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Abstract: A substantial amount of research effort has been applied to the field of environmentally 
assisted fatigue (EAF) due to the requirement to account for the EAF behaviour of metals for existing 
and new build nuclear power plants. We present the results of the European project INcreasing Safety 
in NPPs by Covering Gaps in Environmental Fatigue Assessment (INCEFA-PLUS), during which the 
sensitivities of strain range, environment, surface roughness, mean strain and hold times, as well as 
their interactions on the fatigue life of austenitic steels has been characterized. The project included a 
test campaign, during which more than 250 fatigue tests were performed. The tests did not reveal a 
significant effect of mean strain or hold time on fatigue life. An empirical model describing the fatigue 
life as a function of strain rate, environment and surface roughness is developed. There is evidence 
for statistically significant interaction effects between surface roughness and the environment, as 
well as between surface roughness and strain range. However, their impact on fatigue life is so small 
that they are not practically relevant and can in most cases be neglected. Reducing the environmental 
impact on fatigue life by modifying the temperature or strain rate leads to an increase of the fatigue
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life in agreement with prédictions based on NUREG/CR-6909. A limited sub-programme on the 
sensitivity of hold times at elevated temperature at zero force conditions and at elevated temperature 
did not show the beneficial effect on fatigue life found in another study.

Keywords: environmentally assisted fatigue (EAF); austenitic stainless steel; nuclear power plant 
(NPP); light water reactor (LWR); surface roughness

1. Introduction
According to the most recent report of the Intergovernmental Panel on Climate Change 

(IPCC), "Nuclear energy is a mature low-GHG [green house gas] emission source of 
baseload power, but its share of global electricity generation has been declining (since 1993). 
Nuclear energy could make an increasing contribution to low-carbon energy supply, but 
a variety of barriers and risks exist" [1]. Hence, long-term operation (LTO) of the current 
fleet of nuclear power plants (NPPs) can make an important contribution to controlling 
GHG emissions, especially in the short term. However, this requires proper understanding 
of the relevant damage mechanisms in NPPs.

Environmentally assisted fatigue (EAF) is one of these damage mechanisms; test 
programmes in Japan, the U.S. and later in Europe have shown that the water environment 
in NPPs reduces the fatigue life Nf significantly. Nevertheless, EAF was not explicitly 
taken into account during the construction of the currently operating fleet of NPPs [2,3]. 
The most recent guidance for EAF assessment is the U.S. regulation NUREG/CR-6909, 
Rev. 1 [4], in its final version from May 2018, which is based on an extensive collection 
mainly of Japanese and U.S. data. In that document, the effect of the environment on Nf is 
described by an environmental factor Fen:

Fen
Nf,air,RT
Nf,LWR

(1)

where Nf,air,RT is the fatigue life in air at room temperature and Nf,LWR the fatigue life in 
the environment at operating conditions.

However, the low cycle fatigue lives predicted by CR-6909 do not reflect current 
pressurized water reactor (PWR) plant experience where no failures attributed to environ- 
mental fatigue have been observed so far where the loading conditions were known [2]. 
Furthermore, studies on laboratory specimens found experimental fatigue lives to be longer 
than predictions based on CR-6909 [5,6]. This indicates that the guidance provided by 
CR-6909 includes significant conservatism, which could potentially be reduced without 
loss of operational plant safety. Accordingly, EAF has received much attention in the last 
few years [5-15].

Work by Chopra et al. presented a recent review with a focus on ASME Code section 
III [3] where the Fen for austenitic stainless steels is described as:

Fen = exp(-F* GÜ* ) (2)

F*, e* and Ü* are functions of the environmental temperature, the positive strain rate and 
the dissolved oxygen content. Other parameters like surface finish and complex waveforms 
are not explicitly taken into account, but taken into account through constant subfactors [4].

However, some authors have observed cases where the combined effect of surface 
finish and the environment is less damaging than might be expected when considering 
both effects independently [10,11,16]. These findings suggest there might be interaction 
effects between the surface finish and the environment.

Similarly, a number of studies investigated the influence of the waveform and espe­
cially mean strain [8] and hold time periods on environmental fatigue [6,13]. While mean 
strain did not have a major effect on fatigue life, it turned out that at least under certain
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conditions, introducing hold times at some cycles during the fatigue life can extend the 
fatigue life of austenitic steels in the PWR environment.

The project INCEFA-PLUS (INcreasing Safety in NPPs by Covering Gaps in Environ- 
mental Fatigue Assessment) [17] was started in 2015 under the umbrella of the European 
Horizon 2020 programme to characterize some of this conservatism. It includes a major 
test programme with more than 250 (mostly strain controlled) fatigue tests in air and a 
simulated light water reactor (LWR) environment carried out in 11 European laborato- 
ries. While most of the tests were carried out according to a single test matrix that was 
optimized by the design of experiments method, some specific aspects were addressed in 
separate sub-programmes.

This work describes the test programme in detail and analyses the data from the 
main programme in which the effects of five test parameters, as well as their two-factor 
interactions are considered. The most relevant factors and interactions are identified. Two 
sub-programmes respectively address hold time effects and conditions under which less 
environmental impact is expected (i.e., smaller Fen).

The implications for actual plant assessment were discussed elsewhere [18]. The 
analyses presented there were based on an earlier data evaluation similar to the one 
presented here, but based on a slightly smaller database. The conclusions for fatigue 
assessment in plants are not affected by the small difference in the underlying database.

2. Materials
The large majority (86%) of the tests were carried out on a single batch (XY182 sheet 

23201) of 304L stainless steel produced by Creusot Loire Industries. The remaining tests 
were carried out on a single batch of 321 (8%) and different batches of 304,304L and 316L. 
The chemical composition of the different steels is listed in Table 1. All materials were 
annealed at temperatures between 1050 °C and 1100 °C. The annealing time was 5 h for 
the 321 material and between 0.4 and 2 h for the other steels.

Table 1. Chemical composition of the different steels (wt.%). The common material (see column 
"Comment") was used in the majority of the tests; the other materials were only used by the indicated 
organizations.

Material Al B C Co Cr Cu Fe Mn Mo N

304L 0.029 18.00 0.02 bal. 1.86 0.04 0.056
304L 0.029 0.0005 0.026 0.016 18.626 0.046 bal. 1.558 0.227 0.074
316L 0.022 0.001 0.028 0.007 17.562 0.049 bal. 1.779 2.393 0.062
304 0.035 0.05 18.39 0.17 bal. 1.83 0.2 0.079
321 0.109 0.102 18.08 0.048 bal. 1.446 0.023

Material Nb Ni P S Si Ta Ti V W Comment

304L 10.00 0.029 0.004 0.37 Common
304L 0.003 9.737 0.0133 0.0005 0.527 0.01 IRSN
316L 0.002 11.947 0.0121 0.0084 0.642 0.01 IRSN
304 8.07 0.031 0.001 0.32 0.05 Jacobs
321 9.79 0.023 0.52 0.61 0.013 UJV

3. Test Programme
The test programme consisted of a main programme and several sub-programmes 

dedicated to specific questions arising during the project.
The main programme initially aimed at studying the sensitivities of fatigue life Nf 

to the parameters strain range £r (difference between the maximum and minimum strain 
during the test), mean strain £m (strain level in the middle between the minimum and the 
maximum strain in a test), hold time th (period with constant strain), surface roughness 
Rt and environment E. These parameters were selected based on the interest of the 
project partners and the EPRI gap report [2]. The main programme was divided into three 
consecutive phases (see Section 3.1 for details) to be able to refocus the testing once the first 
trends became apparent in the data. The data from Phase I did not show any effect of mean 
strain ([19] and Section 3.1.3), and this was dropped in the later phases. The factor mean 
strain £m was introduced as the easiest means to simulate the constant load applied to NPP
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components during steady state operation. However, because of shake down early during 
the test, the mean strain did not have a significant effect on fatigue life. A sub-programme 
was started to simulate the constant load via tests with mean stress under strain control. 
The results of this sub-programme were published separately [20].

It also became apparent that applying hold times during some cycles in this study 
did not have a major effect on fatigue life. However, significant effects of hold times on 
fatigue life were reported in a different study [13]. To investigate whether differences in 
the application of holds led to these differences, a limited sub-programme on hold time 
tests was started (Section 3.3).

Furthermore, a small test programme with conditions where less environmental 
effects were expected (i.e., smaller Fen) than in the main programme was performed 
(Section 3.2).

In the absence of a dedicated standard for EAF tests in LWR conditions, the tests 
were performed as much as possible according to ISO 12106:2017, the standard for strain 
controlled fatigue testing [21] with additional guidance taken from other relevant standards 
such as ASTM E606 [22], ISO 11782-1 [23], BS7270:2006 [24] and AFNORA03-403 [25]. 
To reduce the scatter caused by differences in testing practices between the different 
laboratories, further guidelines were developed that provide more detailed guidance than 
is normally included in a testing standard [26]. All test data were uploaded in a dedicated 
materials database operated by the European Commission (MatDB) and have received 
digital object identifiers (DOIs) to ensure long-term storage and traceability.

As an additional quality assurance measure, each test was validated by a panel of 
fatigue experts from within the project and rated with regard to the quality of the test 
and the completeness of the information in the database. The test quality was determined 
on the basis of data like the cyclic stress amplitudes and hysteresis curves [26]. Where 
necessary, this information was complemented by microstructural characterization of the 
specimens [27]. From the strain controlled tests carried out during the project, ninety-four 
percent received a quality rating of one or two (out of four) and were accepted without 
restriction for analysis.

Besides these tests on uni-axial specimens, the project included also a sub-programme 
on membrane specimens. The results of this sub-programme were published separately [28].

3.1. Main Programme
3.1.1. Test Conditions

The main test programme addressed the influences of the factors strain range £r, hold 
time th, surface roughness characterized by the total height of the roughness profile Rt, 
mean strain em and environment on the fatigue life of austenitic stainless steels. Preliminary 
data analyses yielded no indications of significant effects of mean strain and hold times on 
Nf and were removed during the later phases of the test programme.

Each of the three test phases was optimized by means of the design of experiments 
(DOE) method [29]. As usual for experimental campaigns for linear models optimized by 
DOE, all factors were tested on two levels. In the case of continuous factors (like strain 
range), the minimum and maximum values in the interval of interest were chosen. Using 
the extreme values maximizes the sensitivity of the test result on the factor settings (because 
of the higher leverage of the extreme values compared to intermediate values). The only 
exception from this rule is the surface roughness: While all smooth specimens have a very 
similar surface roughness, the grinding process used to obtain the rougher surface finishes 
yielded a roughness distribution rather than a discreet value (Section 3.1.2). For categorical 
factors like hold time, the two levels were "without holds" and "with holds".

Table 2 lists the test conditions applied in the main programme. The test conditions 
were selected to be as plant relevant as possible while keeping test durations realistic 
(especially for hold times and minimum strain range). The surface roughness is charac- 
terized for all specimens by the maximum roughness height Rt and average roughness 
Ra as specified in ISO 4287:1997 [30]. The smooth surface finishes achieved by polishing
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were very reproducible, so not all specimens were measured individually, and generic 
roughness values were used for most polished specimens. Because of the larger scatter in 
the surface roughnesses of the rough specimens, Ra and Rt for all ground specimens were 
measured individually by optical confocal profilometry according to ISO 4288:1997 [31]. In 
this work, Rt is used rather than Ra because that is the parameter that can be expected to 
have more impact on crack initiation: a deeper scratch leads to larger stress concentration, 
which facilitates crack initiation. As both values are strongly correlated (Figure 1), the 
choice of the surface characteristic is not expected to have a major impact on the analysis.

Table 2. Test conditions in the main programme and the sub-programme on low Fen testing.

Parameter
Low

Level
Middle
Level

High
Level

Comment

Er (%) 0.6 1.2
Em (%) 0 0.5 only for Phase I
Rt (pm) 0.76 ^20 >40 Rt > 40 for Phase II only

Th (h) 0 72 0 or 3 holds of 72 h at mean strain; 
cycles with holds depend on test conditions

e (%/s) 0.01 0.1 rising e in PWR env., falling e and air tests may vary; 
e = 0.1 %/s in low Fen tests only

F (° C) 230 300 F = 230 °C in low Fen tests only

Figure 1. Correlation between Rt and Ra for the specimens in the database (throughout this work, 
the symbol > indicates runout specimens). The ratio between Rt and Ra is 8.7.

The PWR and VVER (a Russian PWR design) chemistries are defined in Table 3. In 
some cases, slightly different water chemistries were used because of different practices in 
the national power plants. These differences are not expected to have a significant impact 
on fatigue life, but are recorded in the central database. All tests with the material 321 (and 
only these) were performed in the VVER environment.

Table 3. Definition of the water chemistry; ae is the electric conductivity; DH2 and DO are the 
dissolved hydrogen and oxygen contents.

Reactor T P pH@ Li B K NH3 DH2 DO @25 ◦ C
◦ C MPa 300 °C ppm ppm ppm ppm cc(STP)H2/kg ppb ^S/cm

PWR 300 15 6.95 2 1000 25 <5 30
VVER 300 12.5 7 1189 16.4 9.7 2 22 80-110

According to CR-6909, the Fen for austenitic stainless steels can be formulated as [4]:

Fen = exp(-F* E*Ü* ) (3)
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where T*, è* and ü* are the parameters derived from température, strain rate and dissolved 
oxygen content. For the conditions used in this work (Tables 2 and 3), these are defined as:

T* = (T - 100)/250 where T is in °C (4)
£* = ln(e/7) where éisin%/s (5)

Ü* = 0.29 (6)

For the test conditions in the main programme (T = 300 ° C, è = 0.011/s, Tables 2 and 3), 
Equation (3) yields Fen = 4.57.

3.1.2. Data Overview
Figure 2 shows the 170 tests that were included in the analysis of the data from the 

main programme [32]. Four of these tests were runouts, i.e., tests that were stopped for 
other reasons than specimen failure. These tests are considered as right censored data in 
the analysis. The mean air curve for austenitic steels from NUREG/CR-6909 [4] and the 
same curve divided by the Fen are plotted for reference.

> indicate runouts, i.e., tests that were stopped before specimen failure (e.g., because of a technical 
problem with the test rig).

The definition of fatigue life Nf used in this study is N25, i.e., the cycle where a 
reduction of the maximum cyclic stress of 25% compared to the extrapolated stabilized 
behaviour occurs. In cases where Nx values other than N25 are reported, these were 
converted to N25 by means of Equation (18) in NUREG/CR-6909 [4]:

25 0.947 + 0.00212X v '

While the majority of the tests in the environment were carried out using solid speci- 
mens in autoclaves, some data were acquired on hollow specimens where the water flows 
through the specimen. For hollow specimens, Nf is generally the cycle where leakage 
occurs. This is considered a rough equivalent to N25 [4].

Each organization used their own specimen type and geometry. For the air tests, the 
specimen diameters varied between 3.6 and 10.0 mm; the solid specimens for the tests in 
the environment had diameters between 3.6 and 9.0 mm. The hollow specimens had inner 
diameters between 9 and 12 mm.

Because of the internal pressure in hollow specimens, the stress state in hollow spec- 
imens is different from the membrane stress in solid specimens. It is therefore not ob- 
vious that the fatigue lives obtained with both types of specimens can be compared
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directly [33-35]. A study carried out within INCEFA-PLUS led to the conclusion that 
no significant effect on the mean values is expected for the data discussed here [36] (this 
analysis was done on an earlier (smaller) data set, but has been confirmed with the final 
dataset). Therefore, no further distinction between the two types of specimens is made here. 
For hollow specimens, the strains are used directly as measured, and no strain correction 
as suggested in [35] was applied.

The distribution of the independent variables in the main programme is summarized 
in Figure 3. The relatively low number of tests with a positive mean strain £m and a positive 
hold time th reflects the fact that these parameters were dropped in Test Phases II and III, 
respectively (Table 2).

Figure 3. Distribution of the factors in the main programme.

3.1.3. Data Analysis
Before starting the actual data analysis, it is useful to check for possible correlations. 

The correlation r^ between the input parameters xi and Xj is given by:

E(X - Xi)(Xj - Xj)
'El

E(Xi - Xi)2 E(xj - Xj)2
(8)

where x is the mean of x. The correlation ri,j can take values in the interval [-1;1]. Values 
of |ri,j | close to 1 indicate strong (anti-)correlations. If | ri,j | is close to 0, Xi and Xj are 
not correlated. A strong correlation between xi and Xj means that tests with high values 
of Xi also tend to have high values for Xj. Similarly, a strong anticorrelation between xi 
and Xj means that high values for Xi are often associated with low values for Xj . Strong 
(anti-)correlations between the inputs can easily lead to the wrong conclusions during the 
evaluation because the associated effects cannot be separated.

The three phases of the main test programme were optimized by the design of experi- 
ments method [29], which also minimises the correlation between the factors. However, 
the available collection of tests varied from the planned test matrix, since some tests were 
invalid or not carried out as specified. Furthermore, additional data were contributed by 
some project partners, and some test conditions were modified during the project. These 
circumstances could have introduced correlations between the independent variables.

Table 4 lists the correlations between the factors in the main programme. The largest 
(anti-)correlations were found between £m and Rt and between £r and Rt. An anticorrelation 
between £m and Rt was expected since in Phases II and III, no tests with holds were carried 
out any more, whereas in Phase II, a higher surface roughness Rt was introduced. Therefore, 
one would expect tests with holds to have on average lower Rt and hence an anticorrelation 
between Rt and th. The correlation between £r and Rt, however, is unexpected. Most likely, 
it is a random effect resulting from the grinding process that was used to produce the rough 
surface finishes and that yielded a distribution of surface roughnesses rather than specific 
Rt values (Figure 3). These two largest (anti-)correlations were below 0.15 and should not 
have a major impact on the evaluation.
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Table 4. Corrélations between the factors in the main programme

£r Em Rt Th E
£r 1.0000 -0.0183 0.1443 0.0252 0.0492

E m -0.0183 1.0000 -0.1402 -0.0168 -0.0089
Rt 0.1443 -0.1402 1.0000 0.0952 -0.0094
Th 0.0252 -0.0168 0.0952 1.0000 0.0409
E 0.0492 -0.0089 -0.0094 0.0409 1.0000

The actual data analysis was based on a second degree factorial model, i.e., a model 
including the main effects and all second order interactions:

ln( Nf ) = £ Ai%i + £ AijXiXj + I (9)
i i<j

The Xi are the different factors (such as Rt). The parameters Ai and Aj are the model 
parameters for the main effects and the two factor interactions, and I is the intercept. For 
every test, an equation like Equation (9) is formulated. The best model is the model for 
which the parameters Ai, Aj and I best describe the experimental data. A lognormal distri­
bution for Nf is assumed as recommended in ISO 12107 [37]. In a lognormal distribution, 
the expected (i.e., mean) value X of the lognormally distributed variable X is:

X = exp ^ ]i + y) (10)

^ and a are the mean and standard variation of the natural logarithm of X.
The model parameters in Equation (9) depend on the scaling of the factors Xi. Nor- 

malizing the factors to the range [—1;1] allows comparing the impact of the different main 
and interaction effects by simply comparing the corresponding a parameters. Table 5 lists 
the normalization conventions for the factors in the main programme. In this work, the su­
perscript "()n" indicates normalized factors, e.g., Rn is the normalized Rt. For consistency, 
also the categorical factors like the environment E are labelled similarly (En).

Table 5. Normalization of the factors in the main programme.

Factor Low Value (-1) High Value (1) Comment

Er (%) 0.6 1.2 min. and max. values according to the test matrix
Em (%) 0 0.5 min. and max. values according to the test matrix

Rt (pm) 0.194 65.5 min. and max. values in the dataset
th no hold incl.holds categorical variable indicating if the test had holds (Table 2)
E air PWR, VVER categorical variable indicating the environment

The aim of the current study is not only to obtain a numerical model that allows 
predicting the fatigue life of a specimen under a specific set of test conditions, but especially 
to determine which of the investigated factors have a significant impact on fatigue life. 
Therefore, the selected model should not only describe the data, but also include only those 
variables that have a significant effect on fatigue life. Many algorithms are available for 
fitting a model to the data. For the present study, we chose the backward elimination [38] 
method. This algorithm starts with a full model, including all factors and interactions 
that are being considered (in this case, a second order factorial model, Equation (9)) and 
evaluates the predictive performance of this model. In the next step, one model parameter 
(main effect or interaction) is removed, and the performance of the reduced model is 
evaluated. This procedure is repeated iteratively until only the intercept is left. This 
approach allows more easily comparing models with different numbers of factors than is 
the case for other algorithms that do not eliminate factors at all or where the number of 
factors is not changed in every step.
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The model that best fits the data is not necessarily the most useful model since models 
with more parameters can easily overfit the data (i.e., fit the noise). Two approaches were 
used here for model selection. In the first approach, the data set is divided into a training 
set and a validation set. The data in the training set are used to determine the model 
parameters a,. The data in the validation set are then used to evaluate the predictive 
performance of the model. Since the data in the validation set were not used to determine 
the model parameters, the predictive performance of the model on the validation set is 
a good measure for the model performance under new conditions within the parameter 
range in which the model was optimized.

From Figure 2, it is clear that the data sets can be roughly separated into four distinct 
groups by the two levels of er and E. The training and validation sets are selected in such 
a way that 75% of the data in each of the four groups are in the training set and 25% in 
the validation set. This approach is shown in Figure 4a, where the -LogLikelihood for the 
training and the validation sets is plotted over the iteration steps of the algorithm. The 
-LogLikelihood, the negative natural logarithm of the likelihood function, is a measure for 
the goodness of fit, whereby smaller numbers indicate a better fit. The iteration steps of the 
algorithm start with Step Number 0, i.e., the full model including all main effects and all 
two parameter interactions. Moving on the abscissa left allows following the progression 
of the algorithm until at the leftmost step (here, Step 15), only the intercept remains.

Figure 4. Comparison of the model performances as a function of the step in the algorithm, i.e., 
the number of factors that were removed from the model. Note that progression on the abscissa 
is from right to left. The vertical red line indicates the optimal model according to the algorithm. 
(a) -LogLikelihood for the training and validation sets. (b) BIC for the full data set; the green 
area indicates "very good" model performance (strong evidence that a model is comparable to the 
best model); the yellow area indicates "good" model performance (weak evidence that a model is 
comparable to the best model) [39].

The dashed line refers to the training set. The -LogLikelihood for the training set 
rises continuously with the progression of the algorithm (from right to left). This is 
expected since reducing the number of terms in the model will necessarily lead to worse 
fits. The behaviour of the solid curve for the validation set is different: initially, the 
-LogLikelihood drops until it reaches a minimum in Step 10 (indicated by the vertical red 
line) and continuously rises from there. This means that the model that best describes the 
validation set is reached in Step 10 of the algorithm. The corresponding model coefficients 
are listed in Table 6 Model (a) (Appendix A).

An alternative approach for selecting a model and to avoid overfitting is using a 
measure for the quality of the fit that penalises models with a larger number of parameters. 
The Bayesian information criterion (BIC) is such a measure. It is defined as:

BIC = — 2LogLikelihood + k ln(n) (11)

where k is the number of parameters in the model and n the number of data points. As for 
the -LogLikelihood discussed above, lower values of BIC indicate a better fit. The second
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term of the sum in Equation (11) penalizes models with more parameters. Figure 4b shows 
the BIC for the different steps in the backward elimination algorithm for the full data set. 
The best model is again reached in Step 10; the corresponding model coefficients are listed 
in Table 6 Model (b).

Table 6. Coefficients for the best models in Figure 4. Note that the normalized versions of the 
factors need to be used (Table 5); in the case of the categorical variable En the coefficient is zero 

for En= —1 and the value in the table for En= +1. The p-value in the last column is an indication 

of the statistical significance of an effect; a threshold of 0.05 is often used as criterion for statistical 

significance with lower values indicating higher significance. a is a parameter in the lognormal 

distribution (Equation (10)).

Model Factor Estimate Std Error p-Value
Model (a) I 9.170 0.04524 <0.0001

£n —0.9011 0.04644 <0.0001
En [+1] —1.637 0.05123 <0.0001

Rf —0.1995 0.04137 <0.0001
(e? —0.06958)* En[+1] 0.1444 0.05558 0.0094

(e?—0.06958) * (Rf+0.51401) 0.09537 0.04329 0.0276

a 0.2850 0.02844 <0.0001

Model (b) I 9.157 0.04059 <0.0001
en —0.9355 0.04578 <0.0001

En [+1] —1.637 0.04594 <0.0001
r? —0.2169 0.03702 <0.0001

(e? —0.06958)* En[+1] 0.1766 0.05218 0.0007
(e?—0.06958) * (R?+0.51401) 0.1097 0.04005 0.0062

a 0.2913 0.02543 <0.0001

3.1.4. Discussion
Comparing the model coefficients listed in Table 6 Models (a) and (b) shows that both 

models include the same terms, namely the main effects e^, En and Rf, as well as the two 
interactions ef*En and en*Rf. The estimates for the coefficients of all three main effects are 
negative, indicating their detrimental effect on fatigue life.

The estimated factor for the interaction ef*En is positive; large values for either or
En, i.e., large strain ranges or testing in the LWR environment therefore partly compensate 
the negative effects of e^1 and En; at high strain ranges, there is less environmental effect. 
This is consistent with the observation reported in [3].

Similarly, the positive coefficient related to the interaction term ef*Rn reduces the 
negative impact of a high surface roughness at high strain ranges. This is understandable: 
Rt affects crack initiation rather than crack growth, so one would expect Rt to have a more 
deleterious impact in situations where fatigue life is dominated by crack initiation, i.e., at 
low strain ranges, which is what the models predict.

Models (a) and (b) were determined using the same algorithm (backward elimina- 
tion), but with different validation methods. Published and project internal analyses with 
different algorithms and slightly different data sets consistently showed the main effects er, 
E and Rt to have the largest impact [40]. In most cases, one or two two-factor interactions 
were found to be statistically significant, but not practically relevant, i.e., they did not 
have a major impact on the predicted fatigue life. The interactions that were found to 
be statistically significant varied in evaluations with increasing size of the data set and 
depending on the algorithm used for the model optimization. This may indicate that the 
size of these effects is at the limit of what is detectable with the number of tests available in 
this work.

This is confirmed by the optimization curves (the solid black lines) for both models 
in Figure 4. In both cases, the best model is found in Step 10, but the performance of the 
models in Step 9 or 11 is very comparable. A further reduced model, including only the
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main effects, was therefore calculated (using the BIC validation); the model parameters are 
listed in Table 7.

Table 7. Coefficients for a reduced model including only the main effects. Note that the normalized 

versions of the factors need to be used (Table 5); in the case of the categorical variable En the 
coefficient is 0 for En= -1, and the value in the table for En= +1.

Model Factor Estimate Std Error p-Value
Model (c) I 9.173 0.04283 <0.0001

EnEr -0.8354 0.02690 <0.0001
En [+1] -1.650 0.05097 <0.0001

R" -0.2160 0.03696 <0.0001

a 0.3124 0.03103 <0.0001

Figure 5a compares the N25 predicted by the three models to the experimentally 
observed values. As could be expected from Table 6, Models (a) and (b) are hardly distin- 
guishable. Only at very high N25 do differences become apparent. Model (c), which only 
includes the main effects, differs visibly from the other two models. For high fatigue lives, 
Model (c) systematically predicts lower N25, whereas the contrary can be observed in the 
medium N25 range around 4000 cycles. In the region where N25 is around 1000 cycles, all 
three models match well in general, with Model (c) deviating from the others in some cases. 
These differences result from omitting the interaction effects. However, the differences 
between the reduced model (c) and the optimal models (a) and (b) is small compared to the 
scatter observed experimentally. Therefore, Model (c) seems to be good enough to make 
realistic predictions.

Figure 5. Model predictions for N25 vs. experimental values: (a) comparison between the models 

(a-c). For the predictions with Model (a), colour coding highlights the different environments (b), 

strain ranges (c) and the surface roughnesses (d).

During the analysis, all tests were considered to be either carried out in air or in 
the LWR environment, where the LWR environment included simulated PWR, as well 
as simulated VVER conditions, and no distinction was made between the latter two. 
Furthermore, all tests in the VVER environment (and only these) were performed on a 321 
steel. The question is if considering the PWR and VVER tests was a sensible approach. 
Figure 5b-d compares the predicted N25 from Model (a) to the experimentally observed 
values, whereby the colour coding indicates the different environments, strain ranges and 
surface roughnesses.
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The VVER data in Figure 5b are distributed around the black reference line and do 
not show any particularities. Hence, based on the data available here, the model describes 
the VVER data just as well as the PWR data. Similarly, the model predictions work equally 
well for different strain ranges er (c) and surface roughnesses Rt (d). The effect of Rt on the 
predicted fatigue life is visible by the separation of the blue points with very low and the 
grey/red points with higher Rt values. The gap between these two groups is higher for 
larger fatigue lives, showing the interaction between Rt and Er.

3.2. Sub-Progmmme on Low Fen Conditions
3.2.1. Test Conditions

In this sub-programme, a limited number of tests were carried out at conditions 
with a lower Fen than in the main programme. From Equation (3), it follows that without 
changing the water chemistry (i.e., the DO content), the approaches that allow reducing Fen 
are reducing the temperature T and increasing the (positive) strain rate E. The maximum 
strain rate that could be achieved in all autoclaves in the project was an increase by a factor 
10 compared to the main programme, i.e., E = 0.1%/s. This leads to a Fen = 2.68; the same 
Fen is obtained by reducing T to 230 °C (Table 2).

3.2.2. Data Overview

Only a limited number of tests was available for the test programme at reduced Fen. 
Here, only tests with a strain range Er= 0.6% in the LWR environment are considered. 
Forty-nine tests were available for the analysis [41], of which 15 were at the lower Fen, with 
eight tests at reduced temperature T and seven tests at increased positive strain rate E. Data 
from the main programme at the positive strain rate 0.01 %/s were used as reference data. 
Some of these tests were carried out with mean strain or hold times. However, since the 
analysis of the data in the main programme did not reveal any mean strain or hold time 
effects, these parameters are not considered in context with the low Fen data. The fatigue 
lives of the tests used in the low Fen analysis are plotted in Figure 6 and the distributions of 
the most relevant test parameters in Figure 7.

Figure 6. Data in the low Fen programme; the reference curves are calculated from the NUREG/CR- 
6909 mean air curve and the two Fen values considered here.
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Figure 7. Distribution of the factors in the low Fen programme.

3.2.3. Data Analysis
Because of the limited number of tests available for this sub-programme, no tests with 

reduced temperature T and increased strain rate E were carried out. This gap in the test 
matrix is reflected in the correlation between T and E in the correlation matrix (Table 8). It 
should also be noted that the small number of tests led to a reduced spectrum of Rt in the 
low Fen data. For both groups of low Fen data (with reduced T and with increased E), the 
maximum Rt is around 30 pm, whereas for the group at higher Fen, it is almost 50 pm.

Table 8. Correlations between the factors in the low Fen programme

Rt E T
Rt 1.0000 -0.0589 0.0823
E -0.0589 1.0000 0.1846
T 0.0823 0.1846 1.0000

Table 9 shows the normalization definitions for the factors in the low Fen programme. 
Notice that the spectrum of Rt values is smaller than in the main programme, which leads 
to a slightly different normalization.

Table 9. Normalization of the factors T and E for the tests at reduced Fen

Factor Low Value (-1) High Value (1) Comment

T (° C) 230 302.3 min. and max. values in the dataset
E (%/s) 0.01 0.1 min. and max. values according to test matrix
Rt (pm) 0.335 49.75 min. and max. values in the dataset

The small number of tests available in the two low Fen groups makes it impractical 
to divide the data into a training and a validation set. Therefore, only the BIC method 
described in Section 3.1.3 is used for the analysis of the low Fen data. As before, the optimal 
model is determined by means of the backward elimination algorithm. The initial model 
includes all three main effects Rn, En and Tn, as well as the two-factor interactions Rn*E and 
Rn*Tn Since no data with high E and low T are available, no information about a possible 
interaction between these two parameters is present in the data.

The plot with the different steps of the backward elimination algorithm is shown in 
Figure 8; the parameter estimates for the optimal model, which includes only the main 
effects, are listed in Table 10.
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Figure 8. Variation of BIC during the itération steps of the backward élimination algorithm for the 
low Fen model.

Table 10. Coefficients of the optimal model for the low Fen data. Note that the normalized versions 
of the factors need to be used (Table 9).

Factor Estimate Std Error p-Value
I 8.643 0.05659 <0.0001

R? -0.2879 0.05369 <0.0001
£n 0.2048 0.05023 <0.0001
t? -0.2091 0.03572 <0.0001

a 0.2303 0.02785 <0.0001

3.2.4. Discussion
As would be expected, higher è, as well as lower Rt and T increased the fatigue life. 

From the coefficients in Table 10, it is clear that increasing £ from 0.0001/s to 0.001/s and 
reducing T from 300 °C to 230 °C had the same beneficial effect on fatigue life. In the range 
of parameters studied here, the effect of Rt was ca. 40% stronger than that of the other two 
parameters.

In Table 11, the fatigue lives for polished specimens (Rn = -1) are calculated for 
different settings of Tn and £n. The first row corresponds to the conditions in the high Fen 
programme. In the second and third row, the fatigue lives for the two means of reducing 
the Fen are calculated. As expected, reducing Tn and increasing én yield virtually the same 
predicted N25. The ratio between the predicted N25 values at low and high Fen conditions 
is 1.5. This is reasonably close to the ratio of the high and low Fen values (1.7).

Table 11. Fatigue lives calculated with the model in Table 10.

Rf £f T f N25

-1 -1 1 5131
-1 -1 -1 7794
-1 1 1 7728

Other algorithms led to models that also included the statistically significant inter­
actions Rn*é and Rn*Tn. In these models, the coefficient for Rn*é was negative, and the 
coefficient for Rn*Tn was positive. That would mean that in the parameter range studied 
here, the fatigue life of polished specimens would be more sensitive to the variations 
of positive strain rate and temperature than the fatigue life of specimens with a ground 
surface finish. However, the error bars of the more complex models overlap with the error 
bars of the simpler model in Table 10 so that from an application point of view, there is no 
practical difference between the models, and the simpler one can be used.
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3.3. Sub-Programme on Hold Times
A series of tests that included hold times was performed in Phases I and II of the 

INCEFA-PLUS test programme (Section 3.1). The tests on hold time effects in Phases I 
and II were carried out in strain-control at the strain ranges 0.6% and 1.2% (Table 2). The 
hold periods were introduced at the position in the cycles where the mean strain (0% or
0.5%) was reached with a positive strain rate. Holds of 72 h were introduced in three 
cycles per tests; the cycles with holds depended on the test conditions. For tests in air, 
holds were added at 6000 cycle intervals starting from the 6000th cycle for strain range 
0.3% and 1000 cycle intervals starting from the 1000th cycle for 0.6%. Preliminary analysis 
including Phase II tests ([40,42], confirmed in Section 3.1.3) suggested that there was no 
observable effect of hold times for the tested conditions, although beneficial effects of hold 
time on fatigue life have been reported by the AdFaM (Advanced Fatigue Methodologies) 
project [13].

Therefore, hold times were removed from Phase III testing, and in parallel, a sub­
programme on hold time effects was initiated where the test conditions were more closely 
aligned to those used in the AdFaM study [13].

3.3.1. Data from Hold Time Testing
According to [13], hold time effects were most prominent at low strain amplitude and 

with holds at zero stress at elevated temperature. To increase the chances of observing 
a hold time effect, the strain range in the sub-programme on hold time effects therefore 
was reduced to 0.4%. Furthermore, holds were performed under zero load rather than in 
strain control (in some cases, at non-zero mean strain) as in the main program. The holds 
consisted of three 72 h holds at 350 ° C at 10,000 cycle intervals starting from the 10,000th 
cycle. The temperature during hold times was increased from 300 °C to 350 °C. Cycling 
was carried out at room temperature or at 300 °C. All tests were performed in air on the 
common batch XY182 of 304L [43].

Figure 9 shows the evolution of the maximum stress per cycle during the test.

Figure 9. Maximum stress as a function of cycle; all tests were carried out at a strain range of 0.4%. 
The tests "EDF AIR 2" and "LEI-21" are the only tests that did not have holds.

Three of the seven tests (specimens "EDF AIR 2", "LEI-19" and "LEI-22") were carried 
out at 300 °C, whereas the other four were performed at room temperature. The tests with 
the specimens "EDF AIR 2" and "LEI-21" were the only ones without holds.

3.3.2. Discussion of Hold Time Data
The reducing effect of the increased temperature on the stress level and fatigue life 

is obvious from Figure 9. The hardening effect of the hold periods is visible from the
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peaks in the maximum stress at 10,000,20,000 and 30,000 cycles. The curves for the tests 
at 300 ° C showed a primary hardening followed by softening and secondary hardening 
before failure occurred around Cycle 100000. The maximum cyclic stresses of the three tests 
evolved in very similar manner—especially given that they were tested in two different 
laboratories (LEI and EDF). The hold times led to hardening, but there was no long lasting 
effect in either stress level or fatigue life.

The situation for the tests at room temperature was different: until the first hold at 
Cycle 10000, the stress curves evolved in parallel even if there were some differences in 
absolute stress values. The first hold (at 350 °C at zero stress) then hardened the material, 
similar to what was observed for the tests cycled at 300 °C. However, the stress increase 
was much higher and decayed more slowly when cycling restarted. Furthermore, for the 
remainder of the tests, the three tests with holds reached higher stress levels compared to 
the reference test ("LEI-21") than they had before the holds. The second and third hold 
times seemed to have less effect. The increased stress, however, did not seem to have an 
impact on fatigue life. In particular, no extension of fatigue life as reported in [13] was 
evident (two of the three tests with holds were actually shorter than the reference test 
without holds). The reason for that discrepancy with the AdFaM results remains unclear; 
it might be that the number of hold periods played a role. In the tests reported in [13], 
hold periods were applied throughout the test, so depending on the conditions, there were 
many more than just three hold periods in a test.

4. Conclusions
A major test programme on strain controlled fatigue in air and LWR conditions was 

carried out. The main programme with Fen= 4.57 investigated the effects of strain range, 
mean strain, hold time, surface roughness and environment on the fatigue life of austenitic 
steels. The test matrix was optimized by the design of experiments methodology. A linear 
model taking into account possible interactions was determined. No influences of hold time 
and mean strain were identified. The test data could be described by a model including 
only the main factors strain rate, environment and surface roughness. The interaction 
effects of strain range with the environment, as well as surface roughness were found to be 
statistically significant, but of limited practical relevance.

In a sub-programme at a lower Fen = 2.68, the influences of temperature, positive 
strain rate, as well as surface roughness were studied. Because of the limited number of 
tests, not all possible interactions could be addressed. No firm evidence for an interaction 
of surface roughness with either temperature or strain rate was detected. In the parameter 
range investigated, the effect of surface roughness was slightly larger than the effects 
of temperature and strain rate. As predicted by NUREG CR-6909, the reduction of the 
temperature from 300 ° C to 230 ° C in the LWR environment was found to have the same 
effect on fatigue life compared to Fen = 4.57 as the increase of the positive strain rate from 
0.0001/s to 0.001/s.

Finally, a limited number of tests in air with holds at elevated temperature under no 
stress conditions did not find evidence for beneficial effects of hold times on fatigue life 
like those found in another study. The reason might be the difference in the number of 
hold time periods.
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Bayesian information criterion
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categorical variable for environment; either "air" or "LWR"
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strain range: difference between the maximum and minimum strain during a test
normalized strain range
strain rate
normalized strain rate
strain rate parameter defined in CR-6909 [4]
mean strain: strain level in the middle between the maximum and
minimum strain in a strain controlled test
normalized mean strain
environmental factor
intercept in model
natural log of the likelihood function
fatigue life, 25% force drop compared to stabilized linear behaviour 
fatigue life
fatigue life in air at room temperature 
fatigue life in LWR environment 
fatigue life, X% force drop
dissolved oxygen parameter defined in CR-6909 [4]
correlation between two variables Xj and xj
average surface roughness as defined in ISO 4287 [30]
maximum roughness height as defined in ISO 4287 [30]
normalized surface roughness Rt
electric conductivity
categorical variable for hold time
normalized hold time
temperature
normalized temperature
temperature parameter defined in CR-6909 [4]
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Appendix A

Algorithms A1 Matlab Function for Model (a)

function N25 = model_a(epsn,Rtn,En)
% MODEL_A
% This function calculates the fatigue life according to the model (a) in Table 6 
% The entries are the normalized values of strain range, surface 
% roughness and environment as in Table 5.

% The coefficients according to Table 6 (a)
% main effects and sigma 
I = 9.1695785; 
epsn_coeff = -0.90106; 
switch En 

case - 1
En_coeff = 0; 

case 1
En_coeff = -1.637142;

end
Rtn_coeff = -0.199527; 
sigma = 0.2849506;

% coefficients and offsets for the interaction terms 
% interaction between epsn and En 
switch En 

case - 1
epsn_x_En_coeff = 0; 

case 1
epsn_x_En_coeff = 0.144387;

end
epsn_offset1 = -0.06958;
% interaction between epsn and Rtn 
epsn_x_Rtn_coeff = 0.0953654; 
epsn_offset2 = -0.06958;
Rtn_offset = 0.51401;

N25 = exp(I + epsn_coeff*epsn + En_coeff*En + Rtn_coeff*Rtn +... 
epsn_x_En_coeff*(epsn + epsn_offset1)*En +... 
epsn_x_Rtn_coeff*(epsn + epsn_offset2)*(Rtn + Rtn_offset) +... 
sigma~2/2);

end
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