -1 ̄ (55) ≤ - Υ ̄ - ̄ Υ - ̄ Υ Υ ̄ + 2 √ 2 ( ̄ ) ⎛ ⎜ ⎜ ⎜ ⎝ 5 ( ) √ ∫ - √ ( ) + 6 √ ∫ - -1 ∑ =1 ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ + ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ ⎞ ⎟ ⎟ ⎟ ⎠ - 2 ( ̄ ) (56) 
with 5 ( ) and 6 given by fact 3 and using assumption 6.

An over-valuation of the derivative of can then be obtained as follows .

̇ ≤ - - + Υ ̄ + Υ ̄ + 2 √ ( ) 1 + 3 + 2 7 ( ) √ ∫ - √ ( ) + √ -1 ∑ =1 2 + 4 ‖ ‖ ‖ ̃ ‖ ‖ ‖ + ‖ ‖ ‖ ̃ ‖ ‖ ‖ + 2 √ -1 ∑ =1 8 ∫ - ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ + ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ + 2 -( -1) √ max ( ) √ ( 
Finally, it is direct to see that, thanks to assumption 6, there exists * ≥ 1 such that for any ≥ * one has

-2 √ ( )( 1 + 3 ) ≥ 2 (58) 
which is equivalent to

√ ( ) ≥ 4( 1 + 3 ) (59) 
This leads to

( √ ) ≤ - 4 √ + 7 ( ) ∫ - √ ( ) + ( 2 + 4 ) -1 ∑ =1 ‖ ‖ ‖ ̃ ‖ ‖ ‖ + ‖ ‖ ‖ ̃ ‖ ‖ ‖ + 8 ∫ - -1 ∑ =1 ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ + ‖ ‖ ‖ ̃ ( ) ‖ ‖ ‖ + -( -1) √ max ( ) (60) 
Part 3: Induction reasoning Let us now proceed to an induction reasoning on = 1, … , , that is, let us prove that the exponential convergence of

‖ ‖ ̃ 1‖ ‖ + ‖ ‖ ̃ 1‖ ‖ , … , ‖ ‖ ̃ -1‖ ‖ + ‖ ‖ ̃ -1‖
‖ to a ball, whose radius depends linearly over the uncertainties bounds 1 , … , -1 and with a negative power, when tends to infinity implies the exponential convergence of ‖ ‖ ̃ ‖ ‖ + ‖ ‖ ̃ ‖ ‖ to a ball whose radius depends linearly on 1 , … , . More precisely, one will show that for = 1, … , , there exists 9 , 10 ≥ 0, with 10 independent of , such that ‖ ‖ ̃ ‖ ‖ + ‖ ‖ ̃ ‖ ‖ verifies the following inequality:

‖ ‖ ̃ ( ) ‖ ‖ + ‖ ‖ ̃ ( ) ‖ ‖ ≤ 9 ( ) - 8 + - 10 1 + ⋯ + (61) 
For = 1, if is taken such as ≥ * 1 , one has the following over-valuation implying the derivative of

√ 1 ( √ 1 ) ≤ - 1 4 √ 1 + 1 1 7 ( ) ∫ -1 √ 1 ( ) + -( 1 -1) 1 1 √ max ( 1 ) (62) 
Applying lemma 2 with

2 = √ 1 , = 1 4 , = 1 1 7 ( ), = 0, ∈ ℝ arbitrary, = -( 1 -1) 1
√ max ( 1 ) 1 and = 1 , shows that there exists ̄ 1 9 ≥ 0 such that √ 1 verifies the following inequality

√ 1 ≤ ̄ 1 9 - 1 8 + -1 1 ̄ 1 10 1 = ̄ 1 9 - 1 8 + -1 1 ̄ 1 10 1 (63) 
with ̄ 1 10 = 2 √ max ( 1 ), provided that

1 < min 1 4 1 7 ( ) , 8 1 ≤ 8 + min min ( 1 ), 1 √ ( ) 1 (max(1, Ψ 1 max + Υ 1 max )) + 1 (1 + Υ 1 max ) + 1 Ψ 1 max max 1, Υ 1 max √ 2 (64) Then, since ‖ ‖ ̃ 1‖ ‖ + ‖ ‖ ̃ 1‖ ‖ ≤ ( 1 -1) 1 (1+Υ 1 max ) min √ min ( 1 ), √ 1 √ 1 , one obtains ‖ ‖ ‖ ̃ 1 ‖ ‖ ‖ + ‖ ‖ ‖ ̃ 1 ‖ ‖ ‖ ≤ 1 9 ( ) -1 8 + 1 10 -1 1 (65) 
with

1 9 = ( 1 -1) 1 (1+Υ 1 max ) min √ min ( 1 ), √ 1 ̄ 1 9 and 1 10 = (1+Υ 1 max ) min √ min ( 1 ), √ 1 ̄ 1 10 . Now, let us assume that ‖ ‖ ̃ 1‖ ‖ + ‖ ‖ ̃ 1‖ ‖ , … , ‖ ‖ ̃ -1‖ ‖ + ‖ ‖ ̃ -1‖
‖ verify inequality (61) and let us prove that ‖

‖ ̃ ‖ ‖ + ‖ ‖ ̃ ‖ ‖ do as well.
If is taken such that ≥ * , using inequality (60) and the induction hypothesis, implies that the derivative of √ verifies the following inequality:

( √ ) ≤ - 4 √ + 7 ( ) ∫ - √ ( ) + -( -1) √ max ( ) + ( 2 + 4 ) -1 ∑ =1 9 - 8 + - 10 ( 1 + ⋯ + ) + 8 -1 ∑ =1 ∫ - 9 - 8 + - 10 ( 1 + ⋯ + ) (66) 
≤ -4

√ + 7 ( ) ∫ - √ ( ) + -( -1) √ max ( ) + -1 ∑ =1 ( 2 + 4 ) 9 + 8 9 8 -1 - 8 + --1 -1 ∑ =1 ( 2 + 4 ) 10 + 8 10 ( 1 + ⋯ + -1 ) (67) 
where the latter inequality is obtained since ( ) is decreasing.

Thus, applying lemma 2 with

2 = √ , = 4 , = 7 ( ), = ∑ -1 =1 ( 2 + 4 ) 9 + 8 9 8 -1 , = 8 and = --1 ∑ -1 =1 ( 2 + 4 ) 10 + 8 10 ( 1 + ⋯ + -1 ) + -( -1)
√ max ( ), and using the fact that -1 ≥ , shows that there exists

̄ 9 ≥ 0 such that √ ≤ ̄ 9 - 8 + -̄ 10 ( 1 + ⋯ + ) (68) 
with ̄ 10 = max 

∑ -1 =1 ( ,
Since ‖ ‖ ̃ ‖ ‖ + ‖ ‖ ̃ ‖ ‖ ≤ ( -1) (1+Υ max ) min √ min ( ), √ √ , one obtains ‖ ‖ ̃ ‖ ‖ + ‖ ‖ ̃ ‖ ‖ ≤ 9 ( ) - 8 + - 10 ( 1 + ⋯ + ) (70) 

EXAMPLE: ATTITUDE ESTIMATION WITH GYRO BIAS

Model of the system

One considers here the problem of the simultaneous estimation of the attitude of a rigid body and the gyro bias from the measurements given by an IMU unit. Particularly, the measurements are provided by three commonly used sensors: an accelerometer, a magnetometer and a gyroscope. The latter is assumed to be corrupted by a constant bias.

The attitude of a rigid body represents the rotation between an inertial reference frame {I} and a body fixed frame {B}. One then defines the orientation at each time instant ≥ 0 by a rotation matrix ( ) ∈

(3) from {B} to {I}. For the remains of this study, R(t) will be in ℝ 3×3 , indeed, the particular structure of (3) is not used in the proposed estimation scheme. The first two measurements (the accelerometer and the magnetometer) can be seen as the result of the rotation between {B} and {I} of two non co-linear constant vectors. On one side, the measured acceleration ( ) is the resultant of the rotation of the standard gravity 0 , that is

( ) = ( ) 0 (71) 
where 0 = 0 0 . On the other side the measured magnetic field ( ) is the resultant of the rotation of the earth magnetic field 0 , that is ( ) = ( ) 0 (72) where 0 = . Another physical quantity can be induced from these measurements, namely, the cross product between and . This cross product is defined as follows:

( ) = ( ) × ( ) (73) 
The following assumption is made on ( ):

Assumption 7. For all ≥ 0, ( ) and ( ) are non-colinear and then ( ) ≠ 0.

A vector of observations is obtained from a concatenation of the three previously defined vectors. It is given by

( ) = ⎡ ⎢ ⎢ ⎣ ( ) ( ) ( ) ⎤ ⎥ ⎥ ⎦ ∈ ℝ 9×1 (74)
The last measurement is the biased angular velocity ( ) of the considered rigid body expressed in {B} and is given by

( ) = ( ) + (75) 
where ( ) ∈ ℝ 3×1 is the unbiased angular velocity and ∈ ℝ 3×1 the bias. The bias is considered constant and then ̇ = 0. The kinematics of the attitude is thus given by the following differential equation involving the angular velocity:

̇ ( ) = ( )( ( )) × ( 76 
)
where × is the associated skew

-matrix of = ⎡ ⎢ ⎢ ⎣ 1 2 3 ⎤ ⎥ ⎥ ⎦
and is defined by

× = ⎡ ⎢ ⎢ ⎣ 0 -3 2 3 0 -1 -2 1 0 ⎤ ⎥ ⎥ ⎦ ∈ ℝ 3×3 .
Finally, the dynamics of the observation vector can be defined by

̇ ( ) = -3 ( ( )) ( ) = -3 ( ( )) ( ) + 3 ( ) ( ) (77) 
and then:

̇ ( ) = -3 ( ( )) ( ) -9 ( ( )) (78) 
where

3 ( ) = diag( × , × , × ) ∈ ℝ 9×9 and 9 ( ) = ⎡ ⎢ ⎢ ⎣ × × × ⎤ ⎥ ⎥ ⎦ ∈ ℝ 9×3 .

Observer design

In order to apply the proposed observer to the model, one now writes the dynamics in the form of the equation ( 4) and with its notations. The system is split in two subsystems. The first one describes the behavior of the angular velocity. In fact, the angular jerk is considered as an unknown uncertainty. The mathematical model can then be written as follow:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ̇ 1 1 = 1 2 ̇ 1 2 = 1 3 ̇ 1 3 = 1 1 = 1 1 = (79) 
The second subsystem describes the kinematics of the attitude as previously shown in equation (78). By denoting the gyroscope bias as 2 , on can write

̇ 2 1 = -3 ( 1 1 ) 2 1 -9 ( 2 1 ) 2 2 = 2 1 = (80) 
As it can be noticed, the first state block does not contain unknown parameters. The dynamics of the estimated angular velocity ̂ 1 can thus be written with one equation as in [START_REF] Srinivasarengan | An adaptive observer design approach for discrete-time nonlinear systems[END_REF]. This is not true for the second state block since 2 has to be estimated. Then, the complete observer system is given by

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ̇̂ 1 ( ) = ⎡ ⎢ ⎢ ⎣ ̂ 1 2 ̂ 1 3 0 ⎤ ⎥ ⎥ ⎦ -1 Δ -1 1 ( )Γ 1 -1 Γ 1 1 ( -1 ) ( ̂ 1 ( ) -1 ( )) ̂ 1 ( ) = ̂ 1 1 ( ) ̇̂ 2 ( ) = -3 ( ̂ 1 1 ( )) ̂ 2 1 ( ) -9 ( ̂ 2 1 ) ̂ 2 -2 Δ -1 2 ( ) 9 + Υ 2 ( ) 2 ( )Υ 2 ( ) 2 ( ) ̇̂ 2 ( ) = -2 2 ( )Υ 2 ( ) 2 ( ) ̇̂ 2 ( ) = -2 9 + Υ 2 ( ) 2 ( )Υ 2 ( ) 2 ( ) Υ2 ( ) = -2 Υ 2 ( ) -2 9 ( ̂ 2 1 ( )) ̇ 2 ( ) = -2 2 ( )Υ 2 ( )Υ 2 ( ) 2 ( ) + 2 2 ( ) ̂ 2 ( ) = ̂ 2 1 ( ) (81) 
where

Γ 1 = ⎡ ⎢ ⎢ ⎣ 3 3 3 3 3 ⎤ ⎥ ⎥ ⎦ , 1 ≥ 1, 2 = 1, Δ 1 ( ) = 3 , 1 1 3 , 1 2 1 3 and Δ 2 ( ) = 9 .
Finally, once the observation vector is estimated, the estimated rotation matrix ̂ ( ) can be deduced by using

̂ ( ) = -1 2 ̂ 2 1 ( ) (82) 
where 2 is a constant and non singular matrix, involving the constant vectors 0 and 0 , defined by

2 = ⎡ ⎢ ⎢ ⎣ 0 0 3 3 3 3 - 3 3 0 ⎤ ⎥ ⎥ ⎦ (83) 

Simulation results

Simulations of the reconstruction of the attitude with the observer given in equation ( 81) have been carried out with generated measurements. The rotation dynamic is defined by the angular velocity depicted on figure 1. The sampling periods of the two outputs have been taken such that 1 ≤ 1 +1 -1 ≤ 1 and 2 ≤ 2 +1 -2 ≤ 1 with 1 = 0.1 , 1 = 0.4 , 2 = 0.2 and 2 = 0.6 . The observer's parameters to be set up, and 1 , have been chosen to = 2 and 1 = 3. The sampling periods are presented in figure 2. Finally, the constant vectors have been taken to 0 = 0 0 9.81 and 0 = 0.434 -0.0091 -0.9008 . 

FIGURE 1 Angular velocity

Two simulations are exposed. The first one is performed in the noise-free case. On the contrary, in the second simulation, white Gaussian noises are added on the accelerometer and on the magnetometer. Their standard deviations are equal to = 0.16 ∕ 2 for the accelerometer and = 0.04 for the magnetometer. These two signals are depicted on figure 3. It can be noted that good performances are obtained for both simulations. Indeed, in the noise free case, the estimated attitude converges very closely to its real value, as it can be seen on figure 4 where the Euler angles corresponding to and ̂ are depicted. In fact, as expected from the theoretical results, the uncertainties considered on the first subsystem prevent the estimated attitude to match exactly the generated one. The errors between the estimated outputs and the real outputs and the error || ̂ ( ) -( )||, presented respectively on figures 6 and 8, confirm these performances. When the noise is added, the performances are still decent, but errors are higher, as shown in figures 7 and 9. Indeed, one can see that the Euler angles corresponding to and ̂ , and represented on figure 5 are not as close as in the noise free case. Regarding the estimated bias, depicted on figures 10 and 11, they are estimated correctly for both simulations, but with less error in the noise-free case.

CONCLUSION

An adaptive high gain observer has been proposed in this paper, for a class of non-linear systems with uncertainties and multirated outputs. One of the main features of the proposed scheme is that the sampling periods can be irregular and asynchronous between different outputs. Another interesting feature is that thanks to its high-gain structure, only a few observer parameters have to be set: the high-gain parameter and the powers associated to each block. Sufficient conditions have been provided to ensure that the estimation error converges inside a ball whose radius depends on the 

APPENDIX A PROOFS OF THE IDENTITITES

The identities to prove are:

1. Δ -1 ( ) = , 2. Δ ( ) Δ -1 ( ) = , 3. Δ ( ) = 1 ( -1) , 4. Δ ( )Ψ Ω -1 ( ) = Ψ .
Let us prove them:

1. One has

Δ -1 ( ) = 0 … 0 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 … … 0 0 1 - ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ 0 0 … … 0 1 -( -1) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = 0 … 0 = 2.
By proceeding in a similar way, one has:

Δ ( ) Δ -1 ( ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 … … 0 0 1 ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ 0 0 … … 0 1 ( -1) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 … 0 ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ 0 ⋮ ⋱ 0 … … … 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 … … 0 0 ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ 0 0 … … 0 ( -1) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 … 0 ⋮ ⋱ 1 ⋱ ⋮ ⋮ ⋱ ⋱ 0 ⋮ ⋱ 1 ( -2) 0 … … … 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 … … 0 0 ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ 0 0 … … 0 ( -1) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = 3. One has Δ ( ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 … … 0 0 1 ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ 0 0 … … 0 1 ( -1) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 ⋮ 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 ⋮ 0 1 ( -1) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = 1 ( -1)
4. The product can be written as:

Δ ( )Ψ Ω -1 ( ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 … … 0 0 1 ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ 0 0 … … 0 1 ( -1) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ Ψ 1,1 … Ψ 1, ⋮ ⋮ Ψ ,1 … Ψ , ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 … … 0 0 2 ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋱ 0 0 … … 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 Ψ 1,1 … Ψ 1, … Ψ 1, ⋮ ⋮ ⋮ ( 1 -+1) Ψ ,1 … ( -+1) Ψ , … ( -+1) Ψ , ⋮ ⋮ ⋮ ( 1 -+1) Ψ ,1 … ( -+1) Ψ , … ( -+1) Ψ , ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
Thus, using the equation ( 9) that for = 1, … , , = 1, … , , = 1, … , one obtains:

• if = then ( -+1) Ψ , = Ψ , • otherwise if ≠ , then Ψ , = 0 ×1 and thus ( -+1) Ψ , = 0 ×1 = Ψ , Which prove that Δ ( )Ψ Ω -1 ( ) = Ψ .

B PROOF OF LEMMA 1

Consider the change of variable such that Ῡ

( ) = Υ . (B1)
Thus, the dynamic of Ῡ is given by

̇Ῡ ( ) = ( --1 ) Ῡ ( ) + Ψ , ̂ . (B2)
This permits to show that

Ῡ ( ) = ̄ Ῡ (0) + ∫ 0 ̄ ( -) Ψ , ̂ (B3) 
where ̄ = --1 . Since, according to assumption 2, the function Ψ is norm bounded and since the matrix ̄ is Hurwitz, Ῡ is bounded and its upper bound is independent of . This concludes the proof.

C PROOF OF LEMMA 2

Let us first deal with the case = 0. In this case, one has

( 2 ( )) ≤ -2 ( ) + -+ (C4)
Define now the following candidate Lyapunov function

Θ( ) = 2 ( ) (C5) 
Its derivate can be overbounded as follow

Θ( ) ≤ - 2 Θ( ) + -+ (C6)
Solving the equation ̇ ( ) = -2 ( ) + -+ and applying the comparison lemma [13, lemma 3.4 p102] show the result for = 0. Let > 0, and let us denote = √ 2 , = -1 and = 1 -, then, one has

0 < ≤ 1 + √ 2 -1 (C7) ≤ √ 2 (C8) ≤ 1 - 1 √ 2 (C9)
Inequality (C7) is obtained by using the fact that

≤ 1 + √ 2 , ∀ ∈ 0, 1 2 (C10)
and since is chosen such that ≤ 1 √ 2

, this ensures that ∈ 0, 1 2 . Inequality (C9) is obtained by using the fact that is chosen such that ≤ √ 2-1 2

.

One has proven until now that ∈ 0, 1 -1 √ 2

, which directly implies that ∈ 1 √ 2 , 1 . Let us now define the following candidate Lyapunov function

Θ( ) = 2 ( ) + ∫ 0 ∫ - ( -+ ) 2 ( ) (C11) 
where ( ) = ( + ), ∈ [-, 0]. Then, its derivative can be over-valued in the following way

Θ( ) = ( 2 ( )) - ∫ 0 ∫ - ( -+ ) 2 ( ) + ∫ 0 2 ( ) -2 ( -) (C12) ≤ ⎛ ⎜ ⎜ ⎝ -2 ( ) + ∫ - 2 ( ) + -+ ⎞ ⎟ ⎟ ⎠ - Θ( ) -2 ( ) + -1 2 ( ) -∫ - 2 ( ) (C13) ≤ -Θ( ) -2 ( ) + 2 ( ) + -1 2 ( ) + -+ (C14) ≤ - 2 Θ( ) + -+ √ 2 + (1 -) 2 ( ) + -+ (C15) ≤ - 2 Θ( ) -1 - 1 √ 2 2 ( ) + -+ (C16) ≤ - 2 Θ( ) + -+ (C17)
Inequality (C14) is obtained by using the fact that the function → -1

is continuous on (0, +∞) and increasing, and ∈ (0, 1). Inequality (C15) is obtained by using the fact that = 1 -and ∈ 1 

D PROOF OF FACT 1

One has

‖Δ ( ) ̃ ‖ 2 = ∑ =1 -2( -1) ‖ ̃ ‖ 2 (D18) ≤ ∑ =1 ( ) 2 -2( -1) ⎡ ⎢ ⎢ ⎣ -1 ∑ =1 ‖ ̃ ‖ 2 + ‖ ̃ ‖ + ∑ =1 ‖ ̃ ‖ 2 + ⎛ ⎜ ⎜ ⎝ ∑ =1, < ‖ ̃ ‖ 2 ⎞ ⎟ ⎟ ⎠ ⎤ ⎥ ⎥ ⎦ (D19) ≤ ∑ =1 ( ) 2 -1 ∑ =1 ‖ ̃ ‖ 2 + ‖ ̃ ‖ + ∑ =1 ( ) 2 ∑ =1 -2( -1) +2( -1) ‖ ̄ ‖ 2 + ∑ =1 ( ) 2 ⎛ ⎜ ⎜ ⎝ ∑ =1, < -2( -1) +2 ‖ ̄ ‖ 2 ⎞ ⎟ ⎟ ⎠ (D20) ≤ ( ) 2 ∑ =1 -1 ∑ =1 ‖ ̃ ‖ 2 + ‖ ̃ ‖ 2 + ‖ ̄ ‖ 2 + ‖ ̄ ‖ 2 (D21) ≤ ( ) 2 -1 ∑ =1 ‖ ̃ ‖ 2 + ‖ ̃ ‖ 2 + (‖ ‖ 2 + (1 + (Υ max ) 2 )‖ ̄ ‖ 2 ) (D22)
where inequality (D19) is due to the structure of given by ( 7) and [START_REF] Grip | Estimation of states and parameters for linear systems with nonlinearly parameterized perturbations[END_REF] and inequality (D22) is obtained by using the fact that ̄ = + Υ ̄ and lemma 1. Finally, one obtains 

‖Δ ( ) ̃ ‖ 2 ≤ ( ) 2 -1 ∑ =1 ‖ ̃ ‖ 2 + ‖ ̃ ‖ 2 + ( )
where inequality (D24) is obtained by using assumption 6 and remark 4.

E PROOF OF FACT 2

Similarly to the proof of fact 1, one has

‖Δ ( ) Ψ ‖ 2 ≤ ∑ =1 -2( -1) ‖ Ψ ‖ 2 ‖ ‖ 2 (E26) ≤ ∑ =1 ( Ψ ) 2 -1 ∑ =1 ‖ ̃ ‖ 2 + ∑ =1 -2( -1)
‖ ̃ ‖ 2 ( max ) 2 (E27)

≤ ( Ψ ) 2 ( max ) 2 ∑ =1 -1 ∑ =1 ‖ ̃ ‖ 2 + ‖ ̄ ‖ 2 (E28) ≤ ( Ψ ) 2 ( max ) 2 -1 ∑ =1 ‖ ̃ ‖ 2 + (‖ ‖ 2 + (Υ max ) 2 ‖ ̄ ‖ 2 ) (E29)
where inequality (E27) is obtained by using the structure of Ψ given by ( 8) and the notation introduced in remark 5 and inequality (E29) is obtained by using the fact that ̄ = + Υ ̄ and lemma 1. Finally, one obtains 

‖Δ ( ) Ψ ‖ 2 ≤ ( Ψ )
where inequality (E31) is obtained by using assumption 6 and remark 4.

F PROOF OF FACT 3

The derivative of is given by 

̇ = ̇ -̇̄ ( ) ( 

Assumption 2 .Assumption 3 .Assumption 4 .Assumption 5 .

 2345 The functions Ψ ( , ) are continuous over × and bounded outside × . The functions ( , , ) are Lipschitz with respect to ( , ) uniformly with respect to . Their Lipschitz constant are denoted . The functions Ψ ( , ) are Lipschitz with respect to uniformly with respect to . Their Lipschitz constant are denoted Ψ The uncertainties are bounded, that is, for = 1, … , , there exists ≥ 0 such that

with 9 (

 9 
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 1011 FIGURE 10 Estimated and real gyroscope bias for the first simulation

√ 2 , 1 .

 21 Solving the equation ̇ ( ) = -2 ( ) + -+ and applying the comparison lemma [13, lemma 3.4 p102] concludes the proof.

  ( )[ ̃ + Ψ ] + Ψ ̄ (F34)Then, noticing that ( ) = 0 yields( ) = -∫ ̄ ( ) + Δ ( )[ ̃ ( ) + Ψ ( ) ] + Ψ ( )̄ fact 1 and 2, using the fact that ‖ ‖ = 1 and using the notation Ψ max and max as in remark 5 yields‖ ( )‖ ≤ ∫ -‖ ̄ ( )‖ + Ψ max ‖ ̄ ( )‖ + (‖ ̄ ( )‖ + ‖ ̄ ( )‖) + Ψ max ‖ ̄ ( ( )‖ + ‖ ̃ ( )‖) + Ψ max ‖ ̃ ( )‖ (F37)Using the fact that ̄ = + Υ ̄ and using lemma 1 gives ‖ ‖ ≤ ‖ ‖ + Υ max ‖ ̄ ‖, and then‖ ( )‖ ≤ ∫ -+ ( + Ψ max ) ‖ ( )‖ + ∫ -(Ψ max + Υ max ) + ( (1 + Υ max ) + Ψ max Υ max ) ‖ ̄ ( + Υ max ) + ( (1 + Υ max ) + Ψ max Υ max ) + Υ max ) + ( (1 + Υ max ) + Ψ max Υ max )1, Ψ max + Υ max )) + (1 + Υ max ) + Ψ max max 1