
HAL Id: hal-03191258
https://hal.science/hal-03191258

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Noetherian Spaces in Verification
Jean Goubault-Larrecq

To cite this version:
Jean Goubault-Larrecq. Noetherian Spaces in Verification. Proceedings of the 37th International
Colloquium on Automata, Languages and Programming (ICALP’10) – Part II, volume 6199 of Lecture
Notes in Computer Science, Bordeaux, France, July 2010. Springer, pp.2-21, 2010, �10.1007/978-3-
642-14162-1_2�. �hal-03191258�

https://hal.science/hal-03191258
https://hal.archives-ouvertes.fr

Noetherian Spaces in Verification

Jean Goubault-Larrecq∗,†

∗ Preuves, Programmes et Systèmes, UMR 7126,
CNRS and University Paris Diderot
† LSV, ENS Cachan, CNRS, INRIA

Abstract

Noetherian spaces are a topological concept that generalizes well quasi-orderings.
We explore applications to infinite-state verification problems, and show how this
stimulated the search for infinite procedures à la Karp-Miller.

1 Introduction

The purpose of this paper is to given a gentle introduction to the theory of Noetherian
spaces, in the context of verification of infinite-state systems.

Now such a statement can be intimidating, all the more so as Noetherian spaces
originate in algebraic geometry [20, chapitre 0]. Their use there lies in the fact that the
Zariski topology of a Noetherian ring is Noetherian.

My purpose is to stress the fact that Noetherian spaces are merely a topological
generalization of the well-known concept of well quasi-orderings, a remark that I made
in [19] for the first time. Until now, this led me into two avenues of research.

The first avenue consists in adapting, in the most straightforward way, the theory
of well-structured transition systems (WSTS) [1, 4, 16, 21] to more general spaces.
WSTS include such important examples as Petri nets and extensions, and lossy channel
systems. After some technical preliminaries in Section 2, I will describe the basic
theory of Noetherian spaces in Section 3. This leads to a natural generalization of
WSTS called topological WSTS, which I will describe in Section 4.

In [19], I described a few constructions that preserve Noetherianness. We shall give
a more complete catalog in Section 3: Nk, Σ∗ and in general every well-quasi-ordered
set, but several others as well, including some that do not arise from well-quasi-orders.

We apply this to the verification of two kinds of systems that are not WSTS. We
do not mean these to be any more than toy applications, where decidability occurs as
a natural byproduct of our constructions. I certainly do not mean to prove any new,
sophisticated decidability result for some realistic application in verification, for which
we should probably exert some more effort. I only hope to convince the reader that the
theory of Noetherian spaces shows some potential.

The first application, oblivious stack systems, are k-stack pushdown automata in
which one cannot remember which letter was popped from a stack: see Section 5. The

1

second one, polynomial games, is an extension of Müller-Olm and Seidl’s static anal-
ysis of so-called polynomial programs [29] to games played between two players that
can compute on real and complex numbers using addition, subtraction, multiplication,
and (dis)equality tests: see Section 6, where we also consider the case of lossy concur-
rent polynomial games, i.e., networks of machines running polynomial programs and
which communicate through lossy signaling channels.

The second avenue of research has led Alain Finkel and myself to make significant
progress in designing extensions of the Karp-Miller coverability algorithm to other
WSTS than just Petri nets or even counter machines. I will say a bit more in Section 7.
This line of research stemmed from the remarkable relationship between the concepts
of Noetherianness and of sobriety, which I will explain. It is fair to say that the results
obtained with A. Finkel could be proved without any recourse to Noetherian spaces.
But the decisive ideas come from topology, and in particular from the important role
played by irreducible closed sets in Noetherian spaces.

2 Technical Preliminaries

A well quasi-ordering (wqo) is a quasi-ordering (a reflexive and transitive relation) that
is not only well-founded, i.e., has no infinite descending chain, but also has no infinite
antichain (a set of incomparable elements). An alternative definition is: ≤ is a wqo
on X iff every sequence (xn)n∈N

in X contains a pair of elements such that xi ≤ xj ,
i < j. Yet another equivalent definition is: ≤ is wqo iff every sequence (xn)n∈N

has a
non-decreasing subsequence xi0 ≤ xi1 ≤ . . . ≤ xik ≤ . . ., i0 < i1 < . . . < ik < . . .

WSTS. One use of well quasi-orderings is in verifying well-structured transition
systems, a.k.a. WSTS [1, 4, 16, 21]. These are transition systems, usually infinite-
state, with two ingredients. (For simplicity, we shall consider strongly monotonic well-
structured transition systems only.)

First, there is a well quasi-ordering ≤ on the set X of
states. Second, the transition relation δ commutes with
≤, i.e., if x δ y and x ≤ x′, then there is a state y′ such
that x′ δ y′ and y ≤ y′:

x ≤

δ

x′

δ

y ≤ y′

(1)

Examples include Petri nets [34] and their extensions, reset/transfer Petri nets for exam-
ple, in general all affine counter systems [15], the close concept of VASS [23], BVASS
[37, 11], lossy channel systems [3], datanets [26], certain process algebras [7]; and
some problems, such as those related to timed Petri nets [5] admit elegant solutions by
reduction to an underlying WSTS.

We illustrate the concept using Petri nets. I won’t define what Petri nets are exactly.
Look at Figure 1, left, for an example. This is a net with 5 places x1, . . . , x5, each
containing a certain number of tokens (shown as bullets): the initial state is shown,
with one token in places x2 and x3, and none anywhere else. Petri nets run by firing
transitions, shown as black bars |. Doing so means, for each incoming arrow #→|,
remove one token from the source place #, and for each outgoing arrow |→#, add one
token to the target place. This can only be done provided there are enough tokens in

2

x1

•
x2

•

x3 x4 x5

a b

c

d

{ x1 = x4 = x5 = 0; x2 = x3 = 1; }; // init
start:

if (x3 ≥ 1) { x2 −−; x1 ++; goto start; } // a
[] if (x4 ≥ 1) { x1 −−; x2+ = 2; goto start; } // b
[] { x3 −−; x4 ++; goto start; } // c
[] { x4 −−; x3 ++; x5 ++; goto start; } // d

Figure 1: A Petri Net

the source places. E.g., transition a can only fire provided there is at least one token
in x2 and at least one token in x3 (which is the case in the initial state shown in the
figure), will remove one from x2 and one from x3, then put back one into x3 and put
one into x1. The net effect of transition a is therefore to move one token from x2 to
x1, provided there is at least one token in x3. If we agree to use a variable xi to hold
the current number of tokens in place xi, a C-like notation for this is if (x3 ≥ 1) {
x2 −−; x1 ++; }, as we have shown on the right-hand side of the figure.

In general, Petri nets are just another way of writing counter machines without zero
test, i.e., programs that operate on finitely many variables x1, . . . , xk containing natural
numbers; the allowed operations are adding and subtracting constants from them, as
well as testing whether xi ≥ c for some constants c. The general counter machines
also offer the possibility of testing whether xi equals 0. Crucially, Petri nets do not
allow for such zero tests. This makes a difference, as reachability and coverability (see
later) is undecidable for general counter machines [28], but decidable for Petri nets
[34].

Let us check that Petri nets define WSTS. Consider a Petri net with k places x1,
. . . , xk. The states, also called markings, are tuples ~n = (n1, . . . , nk) ∈ Nk, where
ni counts the number of tokens in place xi. The state space is Nk. Order this by the
canonical, pointwise ordering: (n1, . . . , nk) ≤ (n′

1, . . . , nk) iff n1 ≤ n′
1 and . . . and

nk ≤ n′
k. This is wqo by Dickson’s Lemma, whose proof can be safely left to the

reader (reason componentwise, observing that N is itself well-quasi-ordered).
The transitions are each given by a pair of constant vectors ~a,~b ∈ Nk: we have

~n δ ~n′ iff ~a ≤ ~n and ~n′ = ~n−~a+~b for one of the transitions. For example, transition a
in Figure 1 can be specified by taking ~a = (0, 1, 1, 0, 0) and ~b = (1, 0, 1, 0, 0). It is
easy to see that Diagram (1) holds. Indeed, if some transition is firable from ~n, then it
will remain firable even if we add some tokens to some places, and triggering it will
produce a new state with more tokens as well.

The standard backward algorithm for WSTS [4, 16]. The coverability problem is:
given two states x, y, can we reach some state z from x such that y ≤ z? This is a form
of reachability, where we require, not to reach x exactly, but some state in the upward
closure ↑x of x.

3

For any subset A of X , let Pre∃δ(A) be the preimage {x ∈ X | ∃y ∈ A · x δ y}.
The commutation property (1) of strongly monotonic systems ensures that the preimage
Pre∃δ(V) of any upward closed subset V is again upward closed (V is upward closed
iff whenever x ∈ V and x ≤ x′, then x′ ∈ V). One can then compute Pre∃∗δ(V),
the set of states in X from which we can reach some state in V in finitely many steps,
assuming that upward closed subsets are representable and Pre∃(A) is computable
from any upward closed subset A: Compute the set Vi of states from which we can
reach some state in V in at most i steps, backwards, by V0 = V , Vi+1 = Vi∪Pre

∃δ(Vi):
this stabilizes at some stage i, where Vi = Pre∃∗δ(V).

To decide coverability, then, compute Pre∃∗δ(↑ y), and check whether x is in it.
This is a very simple algorithm. The only subtle point has to do with termination.

One notices indeed that V0 ⊆ V1 ⊆ . . . ⊆ Vi ⊆ . . ., and that if the sequence ever
stabilizes at stage i, we can detect it by testing whether Vi+1 ⊆ Vi. Now it must
stabilize, because ≤ is wqo. Indeed, in a wqo every upward closed subset U must be
the upward closure ↑E = {x ∈ X | ∃y ∈ E · y ≤ x} of some finite set E. (Proof: any
element x ∈ U is above a minimal element in U : start from x and go down until you
cannot go further—which must eventually happen since ≤ is well-founded. The set E
of all minimal elements of U must then be finite since there is no infinite antichain.) In
particular, Vω =

⋃
i∈N

Vi can be written ↑{x1, . . . , xn}. Each xj , 1 ≤ j ≤ n, must be
in some Vij , so they are all in Vi, where i = max(i1, . . . , in): it follows that Vω = Vi,
and we are done.

Noetherian spaces. The idea of [19] lies in replacing order theory by topology, notic-
ing that the role of wqos will be played by Noetherian spaces.

Indeed, topology generalizes order theory. (To do so, we shall require topologi-
cal spaces that are definitely non-Hausdorff, even non-T1, hence very far from metric
spaces or other topological spaces commonly used in mathematics.) Any topological
space X indeed carries a quasi-ordering ≤ called the specialization quasi-ordering of
X: x ≤ y iff every open neighborhood U of x also contains y. It is fruitful, from a com-
puter science perspective, to understand opens U as tests; then x ≤ y iff y simulates x,
i.e., passes all the tests that x passes.

Note that in particular every open U is upward closed in≤, and every closed subset
F is downward closed. Similarly, continuous map f : X → Y are in particular
monotonic (the converse fails).

In the opposite direction, there are several topologies on X with a given specializa-
tion quasi-ordering≤. The finest one (with the most opens) is the Alexandroff topology:
its opens are all the upward closed subsets. The coarsest one (with the fewest opens)
is the upper topology: its closed subsets are all unions of subsets of the form ↓E (the
downward closure of E), E finite. In between, there are other interesting topologies
such as the Scott topology, of great use in domain theory [6].

3 The Basic Theory of Noetherian Spaces

A topological space X is Noetherian iff every open subset of X is compact. (I.e., one
can extract a finite subcover from any open cover.) Equivalently:

4

Definition 3.1 X is Noetherian iff there is no infinite ascending chain U0 (U1 (
. . . (Un (. . . of opens in X .

The key fact, showing how Noetherian spaces generalize wqos, is the following [19,
Proposition 3.1]: ≤ is wqo on the set X iff X , equipped with the Alexandroff topology
of ≤, is Noetherian. This provides plenty of Noetherian spaces.

It turns out that there are also Noetherian spaces that do not arise from wqos, thus
Noetherian spaces provide a strict generalization of wqos. The prime example is P(X),
the infinite powerset of X , with the lower Vietoris topology, defined as the coarsest that
makes 3U = {{A ∈ P(X) resp., ∈ P∗(X) | A ∩ U 6= ∅} open for every open subset
U of X . When X is a poset, P(X) is quasi-ordered by the Hoare quasi-ordering ≤♭:
A ≤♭ B iff for every a ∈ A, there is a b ∈ B such that a ≤ b. Assuming X wqo, P(X)
is not wqo in general, however it is Noetherian in the lower Vietoris topology—which
turns out to be the upper topology of ≤♭ [19, Corollary 7.4]. A related example, in
fact almost the same one, is the Hoare powerdomain H(X) of a space X: this is the
space of all non-empty (even infinite) closed subsets F of X , with the lower Vietoris
topology, namely the upper topology of ⊆. This is one of the powerdomains used in
domain theory, and is a model of the so-called angelic variant of non-deterministic
choice [6]. Then H(X) is Noetherian as soon as X is [19, Theorem 7.2].

We don’t have any practical applications of P(X) or H(X) in verification today.
We shall give an application of Noetherian spaces in Section 6, where the underlying
space is Noetherian, but is not the Alexandroff topology of a wqo. A simpler example
is given by Σ∗, the space of all finite words over a finite alphabet Σ, with the upper
topology of the prefix ordering ≤pref. We shall see below why this is Noetherian, and
shall use it in Section 5. Note that ≤pref is certainly not wqo, as soon as Σ contains at
least two letters a and b: b, ab, aab, . . . , anb, . . . , is an infinite antichain.

The key insight in the theory of Noetherian spaces is how Noetherianness interacts
with sobriety. A topological space X is sober if and only if every irreducible closed
subset C is the closure ↓x of a unique point x ∈ X . The closure of a point x is always
the downward closure ↓x with respect to the specialization quasi-ordering. A closed
subset C is irreducible iff C 6= ∅, and whenever C is included in the union of two
closed subset, then C must be contained in one of them. For every x ∈ X , it is clear
that ↓x is irreducible. A sober space has no other irreducible closed subset.

Sober spaces are important in topology and domain theory [6], and are the corner-
stone of Stone duality. We refer the reader to [6, Section 7] or to [18, Chapter V] for
further information. We shall be content with the following intuitions, which show that
sobriety is a form of completeness. A space is T0 iff its specialization quasi-ordering
≤ is an ordering, i.e., any two distinct points x, y, can be separated by some open U

(think of it as a test that one point passes but not the other one). So a space is T0 if it
has enough opens to separate points. A sober space is a T0 space that also has enough
points, in the sense that any closed set C that looks like the closure of a point (in the
sense that it is irreducible) really is so: C = ↓x, where necessarily x = maxC. An-
other indication is that, if X is sober, then X is a dcpo [6, Proposition 7.2.13]: for
every directed family (xi)i∈I , in particular for every chain, the limit supi∈I xi exists.
So a sober space is complete also in this sense.

Any topological space X can be completed to obtain a sober space S(X), the so-

5

brification of X , which has the same lattice of open subsets (up to isomorphism), and
possibly more points. In a sense, we add all missing limits supi∈I xi to X . S(X) is de-
fined as the collection of all irreducible closed subsets C of X , with the upper topology
of ⊆. X is then embedded in S(X), by equating each point x ∈ X with ↓x ∈ S(X).

The first key point about the interaction between sobriety and Noetherianness is
that for any space X , X is Noetherian iff S(X) is Noetherian [19, Proposition 6.2].
This is obvious: X and S(X) have isomorphic lattices of open sets. Thus, to show that
X is Noetherian, it is enough to show that S(X) is. The following is the cornerstone of
the whole theory, and allows one to check that a sober space is Noetherian by checking
simple properties of its specialization quasi-ordering [19, Theorem 6.11]:

Theorem 3.2 (Fundamental Theorem of Sober Noetherian Spaces) The sober Noethe-
rian spaces are exactly the spaces whose topology is the upper topology of a well-
founded partial order ≤ that has properties W and T.

We say that X has property W iff, for every x, y ∈ X , there is a finite subset E of
maximal lower bounds of x and y, such that every lower bound of x and y is less than
or equal to some element of E; i.e., ↓x∩↓ y = ↓E. Similarly, it has property T iff the
space X itself is of the form ↓E, E finite.

This allows us to prove that the product of two Noetherian spaces X , Y is again
Noetherian [19, Theorem 6.13]. The specialization quasi-ordering on S(X × Y) ∼=
S(X) × S(Y) is the product ordering, and it is easy to see that the product of two
well-founded orderings is again well-founded, and similarly for properties T and W.

Since every wqo is Noetherian, classical spaces such as Nk, or Σ∗ with the (Alexan-
droff topology of the) divisibility ordering (Higman’s Lemma [22]), or the set of all
ground first-order terms T(X) (a.k.a., vertex-labeled, finite rooted trees) with tree em-
bedding (Kruskal’s Theorem [25]), are Noetherian.

It is natural to ask ourselves whether there are topological version of Higman’s
Lemma and Kruskal’s Theorem. There are indeed, and at least the former case was
alluded to in [13, Theorem 5.3]. Let X be a topological space, X∗ the space of all
finite words on the alphabet X with the subword topology, defined as the coarsest one
such that X∗U1X

∗U2X
∗ . . . X∗UnX

∗ is open for every sequence of open subsets U1,
U2, . . . , Un of X . The specialization quasi-ordering of X∗ is the embedding quasi-
ordering ≤∗, where w ≤∗ w′ iff one obtains w′ from w by increasing some letters and
inserting some others, and:

Theorem 3.3 (Topological Higman Lemma) If X is Noetherian, then so is X∗.

One also observes that if X is Alexandroff, then so is X∗. One therefore obtains Hig-
man’s Lemma, that ≤∗ is wqo as soon as ≤ is wqo on X , as a consequence. Thinking
of opens as tests, a word passes the test X∗U1X

∗U2X
∗ . . . X∗UnX

∗ iff it has a length
n subword whose letters pass the tests U1, . . . , Un.

As a corollary, the space X⊛ of all multisets of elements of X , with the sub-multiset
topology, is Noetherian whenever X is. This is the coarsest one that makes open the
subsets X⊛ ⊙ U1 ⊙ U2 ⊙ . . . ⊙ Un of all multisets containing at least one element
from U1, one from U2, . . . , one from Un, where U1, U2, . . . , Un are open in X . This
follows from Theorem 3.3 because X⊛ is the image of X∗ by the Parikh mapping

6

Ψ : X∗ → X⊛ that sends each word to its multiset of letters, and because of the easy
result that the continuous image of any Noetherian space is again Noetherian.

The way I initially proved Theorem 3.3 [13, full version, available on the Web,
Theorem E.20] is interesting. One first characterizes the irreducible closed subsets of
X∗ as certain regular expressions, the word-products P = e1e2 . . . en, where each ei
is an atomic expression, either of the form F ∗ with F non-empty and closed in X , or
C? (denoting sequences of at most one letter taken from C), where C is irreducible
closed in X . Note how close this is from the definition of products and SREs [2]. In
fact, the latter are the special case one obtains when considering X finite, in which
case irreducible closed sets C are single letters a, and non-empty closed sets F are just
non-empty subsets of X .

Properties T and W are easy, and one realizes that there is no infinite descending
chain of word-products P0) P1) . . .) Pk) . . ., as soon as X is Noetherian.
This may seem surprising, however one can characterize inclusion of word-products
in an algorithmic way (see [13, Definition 5.1]), and from this definition it is clear
that if P) P ′, where P = e1e2 . . . em and P ′ = e′1e

′
2 . . . e

′
n, then the multiset

{|e1, e2, . . . , em|} is strictly larger than {|e′1, e
′
2, . . . , e

′
n|} in the multiset extension =mul

of =, defined by: C ′? = C? iff C ′) C; F ′∗ = F ∗ iff F ′) F ; F ′∗ = C? iff
F ′ ⊇ C; and C ′? 6= F ∗. When X is Noetherian,) is well-founded, and we conclude
by Theorem 3.2. (This has some similarities to Murthy and Russell’s argument [30],
by the way.)

Using a similar line of proof, we obtain an analogous result on finite trees. We
equate finite trees on X with ground, unranked first-order terms with function symbols
taken from X , which we simply call terms on X . Let X be a topological space, T(X)
be the set of all terms on X , defined by the grammar s, t, . . . ::= f(t1, . . . , tn) (f ∈ X ,
n ∈ N). Write ~t for the sequence t1 . . . tn. Define the simple tree expressions by the
grammar π ::= 3U(π1 | . . . | πn) (U open in X , n ∈ N), and let 3U(π1 | . . . |
πn) denote the collection of all terms that have a subterm f(~t) with ~t in the word-
product T(X)∗π1T(X)∗ . . .T(X)∗πnT(X)∗. We equip T(X) with the tree topology,
defined as the coarsest one that makes every simple tree expression open in T(X). The
specialization quasi-ordering of T(X) is the usual tree embedding quasi-ordering �≤,
defined inductively by s = f(~s) �≤ t = g(~t) iff either s �≤ tj for some j, 1 ≤ j ≤ n

(where ~t = t1t2 . . . tn), or f ≤ g and ~s �∗
≤ ~t. And:

Theorem 3.4 (Topological Kruskal Theorem) If X is Noetherian, then so is T(X).

Simple tree expressions are best explained as tests. A simple tree expression π ::=
3U(π1 | . . . | πn) is, syntactically, just a finite tree whose root is labeled U and
with subtrees π1, . . . , πn. Then a term t passes the test π iff it has an embedded
term of the same shape as π and whose symbol functions f are all in the opens U

labeling the corresponding nodes of π. E.g., whenever f ∈ U , a ∈ V , b ∈ W ,
t = g(h(f(g(a, c, c), b), h(g(c)))) is in 3U(3V () | 3W ()), because it embeds the
term f(a, b), and f ∈ U , a ∈ V , b ∈W .

We have already dealt with trees, in the special case of ranked terms on a finite
space X in [13, Definition 4.3, Theorem 4.4]. However, these were flawed: the tree-
products defined there are irreducible, but not closed. The characterization of irre-

7

D ::= A (finite, Alexandroff topology of some quasi-ordering ≤)
| N (Alexandroff topology of the natural ordering ≤)
| Ck (with the Zariski topology, see Section 6) ∗
| Spec(R) (with the Zariski topology, R a Noetherian ring, Section 6) ∗
| D1 ×D2 × . . .×Dn (with the product topology)
| D1 +D2 + . . .+Dn (disjoint union)
| D∗ (with the subword topology, Theorem 3.3)
| D⊛ (with the submultiset topology)
| T(D) (with the tree topology, Theorem 3.4)
| D∗,pref (with the prefix topology) ∗
| H(D) (with the upper topology of ⊆) ∗
| P(D) (with the lower Vietoris topology) ∗
| S(D) (with the lower Vietoris topology) ∗

Figure 2: An algebra of Noetherian datatypes

ducible closed subsets of T(X) is in fact significantly more complicated than for words,
although they are still a form of regular expression. This will be published elsewhere.

By the way, I am, at the time I write this, discontent with the above proofs of
Theorem 3.3 and Theorem 3.4, as they are arguably long and complex. I have found
much simpler proofs, which escape the need for characterizing the irreducible closed
subsets, and are in fact closer to Nash-Williams celebrated minimal bad sequence ar-
gument [31]. This, too, will be published elsewhere.

We have already mentioned that some Noetherian spaces did not arise from wqos.
Theorem 3.2 makes it easy to show that Σ∗ with the upper topology of the prefix
ordering (where Σ is finite, with the discrete topology) is Noetherian. Consider indeed
Σ∗ ∪ {⊤}, where ⊤ is a new elements, and posit that w ≤pref ⊤ for every w ∈ Σ∗.
Equip Σ∗ ∪ {⊤} with the upper topology of ≤pref. The purpose of adding ⊤ is to
enforce property T. Property W is obvious, as well as well-foundedness. So Σ∗ ∪ {⊤}
is sober Noetherian. One now concludes using the easy result that any subspace of a
Noetherian space is Noetherian.

One can generalize this to cases where we replace Σ by an arbitrary Noetherian
space X , defining an adequate prefix topology on X∗. We omit this here. We write
X∗,pref the resulting space. We return to Σ∗,pref in Section 5.

Let us summarize these results by the grammar of Figure 2: every space D shown
there is Noetherian. We have not yet dealt with the case of polynomials; we shall touch
upon them in Section 6. The constructions marked with a star are those that have no
equivalent in the theory of well-quasi-orderings.

4 Effective TopWSTS

It is easy to extend the notion of WSTS to the topological case. Say that a topological
WSTS (topWSTS) is a pair (X, δ), where X , the state space, is Noetherian, and δ, the

8

transition relation, is lower semi-continuous. The former is the topological analogue
of a wqo, and the latter generalizes strong monotonicity (1). Formally, δ is lower semi-
continuous iff Pre∃δ(V) = {x ∈ X | ∃y ∈ V · x δ y} is open whenever V is.

Modulo a few assumptions on effectiveness, one can then compute Pre∃∗δ(V) for
any open V : since X is Noetherian, the sequence of opens V0 = V , Vi+1 = Vi ∪
Pre∃δ(Vi) eventually stabilizes. So we can decide, given V and x ∈ X , whether some
element in V is reachable from the state x: just test whether x ∈ Pre∃∗δ(V). This is a
general form of the standard backward algorithm for WSTS.

Let us make the effectiveness assumptions explicit. We need codes for opens, and
ways of computing Pre∃δ. The following definition is inspired from Smyth [35] and
Taylor [36, Definition 1.15], taking into account simplifications due to Noetherianness.

Definition 4.1 (Computably Noetherian Basis) Let X be a Noetherian space. A com-
putably Noetherian basis (resp., subbasis) on X is a tuple (N,O J_K , 0, 1,+,≺≺) (resp.,
(N,O J_K , 0, 1,+, ⋆,≺≺)) where:

• N is a recursively enumerable set of so-called codes,

• O J_K : N → O(X) is a surjective map, O J0K = ∅, O J1K = X , O Ju+ vK =
O JuK ∪ O JvK (and O Ju ⋆ vK = O JuK ∩ O JvK in the case of subbases);

• finally, ≺≺ is a decidable relation satisfying: if u ≺≺ v then O JuK ⊆ O JvK
(soundness), and for any family (vi)i∈I of codes, there are finitely many elements
i1, . . . , ik ∈ I such that vi ≺≺ vi1+. . .+vik for all i ∈ I (syntactic compactness).

If in addition u ≺≺ v iff O JuK ⊆ O JvK for all codes u, v ∈ N , then we say that
(N,O J_K , 0, 1,+,≺≺) is a strongly computably Noetherian basis.

It is important to notice that such bases describe codes for open subsets, but that we
don’t care to even represent points, i.e., states, themselves.

The condition u ≺≺ v iff O JuK ⊆ O JvK for all codes u, v ∈ N trivially entails
both soundness and syntactic compactness. The latter follows from the fact that the
open

⋃
i∈I O JviK is compact, since X is Noetherian. It is an easy exercise to show

that all the spaces of Figure 2 have a strongly computably Noetherian basis. E.g., for
N, the codes are n, n ∈ N, plus 0; we take 1 = 0, O JnK = ↑n. If (Ni,O J_Ki ,
0i, 1i,+i, ⋆i,≺≺i) are strongly computably Noetherian bases of Xi, 1 ≤ i ≤ n, then
(N ′,O′ J_K , 0′, 1′,+′, (⋆′,) ≺≺′) defines one again for X1 × . . . × Xn, where N ′ =
Pfin(N1 × . . .×Nn) and O

′ JuK =
⋃

(u1,...,un)∈u O Ju1K× . . .×O JunK. If (N,O J_K ,

0, 1,+, ⋆,≺≺) is a strongly computably Noetherian basis for X , where N ′ = Pfin(N
∗)

and for every u′ ∈ N ′, O′ Ju′K is the union, over each word w = u1u2 . . . un in u′, of
the basic open set O′ JwK = X∗

O Ju1KX
∗
O Ju2KX

∗ . . . X∗
O JunKX∗.

This also works for infinite constructions such as P(X) or H(X): if (N,O J_K ,
0, 1,+,≺≺) is a strongly computably Noetherian basis for X , then (N ′,O′ J_K , 0′, 1′,+′,
⋆′,≺≺′) is a strongly computably Noetherian subbasis for P(X), where N ′ = Pfin(N),
and for every u ∈ N ′, O′ JuK =

⋂
a∈u 3O JaK (this is X ′ itself when u = ∅).

One sometimes also needs a representation of points, which we define as some
subset P of some r.e. set, with a map X J_K : P → X , and a decidable relation ε on

9

P×N such that p ε u iff X JpK ∈ O JuK. If X is T0, there is always a surjective, canon-
ical representation of points derived from a strongly computable Noetherian subbasis
(N,O J_K , 0, 1,+,≺≺): take P to be the subset of all codes u ∈ N such that O JuK is
the complement of some set of the form ↓x, then let X JuK = x. So we don’t formally
need another structure to represent points: any computably Noetherian basis already
cares for that. But some other representations of points may come in handy in specific
cases.

Definition 4.2 (Effective TopWSTS) An effective topWSTS is a tuple (X, δ,N,O J_K ,
0, 1,+,≺≺, R∃), where (X, δ) is a topWSTS, (N,O J_K , 0, 1,+,≺≺) is an effective ba-
sis on X , R∃ : N → N is computable, and Pre∃δ(O JuK) = O JR∃(u)K for every
u ∈ N .

In other words, one may compute a code of Pre∃δ(U), given any code u of U , as
R∃(u). The following is then clear.

Proposition 4.3 Let (X, δ,N,O J_K , 0, 1,+,≺≺, R∃) be an effective topWSTS. One
can effectively compute a code of Pre∃∗δ(U) from any given code u of the open subset
U .

Assume additionally a representation (P,X J_K , ε) of points. Given any code p for
a point x ∈ X , and any code u for an open subset U of X , one can decide whether
there is a trace x = x0 δ x1 δ . . . δ xk such that xk ∈ U .

One can in fact go further and model-check some infinite two-player games. We
consider a may player, who will play along lower semi-continuous transition relations,
and a must player, who will play along upper semi-continuous transition relations: δ is
upper semi-continuous iff Pre∀δ(F) is closed whenever F is.

Formally, one posits a finite set L = Lmust ∪ Lmay of transition labels, taken as the
(not necessarily disjoint) union of two subsets of must labels and may labels, and calls
a topological Kripke structure any tuple I = (X, (δℓ)ℓ∈L, (UA)A∈A

), where X is a
topological space, δℓ is a binary relation on X , which is lower semi-continuous when
ℓ ∈ Lmay and upper semi-continuous when ℓ ∈ Lmust, and UA is an open of X for
every atomic formula A. An environment ρ maps variables ξ to opens of X , and serves
to interpret formulae in some modal logic. In [19, Section 3], we defined the logic Lµ

as follows. The formulae F are inductively defined as atomic formulae A, variables
ξ, true ⊤, conjunction F ∧ F ′, false ⊥, disjunction F ∨ F ′, must-modal formulae
[ℓ]F , may-modal formulae 〈ℓ〉F , and least fixed points µξ · F . The semantics of Lµ is
standard: the set I JF Kδ ρ of states x ∈ X such that x satisfies F is in particular defined
so that I J〈ℓ〉F Kδ ρ = Pre∃δℓ(I JF Kδ ρ), I J[ℓ]F Kδ ρ = Pre∀δℓ(I JF Kδ ρ) (where, if F
is the complement of V , Pre∀(V) is the complement of Pre∃(F)), and I Jµξ · F Kδ ρ =⋃+∞

i=0 Ui, where U0 = ∅ and Ui+1 = I JF Kδ (ρ[ξ := Ui]). When X is Noetherian, the
latter will in fact arise as a finite union

⋃n
i=0 Ui. We define effective topological Kripke

structures in the obvious way, imitating Definition 4.2: just require computable maps
R∃

ℓ : N → N representing δℓ for each ℓ ∈ Lmay, R∀
ℓ : N → N representing δℓ for

each ℓ ∈ Lmust, and codes uA of UA for each atomic formula A. Computing (a code
for) I JF Kδ ρ by recursion on F yields the following decision result.

10

Proposition 4.4 Given an effective topological Kripke structure, any formula F of Lµ,
and any sequence of codes vξ, one for each variable ξ, one can effectively compute a
code of I JF Kδ ρ, where ρ is the environment mapping each ξ to O JvξK.

Given any representation of points, and any code for a point x ∈ X , one can decide
whether x satisfies F .

5 Oblivious Stack Systems

Let Σ be a finite alphabet. Reachability and coverability in k-stack pushdown automata
are undecidable as soon as k ≥ 2: encode each half of the tape of a Turing machine by
a stack. Here is relaxation of this model that will enjoy a decidable form of coverability.

Define oblivious k-stack systems just as pushdown automata, except they cannot
check what letter is popped from any stack. Formally, they are automata on a finite
set Q of control states, and where transitions are labeled with k-tuples (α1, . . . , αk)
of actions. Each action αi is of the form pusha, for each a ∈ Σ (push a onto stack
number i) pop (pop the top letter from stack i, if any, else block), and skip (leave stack
i unchanged), and all actions are performed in parallel.

This defines an effective topWSTS on the state space Q × (Σ∗,pref)
k
. As we have

seen, the latter is Noetherian, although its specialization ordering is certainly not wqo.
So the theory of WSTS, as is, does not bring much in solving oblivious k-stack systems.
However, Proposition 4.3 applies: one can decide whether we can reach a given open
set V from any state. One observes that one can specify an open set by a finite set
{p1, . . . , pn} of forbidden patterns. A forbidden pattern p is a tuple (q, w1, . . . , wn)
where q ∈ Q, and each wi is either a word in Σ∗ or the special symbol ⊤. Such a
pattern is violated in exactly those states (q, w′

1, . . . , w
′
n) such that for each i such that

wi 6= ⊤, w′
i is a prefix of wi. It is satisfied otherwise. Then {p1, . . . , pn} denotes the

open subset of all states that satisfy every pi, 1 ≤ i ≤ n. It follows:

Theorem 5.1 Given an oblivious k-stack system, any initial configuration and any
finite set of forbidden patterns, one can decide whether there is a configuration that is
reachable from the initial configuration and satisfies all forbidden patterns.

In particular, control-state reachability, which asks whether one can reach some state
(q, w1, . . . , wn), for some fixed q, and arbitrary w1, . . . , wn, is decidable for oblivious
k-stack systems: take all forbidden patterns of the form (q′,⊤, . . . ,⊤), q′ ∈ Q \
{q}. This much, however, was decidable by WSTS techniques: as S. Schmitz rightly
observed, one can reduce this to Petri net control-state reachability by keeping only the
lengths of stacks. Theorem 5.1 is more general, as it allows one to test the contents of
the stacks, and comes for free from the theory of topWSTS.

The reader may see a similarity between k-stack pushdown automata and the con-
current pushdown systems of Qadeer and Rehof [32]. However, the latter must push
and pop on one stack at a time only. Pushdown automata may require one to synchro-
nize push transitions taken on two or more stacks. I.e., if the only transitions available
from control state q are labeled (pusha, pusha, skip, . . . , skip) and (pushb, pushb, skip,
. . . , skip), then this forces one to push the same letter, a or b, onto the first two stacks
when exiting q.

11

6 Polynomial Games

Let C be the field of complex numbers, and k ∈ N. Let R be the ring Q[X1, . . . , Xk]
of all polynomials on k variables with coefficients in Q. The Zariski topology on Ck is
the one whose opens are OI = {~x ∈ Ck | P (~x) 6= 0 for some P ∈ I}, where I ranges
over the ideals of R. I.e., its closed subsets are the algebraic varieties FI = {~x ∈ Ck |
P (~x) = 0 for every P ∈ I}. This is a much coarser topology that the usual metric
topology on Ck, and is always Noetherian.

There is an obvious computably Noetherian subbasis (not strongly so) from com-
putable algebraic geometry. The set N of codes is the collection of Gröbner bases [9,
Section 11], which are finite sets of polynomials u = {P1, . . . , Pn} over Q, normalized
with respect to a form of completion procedure due to Buchberger. Given a so-called
admissible ordering of monomials, i.e., a total well-founded ordering ≥ on monomials
such that m1 ≥ m2 implies that mm1 ≥ mm2 for all monomials m, every non-zero
polynomial P can be written as am + P ′, where a ∈ K, m is the largest monomial
of P in ≥, and P ′ only involves smaller monomials. P can then be interpreted as a
rewrite rule m → − 1

a
P ′ on polynomials, E.g., if P = X2Y − 4X + Y 2, with X2Y

as leading monomial, one can rewrite X5Y 2 (= X2Y.X3Y) to 4X4Y − X3Y 3; the
latter (= X2Y.(4X2)−X3Y 3) again rewrites, using P , to−X3Y 3+16X3−4X2Y 2,
then to −4X2Y 2 +XY 4 + 16X3 − 4X2Y 2 = 16X3 − 8X2Y 2 +XY 4, and finally
to 16X3 − 32XY + XY 4 + 8Y 3. Notice that, evaluated on any zero of P , all the
polynomials in the rewrite sequence have the same value; e.g., 0 when X = Y = 0, or
9−

√
17

2 when X = 1, Y = −1+
√
17

2 .
A Gröbner basis for an ideal I is a finite family w of polynomials such that I = (w)

and that is confluent (and necessarily terminating) when interpreted as a rewrite system.
Buchberger’s algorithm converts any finite set v of polynomials to a Gröbner basis w
of (v).

Let then O JuK = O(u), where (u) = (P1, . . . , Pn) is the ideal of all linear com-
binations of P1, . . . , Pn with coefficients in R. One can always compute a Gröbner
base for an ideal I = (P1, . . . , Pn), given P1, . . . , Pn, by Buchberger’s algorithm. The
code 0 is then {0}, 1 is defined as {1}, u + v is a Gröbner base for u ∪ v. One can
also define u ⋆ v to be a code for O JuK ∩ O JvK, and compute it in at least two ways
[27, Section 4.3]. The simplest algorithm [8, Proposition 4.3.9] consists in computing a
Gröbner basis of I = (Y P1, Y P2, . . . , Y Pm, (1−Y)Q1, (1−Y)Q2, . . . , (1−Y)Qn),
where u = {P1, P2, . . . , Pm} and v = {Q1, Q2, . . . , Qn} and Y is a fresh variable,
and to define u ⋆ v as a Gröbner basis for the elimination ideal ∃Y · I , defined as those
polynomials in I where Y does not occur [8, Theorem 4.3.6]. Given any polynomial P
and any Gröbner basis u, one can test whether P ∈ (u) by a process akin to rewriting:
each polynomial in u works as a rewrite rule, and P ∈ (u) iff the (unique) normal form
of P with respect to this rewrite system is 0. One can then test whether u ≺≺ v by
checking whether, for each P ∈ u, P is in (v). It turns out that u ≺≺ v is not equivalent
to O JuK ⊆ O JvK: take u = {X}, v = {X2}, then u 6∈ (v), although O JuK = O JvK.
But soundness is obvious, and syntactic compactness (Definition 4.1) follows since R

is a Noetherian ring. We mention in passing that there is also a strongly computably
Noetherian subbasis, where u ≺≺ v iff (u) is included in the radical of (v), and this can
be decided using the Rabinowitch trick [33].

12

1. if (?) { x = 2; y = 3; } else { x = 3; y = 2; }
2. x = x ∗ y− 6; y = 0;
3. while (?) { x = x+ 1; y = y− 1; };
3’. x = x^2+ x ∗ y;
4. return;

Figure 3: Müller-Olm and Seidl’s example

As a representation of points, we take those u such that (u) is a prime ideal. This is
in fact the canonical representation. It contains at least all rational points (q1, . . . , qk) ∈
Qk, represented as the Gröbner basis (X1 − q1, . . . , Xk − qk), but also many more.

One gets natural topWSTS from polynomial programs. These are finite automata,
on some finite set Q of control states, where transitions are labeled with guards and
assignments on k complex-valued variables. The guards g are finite sets {P1, . . . , Pm}
of polynomials in R, interpreted as disjunctions of disequalities P1 6= 0∨. . .∨Pm 6= 0.
If the guard is satisfied, then the transition can be taken, and the action is triggered.
The allowed actions a are parallel assignments ~x := P1(~x), . . . , Pk(~x), where ~x is the
vector of all k variables, and with the obvious semantics. Each Pi is either a polynomial
in R, or the special symbol ?, meaning any element of C.

This defines a transition relation δ on Q × Ck, which happens to be lower semi-
continuous, and in fact computably so. As set N ′ of codes for opens of the state space
Q × Ck, we use Pfin(Q × N), and define O

′ Ju′K =
⋃

(q,u)∈N ′{q} × O JuK. Then,

Pre∃δ(O′ Ju′K) =
⋃

(q′,u)∈u′

q
g,a−→q′

{q}×O Jg ⋆ {P [Xi := Pi]i∈Iact
| P ∈ ∀Xi1 , . . . , Xim · u}K,

where a is ~x := P1(~x), . . . , Pk(~x), and i1, . . . , im are those indices i where Pi is ?,
and Iact are the others. P [Xi := Pi]i∈Iact

is parallel substitution of Pi for Xi in P for
all i ∈ Iact. The ∀ operator is defined, and shown to be computable, in [29, Lemma 4].

The polynomial programs above are exactly those of Müller-Olm and Seidl [29].
Proposition 4.3 then immediately applies. In particular, one can decide whether one
can reach some configuration (q′, ~x) such that P1(~x) 6= 0 or . . . or Pm(~x) 6= 0 for
some state q′ and polynomials P1, . . . , Pm, from a given configuration, in a given
polynomial program. This is a bit more than the polynomial constants problem of [29].
For example, we may want to check whether at q′ we always have Y = X2 + 2 and
X2 + Y 2 = Z2, and for this we let P1 = Y − X2 − 2, P2 = Z2 − X2 − Y 2,
m = 2. Figure 3 is a rendition of an example by Müller-Olm and Seidl, in C-like
syntax. The conditions (shown as ‘?’) at lines 1 and 3 are abstracted away: if and
while statements are to be read as non-deterministic choices. One may check that it
is always the case that x is 0 at line 4. This is a polynomial program with control states
1 through 4, the variables are X1 = x, X2 = y, all the guards are trivial (i.e., the empty
set of polynomials), and the actions should be clear; e.g., the only action from state 2
to state 3 is the pair of polynomials (X1X2 − 6, 0).

Polynomial Games. We can again go further. Define polynomial games as a topolog-
ical Kripke structure where, for each may transition ℓ ∈ Lmay, δℓ is specified by guards

13

and actions as above. For each must transition ℓ ∈ Lmust, we specify δℓ by giving
ourselves a finite set Aℓ of triples (q, q′, α) ∈ Q × Q × Q[X1, . . . , Xk, X

′
1, . . . , X

′
k],

and defining (q, ~x) δℓ(q
′, ~x′) iff there is a triple (q, q′, α) ∈ Aℓ such that α(~x, ~x′) = 0.

So the must player can, in particular, compute polynomial expressions of ~x, test poly-
nomials against 0, and solve polynomial equations. It is easy to see that δℓ is then upper
semi-continuous, as Pre∃δℓ({q′}×F(u)) =

⋃
(q,q′,α)∈Aℓ

{q}×F∃X′

1
·...·∃X′

k
·(α∪{P [Xi:=X′

i
]k
i=1

|P∈u}).
By Proposition 4.4:

Theorem 6.1 The model-checking problem for Lµ formulas on polynomial games is
decidable.

We do not know whether the added expressive power of polynomial games, com-
pared to the simpler polynomial programs, will be of any use in verification, however
the theorem stands.

Lossy Concurrent Polynomial Programs. All the above can be done without any
recourse to topology, and requires one only to work with polynomial ideals. However,
the topological approach is modular. If one should someday need to decide games that
would involve state spaces such as Nm×Ck, or P(Ck), the theory of Noetherian spaces
would apply right out of the box. Here is a trivial case.

Consider a network of polynomial programs communicating through specific FIFO
channels. We shall call such networks concurrent polynomial programs. We shall as-
sume these channels to be lossy, i.e., messages may disappear from the channels, non-
deterministically, at any time. We shall also assume that the messages are taken from
some fixed finite set Σ, i.e., the channels are only used for signaling, not for transmit-
ting any actual value. This imitates the behavior of lossy channel systems [3], which
are a special case (with no variable from C) of our lossy concurrent polynomial pro-
grams. Lossiness is interesting, if only because the non-lossy variants are undecidable
[10].

For simplicity, we shall only consider two programs A and B communicating
through one FIFO channel from A to B. Dealing with more programs and more chan-
nels presents no difficulty, other than notational.

The messages sent over the channel are control signals from Σ. So the data type of
the possible contents of the channel is Σ∗, with the subword topology (alternatively, the
Alexandroff topology of the usual embedding quasi-ordering ≤∗, where ≤ is equality
on Σ). Let QA be the finite set of control states of A, QB that of B. Let ~X =
X1, . . . , Xm be the vector of the numerical variables of A, ~Y = Y1, . . . , Yn those of
B. The configurations are tuples (qA, ~X, qB , ~Y , w), where (qA, ~X) is a configuration
of the polynomial program A, (qB , ~Y) is a configuration of B, and w ∈ Σ∗ is the
contents of the channel. Compared to the non-concurrent case, the guards and the
actions of A (resp., B) can only deal with variables from ~X (resp., ~Y), except for two
new families of actions recva (for B) and senda (for A), where a is a constant in Σ.

Formally, given any A-transition from qA to q′A with guard g and action senda,
a ∈ Σ + Ck, we define δ so that (qA, ~X, qB , ~Y , w) δ (q′A,

~X, qB , ~Y , aw) provided g

is satisfied (add a in front of w), while the semantics of a recva action, a ∈ Σ, from
qB to q′B with guard g, is given by (qA, ~X, qB , ~Y , w1aw) δ (qA, ~X, q′B ,

~Y , w) if g is

14

satisfied (i.e., drop enough letters from the FIFO channel until we reach an a, and pop
it). It is an easy exercise to show that this is lower semi-continuous, and computably so.
(We could also add transitions that drop letters from the channel, as in lossy channel
systems, but this is not needed for the rest of our treatment.)

The opens are finite unions of sets of the form {(qA, ~x, qB , ~x, w) | (~x, ~y) ∈ OI , w ∈
Σ∗a1Σ∗ . . .Σ∗aqΣ∗}, where qA, qB are fixed control states, I = (p1, . . . , pℓ) is a fixed
polynomial ideal over Q[~X, ~Y], and a1, . . . , aq are fixed letters from Σ. In other words,
such an open subset is specified by a forbidden pattern: a state satisfies the forbidden
pattern iff its A is in control state qA, B is in control state qB , pi(~x, ~y) 6= 0 for some i,
1 ≤ i ≤ ℓ, and a1a2 . . . aq is a subword of the contents w of the channel.

Theorem 6.2 Given a lossy concurrent polynomial program, an initial configuration
where the values of the variables are given as rational numbers, and a finite set of
forbidden patterns, one can decide whether there is a configuration reachable from the
initial configuration and that satisfies all forbidden patterns.

In particular, control-state reachability (can one reach a configuration where A would
be in state qA and B in state qB?) is decidable.

Algebraic geometry. To end this section, we only mention that Ck is considered as
a special case in algebraic geometry. It turns out that the sobrification S(Ck) coincides
with Spec(Q[X1, X2, . . . , Xk]), the spectrum of the (Noetherian) ring Q[X1, X2, . . . ,

Xk]. The spectrum Spec(R) of a ring R is the set of all prime ideals of R, and comes
with the Zariski topology, whose closed subsets are FI = {p ∈ Spec(R) | I ⊆ p},
where I ranges over the ideals of R. It is well-known that Spec(R) is a Noetherian
space whenever R is a Noetherian ring, see [20, chapitre premier, Section 1.1]. This
provides yet another construction of Noetherian spaces, although we currently have no
application in computer science that would require the added generality.

7 Completions, and Complete WSTS

The algorithm of Proposition 4.3 works backwards, by computing iterated sets of pre-
decessors. The Karp-Miller algorithm [24] works forwards instead, but only applies to
Petri nets. Forward procedures are useful, e.g., to decide boundedness, see [14].

Consider for example the Petri net of Figure 1, and consider it as a transition sys-
tem over N5. The initial state is (0, 1, 1, 0, 0), and there are four transitions a, b,
c, and d. One can then unfold all possible runs of the net in a tree (see Figure 4,
(a)). Here, from the initial state, one can trigger transitions a or c, leading to states
(1, 0, 1, 0, 0) and (0, 1, 0, 1, 0) respectively. From the latter we can only trigger d, lead-
ing to (0, 1, 1, 0, 1), and so on. Doing so would yield an infinite tree.

The Karp-Miller construction builds a finite tree by taking some shortcuts, and
abstracting away the values of components of the states that may become unbounded.
E.g., in Figure 1, we realize that firing c then d leads to a state (0, 1, 1, 0, 1) where the
first four components are the same as in the initial state (0, 1, 1, 0, 0), but the fifth is
larger. Iterating this c-d sequence would lead to a state (0, 1, 1, 0, N) with N arbitrary

15

d

(0, 2, 1, 0, 1)

b d

(0, 2, 0, 1, 0) (1, 0, 1, 0, ω)

(0, 1, 1, 0, 0)

(0, 1, 0, 1, 0)

ca

(1, 0, 1, 0, 0)

b d

c

(1, 0, 0, 1, 0)

(0, 2, 0, 1, 0) (1, 0, 1, 0, 1)

d

(0, 1, 1, 0, 1)

(0, 1, 1, 0, 0)

(0, 1, 0, 1, 0)

ca

(1, 0, 1, 0, 0)
c

(1, 0, 0, 1, 0)

d

(0, 1, 1, 0, ω)

d

(0, ω, 1, 0, ω)

a c

(ω, ω, 0, 1, ω)(ω, ω, 1, 0, ω)

(0, 1, 1, 0, 0)

(0, 1, 0, 1, 0)

ca

(1, 0, 1, 0, 0)

b d

c

(1, 0, 0, 1, 0)

(0, 2, 0, 1, 0)

d

(0, 1, 1, 0, ω)

(1, 0, 1, 0, ω)

d

(0, ω, 1, 0, ω)

a c

(0, ω, 0, 1, ω)(1, ω, 1, 0, ω)

(a) Unfolding (beginning) (b) Taking some shortcuts (c) Finishing some branches

Figure 4: Running the Karp-Miller procedure on Figure 1

large, and we abstract this away by replacing the state (0, 1, 1, 0, 1) by (0, 1, 1, 0, ω),
where ω denotes any, arbitrarily large, number. This also happens along the other two
branches shown in Figure 4, (a). The dotted arrows going up in Figure 4, (b), indicate
which state we can go back to in order to perform such iterations.

One can see a tuple in N5
ω (where Nω = N⊎{ω}) such as (0, 1, 1, 0, ω) as meaning,

in particular, that there are infinitely many tokens in place x5. While this is not quite
correct, it certainly gives some further intuitions. In particular, one can continue to
simulate the execution of the Petri net from such extended states. The result, apart
from some irrelevant parts, is shown in Figure 4, (c). This is the coverability tree of the
Petri net. (The dotted arrows are not part of this—the coverability graph would include
them. We also glossed over a few details, notably that the Karp-Miller construction
does not proceed to simulate the execution of the Petri net from an extended state that
is identical to a state further up the same branch.)

The reason why the resulting tree is finite is twofold. First, Nk
ω is wqo. This

implies that, along any infinite branch, we must eventually find an extended state that
is componentwise larger than another one higher in the tree, giving us an opportunity to
take a shortcut. We call this a progress property: in any infinite run, we will eventually
take a shortcut, subsuming infinitely many iterations.

Second, taking a shortcut adds an ω component to a tuple, and ω components never
disappear further down the branch: so any branch must in fact be finite. It follows from
König’s Lemma that the tree itself is finite, and is built in finite time.

The Karp-Miller construction gives more information about the Petri net than the
standard backward algorithm. Letting A ⊆ Nk

ω be the set of all extended states labeling
the nodes of the tree, one sees that Nk∩↓A is exactly the cover of the Petri net, i.e., the
downward closure ↓Post∗δ(x) of the set Post∗δ(x) of states y that are reachable from
the initial state x by the transition relation δ. In particular, one can decide coverability,
by checking whether y ∈ ↓Post∗δ(x). One can also decide boundedness, i.e., test
whether Post∗δ(x)? is finite (check whether any ω component occurs anywhere in
the coverability tree), and place-boundedness, i.e., test whether there is a bound on
the number of tokens that can be in any given place. In the example above, and after

16

simplification, the cover is N5 ∩ ↓{(ω, ω, 0, 1, ω), (ω, ω, 1, 0, ω)}: the bounded places
are x3 and x4.

The Karp-Miller construction is fine, but only works on Petri nets. There cannot be
any similar, terminating procedure for general WSTS, since this would decide bound-
edness again. But boundedness is already undecidable on lossy channel systems [10]
and on reset Petri nets [12].

Even if we drop the requirement for termination, finding a procedure that would
compute the cover of a general WSTS (when it terminates) remained elusive for some
time. Some important special cases could be handled in the literature, e.g., a large class
of affine counter systems generalizing reset/transfer Petri nets [15], or lossy channel
systems [2], but a general theory of covers, and of forward procedures à la Karp-Miller
for general WSTS was missing. This is what we solved, with A. Finkel, in two recent
papers [13, 14].

This involved two tasks: (i) first, much as we needed extended states in Nk
ω in

the Karp-Miller procedure, we should work in an adequate completion X̂ of the state
space X; (ii) then, we should understand what a Karp-Miller-like procedure actually
computes. We actually cheated here, since we have already given an answer to (ii):
the Karp-Miller procedure computes (among other things) the cover of the Petri net.

Completions. In (i), by adequate we mean that X should embed into X̂ , in such a
way that every closed subset D of X should be representable by a finite subset of X̂ .
(In [13], we required this for every downward closed, not just closed, D. However, if X
has the Alexandroff topology of a wqo, this is the same thing.) Formally, D should be
the set of those points in X that are below finitely many points in X̂: D = X ∩ ↓

X̂
E,

E finite. We write ↓
X̂

to stress the fact that the downward closure is to be taken in X̂ ,

i.e., E is a subset of X̂ , not X . Typically, if X = Nk, then X̂ should be Nk
ω , and for

example, D = {(m,n, p) ∈ N3 | m + n ≤ 3} is representable as N3 ∩ ↓
N̂3
{(0, 3, ω),

(1, 2, ω), (2, 1, ω), (3, 0, ω)}. It turns out that the sobrification S(X) is exactly what
we need here, as advocated in [13, Proposition 4.2]:

Proposition 7.1 Let X be a Noetherian space. Every closed subset F of X is a finite
union of irreducible closed subsets C1, . . . , Cm.

So let the completion X̂ be S(X). Proposition 7.1 states that, modulo the canonical
identification of x ∈ X with ↓x ∈ S(X), F is X∩↓

X̂
{C1, . . . , Cm}. We have stressed

the subcase where X was wqo (and equipped with its Alexandroff topology) in [13],
and this handles 7 of the 13 constructions in Figure 2. We would like to note that
Noetherian spaces X allow us to consider more kinds of state spaces, while ensuring
that each closed subset of X is finitely representable, in a canonical way. Moreover,
these representations are effective, too.

One might wonder whether there would be other adequate completions X̂ . There
are, indeed, however S(X) is canonical in a sense. Adapting Geeraerts et al. slightly
[17], call weak adequate domain of limits, or WADL, over the Noetherian space X any
space X̂ in which X embeds, and such that the closed (downward closed when X is
wqo) subsets of X are exactly the subsets representable as X ∩ ↓

X̂
E for some finite

subset E of X̂ . It is an easy consequence of Theorem 3.2 that S(X) is the smallest

17

WADL, and H(X) is the largest WADL: up to isomorphism, any WADL X̂ must be
such that S(X) ⊆ X̂ ⊆ H(X).

It is then natural to ask whether X̂ = S(X) is effectively presented, in the sense
that we have codes for all elements of S(X) and that the ordering (i.e., ⊆) on S(X)
is decidable. It turns out that the answer is positive for all the datatypes of Figure 2.
E.g., given codes for elements of X̂1, X̂2, the codes for elements of ̂X1 ×X2 are just
pairs of codes (x1, x2) for elements of X̂1, X̂2. Given codes for elements of X̂ , the
codes for elements of X̂∗ are the word-products we mentioned in Section 3. It might
seem surprising that we could do this even for the infinite powerset P(X). Notice that

P̂(X) = H(X), up to isomorphism, and that every element of H(X) can be written as
C1 ∪ . . .∪Cn for finitely many elements C1, . . . , Cn of X̂ by Proposition 7.1. So take

as codes for elements of P̂(X) the finite sets E of codes of elements C1, . . . , Cn of X̂ .

Clovers. Point (ii) was clarified, among other things, in [14]: Karp-Miller-like pro-
cedures compute the clover of a state x ∈ X in a WSTS X, and this is a finite repre-
sentative {C1, . . . , Cm}, as defined above, of the topological closure (in X̂) of the set
of points reachable from x. The clover always exists, by Proposition 7.1. It may fail to
be computable: if it were, it would allow us to decide boundedness for reset Petri nets
or for lossy channel systems, which are undecidable.

While we investigated this for WSTS, it actually works for any topological WSTS.
We only need to extend the transition relation δ ⊆ X × X to one, Sδ, on X̂ × X̂ .
The canonical candidate is such that C Sδ C ′ iff C ′ is included in the closure of
Postδ(C) = {y ∈ X | ∃x ∈ C ·x δ y}; and this is representable as a finitely branching
(because of Proposition 7.1 again) relation δ̂. E.g., the minimal such relation is such
that C δ̂ C ′ iff C ′ is maximal such that C Sδ C ′. We then get a completed topWSTS
X̂.

To do anything with this, we must assume that δ̂ is effective, and a bit more. We
explored this in [14], in the case where X̂ is wqo, and X̂ is functional (i.e., C δ̂ C ′

iff C ′ = gi(C) for some i, 1 ≤ i ≤ n, where g1, . . . , gn is a fixed collection of
partial continuous maps from X̂ to X̂) and ∞-effective (see below), and obtained a
simple procedure Clover that computes the clover of any state C ∈ X̂ (in particular,
any x ∈ X) whenever it terminates.

The role of the completion X̂ is again manifest in that Clover needs to lub-accelerate
some infinite sequences of states obtained in a regular fashion as C0 < g(C0) ≤

g2(C0) ≤ . . . ≤ gn(C0) ≤ . . . by applying one functional transition g : X̂ → X̂ ,
replacing the sequence by its least upper bound g∞(C0) (which exists: recall that ev-
ery sober space is a dcpo in its specialization quasi-ordering). This is what we called
taking shortcuts until now. If C0 6< g(C0), then define g∞(C0) as just g(C0). X̂ is
∞-effective iff g∞ is computable.

18

Here is the procedure. MaxA denotes
the set of all maximal elements of A ∈
Pfin(X̂). The procedure takes an initial
extended state s0 ∈ X̂ , and, if it ter-
minates, returns a finite set MaxA (the
clover of s0) such that ↓

X̂
MaxA is the

closure of the cover of the WSTS.

Procedure Clover(s0) :
1. A← {s0};
2. while Post(Sδ)(A) 6≤♭ A do

(a) Choose fairly (g, C) ∈ {g1, . . . , gn}
∗ ×A

such that C ∈ dom g;
(b) A← A ∪ {g∞(a)};

3. return MaxA;
The elements g chosen at line (a) are chosen from {g1, . . . , gn}∗, the set of composi-
tions gi1 ◦ gi2 ◦ . . . ◦ gik of functions from {g1, . . . , gn}. A typical implementation
of Clover would build a tree, as in the Karp-Miller construction. In fact, a tree is a
simple way to ensure that the choice of (g, C) at line (a) is fair, i.e., no pair is ignored
infinitely long on any infinite branch. Concretely, we would build a tree extending
downwards. At each step, A is given by the set of extended states written at the nodes
of the current tree. One picks (g, C) as in line (a) by picking a transition gi to apply
from a yet unexplored state C ′ (at a leaf), and considering all states C higher in the
branch (the path from C to C ′ being given by transitions, say, gik , gik−1

, . . . , gi2),
letting g = gi ◦ gi2 ◦ . . . ◦ gik .

The Clover procedure extends straightforwardly to topWSTS, provided they are
functional (here, each gi needs to be continuous). It is however unclear how to dispense
with the requirement that it be functional. Moreover, the nice characterization that
Clover terminates exactly on those systems that are clover-flattable [14, Theorem 3]
seems to require the fact that X is ω2-wqo, not even just wqo, for deep reasons.

Conclusion. Noetherian spaces open up some new avenues for verifying infinite-
state systems, whether backward or forward, à la Karp-Miller. Mostly, I hope I have
convinced the reader that Noetherian spaces enjoyed a rich mathematical theory, which
is probably still largely unexplored today.

References

[1] P. A. Abdulla, K. Čerāns, B. Jonsson, and T. Yih-Kuen. Algorithmic analysis
of programs with well quasi-ordered domains. Information and Computation,
160(1/2):109–127, 2000.

[2] P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using for-
ward reachability analysis for verification of lossy channel systems. Formal Meth-
ods in System Design, 25(1):39–65, 2004.

[3] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In
Proc. 8th IEEE Int. Symp. Logic in Computer Science (LICS’93), pages 160–170,
1993.

[4] P. A. Abdulla and B. Jonsson. Ensuring completeness of symbolic verification
methods for infinite-state systems. Theoretical Computer Science, 256(1–2):145–
167, 2001.

19

[5] P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. In Proc. 22nd Int. Conf.
Application and Theory of Petri Nets (ICATPN’01), pages 53–70. Springer Verlag
LNCS 2075, 2001.

[6] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1–168. Oxford University Press, 1994.

[7] L. Acciai and M. Boreale. Deciding safety properties in infinite-state pi-calculus
via behavioural types. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. E.
Nikoletseas, and W. Thomas, editors, Proc. ICALP’09, pages 31–42. Springer
Verlag LNCS 5556, 2009.

[8] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases, volume 3 of
Graduate Studies in Mathematics. American Mathematical Society, 1994. 289
pages.

[9] B. Buchberger and R. Loos. Algebraic simplification. In B. Buchberger, G. E.
Collins, R. Loos, and R. Albrecht, editors, Computer Algebra, Symbolic and Al-
gebraic Computation. Springer Verlag, 1982-1983.

[10] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to
verify than perfect channels. Information and Computation, 124(1):20–31, Jan.
1996.

[11] P. de Groote, B. Guillaume, and S. Salvati. Vector addition tree automata. In
Proc. 19th IEEE Int. Symp. Logics in Computer Science, pages 64–73, 2004.

[12] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and
undecidability. In ICALP’98, pages 103–115. Springer Verlag LNCS 1443, 1998.

[13] A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: Comple-
tions. In S. Albers and J.-Y. Marion, editors, Proc. STACS’09, pages 433–444,
Freiburg, Germany, 2009.

[14] A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part II: Com-
plete WSTS. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, and W. Thomas,
editors, Proc. ICALP’09, pages 188–199, Rhodes, Greece, 2009. Springer Verlag
LNCS 5556.

[15] A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for
analysing Petri net extensions. Information and Computation, 195(1-2):1–29,
2004.

[16] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

[17] G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, enlarge and check:
New algorithms for the coverability problem of WSTS. J. Comp. Sys. Sciences,
72(1):180–203, 2006.

20

[18] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott.
Continuous lattices and domains. In Encyclopedia of Mathematics and its Appli-
cations, volume 93. Cambridge University Press, 2003.

[19] J. Goubault-Larrecq. On Noetherian spaces. In Proc. 22nd IEEE Int. Symp. Logic
in Computer Science (LICS’07), pages 453–462, Wrocław, Poland, 2007.

[20] A. Grothendieck. Éléments de géométrie algébrique (rédigés avec la collabo-
ration de Jean Dieudonné): I. Le langage des schémas, volume 4. Publications
mathématiques de l’I.H.É.S., 1960. pages 5–228.

[21] T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic
transition systems. ACM Trans. Computational Logic, 6(1):1–32, 2005.

[22] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the
London Mathematical Society, 2(7):326–336, 1952.

[23] J. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8:135–159, 1979.

[24] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969.

[25] J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society, 95(2):210–225, 1960.

[26] R. Lazič, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with
tokens which carry data. Fundamenta Informaticae, 88(3):251–274, 2008.

[27] H. Lombardi and H. Perdry. The Buchberger algorithm as a tool for ideal theory
of polynomial rings in constructive mathematics. In Gröbner Bases and Applica-
tions (Proc. of the Conference 33 Years of Gröbner Bases), volume 251 of Lon-
don Mathematical Society Lecture Notes, pages 393–407. Cambridge University
Press, 1998.

[28] M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other top-
ics in the theory of Turing machines. Annals of Mathematics, Second Series,
74(3):437–455, 1961.

[29] M. Müller-Olm and H. Seidl. Polynomial constants are decidable. In M. V.
Hermenegildo and G. Puebla, editors, Proc. 9th International Symposium on
Static Analysis (SAS’02), pages 4–19. Springer-Verlag LNCS 2477, 2002.

[30] C. R. Murthy and J. R. Russell. A constructive proof of Higman’s lemma. In Proc.
5th IEEE Symposium on Logic in Computer Science (LICS’90), pages 257–267,
1990.

[31] C. S.-J. A. Nash-Williams. On better-quasi-ordering transfinite sequences. Proc.
Cambridge Philosophical Society, 64:273–290, 1968.

21

[32] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent soft-
ware. In N. Halbwachs and L. Zuck, editors, Proc. 11th Intl. Symp. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’05), pages 93–
107. Springer Verlag LNCS 3440, 2005.

[33] S. Rabinowitch. Zum Hilbertschen Nullstellensatz. Mathematische Annalen,
102:520, 1929.

[34] C. Reutenauer. Aspects Mathématiques des Réseaux de Petri. Masson, 1993.

[35] M. Smyth. Effectively given domains. Theoretical Computer Science, 5:257-274,
1977.

[36] P. Taylor. Computably based locally compact spaces. Logical Methods in Com-
puter Science, 2(1), 2006.

[37] K. N. Verma and J. Goubault-Larrecq. Karp-Miller trees for a branching extension
of VASS. Discrete Mathematics & Theoretical Computer Science, 7(1):217–230,
2005.

22

