Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals - Archive ouverte HAL
Journal Articles Nature Photonics Year : 2021

Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals

Christophe Dujardin

Abstract

Scintillators, materials that produce light pulses upon interaction with ionizing radiation, are widely employed in radiation detectors. In advanced medical-imaging technologies, fast scintillators enabling a time resolution of tens of picoseconds are required to achieve high-resolution imaging at the millimetre length scale. Here we demonstrate that composite materials based on fluorescent metal–organic framework (MOF) nanocrystals can work as fast scintillators. We present a prototype scintillator fabricated by embedding MOF nanocrystals in a polymer. The MOF comprises zirconium oxo-hydroxy clusters, high-Z linking nodes interacting with the ionizing radiation, arranged in an orderly fashion at a nanometric distance from 9,10-diphenylanthracene ligand emitters. Their incorporation in the framework enables fast sensitization of the ligand fluorescence, thus avoiding issues typically arising from the intimate mixing of complementary elements. This proof-of-concept prototype device shows an ultrafast scintillation rise time of ~50 ps, thus supporting the development of new scintillators based on engineered fluorescent MOF nanocrystals.
No file

Dates and versions

hal-03191245 , version 1 (07-04-2021)

Identifiers

Cite

J. Perego, I. Villa, A. Pedrini, E. Padovani, R. Crapanzano, et al.. Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nature Photonics, 2021, 15, pp.393-400. ⟨10.1038/s41566-021-00769-z⟩. ⟨hal-03191245⟩
54 View
0 Download

Altmetric

Share

More