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Figure 1: We propose a new model for designing VR, AR and MR applications independently of any device. Our model allows
the user to visualize a virtual world and to interact with it on any kind of device. These pictures shows a user interacting with
the same virtual object on a desktop, on a touchscreen and on an Oculus Rift HMD.

ABSTRACT
The Virtual (VR), Augmented (AR) and Mixed Reality (MR) devices
are currently evolving at a very fast pace. This rapid evolution
affects significantly the maintainability and portability of the ap-
plications. In this paper, we present a model for designing VR, AR
and MR applications independently of any device. To do this, we
use degrees of freedom to define an abstraction layer between the
tasks to be performed and the interaction device.
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1 INTRODUCTION
The fast evolution of Virtual Reality (VR), Augmented Reality (AR)
and Mixed Reality (MR) devices reduces significantly the lifetime
of the applications running on those devices. On the other hand,
there are major differences between devices (dimensions of the dis-
play, number of degrees of freedom of the interaction device). As a
result, the portability of one application from one device to another
often takes a long time and can be quite complicated. The existing
approach consists in using game engines (Unity, Unreal Engine,
...) that enable the development of a single application for several
types of devices. The combination of this approach with tools such
as Middle VR [6] makes it possible to simplify the application devel-
opment of VR, AR and MR by providing high-level tools. However,
since the interaction has to be adapted to the specific features of
each type of device, it is necessary to rework the application so that
it supports a new technology. Thus, the appearance on the market
of a new device leads to the need to update all the applications. We
propose a new approach to increase significantly the portability of
VR, AR and MR applications. This consists in considering devices
as tools able to interact with any 3D environment. This approach
requires the creation of a standard allowing the description of any
environment for any device. If standards exist to describe objects
of a 3D scene (OBJ, DAE, VRML, ...), there is no unified model so
far, that allows to describe interactions of one or several users.

To create this model, we rely on the use of degrees of freedom
to define an abstraction layer between the tasks to perform and
the device. Manipulations, application control and selection are
defined using a reduced set of interaction blocks. Those blocks are
transmitted via a network to a device. Then the device interprets
them and activates them according to the actions of the user.

After presenting the various interaction blocks that we used
(section 3.3), we present our model implementation (section 4) , then
we test it on two 3D environments samples with the three devices
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shown Figure 1 (section 5). Finally, we show the contribution of
this method in terms of portability of the applications and compare
it to the existing applications (section 6).

2 STATE OF THE ART
2.1 3D Environments
In the remainder of this article, we call 3D environments any virtual,
augmented and mixed environment that includes virtual objects
positioned in a three-dimensional space. A virtual environment
is a fully computer-generated three-dimensional environment [2].
Augmented Reality allows virtual environments to be superimposed
on the real world. We call augmented environment an area of
real space on which a virtual environment is superimposed. In
Augmented Reality applications, the interaction level between real
and virtual objects is highly variable. It can range from graphical
positioning of virtual objects on a real image [1, 9] to a realistic
inclusion of virtual objects in the real world [5].

In [7], Milgram defines Mixed Reality as the continuum between
reality and virtuality (Figure 2). Any environment including real
elements and virtual elements can therefore be considered as a
mixed environment.

In practice, environments are referred to as Mixed Reality envi-
ronments when real objects and virtual objects interact (almost) as
freely as if they would belong to the same physical space (subject
to physical constraints such as gravity and collisions, occlusion,
Bidirectional Data exchanges ...).

Figure 2: Milgram continuum 1995. [7]

2.2 Manipulation in 3D environment
In 1994, the work of R.J.K. Jacob & al. [3] showed that the device,
whose control structure is the closest to the perceptual structure
of a task, is the most suitable for performing this task. Therefore,
it seems that the degrees of freedom composing the perceptual
structure of a task can be used to describe it generically. In more re-
cent work, M. Veit & al showed that users instinctively decompose
some complex tasks in order to simplify them [10]. Moreover, this
decomposition may vary during the task according to the desired
speed of execution and/or the precision [11]. Finally, it appears
that a separation of certain degrees of freedom in the design of
the interaction leads to better performances of the user if this de-
composition is consistant with how the user would simplify the
task by himself [10, 12]. Therefore, we need to add to our generic
tasks description, information on how the degrees of freedom are
preferentially integrated or separated by the user.

3 OUR MODEL
The aim of our work is to restrict the porting of a set of 3D envi-
ronments on a new device to the development of a single dedicated
application.

For this purpose, we totally separate the development of the 3D
environment from the user device. So the 3D environments devel-
oped with our model run on a separated computer or on a server.
As these environments are described generically, it is possible to de-
velop a dedicated application, for a given device, able to display all
3D environment. The portability the of 3D environments is clearly
improved because the classic approach requires the development
n*m applications when our approach requires the development
n+m applications (with n the number of devices andm the num-
ber of environments). In the same way, it is sufficient to develop
a unique application (or client) to support a new device on all the
environments and each new environment will be automatically
supported by all the devices.

To achieve our model, we propose the use of an abstraction layer
in order to design the interaction independently of the nature of the
device. This abstraction layer consist in a set of interaction blocks
common to all devices. The instantiation and the composition of
these blocks makes it possible to script the interaction of the user
with the environment.

Because of the separation between the 3D environments and the
devices, the devices have to instantiate the interaction blocks trans-
mitted by the environment in order to generate the user interface
allowing the interaction with the environment.

3.1 Overall functioning
The overall functioning of our system is illustrated in Figure 3. A 3D
scene is transmitted in real time to one or several devices through
a communication network. A copy of the scene is then created
and synchronized on each device. The same network allows the
transmission of a set of basic interaction blocks to the device. These
blocks constitute a set of standard objects allowing the description
of the actions that the device may perform on the environment.
Each device is able to perform a projection of these blocks on
itself. This operation consists in generating dynamically the user
interface making it possible to carry out the described actions with
the device. Menus and parametrization tools are created on the fly to
allow the setting of the environment and the selection of geometric
tasks. The transmitted tasks are then projected on the degrees of
freedom of the device. Finally, the interaction blocks also indicate
which objects can be targeted and/or selected by the user. When
implementing a client for a device, the interaction blocks projection
is optimized according to the device properties (dimensions of the
display, number of degrees of freedom of the interaction device, ...).

Once the projection on the device is completed, the interactions
of the user with the device triggers the activation of some blocks.
This activation is requested by the device through the network
already used for the transmission of the scene and the interaction
blocks. The environment reacts then by modifying the scene and/or
the list of interactions given to the user. For example pressing a
button could make an object of the scene bigger while an other
could activate the rotation of an object and thus add the rotations
along the x, y, and z axis to the interaction list
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Figure 3: Main model

3.2 Basic interaction blocks
We define the interaction blocks as a finite set of instantiable and
parametrizable objects (Figure 5). These objects describe the inter-
actions with a 3D environment. Each VR, AR or MR device must
be capable of interpreting and activating all of these blocks. The
real-time evolution of the blocks allocated to the users, according
to their actions, defines the interactive scenario associated with
the 3D environment. We have chosen our interaction blocks ac-
cording to the following criteria. First of all, the blocks must be
interpretable by any type of device. Then, the composition and the
parametrization of the blocks must make it possible to design any
type of interaction with a 3D environment. It must also be possible
to give information on the perceptual structure of the tasks so as
to guide the projection on the device. Finally, the number of blocks
must remain limited to facilitate the development of the interpreter
for a given device.

3.2.1 Manipulation. The existing approach consists in directly
linking the degrees of freedom of a 3D object to the degrees of free-
dom of an input device, while our approach consists in associating
a generic motion to a task in a 3D space. This movement, described
with interaction blocks that we name Dof and Dof Integration,
is projected by the device on its own degrees of freedom. Figure 4
shows how the translation of a cube on a table can be achieved by
composing a Dof Integration block with two Dof blocks and how
these blocks can be projected on a gamepad.

The Dof object defines a generic movement with one degree of
freedom. This degree of freedom can be either a translation or a
rotation around an axis. The motion described is either continuous
or discrete. This degree of freedom is defined relative to a reference
object in the scene. If no reference object is defined, the user space
is used as the default reference.

The Dof Integration object allows to combine several degrees of
freedom. For example, this block can be used to define a translation
not along an axis (1 Dof) but in a plane (2 Dofs) like in Figure
4. Thus, the interaction block Dof Integration allows to define a
movement with several degrees of freedom. The device on which

these interaction blocks will be instantiated must then integrate
these degrees of freedom if its structure allows it. If the device is
not able to integrate the set of degrees of freedom as defined by the
Dof Integration block, they remain separated. In this case, a menu
is generated to let the user select alternately the separated degrees
of freedom.

Figure 4: Sample of interaction blocs usage. Two Dof blocks
and a Dof Integration block are associated in order to describe the
planar translation of a virtual cube on a table with a two degrees of
freedom generic movement. These blocks are transmitted to a device
equipped with a joystick. This device interprets the interaction blocks
and projects them on the joystick by associating the described generic
movement with a two degrees of freedom stick. This association allows
to activate the Dof Interaction bricks when moving the stick and thus
move the cube.

3.2.2 Selection & Targeting. The way to target or to select a
3D object differs greatly from one device to another. Indeed, even
if the use of ray casting is the most widespread technique, other
techniques exist. On the other hand, the way of manipulating the
casted ray totally depends on the structure of the device. Therefore,
it seems inappropriate to constraint how the targeting and the
selection are carried out by the device, so we introduce two basic
interactions to indicate that a 3D object can be targeted or selected.

The Hover object tells the device if a virtual object can be tar-
geted by the user. This block can be activated to indicate the begin-
ning and the end of the targeting and makes it possible to create a
visual feedback showing to the user that he can interact with the
object.

The Pick object allows to associate an event to the selection of
a virtual object by the user.

3.2.3 Application control. The application control gathers all
the interfaces available to the user to set up the application and/or
select tools: Menus, buttons, text input, . . . Since the 3D environ-
ment is created separately from any device, the application control
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have to be described to the devices with some specific interactions
blocks. We propose to describe, in a generic way, the means of
parametrization by two interaction blocks:

The Action object allows the launch of an event. This object
can have a list of parameters as argument. An Action without
parameters typically corresponds to a button in the final interface.
An action with parameters corresponds to an input form.

The Direct Input object allows to modify in real time a param-
eter of the application or a 3D object (numerical value, options
selection, text field, . . . ).

If the two previously described blocks are sufficient to describe
all the elements necessary for the application control, they do not
always make it possible to generate an optimal user interface. In-
deed, the arrangement and the grouping of the similar elements
of the interface are essential for ergonomics. We introduce then
a last interaction block called Interaction List which guides the
creation of menus and submenus during the generation of the user
interface. The Interaction List block is used to gather several inter-
action blocks that have the same semantic value or close uses. This
aims to cluster elements which must eventually be grouped in the
user interface.

Figure 5: Basic interaction blocks (UML)

4 IMPLEMENTATION
4.1 Shared Virtual Environment Platform

(SVEP)
To validate our model, we implemented a Web platform able to
host simultaneously multiple 3D environments. This platform was
developed with the Node.js technology which allows us to quickly
create 3D scenes using the Three.js library. A 3D environment
hosted on the platform is made of a script, jointly defining a 3D
scene and interaction blocks, but also resource files corresponding
to 3D models and textures. Finally, Socket.io was used to create a

WebSocket allowing real-time communication between a 3D envi-
ronment and the visualization devices. All the technological choices
for the platform were made to validate the model quickly. A future
use of game engines such as Unity or Unreal Engine is considered
in order to enrich the developed 3D environments and increase
performances. The global architecture of our implementation is
presented in Figure 6.

Figure 6: SVEP

Figure 7: Communication between a SVEP Client and a 3D
environment
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4.2 SVEP Unity 3D client
In order to speed up the implementation of a client for a given device,
we have developed a package for the Unity 3D game engine. This
package makes it possible to disregard the network connection with
the SVEP platform during the development of a client. Moreover, it
allows to pool the architecture of all clients using Unity (Figure 6).
A SVEP client is made of 5 modules:

4.2.1 SVEP Core. The SVEP Core module is in charge of the
communication between the clients and the hosted 3D environ-
ments (Figure 7). It also deserializes messages sent by SVEP into
standard objects and it controls the other modules.

4.2.2 Scene. The Scene module dynamically loads the virtual
scene of the 3D environment and synchronizes it in real time. The
Scene module must extend the Abstract class Scene of the Unity
package. The use of an abstract class makes it possible to restrict
the developments for a given client to the implementation of a
loading strategy adapted to the device capabilities. Several devices
can therefore use the same implementation of this module if they
have similar performances (RAM, graphic memory, quality of the
network connection).

4.2.3 Player. The Player module is responsible for the dynamic
projection of the interaction blocks on the device. If an abstract
class of the Unity package allows to pool the interfaces with the
SEVP Client module, it is necessary to specifically implement the
projection of different interaction blocks on the device.

4.2.4 Menu. The Menu module allows the user to navigate be-
tween the 3D environments available through the SVEP platform.

4.2.5 Tracking System. The Tracking System module (or TS) is
only implemented for the Augmented and Mixed Reality devices. It
is responsible for the dynamic positioning of virtual objects based
on the real objects of the environment (markers, GPS position . . . ).

5 RESULTS
5.1 Tested devices
In order to evaluate the portability of 3D environments developed
according to our model, we implemented three clients (Figure 1) for
the SVEP platform and could verify that the development of a single
application allows the portage of all the 3D environments on a new
device. The main stages of the implementation are summarized
below and in Table 1.

5.1.1 Scene. Since the computing power and the graphic capa-
bilities are similar, all the tested devices share the same implemen-
tation of the Scene module.

Table 1: Tested devices

Device 1 2 3
Display Smart TV Pc touchscreen Oculus rift HMD
Navigation Mouse & keyboard ARToolKit Oculus rift IR tracking
Tracking System . ARToolKit & Camera .
Interaction System Mouse & keyboard Touchscreen Oculus rift remote
Max Integrated Dofs 2 2 1+1
UI 2D overlay 2D overlay 2D in world position

5.1.2 Tracking System. Only the device 2 is capable of displaying
a 3D environment in Augmented Reality. It is therefore the only
device implementing the Tracking System module. The module
makes it possible like in [4] to perform, in real time, the tracking
with markers using the ARToolKit.

5.1.3 Menu & Application control. For devices 1 and 2, the user
interface grouping the Menu module and the application control
generated by the Player module is a traditional 2D interface super-
imposed to the 3D scene. However, the Oculus Rift (device 3) does
not allow this type of interface, so a three-dimensional interface
has been designed for this device.

5.2 Environment 1 : Virtual object
manipulation & feedbacks

Figure 8: Integration of the degrees of freedom

In order to evaluate our model, we developed a 3D environment
allowing a user to manipulate a virtual object (Figure 8) and pub-
lished it on the SVEP platform. Our objective was to verify that our
model allows the manipulation of a virtual object by any device,
that a reaction to the manipulations of the user can be dynamically
generated, and finally, that it is possible to update in real time the
interactions available to the user so that we can script his or her
exchanges with the environment.

Figure 9: Separation of the degrees of freedom

5.2.1 Interaction scenario. The user has two way of interacting
proposed in this scenario. The manipulation mode allows manip-
ulation of degrees of freedom of the object which can thus be
positioned by translation in the XY plan and oriented by a rotation
of Z axis. An action also allows to switch into a configuration mode.
This second mode gives to the user a set of interactions allowing
him to configure the degrees of freedom of the manipulation mode.
Figure 10 shows the menu generated by device 1 (Table 1) for con-
figuration mode. The configuration makes it possible to choose if
manipulations are continuous or discrete. In the case of a discrete
rotation, the rotation pitch is configurable. The translations along
the X and Y axes can be integrated (Figure 8) or separated (Figure 9).
Finally, selecting the object results in returning to the manipulation
mode.
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Figure 10: Manipulation configuration

5.2.2 Feedbacks. Since the device has no knowledge of either
the semantic nature of manipulations, or the manipulated object,
it cannot generate itself visual feedbacks during the interaction
to indicate to the user the awareness of his interaction and the
possible movements. This return must be generated directly by
the environment upon activation of the interaction blocks. Figure
11 summarizes the different feedbacks generated by the 3D envi-
ronment. When targeting, a transparent selection box is displayed
around the object. If the object is selected, arrows and circles are
displayed to indicate possible translations or rotations. Finally, the
arrows and circles displayed during the selection change colors
when activating interaction blocks that they represent.

Figure 11: Feedbacks

5.3 Environment 2: Simultaneous
manipulation of several objects

If the implementation of the environment presented in Section 5.2
allowed to validate the basic principles of our model, this single test
is not sufficient to evaluate the relevance of the model for the script-
ing of complex interactions. We present below a complementary
environment showing how the definition of a theoretical movement
by interaction blocks makes it possible to script the simultaneous
manipulation of several objects. With this test, we wanted to ensure
that the Dof and Dof Integration interaction blocks are sufficient
to create, not only virtual objects translations and rotations,but
also complex manipulations like scaling, multiple selection or event
triggering. The developed 3D environment shows that it is possible
to associate such a complex manipulation to a generic translation
or rotation move created with the Dof Integration and some Dof
interaction blocks.

Figure 12: Sort the stack !

5.3.1 Interaction scenario. The environment is made of a stack
of plates. The goal of the user is to sort the plates according to their
size. The only authorized operation is to return the top of the stack
(Figure 12).

5.3.2 One Dof selection. A block with one degree of freedom is
used in association with a vertical movement. A movement from
top to bottom or from bottom to top allows to add or remove a plate
from the selection (Figure 13).

Using a discrete Dof allows to define the amplitude of the move-
ment used to add or remove a plate from the selection. The possibil-
ity of selecting the plates in several goes allows the user to correct
his selection.

5.3.3 Full task. A second discrete degree of freedom is used to
trigger the reversal of the selection by associating it to an horizontal
movement. The integration of these two Dof allows the user to
select and flip the top of the stack in a single motion (Figure 14).
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Figure 13: 1 Dof selection

Figure 14: Selection & reversal integration

6 DISCUSSION
By construction, the portage on a new device of all the environ-
ments developed according to our model does not depend on the
number of environments, but depends on the difficulty to imple-
ment the projection of interaction blocks on the device. The use of
our model thus allows an increasing portability gain when the num-
ber of environments increases. On the basis of the tests presented in
Section 5, it seems that the composition and the dynamic evolution
of interaction blocks (Section 3.2) allow to script and describe the
interactions with a 3D environment in a generic way. Moreover,
it appears that this model naturally allows collaboration between
different types of devices.

However, additional work is needed to establish good practices
for scripting in a shared environment. Indeed, it is likely that vi-
sual feedbacks such as the one proposed in Figure 11, generate in
some cases, cognitive overloads for the other users. These visual
feedbacks could, on the other hand, be beneficial for solving known
problems such as the join attention issue presented in [8].

7 CONCLUSIONS
The main objective of this article was to present a generic model of
the interaction in 3D environment allowing to totally ignore the na-
ture of the user device during the development of the environment.
To do this, we have shown that the degrees of freedom can be used

as an abstraction layer common to all devices to define manipula-
tion of 3D objects. Finally, after presenting our implementation of
the model, we have shown how it can be concretely used for the
scripting in 3D environment.

Moreover, this model seems suitable for the creation of collabo-
rative environments. The possibilities offered by facilitated collabo-
ration between complementary devices open up new perspectives,
particularly in the area of collaborative design. However, comple-
mentary work establishing good scripting practices with the model
is to be foreseen before any rigorous evaluation of its contribution
in the field.
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