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Abstract: This paper is a theoretical “proof of concept” on how the on-site first-order spin-orbit 

coupling can generate giant Dzyaloshinskii-Moriya interaction in binuclear transition metal 

complexes. This effective interaction plays a key role in strongly correlated materials, skyrmions, 

multiferroics, molecular magnets of promising use in quantum information science and computing. 

Despite this, its determination from both theory and experiment is still in its infancy and existing 

systems usually exhibit very tiny magnitudes. We derive analytical formulas that perfectly reproduce 

both the nature and the magnitude of the Dzyaloshinskii-Moriya interaction calculated using state-of-

the-art ab initio calculations performed on model bicopper(II) complexes. We also study which 

geometrical structures/ligand-field forces would enable one to control the magnitude and the 

orientation of the Dzyaloshinskii Moriya vector in order to guide future synthesis of molecules or 

materials. This article provides an understanding of its microscopic origin and proposes recipes to 

increase its magnitude. We show that i) the on-site mixings of 3d orbitals rules the orientation and 

magnitude of this interaction, ii) increased values can be obtained by choosing more covalent 

complexes, iii) huge values (~1000 cm-1) and controlled orientations could be reached by approaching 

structures exhibiting on-site first-order SOC, i.e. displaying an “unquenched orbital momentum”.  
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I Introduction 

 

Due to the fundamental contributions of Igor Dzyaloshinskii and Tôru Moriya in the magnetism field, 

the antisymmetric exchange is often referred to as the Dzyaloshinskii-Moriya interaction (DMI). The 

discovery of this interaction dates back to the middle of the twentieth century. It was invoked to 

rationalize the exotic behaviors of magnetization in materials, such as the weak ferromagnetism of 

hematite α-Fe2O3.1 Based on phenomenological arguments, Dzyaloshinskii showed in 1958 that this 

interaction was due to the combination of low symmetry and relativistic effects, as it is the case for 

the Zero-Field Splitting (ZFS). Extending Anderson’s theory of superexchange, Moriya then 

theorized this interaction.2 He proposed a mechanism based on spin-orbit coupling (SOC) as being 

the microscopic origin of DMI and gave the orientation of the Dzyaloshinskii-Moriya (DM) vector 

according to crystal lattice symmetries. Another fundamental manifestation of DMI is the 

stabilization of magnetically modulated chiral structures with fixed rotation sense for the curling of 

the magnetization vector.3 While long-period helical magnetic structures were experimentally 

identified by neutron diffraction in MnSi4 and FeGe5 in 1970’s, in the 1980’s theoretical investigations 

showed that these structures could be explained by DMI.6,7 Since that period many modulated 

magnetic structures of this kind have been discovered in various classes of non-centro-symmetric 

magnetic crystals. In 1989 Bogdanov and Yablonskii predicted an important phenomenon: 

Dzyaloshinskii-Moriya interaction can stabilize one-dimensional spiral structures, but also two- and 

three-dimensional textures named skyrmions.8,9 Since the experimental observation in 2010 of 

skyrmionic states in nanolayers of Fe0.5Co0.5Si under magnetic field by Yu et al.10 this discovery has 

opened new challenges in fundamental physics and technological applications in spintronics, data 

storage and quantum computing. One may also quote a particular effort in direction of spin-orbitronic 

devices in surface science where large DMI was observed using O2 (paramagnetic) adsorbed on 

ferromagnetic surfaces.11 

 

Among other manifestations, the DMI is also invoked in multiferroic materials.12,13  For those 

materials that exhibit both polarization and magnetization, one of the major challenges is to maximize 

the magneto-electric coupling. Indeed, while high electric polarizations are observed in non-magnetic 

ferroelectric materials, very weak electric polarizations are obtained in ferromagnetic systems. Such 

a finding has led chemists to synthesize hybrid materials that have two (or more) layers of different 

materials, one being ferro- (or antiferro-) magnetic and the other one strongly ferroelectric.14 These 

materials have two different populations of electrons, each of them being responsible for one of the 

properties. As a consequence, the control of polarization and magnetization requires the use of both 

electric and magnetic fields. The conception of non-hybrid materials, for which the same population 

of electrons would be responsible for both properties, would enable us to also control polarization 

through a magnetic field and magnetization using an electric field, provided that the magneto-electric 

coupling is large enough. In such systems, it has been established that polarization arising from the 

through-ligand spin current is proportional to the vector product between the centers A and B distance 

vector, eAB, and the DM dAB vector. To maximize polarization in such systems therefore relies on the 

possibility to increase the DMI. Beyond the interest for multiferroic materials, maximizing magneto-

electric coupling would be very useful in devices for quantum computing (for instance).15–17 Indeed, 

the nanoscopic size of quantum bits makes them difficult to control by a magnetic field which is 

hardly focusable and a control by electric field is highly desirable. 

 

The conditions of symmetry to have a non-zero DMI have been known for quite a long time, such as 

for instance allowing to have a non-zero antisymmetric component of the spin-spin coupling tensor 

in the context of the spin of the nucleus.18 While only a few papers from theoretical chemists reporting 

calculations of the DMI have been published, many approaches have been used to compute symmetric 

anisotropy tensors.19–23 The physical content of the local anisotropy tensor appearing in systems of 
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spin larger than ½ is quite well understood.24–27 Concerning the anisotropy of the symmetric exchange 

tensor, analytical expressions of the axial DAB and rhombic EAB zero field splitting (ZFS) parameters 

have been derived for binuclear complexes (made of magnetic centers A and B) and ab initio 

calculations have been performed to precisely extract both parameters in the copper-acetate 

complex.28 For a centrosymmetric system of two Ni(II) (spin S=1) the extraction of both the multispin 

spin25 and the giant Hamiltonians29 has already been performed and it was shown that a four-rank 

tensor was required to accurately reproduce the anisotropy of exchange. Reference30 reports the study 

of model complexes of Ni(II) of various symmetries in which all parameters have been extracted. In 

this last work the magnitude of the DMI was very small and the theoretical effort was focused on the 

other parameters.  

 

Works concerning the quantum chemical description of the DMI are rather scarse. One may quote for 

instance few papers by some of us focused on its dependence (both in magnitude and in orientation) 

to geometrical deformations,31 and applications to materials,32–34 and also a work by Atanasov et al..35 

Concerning the understanding of the electronic factors ruling the DMI, the literature is also quite 

incomplete. In his famous article, Moriya first derived this terms in an atomic orbital (AO) basis and 

with a crystal field picture in 1960. Decades later, this work was extended by Moskvin to include 

contributions from the bridging oxygens,36 i.e. for not restricting the expression to the metal AOs. 

Note that in reference 26, computed wave functions were analyzed to propose first explanations 

concerning the specific deformations that were applied to the retained model complexes.  

 

The present work aims at revisiting and completing these early and partial attempts to identify the 

electronic and geometric factors that rule the magnitude and the orientation of this vector and propose 

first analytical formulas that describe its components in a more general context (i.e. applicable to any 

binuclear complex of local spin Si=1/2, independent from the local coordination environments and 

from the symmetry of the system). To determine these factors, we will focus our applications to simple 

model complexes constituted of two copper ions surrounded by chloride ligands. We should make 

clear here that this choice for model complexes is guided by two main reasons, (i) we are not aware 

of any available experimental data on actual dicopper(II) complexes and (ii) cases for which 

experimental data is available present much too complex situations for a first ab initio mechanistic 

study. One may quote for instance a diferric complex37 (correlation is tricky on iron complexes) or a 

tricopper(II) one38 (the occurrence of three active centers poses more questions such as the correct 

application of the permutation relationship and will be the subject of a forthcoming work). 

Consequently, it is wise to start establishing accurate quantum chemical methodologies and general 

and tractable analytical formulas by focusing on model dicopper(II) complexes.  

 

The article is organized as follows. In section II, analytical expressions of the DM vector components 

are derived and the surface of its components as a function of the different mixings between d orbitals 

in the singlet and the triplet states is provided. Section III contains the computational information and 

section IV presents the results obtained on two different model complexes in which specific 

deformations are applied to create DMI.  

 

 

II. Analytical expressions of the DM components 

 

The DM vector appears in anisotropic Hamiltonian for the description of magnetic systems presenting 

magnetic anisotropy. For a binuclear compound constituted of two spins Si=1/2, the multispin 

Hamiltonian writes: 

 

 

𝐻̂𝑚𝑜𝑑𝑒𝑙 = 𝐽𝐴𝐵 𝑆⃗̂𝐴. 𝑆⃗̂𝐵 + 𝑆⃗̂𝐴. 𝐷̿𝐴𝐵 . 𝑆⃗̂𝐵 + 𝑑𝐴𝐵. 𝑆⃗̂𝐴 × 𝑆⃗̂𝐵 (1) 
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4 

 

 

where 𝑆⃗̂𝐼 is the spin operator on center I={A,B}, JAB is the isotropic magnetic coupling, 𝐷̿𝐴𝐵 is the 

symmetric magnetic anisotropy tensors of exchange and 𝑑𝐴𝐵 is the antisymmetric anisotropy tensor 

i.e. the DM vector. Subtracting the isotropic contribution to the exchange anisotropic tensor, one has 

access to the axial DAB and rhombic EAB parameters while the three components of DM vector are 

called dx, dy and dz, in practice dependent on the axis frame used in the calculations. Let us call a and 

b the local magnetic orbitals of the triplet state; i.e. the orbitals bearing the unpaired electrons. The 

magnetic orbitals have tails on the ligands and result from local mixings between d orbitals. Both the 

mixings and the tails are different in the triplet and singlet states that are formed by the electronic 

coupling of the two unpaired electrons. We will call a’ and b’ the singlet magnetic orbitals. One should 

note that usually in model spin Hamiltonian the spatial part is assumed to be common to all states 

described by the model and only the spin degrees of freedom are considered. As will be shown in this 

section, the DMI is strictly zero for identical singlet and triplet orbitals. It is however possible to 

account for the difference between the two sets of orbitals by introducing flexibility in the coefficients 

of the determinants on which the two wave functions are expressed. The spin-orbit interaction couples 

the MS components of the two electronic states differently generating the components of both 

symmetric and antisymmetric anisotropic tensors. The model Hamiltonian matrix in the coupled basis, 

for which 𝑆0, 𝑇0 and 𝑇±1 stand for the singlet and triplet MS=0 and MS=±1 spin components, i.e. in the  

{𝑇1 = |𝑎𝑏⟩  ;   𝑇0 = |
𝑎𝑏̅−𝑏𝑎̅

√2
⟩  ;  𝑇−1 = |𝑎𝑏̅̅ ̅⟩    ;   𝑆0 = |

𝑎′𝑏′̅+𝑏′𝑎′̅

√2
⟩} basis, writes: 

 

(𝐻̂𝑚𝑜𝑑𝑒𝑙) =

 𝑇1 = |𝑎𝑏⟩ 𝑇0 = |
𝑎𝑏̅−𝑏𝑎̅

√2
⟩ 𝑇−1 = |𝑎𝑏̅̅ ̅⟩ 𝑆0 = |

𝑎′𝑏′̅̅̅+𝑏′𝑎′̅̅ ̅

√2
⟩

⟨𝑎𝑏|
𝐽

4
+

𝐷𝑧𝑧

4

𝐷𝑥𝑧−𝑖𝐷𝑦𝑧

2√2

(𝐷𝑥𝑥−𝐷𝑦𝑦−2𝑖𝐷𝑥𝑦)

4

𝒅𝒚+𝒊𝒅𝒙

𝟐√𝟐

⟨
𝑎𝑏̅−𝑏𝑎̅

√2
|

𝐷𝑥𝑧+𝑖𝐷𝑦𝑧

2√2

𝐽

4
−

𝐷𝑧𝑧

4
+

(𝐷𝑥𝑥+𝐷𝑦𝑦)

4
−

𝐷𝑥𝑧−𝑖𝐷𝑦𝑧

2√2
−

𝐢𝐝𝐳

𝟐

⟨𝑎𝑏̅̅ ̅|
(𝐷𝑥𝑥−𝐷𝑦𝑦+2𝑖𝐷𝑥𝑦)

4
−

𝐷𝑥𝑧+𝑖𝐷𝑦𝑧

2√2

𝐽

4
+

𝐷𝑧𝑧

4

dy−idx

2√2

⟨
𝑎′𝑏′̅̅̅+𝑏′𝑎′̅̅ ̅

√2
|

𝒅𝒚−𝒊𝒅𝒙

𝟐√𝟐

𝒊𝒅𝒛

𝟐

𝒅𝒚+𝒊𝒅𝒙

𝟐√𝟐
−

3𝐽

4
−

𝐷𝑧𝑧

4
−

(𝐷𝑥𝑥+𝐷𝑦𝑦)

4

 

(2) 

 

 

where, 𝐷𝑥𝑥, 𝐷𝑥𝑦, … are the components of the 𝐷̿𝐴𝐵 symmetric exchange tensor. The DMI only couples 

the singlet with the three MS components of the triplet. Its determination therefore only requires to 

calculate the SOC matrix elements between these two electronic states.  

 

The off diagonal elements of the SOC matrix can be analytically calculated using the spin-orbit 

operator 𝐻̂𝑆𝑂 = 𝜉 (𝑙1
⃗⃗ ⃗. 𝑠̂1

⃗⃗⃗⃗ + 𝑙2
⃗⃗⃗ ⃗. 𝑠̂2

⃗⃗⃗⃗ ) where 𝑙𝑖
⃗⃗⃗  and 𝑠̂𝑖

⃗⃗⃗ are the angular and spin momenta respectively of 

electron i and 𝜉 is the spin-orbit constant (we consider a spherical approximation of the SOC and 

identical magnitudes on both sites). The action of the spin operator gives: 

 

 

⟨
|𝑎′𝑏′̅̅̅|+|𝑏′𝑎′̅̅ ̅|

√2
| 𝜉 (𝑙1

⃗⃗ ⃗. 𝑠̂1
⃗⃗⃗⃗ + 𝑙2

⃗⃗⃗ ⃗. 𝑠̂2
⃗⃗⃗⃗ ) ||𝑎𝑏|⟩ =

1

2√2
(⟨𝑏′|𝜉𝑙+|𝑏⟩⟨𝑎′|𝑎⟩ − ⟨𝑎′|𝜉𝑙+|𝑎⟩⟨𝑏′|𝑏⟩)    (3) 

⟨
|𝑎′𝑏′̅̅̅|+|𝑏′𝑎′̅̅ ̅|

√2
𝜉 (𝑙1

⃗⃗ ⃗. 𝑠̂1
⃗⃗⃗⃗ + 𝑙2

⃗⃗⃗ ⃗. 𝑠̂2
⃗⃗⃗⃗ ) ||𝑎𝑏|̅̅ ̅̅ ̅⟩ =

1

2√2
(⟨𝑎′|𝜉𝑙−|𝑎⟩⟨𝑏′|𝑏⟩ − ⟨𝑏′|𝜉𝑙−|𝑏⟩⟨𝑎′|𝑎⟩)    (4) 

⟨
|𝑎′𝑏′̅̅̅|+|𝑏′𝑎′̅̅ ̅|

√2
| 𝜉 (𝑙1

⃗⃗ ⃗. 𝑠̂1
⃗⃗⃗⃗ + 𝑙2

⃗⃗⃗ ⃗. 𝑠̂2
⃗⃗⃗⃗ ) |

|𝑎𝑏̅|−|𝑏𝑎̅|

√2
⟩ =

1

2
(⟨𝑎′|𝜉𝑙𝑧|𝑎⟩⟨𝑏′|𝑏⟩ − ⟨𝑏′|𝜉𝑙𝑧|𝑏⟩⟨𝑎′|𝑎⟩)    (5) 
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5 

 

These equations show that if for symmetry reason a=b (thus a’=b’) the DMI is strictly zero. In the 

case of two symmetrically equivalent magnetic centers it is therefore necessary to locally mix 

differently the atomic orbitals (hybridization) on centers A and B in order to create DMI. In order to 

maximize this interaction, the most interesting cases are such that i) a symmetry lowering leads to 

specific local orbital mixings that ultimately lead to a significant DMI, ii) the difference of the MO 

coefficients between the singlet and triplet states is sizeable and iii) the effect of the angular 

momentum is important, i.e. the magnetic orbitals have large |Ml| components of the angular 

momentum. In the case of transition metal centers, the most efficient mixing would involve the 

spherical harmonics d2+ and d2-, i.e. the dxy and dx2-y2 real orbitals. One may note that with lanthanides 

the 𝑓±3 spherical harmonics would be a priori the most interesting ones to be involved in the mixing. 

Nevertheless, the singlet and triplet orbitals would be very similar due to the weak interactions of the 

very concentrate 4f orbitals with the ligand ones, which should finally result in a weak if not negligible 

DMI. Finally, as we will see in the section devoted to applications, the difference between the singlet 

and triplet molecular orbitals (MOs) plays a crucial role. As covalence introduces ionic components 

in the singlet wave function, it induces a different relaxation of the singlet MOs, which should 

increase the DM vector components.  

 

In order to show the physical content of the dx, dy and dz components, we have considered the mixing 

of all d orbitals two by two that could be obtained from distortions of the coordination sphere. Starting 

from delocalized MOs obtained from combinations of the overlapping d orbitals, it is always possible 

to define local orthogonal new d orbitals called 𝑑1
𝐴 and 𝑑2

𝐴 on center A and 𝑑1
𝐵 and 𝑑2

𝐵 on center B. 

The local orbitals a and b can be expressed as: 

 

𝑎 = 𝛼𝑑1
𝐴 + 𝛽𝑑2

𝐴       

𝑏 = −𝛼𝑑1
𝐵 + 𝛽𝑑2

𝐵    

𝑎′ = 𝛼′𝑑1
𝐴 + 𝛽′𝑑2

𝐴   

𝑏′ = −𝛼′𝑑1
𝐵 + 𝛽′𝑑2

𝐵

  (6) 

 

Such mixings correspond to symmetric distortions either along X, Y or Z axis, the SOC is always 

proportional to: 

 

Δ = 𝜉[𝛼𝛽(𝛼′2 − 𝛽′2) − 𝛼′𝛽′(𝛼2 − 𝛽2)]  (7) 

 

Figure 1 represents  as a function of the parameters  and ’.  and ’ are always positive and are 

fixed by the orbitals normalization, i.e. 2+2=1 and ’2+’2=1. In a first place, one should note that 

as the singlet and triplet orbitals are usually quite similar in magnetic complexes, real situations are 

close to the straight line =’ (in black and bold on the figure on the right). Nevertheless, the variation 

of | is very abrupt close to this line and reaches the maximum of |0.5 for (𝛼2 − 𝛼4) ±

(𝛼′2 − 𝛼′4) = 1/4 and is zero for the circle  𝛼2 + 𝛼′2
= 1 when  and ’ are of opposite sign, i.e. 

for non-physical values of the coefficients. Indeed, in magnetic systems the magnetic orbitals are very 

similar in all magnetic states of the same configuration and this is what underlies the validity of spin 

Hamiltonians for which the spatial part of all wave functions is factorized. 
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6 

 

 
 

Figure 1:  surface as a function of the parameters  and ’ (left) and a portion in the physical 

region of its contour plot (right).  The calculated values obtained for the different studied complexes 

(see the Application section) are also reported (right). Arrows indicate direction towards larger 

deformations. 

 

The different components of the DM vector can be deduced from the expressions reported in Table 1. 

Of course combining the various contributions, these results can be used to describe mixings of three 

or more local orbitals. As expected, the biggest DM components are obtained from the application of 

the 𝑙𝑧𝑠̂𝑧 operator (which generates the 𝑑𝑧 components) and for the largest (in absolute value) angular 

momentum Z component quantum numbers Ml =±2.  

 

 

d1 d2 Matrix elements of the SOC 

𝑑𝑥2−𝑦2 𝑑𝑥𝑦 ⟨𝑆0|𝐻̂𝑆𝑂|𝑇0⟩ =
𝑖𝑑𝑧

2
 = −2𝑖∆ 

 

𝑑𝑥2−𝑦2 𝑑𝑥𝑧 
⟨𝑆0|𝐻̂𝑆𝑂|𝑇±1⟩ =

𝑑𝑦

2√2
 = −

∆

√2
 

 

𝑑𝑥2−𝑦2 𝑑𝑦𝑧 
⟨𝑆0|𝐻̂𝑆𝑂|𝑇±1⟩ = ∓

𝑖𝑑𝑥

2√2
 = ∓

𝑖∆

√2
 

 

𝑑𝑥𝑦 𝑑𝑥𝑧 
⟨𝑆0|𝐻̂𝑆𝑂|𝑇±1⟩ = ∓

𝑖𝑑𝑥

2√2
 = ±

𝑖∆

√2
 

 

𝑑𝑥𝑦 𝑑𝑦𝑧 
⟨𝑆0|𝐻̂𝑆𝑂|𝑇±1⟩ =

𝑑𝑦

2√2
 = −

∆

√2
 

 

𝑑𝑥𝑧 𝑑𝑦𝑧 ⟨𝑆0|𝐻̂𝑆𝑂|𝑇0⟩ =
𝑖𝑑𝑧

2
 = −𝑖∆ 
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Table 1: Non-zero elements of the SOC matrix involving the DM vector 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 components 

resulting from the couplings between the various states obtained by mixings of d1 and d2 orbitals (see 

equations 5, 6 and 7). An interchange between d1 and d2 leads to a change between  (’) and  (’) 

in . 

 

 

 

 

III. Computational information 

 

Ab initio calculations have been performed using the MOLCAS8.0 code.39–41 In order to get zeroth 

order correlated wave functions and to optimize average orbitals for several states, the Complete 

Active Space Self Consistent Field (CASSCF) method has been employed.42 CAS(6,4) calculations 

(6 active electrons/4 active MO) on 4 triplet and 4 singlet states have been performed for the model 

complexes 1 and 2 (Cu2Cl7
3- and Cu2Cl5

-, respectively, see Figures 2 and 4 for more details) while 

CAS(18,10) calculations on 25 triplet and 25 singlet states have been done for complex 1’ (also 

Cu2Cl7
3-, but with different applied deformations than for 1, as can be seen from the comparison of 

Figures 2 and 3). As the studied systems are model complexes, dynamic correlation that would be 

brought by post-CASSCF calculations has been neglected even if its effect on the wave function of 

the electronic states is non-negligible. Accurate calculations of the wave function coefficients require 

a sophisticated method such as Casdiloc that works with orthogonal local orbitals to restrict the 

Configuration Interaction space using locality criteria.43,44 Nevertheless, it is much less important on 

the SO spectrum of the lowest states. Its account would not change the qualitative results and would 

not affect in any way the more general scope of this article, which essentially consists in establishing 

reliable analytical formulas. The Spin-Orbit State-Interaction (SO-SI) method45 implemented in 

MOLCAS has been used in a second step in order to account for the SOC between the various states. 

The quality of the results of the latter method for the calculation of SO states of transition metal 

complexes is well established for the determination of anisotropy in transition metal complexes.26 

 

In order to extract the DM vector components, two procedures have been used: i) direct calculation 

from the off-diagonal elements of the SO-SI matrix (see equation 2), ii) calculation from the electronic 

wave function coefficients and the here proposed formulas. Note that if post-CASSCF energies were 

used while maintaining the CASSCF wave functions for computing the off-diagonal SOC matrix 

elements (this is a spread approach), the same values would naturally be obtained as these elements 

only depend on the wave functions, which further supports the choice for using only the CASSCF 

energies and wave functions in the present context.  

 

The confrontation of our equations to ab initio results requires to determine the coefficients   ' 

and '.  Since the atomic orbitals overlap, they do not form an orthonormal basis set as those of 

equation 6. Besides, the optimized MOs are orthonormal but have tails onto the ligands and are 

therefore no more purely atomic. An alternative way consists in using the coefficients of the 

determinants after relocalizing the orbitals on the left and right magnetic centers. The Projected 

Atomic Orbitals Cholesky method of localization was used.46 In the case of a mixing between two d 

𝑑𝑥𝑧 𝑑𝑧2 ⟨𝑆0|𝐻̂𝑆𝑂|𝑇±1⟩ =
𝑑𝑦

2√2
 = −

∆√3

√2
 

 

𝑑𝑦𝑧 𝑑𝑧2 ⟨𝑆0|𝐻̂𝑆𝑂|𝑇±1⟩ = ∓
𝑖𝑑𝑥

2√2
 = ±

𝑖∆√3

√2
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orbitals on each center, the analytical expression of the four electronic states spin components as 

functions of the local orbitals reads:  

 

Ψ𝑚𝑠=1 
3 = −𝛼2(𝑑1

𝐴𝑑1
𝐵) + 𝛽2(𝑑2

𝐴𝑑2
𝐵) + 𝛼𝛽(𝑑1

𝐴𝑑2
𝐵 − 𝑑2

𝐴𝑑1
𝐵) 

Ψ𝑚𝑠=−1 
3 = −𝛼2(𝑑̅1

𝐴𝑑̅1
𝐵) + 𝛽2(𝑑̅2

𝐴𝑑̅2
𝐵) + 𝛼𝛽(𝑑̅1

𝐴𝑑̅2
𝐵 − 𝑑̅2

𝐴𝑑̅1
𝐵) 

Ψ𝑚𝑠=0 
3 =

1

√2
[−𝛼2(𝑑1

𝐴𝑑̅1
𝐵 − 𝑑1

𝐵𝑑̅1
𝐴) + 𝛽2(𝑑2

𝐴𝑑̅2
𝐵 − 𝑑2

𝐵𝑑̅2
𝐴) + 𝛼𝛽(𝑑1

𝐴𝑑̅2
𝐵 + 𝑑1

𝐵𝑑̅2
𝐴 − 𝑑2

𝐵𝑑̅1
𝐴 − 𝑑2

𝐴𝑑̅1
𝐵)] 

Ψ𝑚𝑠=0 
1 =

1

√2
[−𝛼′2

(𝑑1
𝐴𝑑̅1

𝐵 + 𝑑1
𝐵𝑑̅1

𝐴) + 𝛽′2
(𝑑2

𝐴𝑑̅2
𝐵 + 𝑑2

𝐵𝑑̅2
𝐴) + 𝛼′𝛽′(𝑑1

𝐴𝑑̅2
𝐵 − 𝑑1

𝐵𝑑̅2
𝐴 + 𝑑2

𝐵𝑑̅1
𝐴 − 𝑑2

𝐴𝑑̅1
𝐵)] 

        (8) 

 

Ab initio wave-function therefore gives access to the four interesting parameters. One should note 

that two values can be calculated using the analytical formulas given in Table 1: i) in the first one the 

𝛼𝛽𝐶𝑎𝑙𝑐  (𝛼′𝛽′𝐶𝑎𝑙𝑐) product is taken as being √𝛼′2𝛽′2 (√𝛼′2𝛽′2 ) while ii) in the second one it is directly the 

coefficients of the corresponding determinants in the ab initio wave function (see equation 8). Of 

course the second extraction provides more precise values as CASSCF wave functions of the lowest 

states can mix with those of excited states, inducing a change of the relative coefficients of the various 

determinants of equation 8. 

 

IV Applications 

 

A. How to generate a single dy component of the DMI? 

 

In the article31 we have shown that an efficient way to generate a single component DMI with a 

definite orientation was to impose a bending angle between two planar moieties, each of them 

involving a transition metal ion. The model complex 1 Cu2Cl7
3-

 (see Figure 2 left) has been chosen to 

illustrate both the link between the orbital mixing and the nature of the DMI, and the quantitative 

validity of the here proposed formula (see Table 1). This section also aims at showing the importance 

of the difference between the singlet and triplet orbitals and how covalence affects this difference and 

may therefore be a significant ingredient to control DMI (by an appropriate choice of ligands).   
 

 

 
Figure 2 : Model complex 1 (left) and angular deformation y generating a dy component of the DMI; 

One magnetic MO (right) of the triplet state resulting from the mixing between the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑧 

orbitals for the angle y=160°. The calculated DM vector (in red) is also represented (right) centered 

on the origin of the axes frame (middle of the fragment Cu(II)-Cu(II)).  

 

The triplet MOs (Figure 2 right) result from a mixing between the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑧 orbitals as expected 

from the applied bending. From Table 1, such a mixing induces a DMI in the Y direction, as can be 

seen in the computed vector represented in Figure 2. Table 2 shows the values of the DMI extracted 

from either the off-diagonal element coupling the singlet and the triplet in the SO-RASSI matrix or 

using the here proposed formula. For comparison we have used either the ab initio coefficients 
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𝛼𝛽𝑎𝑏𝑖𝑛𝑖𝑡𝑖𝑜 or the 𝛼𝛽𝐶𝑎𝑙𝑐 = √𝛼′2𝛽′2 . The results confirm that more precise values are obtained when using 

the ab initio coefficients. It is worth noting that even if these changes are relatively small, the 

sensitivity of the DMI to the coefficients is quite important and one must use the ab initio ones 

preferably. From these results we can draw some qualitative conclusions: 

 

- The proposed formula especially when using ab initio coefficients furnishes very accurate 

values of the DMI. The slight differences between the off-diagonal matrix elements and the 

DMI calculated from the analytical formula comes from the fact that we are using a unique 

spin-orbit constant that has been fixed to that of the Cu2+ ion, i.e.  =830 cm-1.47 Note that 

usually, using the free-ion value for complexes may lead to an overestimation of the SOC (it 

is commonly admitted that covalence leads to a reduction of the SOC constant). 

- The DMI which is strictly zero at 180° for symmetry reasons (centro-symmetric molecule) 

increases with the bending as expected. The calculated DMI values as functions of the 

deformation angle are reported in Figure 1 (right, orange dots). We observe that the values 

increase with the deformation, i.e. dots move away from the diagonal line for which dy = 0. 

- Last but not least the DMI is much larger for the complex that has shorter bonds between the 

chlorides and the Cu(II) ions, i.e. for the most covalent complex. Comparing the coefficients 

of the triplet and the singlet, one may note that the mixing between the local orbitals is higher 

in the singlet and that it increases with covalence, resulting in more different orbitals between 

the two states. The red dots that are reported in Figure 1 (right) are shifted down in comparison 

to the less covalent complex DMI (orange dots) which shows that the singlet coefficients are 

more affected (i.e. the ’ change).  

 

 

 

 

 

Distances 

Cu2+-Cl- 
   

𝛼𝛽 

calculated  

𝛼𝛽 

ab initio 
’ ’ 

𝛼′𝛽′ 
calculated 

𝛼′𝛽′ 
ab initio 

|dy|  

from 

SO-SI 

|dy| from 

formulas * 

.  and '. '  

ab initio / 

calculated  

2.0 Å 

150° .9442 .0494 .2161 .2217 .9340 .0616 .2398 .2357 28 29 /43  

160° .9753 .0223 .1475 .1512 .9682 .0294 .1688 .1648 22 25/ 37  

170° .9937 .0060 .0774 .0764 .9896 .0080 .0890 .0848 12 15 / 20 

180° 1.000 .0000 .0000 .0000 .9969 .0000 .0000 .0000 0 0 / 0 

2.2 Å 

150° .9438 .0507 .2188 .2216 .9394 .0564 .2301 .2284 13 14 / 20  

160° .9750 .0229 .1495 .1513 .9722 .0263 .1599 .1578 10 12 / 18 

170° .9935 .0060 .0772 .0765 .9922 .0070 .0833 .0806 6 7 / 10 

180° 1.000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000 0 0 /0 

 

Table 2: values in cm-1 of the DMI extracted from either the off-diagonal matrix element of the SO-

RASSI method or the here proposed formula (see text) for complex 1 with two different Cu(II)-Cl- 

(bridging) distances. The coefficients of the determinants are either calculated from √𝛼2𝛽2  (see 

computational information) or extracted from the ab initio wave functions. * see Table 1. 

 

 

B. DMI with two components 

 

The model complex 1’ Cu2Cl7
3- in which we have added a second deformation to the previous one is 

represented in Figure 3 left. The distortions of complex 1’ are such that in addition to the y =170° 
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bending angle we have introduced a z= 160° angle between the two moieties in the XOY plane 

around the Cl- bridging ligand. The final angle (Cu-Cl-Cu) is 151.8°. Such a deformation generates a 

mixing of all d orbitals so that:   

 
𝑎 = 𝛼𝑑𝑥2−𝑦2 + 𝛽𝑑𝑥𝑦 + 𝛾𝑑𝑥𝑧 + 𝛿𝑑𝑦𝑧 + 𝜀𝑑𝑧2        

𝑏 = 𝛼𝑑𝑥2−𝑦2 − 𝛽𝑑𝑥𝑦 − 𝛾𝑑𝑥𝑧 + 𝛿𝑑𝑦𝑧 + 𝜀𝑑𝑧2        

𝑎′ = 𝛼′𝑑𝑥2−𝑦2 + 𝛽′𝑑𝑥𝑦 + 𝛾′𝑑𝑥𝑧 + 𝛿′𝑑𝑦𝑧 + 𝜀′𝑑𝑧2

𝑏′ = 𝛼
′𝑑

𝑥2−𝑦2 − 𝛽′𝑑𝑥𝑦 − 𝛾′𝑑𝑥𝑧 + 𝛿′𝑑𝑦𝑧 + 𝜀′𝑑
𝑧2     

   (9) 

 

This mixing can be observed in the drawing of one magnetic orbital of the triplet state (Figure 3 right). 

The DM vector lies in the (YZ) plane (i.e. it has two components dy and dz) and has a larger component 

in the Z direction than in the Y one.    

 

 

 
 

Figure 3 : Model complex 1’ (left) with angular deformations y and z respectively generating dy 

and dz components of the DMI; One magnetic MO (right) resulting from the mixing between all d 

orbitals for the angles y =170° and z= 160°. The calculated DM vector (in red) is also represented 

(right) centered on the origin of the axes frame (middle of the fragment Cu(II)-Cu(II)). 

 

 

From Table 1 and equation 9 (and taking care of the sign of the coefficients in these orbitals), one 

sees that only dy and dz components are generated. dz comes from mixings between i) 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 

and ii) 𝑑𝑥𝑧 and 𝑑𝑦𝑧. dy is produced by the mixings between i) 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑧 , ii) 𝑑𝑧2 and 𝑑𝑥𝑧, iii) 

𝑑𝑦𝑧 and 𝑑𝑥𝑦. In the studied geometry the coefficients on the 𝑑𝑦𝑧 and 𝑑𝑧2 orbitals are so small that the 

weights of the determinants involving these orbitals are less than 1%. It is therefore possible to limit 

our expressions of the DMI components to the main contributions: 

 

𝑑𝑧 = −4𝜉(𝛼′𝛽′(𝛼2 − 𝛽2) − 𝛼𝛽(𝛼′2 − 𝛽′2))  (10) 

𝑑𝑦 = −𝜉√6(𝛼′𝛾′(𝛼2 − 𝛾2) − 𝛼𝛾(𝛼′2 − 𝛾′2)) 

 

Table 3 reports the values of the DMI components extracted from the SO-RASSI matrix and 

calculated using equations 10, together with the coefficients of the ab initio wave functions. Here 

again we can conclude that the values are in perfect agreement with those predicted from our 

analytical formula. The results show that as expected the best way to generate an important value of 

DMI component in to induce a SOC between the singlet and the triplet through the 𝑙𝑧𝑠̂𝑧 operator (see 

Table 1) resulting from a mixing between the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals. This induces a dz component 

which is much larger than the dy one (almost twice the value in our complex 1’). Note that in the 

general case, we should not exclude the possibility of a significant contribution coming from the 𝑙𝑧𝑠̂𝑧 
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operator associated with the mixing of the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals. Nevertheless, the expected effect 

would be lower due to the respective |ML| values (1 in 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals vs. 2 in 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 

ones). In other words, equation (9) is general and one must not neglect any term a priori without 

analyzing the content of the wave functions obtained in the considered complex. 

 

 

  𝛼𝛽 ’ ’ 𝛼′𝛽′ |dz| from SO-SI |dz| from formulas * 

.8765 .0971 .2926 .8644 .1041 .2991 36 36 

  𝛼𝛽 ’ 𝛾’ 𝛼′𝛽′ |dy| from SO-SI |dy| from formulas * 

.8765 .0210 .1386 .8644 .0264 .1477 19 17 

 

Table 3: values in cm-1 of the DMI components extracted from either the off-diagonal matrix element 

of the SO-RASSI method or the here proposed formulas (see text) for complex 1’. The coefficients 

of the determinants are extracted from the ab initio wave functions. * see Table 1. 

 

 

C. First-order SOC: a recipe to generate huge DMI   

 

As seen in the previous subsection, large values of DMI can be obtained from the mixing between 

the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals. In the paper48 some of the authors have shown that approaching first-

order SOC makes it possible to multiply the value of the axial parameter D of ZFS tenfold (or more). 

We followed the same approach in the next application. In order to generate a quasi-degeneracy 

between the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals, we have imposed a local C3 symmetry axis. For this purpose, 

the model complex 2 Cu2Cl5
-
 now has a coordination of 3 around each Cu(II) ion. We have then 

varied the bending angle between the bridging chloride and the two Cu(II) ions, that controls the 

mixing between the two orbitals. Of course, as the anisotropic spin Hamiltonian becomes irrelevant 

in the case of a first order SOC, we have also changed the  angle between the external ligands in 

order to gradually move away from the degeneracy. Note that as the deformations are carried out only 

within the (XOY) plane, they induce the mixing of only 𝑑𝑥2−𝑦2  and 𝑑𝑥𝑦  orbitals. Complex 2 is 

pictured in Figure 4 (left) as well as the deformation angles z and . On Figure 4 (right) one may 

appreciate the expected mixing between the orbitals and the direction strictly along Z of the DM 

vector.   

 

 

 

Figure 4: Model complex 2 Cu2Cl5
-
 (left) with angular deformations z and  generating a dz 

component of the DMI; One magnetic MO (right) of the triplet state resulting from the mixing 

between 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals for the angles z=160° and =140°. The calculated DM vector (in 

red) is also represented (right) centered on the origin of the axes frame (middle of the segment Cu(II) 

– Cu(II)). 
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Table 4 presents the results obtained for = and various z angles. The evolution of the DM 

vector follows the predicted behavior (see green dots on Figure 1), i.e. for small deformations of z 

from 180° the DMI increases sharply and then attenuates even before reaching an equal mixing of the 

𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals. One may note that quite large values are obtained as this mixing is the most 

efficient to create large DMI.   

 

 z   𝛼𝛽 ’ ’ 𝛼′𝛽′ 
|dz|  

from 

SO-SI 

|dz| from   

formulas * 

140° .7464 .2380 .4394 .6986 .3118 .4533 198 200 

145° .8131 .1731 .3929 .7670 .2418 .4184 204 204 

150° .8689 .1194 .3395 .8266 .1802 .3745 205 203 

155° .9147 .0762 .2806 .8757 .1291 .3268 199 214 

160° .9504 .0432 .2177 .9210 .0816 .2664 181 196 

165° .9757 .0207 .1540 .9569 .0438 .1990 152 164 

170° .9842 .0148 .1207 .9726 .0264 .1604 110 118 

175° .9981 .0028 .0433 .9945 .0035 .0622 58 63 

 

Table 4: values in cm-1 of the DMI extracted from either the off-diagonal matrix element of the SO-

RASSI method or the here proposed formula (see text) for complex 2 for =140° and various z 

angles. The coefficients of the determinants are extracted from the ab initio wave functions. * see 

Table 1. 

 

Table 5 explores the impact of the deformations which make it possible to approach the first-order 

SOC regime, i.e. for a fixed z = 170° and various values of  Close to 120° one reaches huge values 

of the DMI. This deformation is the most efficient one to create giant DMI, as can be seen in Figure 

1 (black dots). One may note that the coefficients of the triplets are now those that are the most 

affected by the deformation ( changes). Looking at the coefficients reported in Table 4, one sees that 

approaching =120° the nature of the wave functions changes due to strong mixings with excited 

states. In this “close to” first-order SOC regime, the spectrum becomes almost degenerate (see Figure 

5). As a consequence, the anisotropic spin Hamiltonian that can only reproduce the first singlet and 

triplet states becomes irrelevant. The modeling that we propose here is no longer adapted to a precise 

extraction of the DMI. Indeed, its physical origin now comes as much from the important SOC 

between the different states as from their strong electronic mixing.  

 

 

   
𝛼𝛽 

ab init 
’ ’ 

𝛼′𝛽′ 
ab init 

|dz|  

from 

SO-SI 

|dz| from  

formulas * 

120° .6531 .0647 .2056 .9904 .1311 .3603 1406 1522   

130° .9938 .0008 .0290 .9761 .0242 .1537 226 243  

140° .9842 .0148 .1207 .9726 .0264 .1604 110 118  

160° .9789 .0210 .1433 .9701 .0276 .1636 65 69  
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180° .9775 .0225 .1483 .9683 .0275 .1630 53 56 

 

Table 5: values in cm-1 of the DMI extracted from either the off-diagonal matrix element of the SO-

RASSI method or the here proposed formula (see text) for complex 2 for z=170° and various  

angles. The coefficients of the determinants are extracted from the ab initio wave functions. * see 

Table 1. 

 

 
Figure 5: Spectrum in cm-1 of the lowest states obtained for =170° as a function of . Singlet Si and 

triplet Ti states are numbered following their energetic order from lowest to highest.  

  

 

IV Conclusion: 

 

In this paper we have derived analytical formulas that relate the DM vector components with the 

coefficients of the electronic wave functions of the lowest singlet and triplet states resulting from the 

coupling between two unpaired electrons located on two magnetic ions. In order to validate these 

formulas different model complexes have been studied. We have imposed various geometrical 

distortions that enabled us to study the nature and magnitude of the DM vector components. Naturally, 

we have chosen to express the MOs in specific axis frames with respect to the molecular symmetry 

elements, for the sake of simplicity. Nevertheless, we stress that our approach can be attempted in 

any arbitrary axis frame without altering the result, i.e. the orientation and magnitude of the DMI. 

The main conclusions are the following: 

- First, the formulas provide quantitative agreement with the ab initio results except when we are 

close to first-order SOC. 

- It allows to rationalize both the orientation and the magnitude of the DM vector as functions of the 

mixings between the d orbitals of the metal ions. This is an alternative to the reasoning of Moriya, 

which was based on AOs. We believe that orbital mixings are currently more intuitive to theoretical 

and experimental chemists than excitations between pure AOs, and thus that this new language will 

later prove to be useful in the molecular magnetism field. Indeed, since the orbital mixings are directly 
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linked to the ligand field, this new understanding will pave the way to synthetic chemistry for the 

design of complexes with controlled DMI. 

- The most efficient way to produce large DMI is to mix the 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑦 orbitals in the magnetic 

orbitals which generates the dz component of the DM vector. To further enlarge its magnitude one 

may also increase covalence between the magnetic centers since the difference between the singlet 

and triplet orbitals plays a major role on it. Note that it is also possible in principle to play on the 

mixture between the 𝑑𝑥𝑧  and 𝑑𝑦𝑧  orbitals, even if the resulting DMI is expected to be of lesser 

amplitude. 

- Finally, to reach giant DMI, the recipe is to generate first-order SOC, in particular in near orbitally-

degenerate situations (ideally between the 𝑑𝑥2−𝑦2  and 𝑑𝑥𝑦  orbitals). Indeed, it is desirable to 

approach the degeneracy regime but without fully reaching it. Otherwise, as the spectrum becomes 

degenerate, the spin Hamiltonian approach becomes irrelevant and the here proposed modelling is no 

longer appropriate. In such a case, both a new model describing all the degenerate states and a method 

of extraction based on the effective Hamiltonian theory should be employed to accurately describe 

the physics of this regime. This is another complete story that will be the subject of a forthcoming 

paper.  

 

 

Dedicacy : The authors wish to dedicate this article to Nadia Ben Amor, for her courage and tenacity 

in continuing to develop and maintain alone the CASDIloc program, without which an important part 

of our work based on wave functions analyses in orthogonal local orbitals would not have emerged. 
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