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Abstract

First-order logic models of security for cryptographic protocols, based on vari-
ants of the Dolev-Yao model, are now well-established tools. Given that we have
checked a given security protocol π using a given first-order prover, how hard is it
to extract a formally checkable proof of it, as required in, e.g., common criteria at
the highest evaluation level (EAL7)? We demonstrate that this is surprisingly hard
in the general case: the problem is non-recursive. Nonetheless, we show that we
can instead extract finite modelsM from a set S of clauses representing π, auto-
matically, and give two ways of doing so. We then define a model-checker testing
M |= S, and show how we can instrument it to output a formally checkable proof,
e.g., in Coq. Experience on a number of protocols shows that this is practical, and
that even complex (secure) protocols modulo equational theories have small finite
models, making our approach suitable.

Keywords: Dolev-Yao model, formal security proof, finite model, tree automaton,
H1, inductionless induction.

1 Introduction
So far, automated verification of cryptographic protocols in models in the style of Dolev
and Yao [36] has been considered under a variety of angles: (un)decidability results
[37, 49], practical decision procedures [65, 84, 6], extension to security properties other
than secrecy and authentication (e.g., [20]), to protocols requiring equational theories,
to soundness with respect to computational models (e.g., [56] for the latter two points),
in particular.

We consider yet another angle: producing formally checkable proofs of security,
automatically. There is indeed a more and more pressing need from the industrial com-
munity, as well as from national defense authorities, to get not just Boolean answers
∗Partially supported by project PFC (“plateforme de confiance”), pôle de compétitivité System@tic Paris-
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(secure/possibly insecure), but also formal proofs, which could be checked by one of
the established tools, e.g., Isabelle [70] or Coq [12]. This is required in Common
Criteria certification of computer products at the highest assurance level, EAL 7 [50],
a requirement that is becoming more and more common for security products. For
example, the PFC initiative (“trusted platform”) of the French pôle de compétitivité
System@tic will include a formal security model and formal proofs for its trusted
Linux-based PC platforms. Producing formal proofs for tools such as Isabelle or Coq
is also interesting because of their small trusted base, and defense agencies such as the
French DGA would appreciate being able to extract formal Coq proofs from Blanchet’s
ProVerif tool [15].

It is certainly the case that hand-crafted formal proofs (e.g., [17, 71]) provide such
formally checkable certificates. Isabelle’s high degree of automation helps in this re-
spect, but can we hope for full automation as in ProVerif, and having formal proofs as
well? It is the purpose of this paper to give one possible answer to that question.

One note of caution: We shall concentrate on the core of the problem, which, as we
shall see, is related to a model-checking problem on sets of Horn clauses representing
the protocol, the security assumptions, the intruder model, and the security properties
to be proved. We consider such Horn clauses to be a sufficient, albeit rather low-level,
specification language for security protocols in this paper. It is more comfortable to
specify protocols and properties in higher-level languages such as ProVerif’s calculus.
To extend our work to such calculi, we would need not only a translation from the cal-
culus to Horn clause sets (e.g., ProVerif already relies on one), but also a way of lifting
proofs of security in the Horn clause model back to proofs of security on protocols ex-
pressed in the calculus. While we don’t expect this latter to be difficult per se, we won’t
consider the question in this paper. As a matter of fact, all the sets of Horn clauses that
we shall give as examples were produced by hand. We hope however that our way of
specifying security protocols, assumptions, properties and the intruder model as Horn
clauses will be clear enough. This will be explained at length in Section 3 and later.

1.1 Outline
We explore related work in Section 2, then describe our security model, à la Dolev-Yao,
in Section 3. We really start in Section 4, where we show that our problem reduces to a
form of model-checking, which is unfortunately undecidable in general. To solve this,
we turn to finite models, expanding on Selinger’s pioneering idea [77]. We observe
that, although representing finite models explicitly is usually practical, it is sometimes
cumbersome, and that such models are sometimes hard to find. Surprisingly, larger,
finite models in the form of alternating tree automata are sometimes easier to find: we
examine such models in Section 6. We then show how we can model-check clause sets
against both kinds of models in Section 7. Finally, we argue that the approach is equally
applicable to some security protocols that require equational theories in Section 8, and
we conclude in Section 9. Our claims are supported by several practical case studies.
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2 Related Work
Many frameworks and techniques have been proposed to verify security protocols in
models inspired from Dolev and Yao [36]. It would be too long to cite them all. How-
ever, whether they are based on first-order proving [84, 27, 15], tree automata [65], set
constraints [6], typing [1], or process algebra [4, 3], one may fairly say that most of
these frameworks embed into first-order logic. It is well-known that tree automata are
subsumed by set constraints, and that set constraints correspond to specific decidable
classes of first-order logic. This was first observed by Bachmair, Ganzinger, and Wald-
mann [9]. Some modern typing systems for secrecy are equivalent to a first-order logic
presentation [2], while safety properties of cryptographic protocols (weak secrecy, au-
thentication) presented as processes in a process algebra are naturally translated to
first-order logic [2], or even to decidable classes of first-order logic such asH1 [68].

In all cases, the fragments of first-order logic we need can be presented as sets
of Horn clauses. Fix a first-order signature, which we shall leave implicit. Terms
are denoted s, t, u, v, . . . , predicate symbols P , Q, . . . , variables X , Y , Z, . . . We
assume there are finitely many predicate symbols. Horn clauses C are of the form
H ⇐ B where the head H is either an atom or ⊥, and the body B is a finite set
A1, . . . , An of atoms. If B is empty (n = 0), then C = H is a fact. For simplic-
ity, we assume that all predicate symbols are unary, so that all atoms can be writ-
ten P (t). This is innocuous, as k-ary relations P (t1, . . . , tk) can be faithfully en-
coded as P (c(t1, . . . , tk)) for some k-ary function symbol c; we shall occasionally
take the liberty of using some k-ary predicates, for convenience. We assume basic
familiarity with notions of free variables, substitutions σ, unification, models, Her-
brand models, satisfiability and first-order resolution [8]. It is well-known that sat-
isfiability of first-order formulae, and even of sets of Horn clauses, is undecidable.
We shall also use the fact that any satisfiable set S of Horn clauses has a least Her-
brand model. This can be defined as the least fixpoint lfpTS of the monotone operator
TS(I) = {Aσ | A ⇐ A1, . . . , An ∈ S,Aσ ground, A1σ ∈ I, . . . , Anσ ∈ I}. If
⊥ ∈ lfpTS , then S is unsatisfiable. Otherwise, S is satisfiable, and lfpTS is a set of
ground atoms, which happens to be the least Herbrand model of S.

We shall concentrate on reachability properties (i.e., weak secrecy) in this paper,
without equational theories for the most part. While this may seem unambitious, re-
member that our goal is not to verify cryptographic protocols but to extract formally
checkable proofs automatically, and one of our points is that this is substantially harder
than mere verification. We shall deal with equational theories in Section 8, and claim
that producing formally checkable proofs is not much harder than in the non-equational
case. We will not deal with strong secrecy, although this reduces to reachability, up to
some abstraction [16]. Weak and strong secrecy are, in fact, close notions under rea-
sonable assumptions [31].

We also concentrate on security proofs in logical models, derived from the Dolev-
Yao model [36]. Proofs in computational models would probably be more relevant.
E.g., naive Dolev-Yao models may be computationally unsound [64]. However, some
recent results show that symbolic (Dolev-Yao) security implies computational security
in a number of frameworks, usually provided there are no key cycles at least, and
modulo properly chosen equational theories on the symbolic side. See e.g. [51], or
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[79]. The latter is a rare example of a framework for developing formal proofs (e.g., in
Coq or Isabelle) of computational soundness theorems. The search for such theorems
is hardly automated for now; yet, we consider this to be out of the scope of this paper,
and concentrate on Dolev-Yao-like models.

The starting point of this paper is Selinger’s fine paper “Models for an Adversary-
Centric Protocol Logic” [77]. Selinger observes that security proofs (in first-order
formulations of weak secrecy in Dolev-Yao-like models) are models, in the sense of
first-order logic. To be a bit more precise, a protocol π encoded as a set of first-order
Horn clauses S is secure if and only if S is consistent, i.e., there is no proof of false ⊥
from S. One may say this in a provocative way [41] by stating that a proof of security
for π is the absence of a proof for (the negation of) S. Extracting a formal Coq proof
from such an absence may then seem tricky. However, first-order logic is complete, so
if S is consistent, it must be satisfiable, that is, it must have a model. Selinger then
observed that you could prove π secure by exhibiting a model for S, and demonstrated
this by building a small, finite model (5 elements) for the Needham-Schroeder-Lowe
public-key protocol [66, 59]. We shall demonstrate through several case studies that
even complex protocols requiring rather elaborate equational theories can be proved
secure using finite models with only few elements. However, we shall observe that
even such models may be rather large, and harder than expected to check.

The idea of proving properties by showing the consistency of a given formula F , i.e,
showing that ¬F has no proof, is known as proof by consistency [53], or inductionless
induction [58, 24]. Note that the formal Coq proofs we shall extract from models of
S, using our tool h1mc, are proofs of security for π that work by (explicit) induction
over term structure. The relationship between inductionless and explicit induction was
elicited by Comon and Nieuwenhuis [26], in the case of first-order logic with equality
and induction along the recursive path ordering.

We shall use two approaches to extracting a formal proof of security from a finite
model. The first one is based on explicit enumeration. The second is an approach based
on model-checking certain classes of first-order formulae F against certain classes of
finite models M, i.e., on testing whether M |= F . There is an extensive body of
literature pertaining to this topic, see e.g. the survey by Dawar [32]. One particular
(easy) result we shall recall is that model-checking first-order formulae against finite
models, even of size 2, is PSPACE-complete. Many results in this domain have
focused on fixed-parameter tractability, and to be specific, on whether model-checking
was hard with respect to the size of the model, given a fixed formula as parameter.
Even then, the parametrized model-checking problem is AW[∗]-complete, and already
W[k]-hard for Πk formulae. This will be of almost no concern to us, as our formulae
F will grow in general faster than our models.

Since our presentation at CSF’08 [43], we learned that Matzinger [62] had already
designed, in 1997, what is essentially our model-checking algorithm of Section 7, re-
stricted to non-alternating automata, with an explicitly defined strategy for rule appli-
cation, a different presentation, none of the optimizations that are in fact required in
practice, and no report of an implementation.

None of the works cited above addresses the question of extracting a model from
a failed proof attempt. Tammet worked on this for resolution proofs [81]. The next
step, producing formally checked, inductive proofs from models, seems new. In one
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of our approaches, finite models will be presented in the form of tree automata, and
formally checking models in this case essentially amounts to producing formal proofs
of computations on tree automata. This was pioneered by Rival and the author [74];
the procedure of Section 7 is several orders of magnitude more efficient.

3 A Simple Protocol Model, à la Dolev-Yao
Our first-order model for protocols is close to Blanchet’s [14], to Selinger’s [77], and
to a number of other works. While the actual model is not of paramount importance
for now, we need one to illustrate our ideas. Also, models in the style presented here
will behave nicely in later sections.

Blanchet uses a single predicate att, so that att(M) if and only if M is known
to the Dolev-Yao attacker. We shall instead use a family of predicates atti, where
i is a phase, to be able to model key and nonce corruption (more below). The facts
that the Dolev-Yao attacker can encrypt, decrypt, build lists, read off any element from
a list, compute successors and predecessors are axiomatized by the Horn clauses of
Figure 1. We take the usual Prolog convention that identifiers starting with capital
letters such as M , K, A, B, X , are variables, while uncapitalized identifiers such as
sym, crypt, att are constants, function or predicate symbols. We let crypt(M,K)
denote the result of symmetric or asymmetric encrypting M with key K, and write
it {M}K for convenience. The key k(sym, X) is the symmetric key used in session
X; the term sessioni(A,B,Na) will denote any session between principals A and B
sharing the nonceNa, while in phase i; we shall also use k(sym, [A,S]) to denote long-
term symmetric keys between agents A and S. The key k(pub, X) denotes agent X’s
long-term public key, while k(prv, X) is X’s private key. Lists are built using nil and
cons; we use the ML notation M1 :: M2 for cons(M1,M2), and [M1,M2, . . . ,Mn]
for M1 :: M2 :: . . . :: Mn :: nil. We use suc to denote the successor function
λn ∈ N · n + 1, as used in our running example, the Needham-Schroeder symmetric
key protocol [66].

atti({M}K)⇐ atti(M), atti(K) (1)

atti(M)⇐ atti({M}k(pub,X)), atti(k(prv, X)) (2)

atti(M)⇐ atti({M}k(prv,X)), atti(k(pub, X)) (3)

atti(M)⇐ atti({M}k(sym,X)), atti(k(sym, X)) (4)

atti(nil) (5)

atti(M1 :: M2)⇐ atti(M1), atti(M2) (6)

atti(M1)⇐ atti(M1 :: M2) (7)

atti(M2)⇐ atti(M1 :: M2) (8)

atti(suc(M))⇐ atti(M) (9)

atti(M)⇐ atti(suc(M)) (10)

Figure 1: Intruder capabilities
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This protocol, whose purpose is to establish a fresh, secret session keyKab between
two agents, Alice (A) and Bob (B), using a trusted third party (S), is shown in Figure 2.
It has the convenient property that there is a well-known attack against it, so that the
key Kab that Bob will end up having is possibly known to the attacker, while the keys
Kab that S sent and that Alice received will remain secret. Note that all three keys Kab

may be different.

1. A −→ S : A,B,Na
2. S −→ A : {Na, B,Kab, {Kab, A}Kbs

}Kas

3. A −→ B : {Kab, A}Kbs

4. B −→ A : {Nb}Kab

5. A −→ B : {Nb + 1}Kab

Figure 2: The Needham-Schroeder symmetric-key protocol

The protocol itself is modeled in a simple way, originally inspired from strand
spaces [82], and similarly to Blanchet [14]. Each agent’s role is modeled as a sequence
of (receive, send) pairs. Given any such pair (M1,M2), we add a Horn clause of the
form atti(M2) ⇐ atti(M1). This denotes the fact that the attacker may use the
agent’s role to his profit by sending a message M1 of a form that the agent will accept,
and learning M2 from the agent’s response. Accordingly, the protocol rules for the
Needham-Schroeder symmetric key protocol are shown in Figure 3. We use Blanchet’s
trick of abstracting nonces by function symbols applied to the free parameters of the
session, so that nai(A,B) denotes Na, depending on the identities A and B of Alice
and Bob respectively and the phase i, and nbi(Kab, A,B) denotes Nb, depending on
the phase i, the received key Kab, and identities A and B (all three being variables,
by our convention). In clause (15), representing the fact that Alice receives {Nb}Kab

(message 4 of Figure 2) to send {Nb+1}Kab
(message 5), we use an auxiliary predicate

alice keyi to recover Alice’s version of Kab, received in message 2. We also define
a predicate bob keyi in (17) to recover Bob’s version of Kab after message 5.

atti([A,B, nai(A,B)])⇐ agent(A), agent(B) (11)

atti({[Na, B, kab, {[kab, A]}kbs}kas))⇐ atti([A,B,Na]) (12)

where kab = k(sym, sessioni(A,B,Na),

kbs = k(sym, [B, s]), kas = k(sym, [A, s])

atti(M)⇐ atti({[nai(A,B), B,Kab,M ]}k(sym,[A,s])) (13)

atti({nbi(Kab, A,B)}Kab)⇐ atti({[Kab, A]}k(sym,[B,s]) (14)

atti({suc(Nb)}Kab)⇐ atti({Nb}Kab), alice keyi(A,Kab) (15)

alice keyi(A,Kab)⇐ atti({[nai(A,B), B,Kab,M ]}k(sym,[A,s])) (16)

bob keyi(B,Kab)⇐ atti({nbi(Kab, A,B)}Kab) (17)

Figure 3: Protocol rules
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agent(a) agent(b) agent(i) agent(s)

Figure 4: Agents

The fact that variables such asA,B are used throughout for agent identities, instead
of actual agent identities (for which we reserve the constants a, b, s, and i for the
attacker), is due to the fact that we wish to model unboundedly many sessions of the
protocol in parallel. E.g., (11) states that any pair of agents A, B may initiate the
protocol and emit message 1 of Figure 2. We assume that the only possible agents are
Alice (a), Bob (b), the trusted third-party (s), and the Dolev-Yao attacker i. Since we
only deal with secrecy, considering this many agents is sufficient [27].

This way of modeling protocols has been standard at least since Blanchet’s seminal
work [14]. One should however note that this is only a safe approximation of the
protocol, not an exact description as in [27] for example. In particular, our encoding
forgets about the relative orderings of messages. In particular, if the intruder sends
some message M to A, then A uses M to compute another message M ′ to B, then
our model will make atti(M ′) true. This means that M ′ will be known to the intruder
forever, so that replay attacks are accounted for. This can also be taken to mean, as a
much stranger consequence, that we estimate that the intruder will have known M ′ all
the time in the past as well, including at the times it was preparing the first messageM .
Closer inspection reveals that what we are really modeling here is the fact that several
sessions of the same protocol can run in parallel, asynchronously: the intruder sends
M to A in the first session, A sends back M ′ to B in the first session, then the intruder
uses this M ′ to compute another message M1 sent to A, who starts a second session
and sends M ′1 to B, and so on. For further discussion on the implications of this way
of modeling protocols, see Blanchet’s paper, cited above [14]. Blanchet also discusses
why this is a safe approximation (Section 2.5), i.e., is there is any attack at all, then
there will be a proof of ⊥ from our clause set.

This approximation is precise enough in most cases. Some cases where it is not
include protocols with timestamps (see Section 5), protocols that combine two sub-
protocols, one where long-term keys are established, and a second one where these are
used to exchange short-term keys, and finally protocols where we assume that some
secrets can be corrupted over time. We model all three situations by distinguishing two
phases i = 1, 2. More are possible. The phase i labels the att predicate, i.e., we have
two predicates att1 and att2 instead of just one predicate attacker as in [14].

Let us deal with the case of secret corruption. Intuitively, phase 1 represents ses-
sions that are old enough that the old session keys k(sym, session1(A,B,Na)) may
have been guessed or discovered by the intruder. This is (again) a conservative approx-
imation: we estimate that all old secrets (in phase 1) are compromised, although only
some or even none of them may have been actually compromised. On the other hand,
no secret in phase 2 is compromised—unless the protocol itself leaks them. To model
phases, we only need a few more clauses, shown in Figure 5: (18) states that the in-
truder has memory, and remembers all old messages from phase 1 in phase 2, while the
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att2(M)⇐ att1(M) (18)

att2(k(sym, session1(A,B,Na))) (19)

att2(k(sym, na1(A,B))) (20)

att2(k(sym, nb1(Kab, A,B))) (21)

Figure 5: Phases

atti(X)⇐ agent(X)

atti(k(pub, X)) atti(k(prv, i))

Figure 6: The attacker’s initial knowledge

other clauses state that all old session keys, as well as all old nonces, are compromised.
This is similar, e.g., to Paulson’s Oops moves [71].

Figure 6 lists our security assumptions, i.e., what we estimate the attacker might
know initially: all agent identities are known, as well as all public keys k(pub, X), and
the attacker’s own private key k(prv, i)—whatever the phase. Note that talking about
public and private keys in this protocol, which only uses symmetric keys, is overkill.
We include them to illustrate the fact that the model is not limited to symmetric key
encryption, and public-key protocols would be encoded just as easily.

Finally, Figure 7 lists our security goals, or rather their negated forms. Note that
we are only concerned with the security of phase 2 data, since phase 1 is compromised
by nature. Negation comes from the fact that a formula G is a consequence of a set S
of clauses such as those listed above if and only if S,¬G is inconsistent. E.g., (22) is
the negation of ∃Na · att2(k(sym, session2(a, b, Na))), and corresponds to asking
whether the secret key Kas, as generated by the trusted third-party in current sessions,
can be inferred by the attacker. (23) asks whether there is a keyKab that would be both
known to the attacker, and is plausibly accepted by Alice (a) as its new symmetric key;
we again use the auxiliary predicate alice key2. Finally, (24) asks whether there is
a key Kab as could be used in the final check of the protocol by Bob (message 5 of
Figure 2), and that would be, in fact, compromised.

⊥⇐ att2(k(sym, session2(a, b, Na))) (22)

⊥⇐ att2(Kab), alice key2(a,Kab) (23)

⊥⇐ att2(Kab), bob key2(b,Kab) (24)

Figure 7: (Negated) security goals

Call, somewhat abusively, the protocol π the collection comprised of the crypto-
graphic protocol itself, the (Dolev-Yao) security model, the security assumptions and
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the security goals. Let Sπ be the corresponding clause set. The clause set SNS denoting
the symmetric-key Needham-Schroeder protocol NS is then the union of the clauses in
Figure 1 (i = 1, 2), Figure 3 (i = 1, 2), Figure 6 (i = 1, 2), Figure 4, Figure 5, and
Figure 7.

Unsurprisingly, running a first-order prover against SNS reveals a possible attack
against Bob. E.g., SPASS v2.0 [86] finds that the above set of clauses is inconsistent,
with a small resolution proof, where only 309 clauses were derived, in 0.07 seconds
on a 2.4 GHz Intel Centrino Duo class machine. Examining the proof reveals that the
attack is actual. This is the well-known attack where the attacker uses an old message 3
from a previous session (for which Kab is now known), and replays it to Bob. The at-
tacker can then decrypt message 4, since he knowsKab, and Bob will accept message 5
as confirmation.

Removing the failing security goal (24) produces a consistent set of clauses SsafeNS :
so there is no attack on the other two security goals. This seems to be out of reach
for SPASS (at least without any specific option): after 10 minutes already, SPASS
is lost considering terms with 233 nested applications of the successor function suc;
we decided to stop SPASS after 4h 10 min, where this number had increased to 817.
However, our own tool h1, from the h1 tool suite [40], shows both that there is a
plausible attack against Bob and definitely no attack against Alice or the trusted third-
party, in 0.68 s; h1 works by first applying a canonical abstraction to the given clause
set S [42, Proposition 3], producing an approximation S′ in the decidable class H1

[68, 84]; then h1 decides S′ by the terminating resolution algorithm of [42]. We refer
to this paper for details. We shall return to this approach in Section 6.

4 Undecidability
An intuitive idea to reach our goal, i.e., producing formal proofs from a security
proof discovered by a tool such as ProVerif, SPASS or h1, is to instrument it so
as to return a trace of its proof activity, which we could then convert to a formal
proof. However, this cannot be done. As illustrated on SsafeNS , the protocol, with-
out the security goal (24), is secure because we cannot derive any fact of the form
att2(k(sym, session2(a, b, na))) for any term na, and there is no term kab such
that both att2(kab) and alice key2(a, kab) would be derivable. In short, security
is demonstrated through the absence of a proof.

It would certainly be pointless to instrument ProVerif, SPASS or h1 so as to doc-
ument everything it didn’t do. However, these tools all work by saturating the input
clause set S representing the protocol π to get a final clause set S∞, using some form
of the resolution rule, and up to specific redundancy elimination rules. To produce a
formally checkable security proof of the protocol π—in case no contradiction is de-
rived from S—, what we can therefore safely assume is: (A) S∞ is consistent, (B) S∞
is entailed by S, and (C) S∞ is saturated up to redundancy (see [8]).

Bruno Blanchet kindly reminded me that point (C) could in principle be used to pro-
duce a formal proof that π is secure. We have to: (a) prove formally that the saturation
procedure is complete, in the sense that whenever S∞ is saturated up to redundancy,
and every clause in S is redundant relative to S∞, then S is consistent; and: (b) pro-
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duce a formal proof that S∞ is indeed saturated up to redundancy. Task (b) is complex,
and complexity increases with the sophistication of the saturation strategy; realize that
even the mundane task of showing, in Isabelle or Coq, that two given literals do not
unify requires some effort. Moreover, S∞ is in general rather large, and task (b) will
likely produce long proofs. Task (a) is rather formidable in itself. However, a gifted
and dedicated researcher might be able achieve as much, as suggested to me by Cédric
Fournet, while the effort in achieving (b) is likely to be comparable to the one we put
into our tool h1mc (Section 7).

We believe that the most serious drawback of this approach is in fact non-maintain-
ability: (a) and (b) have to be redone for each different saturation procedure, i.e., for
different tools, or when these tools evolve to include new redundancy elimination rules
or variants of the original resolution rule.

This prompts us to use only points (A) and (B) above, not (C). Fortunately, and this
is one of the points that Selinger makes [77], a clause set is consistent if and only if
it has a model. We may therefore look for models of S as witnesses of security for π.
While Selinger proposes this approach to check whether π is secure, it can certainly be
used to fulfill our purpose: assume that we know that S is consistent, typically because
ProVerif, SPASS or h1, has terminated on a clause set S∞ that is saturated under some
complete set of logical rules (forms of resolution in the cited provers) and which does
not contain the empty clause ⊥; then our tasks reduces to answering two questions:
(1) how can we extract a model from a saturated set of clauses S∞ not containing ⊥?
(2) given a modelM that acts as a certificate of satisfiability, hence as a certificate of
security for π, how do we convertM to a formal Coq proof?

Question (2) is not too hard, at least in principle: produce a proof thatM satisfies
each clause C in S, by simply enumerating all possible values of each free variable in
C, and checking that this always yields “true”. For larger models, we shall see that
we can instead build a model-checking algorithm to check whetherM satisfies S (in
notation, M |= S), and keep a trace of the computation of the model-checker. Then
we convert this trace into a formal proof. We shall see how to do this in Section 7.

Question (1) is easy, but ill-posed, because we did not impose any restriction on
the format the model should assume. (Note that we don’t know whetherM is finite,
in particular in the cases of SPASS and ProVerif.) The answer is that S∞ is itself a
perfectly valid description of a model, namely the unique least Herbrand model lfpTS∞
of S∞ (I owe this simple remark to Andreas Podelski, personal communication, 1999).
What this model lacks, at least, is being effective: there is in general no way of testing
whether a given ground atom A holds or not in this model. In our case, the important
result is the following, which shows that we cannot in general even test whetherM |=
S, whereM = lfpTS∞ , contradicting our goal (2).

Proposition 4.1 The following problem is undecidable: Given a satisfiable set of first-
order Horn clauses S∞, and a set of first-order Horn clauses S, check whether the
least Herbrand model of S∞ satisfies S. This holds even if S contains just one ground
unit clause, and S∞ contains only three clauses.

Proof. By [34], the satisfiability problem for clause sets S1 consisting of just three
clauses p(fact), p(left) ⇐ p(right), and ⊥ ⇐ p(goal) is undecidable. Take S∞ to
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consist of the clauses p(fact), p(left)⇐ p(right), and q(∗)⇐ p(goal), where q is a
fresh predicate symbol and ∗ a fresh constant. Take S to contain just the clause q(∗).

Note that S∞, as a set of definite clauses, is satisfiable. We claim that S1 is unsat-
isfiable if and only if lfpTS∞ satisfies S. If S1 is unsatisfiable, then ⊥ ∈ lfpTS1

=
TS1

(lfpTS1
). By definition of TS1

, and since ⊥ ⇐ p(goal) is the only clause of
S1 with head ⊥, there is a ground instance p(goal σ) in lfpTS1 . Now lfpTS1 =⋃
n∈N T

n
S1

(∅), since the TS1 operator is Scott-continuous. By an easy induction on n
(which, intuitively, is proof length), every atom of the form p(t) in TnS1

(∅) is in TnS∞(∅).
So p(goal σ) is in lfpTS∞ , whence q(∗) is in the least Herbrand model of S∞, i.e., the
latter satisfies S. Conversely, if lfpTS∞ satisfies S, that is, q(∗), by similar arguments
we show that it must satisfy some instance p(goal σ), which is then in lfpTS1 , so that
S1 is unsatisfiable. �

Despite the similarity, this theorem is not a direct consequence of Marcinkowski and
Pacholski’s result [61], that the Horn clause implication problem C1 |= C2 is undecid-
able. Recall that C1 |= C2 whenever every model of C1 satisfies C2. Indeed, this is
not equivalent to (not entailed by, to be precise) the fact that the least Herbrand model
of C1 satisfies C2.

Replacing the ground unit clause q(∗) of S above by att1(∗) shows that:

Corollary 4.2 The following problem is undecidable: given a satisfiable set of first-
order Horn clauses S∞, check whether lfpTS∞ is a model of a first-order formulation
of a cryptographic protocol π. This holds even if π contains absolutely no message
exchange (i.e., the number of protocol steps is zero), has only one phase, the initial
knowledge of the intruder consists of just one ground message ∗, the Dolev-Yao intruder
has no deduction capability at all (i.e., we don’t include any of the rules of Figure 1),
and the number of security goals is zero.

To mitigate this seemingly devastating result, recall that SPASS and ProVerif use
variants of resolution, and the clause sets S∞ produced by SPASS or ProVerif are sat-
urated up to redundancy. SPASS uses sophisticated forms of ordered resolution with
selection and sorts, while ProVerif uses two restrictions of resolution. “Saturated up
to redundancy” [8] means that every conclusion of the chosen resolution rule with
premises in S∞ is either already in S∞, or redundant with respect to S∞, e.g., sub-
sumed by some clause in S∞. It is well-known that, for all variants of resolution that
can be shown complete by Bachmair and Ganzinger’s forcing technique [8], the mod-
els of a set S∞ that is saturated up to redundancy are exactly the models of the subset
Sprod ⊆ S∞ of all the so-called productive clauses of S∞. In particular, for Horn
clauses, lfpSprod = lfpS∞. For example, the first phase of the ProVerif algorithm
uses a form of resolution with selection, where all literals of the form atti(M) are se-
lected in clause bodies. The effect is that the clauses of Sprod cannot contain any literal
of the form atti(M) in their body. It is then a trivial observation that Proposition 4.1
still holds with S∞ replaced by Sprod (just make p different from atti). However, this
first phase is not a complete procedure in itself. Ordered resolution with selection [8],
as well as the kind of resolution used in SPASS [85] are complete. Using the former
for example, Sprod consists of clauses where no atom is selected in any clause body,
and the head is maximal with respect to the chosen stable, well-founded ordering �.
Even so, this does not help in general:
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Proposition 4.3 Proposition 4.1 and Corollary 4.2 still hold if S∞ is replaced by a set
Sprod of productive clauses, again even of cardinality 3.

Proof. Modify the construction of S∞ slightly, and take it to consist of p(c, fact),
p(f(X), left) ⇐ p(X, right), and q(∗) ⇐ p(X, goal). Let � be defined by q(M) �
p(N) for every terms M and N , and p(M,N) � p(M ′, N ′) if and only if M ′ is
a proper subterm of M . Select no atom in any clause body. Then Sprod = S∞ is
a set of productive clauses. As in Proposition 4.1, S1 is unsatisfiable if and only if
lfpTSprod

|= q(∗). �

5 Explicit, Finite Models
There is a much simpler solution: directly find finite modelsM of the set S of clauses
representing the protocol π. This won’t enable us to verify protocols that are secure
because S is satisfiable, but not finitely satisfiable. But again Selinger’s early experi-
ments [77] suggest that this is perhaps not a problem in practice. To wit, remember that
there is a 5 element model for Selinger’s encoding of the Needham-Schroeder-Lowe
public-key protocol. In fact, our encoding of the 7-message Needham-Schroeder-Lowe
protocol has a 4 element model, found by Koen Claessen’s tool Paradox. As for our
running example, our tool h1 finds a 46 element model for SsafeNS (see Section 3), but
there is also a 4 element model (see below).

There are certainly protocols which could only be shown secure using techniques
requiring infinite models. In particular, this is likely for parametric verification of re-
cursive protocols—where by parametric we mean that verification should conclude for
all values of an integer parameter n, typically the number of participants or the number
of rounds. Solving first-order clause sets representing such protocols was addressed by
Küsters and Truderung [57]. Examples of such protocols are Bull and Otway’s recur-
sive authentication protocol [18], or the IKA protocols [80]. Note however that both
are flawed [76, 73], so that S would in fact be unsatisfiable in each case.

Finding finite models of first-order clause sets is a sport, and is in particular ad-
dressed in the finite model category of the CASC competition at annual CADE confer-
ences. Paradox [21] is one such model-finder, and won the competition in 2003, 2004,
2005, 2006. Paradox v2.3 finds a 4 element model for SsafeNS (see Section 3), in 1.6 s.
Due to the algorithm used by Paradox, this also guarantees that there is no 3 element
model. We have also tested other model finders, such as Mace4 [63] or the experimen-
tal tool Darwin [10]. None returned on any of the examples that we tested them on, in
a time limit of two hours (and sometimes more).

Paradox represents finite models in the obvious way, as tables representing the
semantics of functions, and truth-tables representing predicates. Call these explicitly
presented models. The explicitly presented model found by Paradox on SsafeNS has 4
element !1, !2, 3, and !4. All identities a, b, i, s have value !1; this is also the value of
nil, prv and pub, while the value of sym is !2. The att1 predicate holds of value !1
only, while att2 holds of !1 and !2 only. The table for encryption is shown in Figure 8:
that crypt applied to !2 and !1 yields !2 then means that encrypting a message learned
between phase 1 and phase 2 (with value !2) with a key that was already known in
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crypt !1 !2 !3 !4
!1 !1 !1 !4 !1
!2 !2 !1 !4 !4
!3 !3 !4 !4 !4
!4 !3 !2 !2 !2

Figure 8: crypt, in Paradox’s 4 element model

phase 1 (with value !1) cannot be known in phase 1 but will have been learned by the
time we enter phase 2 (i.e., it has value !2). It is also useful to think of these values as
pairwise disjoint types: messages of type !1 are those known in phase 1, messages of
type !2 are those known in phase 2 but unknown in phase 1. The other values (or types)
are harder to interpret. Both !3 and !4 can be thought as types of messages that will
remain secret even after phase 2. The only difference between them is that encrypting
messages of type !4 with data of type !2 (known in phase 2 but not before) will produce
ciphertexts that are known in phase 2 (of type !2), while messages of type !3 are safer,
in the sense that encrypting them with data of type !2 yield ciphertexts of type !4, which
remain unknown even in phase !2 (but don’t encrypt them twice).

Model-checking clause sets S against such small modelsM, represented as tables,
i.e., checking whether M |= S, is straightforward, and works in polynomial time,
assuming the number of free variables in each clause of S is bounded: let k be the
largest number of free variables in clauses of S, n the number of elements inM, then
for each clause C in S, enumerate the at most nk tuples ρ of values for the variables
of C, then check that C under ρ is true. Call one such step of verification that C holds
under ρ a check. In the example of Section 3, k = 4, there are 50 clauses with at most
5 free variables: a conservative estimate shows that we need at most 50× 45 = 51 200
checks. A precise computation shows that we need 8.40 + 11.41 + 17.42 + 8.43 +
4.44 + 2.45 = 3 908 checks.

However, the assumption that the number of free variables is bounded is important
in the latter paragraph. In general, using the same construction that the one showing
that model-checking first-order formulae against finite models is PSPACE-complete,
we obtain:

Lemma 5.1 Checking whether M |= S, where M is an explicitly presented finite
model and S is a set of Horn clauses, is coNP-complete, even whenM is restricted
to 2-element models and S contains just one positive, unit clause.

Proof. We show that checkingM 6|= S is NP-complete. Membership in NP is easy:
guess an unsatisfied clause C in S and values for its free variables. Conversely, we
show that the problem is NP-hard already whenM is the two-element model {0, 1},
with one predicate true, which holds of 1 but not of 0. We also assume term constants
t (denoting 1), f (denoting 0), and (denoting logical conjunction), or (denoting logical
disjunction), not (denoting negation). We are now ready to reduce SAT: let the input
be a set S0 of propositional clauses on a vector ~A of propositional variables, seen as
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1. A −→ S : A,B
2. S −→ A : {Kb, B}K−1

s

3. A −→ B : {Na, A}Kb

4. B −→ S : B,A
5. S −→ B : {Ka, A}K−1

s

6. B −→ A : {Na, Nb, B}Ka

7. A −→ B : {Nb}Kb

Figure 9: The 7-Message NSL Protocol

a conjunction F ( ~A). Build a first-order term F ∗( ~A), where now the variables in ~A
are seen as term variables, by replacing ands (∧) by and, ors (∨) by or, negations
(¬) by not, and so on, in F ( ~A). Let S consist of the unique positive unit clause
true(not(F ∗( ~A))). ClearlyM |= S if and only if S0 is not satisfiable. �

What this lemma illustrates, and what practice confirms, is that it is not so much
the number k of elements of the model that counts, or even the number of entries in its
tables, but what we called the number of checks needed. Both the number of entries in
the tables and the number of checks can be exponentially large. However, the approach
is, as we shall see, practical.

We have conducted an experiment on several secrecy protocols. Results are to be
found in Figure 10, and we shall comment on the protocols shortly. Most were found in
the Spore library [78]. The only exceptions are EKE and EAP-AKA (see below). The
reader should be aware that the proportion of secrecy protocols that are in fact secure is
small, and, despite our trying to avoid vulnerable protocols, we actually lost some time
experimenting with some other protocols that eventually turned out not to be secure.
(E.g., although the Kao-Chow protocol [52] is well-known to be vulnerable, the Kao
Chow Authentication v.3 protocol is not reported as vulnerable in SPORE; however we
found out that it was subject to an attack.)

The NS row is our example SsafeNS , while the amended NS row is a corrected ver-
sion [67] that satisfies all required security properties. Paradox always finds smallest
possible models, since it looks for models of size k for increasing values of k. On the
other hand, h1 is a resolution prover that decides the classH1, all of whose satisfiable
formulae have finite models; the models extracted are in particular not minimal in any
way. We report figures found by h1 so as to appreciate how even small models in
terms of number of elements (e.g., 57 for the amended NS protocol) are in fact large
in practice (e.g., 188 724 entries—we actually report a number of transitions in a de-
terministic tree automaton describing the model, as explained in Section 6, and this is
a lower bound on the actual number of entries), and require many checks (e.g., more
than one billion).

The NSL7 row is the 7-message version of the Needham-Schroeder-Lowe protocol,
checking that the secrecy of the exchanged messages is preserved, instead of mutual
authentication. See Figure 9. Contrarily to the above protocols, this is an asymmetric
key protocol. The messages 1, 2, 4 and 5, which are usually left out of models of this
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Protocol Paradox h1

Time #elts #entries #checks Time #elts #entries #checks
NS 1.62s 4 824 3 908 0.70s 46 217 312 430 106

amended NS [67] (≥ 30 872s) (≥ 5) – – 1.71s 57 188 724 1.245 109

NSL7 [67, 59] 4.85s 4 2 729 2 208 8.03s over-approximated
Yahalom [72] 3 190s 6 5 480 38 864 4.82s ≥ 57 ≥ 2.46 109

Kerberos [19] 17.87s 5 1 767 5 518 0.94s 57 7 952 84.5 106

X.509 [78] 3 395s 4 142 487 12 670 0.44s ≥ 29 ≥ 228.5 106

EAP-AKA [7] 54.3s 3 2 447 1 457 1.93s 72 22 550 7.74 109

EKE [11] 0.44s 4 3 697 4 632 1.88s 48 16 016 64.5 106

Figure 10: Model sizes

protocol, are meant for A and B to get their peer’s respective public keys Kb and Ka

from the server S. This is a rare example where the standard approximation strategy
of h1 fails (without added tricks), and h1 does not conclude that the protocol is safe;
Paradox finds a 4 element model, showing it is indeed safe.

The Yahalom row is Paulson’s corrected version of the Yahalom protocol [72].
While it is found secure by h1 in 4.8 s, the model found (in implicit form, see Section 6)
is so big that we have been unable to convert it to an explicit representation in 2 GB
of main memory using our determinizer pldet. However, note that h1 did find a
model—it is just too big to print in an explicit form. The same thing happened on the
X.509 row.

The Kerberos row is Burrows, Abadi and Needham’s [19, Section 6] simplified
version (4 messages) of the Kerberos protocol. This is also known as the shared key
Denning-Sacco protocol [33], with Lowe’s modification [60], and is a variant of NS
where nonces are replaced by timestamps. We model timestamps as two constants t1

and t2, where t1 is used by honest agents in phase 1 and t2 in phase 2. In other words,
we use the safe approximation that all old timestamps are equated, all current times-
tamps are equated, but we do draw a distinction between old and current timestamps.
We also add clauses atti(tj) for all i, j ∈ {1, 2}, meaning that all timestamps are
known to the intruder at all times.

The X.509 row is the so-called “BAN modified version of CCITT X.509 (3)”, as
referenced in the SPORE database [78]. Several other versions of the X.509 protocol
are vulnerable. This particular version is a 3-message protocol that uses nonces and
asymmetric cryptography, and no timestamp.

The EAP-AKA row is the extensible authentication protocol (EAP), with authenti-
cation and key agreement (AKA), from the AVISPA repository [7]. This is developed
from the UMTS AKA authentication and key agreement protocol, see Figure 11. This
is meant for a server S and a so-called peer P to agree on a session key for encryption
CK = f3(SK,Ns), and a session key for integrity IK = f4(SK,Ns), where SK
is a long-term secret between S and P , Ns is a nonce generated by S at step 3, and
f3 and f4 are key generation functions. We model SK as k(sym, [S, P ]). The proto-
col also uses request ids and response ids, which we model as constants request id

and respond id, a final signal success, a network address identifier NAI for P ,
modeled as nai(P ), another key generation function f5, two so-called authentication
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1. S −→ P : request id

2. P −→ S : respond id, NAI
3. S −→ P : Ns, AT AUTN

where AT AUTN = ({Sqn}AK , f1(SK,Sqn,Ns))
AK = f5(SK,Ns)

4. P −→ S : AT RES, h(h(NAI, IK,CK), AT RES)
where AT RES = f2(SK,Ns)

5. S −→ P : success

Figure 11: The EAP-AKA Protocol

1. A −→ B : enc(Ka, Pab)
2. B −→ A : enc({R}Ka

, Pab)
3. A −→ B : {Na}R
4. B −→ A : {Na, Nb}R
5. A −→ B : {Nb}R

Figure 12: The EKE protocol

functions f1 and f2, a hash function h, and a sequence number Sqn, which we model
as sessioni(NAI, S, P ) in phase i, thus merging all old sequence numbers, and all
current sequence numbers, keeping old and current sequence numbers distinct. We test
whether P ’s and S’s version of the two keys CK and IK are secret. Secrecy is not
guaranteed for P ’s keys in this model, where several current sessions may have the
same sequence number. However, the keys of S are definitely secret. This is what our
models for EAP-AKA establish.

Finally, the EKE row is an experiment on Bellovin and Merritt’s encrypted key
exchange protocol [11, Section 2.1], see Figure 12. The new ingredients here are as
follows. First, enc and dec denote encryption and decryption through a cipher, i.e.,
we have not only dec(enc(M,K),K) = M but also enc(dec(M,K),K) = M ; the
latter means that every message can be thought of as the result of the encryption of
some message. In particular, the clauses for EKE should be understood modulo an
equational theory, generated by the latter two equations. It is however to precompile
these equations into the remaining clauses, so that only Horn clauses without equations
remain, by computing all superpositions [8] in a preprocessing step. It turns out that
for such an equational theory, this terminates. A similar trick is used by Blanchet in
his tool ProVerif to compile his rules [14]. In message 1, the public key Ka and its
private key K−1

a are generated fresh, and Pab is a shared password between A and B.
R is a fresh nonce in message 2, as is Na in message 3 and Nb in message 4. The final
shared key, which should be secret, is R. We naturally assume that all passwords used
in phase 1 are known to the attacker in phase 2.

Although this protocol may seem short, this is the one that requires the most
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clauses: 124, compared to 46 for X.509, 49 for EAP-AKA or Yahalom, 50 for NS
or NSL7, 51 for Kerberos, and 55 for amended NS. The reason is another peculiarity
of this protocol: we need to model the fact that Pab is a weak secret, i.e., one whose val-
ues we can feasibly enumerate. Modeling resistance against dictionary attacks, as done
by Corin et al. [28], is out of reach of our simple style of models. Instead, we model
the weaker, but in fact adequate enough, property of resistance against time-memory
trade-off attacks. The latter [46] are the most effective form of dictionary attacks. We
model the resistance of a weak secret P to these attacks by checking that there are no
two messages M1, M2 that are testable and such that M2 = enc(M1, P ). A mes-
sage is testable if and only if, intuitively, some part of it (but not necessarily all of it)
is knowable by the intruder. The idea is that time-memory trade-offs will enumerate
all (known) messages M1 and test whether encryption with P yields any recognizable
pattern; or enumerate all knownM2 and test whether decryption with P yields any rec-
ognizable pattern. Intuitively, the difference with general resistance against dictionary
attacks [28] is that we only allow tests onP of the form C[enc(M,P )] or C[dec(M,P )]
for some public context C and some public term M ; in particular, P only occurs once
in these tests.

We model testability through the testablei predicate (in phase i) defined in Fig-
ure 13. Note that any known message is testable, that a pair cons(M1,M2) is testable
if and only if one of M1, M2 is (such a pair is known if and only if both M1 and M2

are). All other clauses model testability using encryption and decryption.
While this is probably the seemingly most complex problem of our set, it is in fact

one of the easiest to solve: see Figure 10.
Note that while h1 returns exact answers in a matter of seconds, except for NSL7

on which it thinks there may be some attacks, Paradox finds models but usually takes
much more time. An extreme example is Yahalom, where the 6 element model is found
in 53 min, or X.509, with 56 min, or amended NS, where we ran out of patience after 8
hours 1/4 (the only thing we know is that the least model contains at least 5 elements
here).

From an explicitly presented finite modelM, as returned by Paradox, it is in easy
to extract a formally checkable proof. In Coq, we declare an inductive type of values
of M, e.g., Inductive M : Set := v1 : M | v2 : M | v3 : M | v4 : M for a
4 element model. Then, define all function and predicate symbols by their semantics.
E.g., crypt (Figure 8) would be described by:

Definition crypt(m : M)(k : M) : M :=
match m, k with
v1, v1⇒ v1 | v1, v2⇒ v1 | v1, v3⇒ v4 | v1, v4⇒ v1
| v2, v1⇒ v2 | v2, v2⇒ v1 | v2, v3⇒ v4 | v2, v4⇒ v4
| v3, v1⇒ v3 | v3, v2⇒ v4 | v3, v3⇒ v4 | v3, v4⇒ v4
| v4, v1⇒ v3 | v4, v2⇒ v2 | v4, v3⇒ v2 | v4, v4⇒ v2
end.

and att2 would be described by:

Definition att2(m : M) : Prop :=
match m with v1⇒ True | v2⇒ True | ⇒ False end.
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testablei(M) ⇐ atti(M)
testablei(cons(M1,M2)) ⇐ testablei(M1)
testablei(cons(M1,M2)) ⇐ testablei(M2)

testablei(suc(M)) ⇐ testablei(M)
testablei(M) ⇐ testablei(suc(M))

Testing by decrypting with a known key:
testablei(crypt(M, k(pub,K))) ⇐ testablei(M), atti(k(prv,K))
testablei(crypt(M, k(prv,K))) ⇐ testablei(M), atti(k(pub,K))
testablei(crypt(M, k(sym,K))) ⇐ testablei(M), atti(k(sym,K))

Testing by encrypting with a known key:
testablei(M) ⇐ testablei(crypt(M,K)), atti(K)

Testing key by decrypting known message:
testablei(k(prv,K)) ⇐ testablei(M), atti(crypt(M, k(pub,K)))
testablei(k(pub,K)) ⇐ testablei(M), atti(crypt(M, k(prv,K)))
testablei(k(sym,K)) ⇐ testablei(M), atti(crypt(M, k(sym,K)))

Testing key by encrypting known message:
testablei(X) ⇐ testablei(crypt(M,X)), atti(M)

Testing by cipher decryption:
testablei(enc(M,K)) ⇐ testablei(M), atti(K)

testablei(M) ⇐ testablei(dec(M,K)), atti(K)
Testing by cipher encryption:

testablei(M) ⇐ testablei(enc(M,K)), atti(K)
testablei(dec(M,K)) ⇐ testablei(M), atti(K)

Testing key by cipher-encrypting known message:
testablei(X) ⇐ testablei(enc(M,X)), atti(M)
testablei(X) ⇐ testablei(M), atti(dec(M,X))

Testing key by cipher-decrypting known message:
testablei(X) ⇐ testablei(dec(M,X)), atti(M)
testablei(X) ⇐ testablei(M), atti(enc(M,X))

Figure 13: Testability
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Protocol Checking Time #lines
NS 3.29s 1 038
NSL7 1.76s 4 415
Yahalom 36.6s 14 646
Kerberos 2.57s 2 584
X.509 11.01s 35 472
EAP-AKA 4.42s 3 763
EKE 1.99s 5 023

Figure 14: Checking Explicit Models with Coq

The size of such a description is proportional to what we called the number of
entries above. Proofs of clauses C from the clause set S are then very short: if C
contains k free variables, we write its proof in Coq’s tactic language as:

intro x1; case x1; . . . intro xk; case xk; simpl; tauto.

The effect of this command line is to enumerate all nk assignments of values to vari-
ables. This not only takes time proportional to the number of checks (the #checks
columns in Figure 10), but also produces a proof term of size proportional to it.

We conclude that the explicitly presented models approach is practical, however
only for small models. While this approach is applicable for the 3 to 6 element models
that Paradox found in Figure 10, it is completely unrealistic for the models found by
h1, whether representable explicitly (NS, amended NS) or not (Yahalom). Note that
the MACE algorithm underlying Paradox is doubly exponential in the number n of
elements of the model. In practice, the largest models we have discovered with Paradox
contained 7 elements. However, when this works, this works well, despite Lemma 5.1.

6 Large Models, and Tree Automata
There are several reasons why we would like to find a more efficient method for pro-
ducing formally checkable proofs. This will be solved in Section 7. As it stands, the
strategy of Section 5 does not scale up. That is, it does not apply to security proofs that
would require finite models larger than 6 elements. And there are a few reasons why
we would like some larger finite models.

The first one is that Dolev-Yao secrecy properties are in fact simple to prove. Re-
member that the 4 element model that Paradox found for SsafeNS mapped each intruder
identity to the same value, !1. No such model can ever be used to prove authentica-
tion properties, where we need to make a distinction between identities. This phe-
nomenon is already illustrated on Paulson’s corrected version of the Yahalom protocol
[72], whose security depends on checking the identity of an agent included in a mes-
sage.

A second reason is that the style of protocol specification that we used in Sec-
tion 3 makes it more likely that secure protocols have small models, but we may need
other styles in other applications. One may describe our style as stateless: agents only
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Figure 15: A tree automaton for lists of even numbers

remember past values, not because we have modeled a local state containing all val-
ues of their internal variables, but because they are given back to them in received
messages. For example, look at message 2 of Figure 2: Alice receives {Na, B,Kab,
{Kab, A}Kbs

}Kas
from the trusted third party. The corresponding clause is (13) (see

Figure 3), where Alice expects a message of the form {[nai(A,B), B,Kab,M ]}k(sym,[A,s]).
While freshness is checked by verifying that the nonce part Na is of the form nai(. . .),
Blanchet’s clever trick of parametrizing nai by some free parameters forces this term to
match only if A was indeed the intended recipient (viz. the occurrence of A in the key
k(sym, [A, s])), and to remember whom A wanted to talk to (viz. the two occurrences
of B must match). Other, more precise, protocol verification tools employ stateful
models, whereby each agent maintains a state vector consisting of its local program
counter, and all values of its variables (see [17] for an early example). This is needed
in verifying protocols where sessions must be sequential, e.g., for the Otway-Rees pro-
tocol [69], which is secure if sessions are sequential, but insecure if sessions can be run
in parallel [22]. We have played with such a model, and found it satisfiable both with
h1 (with a 54 element model, in 1.1 s) and with Paradox (with a 4 element model, in
227 s). However, the fact that state vectors have high arity (up to 9) entails that, while
function tables only require 143 entries—for the 4 element model—, predicate entries
require 706 716.

We can only expect to need even larger models when considering composition of
protocols, or Web services [13], or cryptographic APIs [30], in order of increased com-
plexity. However, note that the number of elements in the model is fairly independent
of the size of the protocol.

Our model-checking technique will be able to check the larger models found by h1
(see Figure 10). Some of it rests on intuitions on how we decideH1 by resolution [42],
and the relationship to tree automata.

Tree automaton are best explained as graph-like structures, more precisely as cer-
tain hypergraphs. Figure 15 displays one tree automata, which we take as example.
We take 0 to denote zero, s(t) to denote the successor of t in N, i.e., t + 1 (so that the
number n is encoded as s(. . . (s(0))), with n copies of s), nil to denote the empty
list, and cons to be the binary list constructor (so that the list [1, 2, 4] is encoded as
cons(1, cons(2, cons(4, nil)))). The states of this tree automaton are qeven, qodd, and
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qlist-even. The transitions are hyperedges from n states q1, . . . , qn to another state q, la-
beled by an n-ary function symbol f . Graphically, we represent this as an arrow going
from f( , . . . , ) to q, and lines from each state qi to the corresponding underscore
in the label. The idea is that if t1 is a ground term recognized at q1, and . . . , and tn
is a ground term recognized at qn, then f(t1, . . . , tn) should be recognized at q. For
example, in the tree automaton above, 0 is recognized at qeven (this is the case n = 0,
where there are in fact no source state), so s(0) is recognized at qodd, s(s(1)) is rec-
ognized at qeven. We usually define the set of terms recognized at a state q as those
obtained by finitely many applications of such transitions. We let the reader check that,
in the example above, qeven recognizes the even natural numbers, qodd the odd natural
numbers, and qlist-even the lists of even numbers.

The Horn clause format allows one to express the semantics of tree automata di-
rectly. Turn each state q into a unary predicate symbol, and read q(t) as “t is recognized
at q”. Then the semantics of each transition is expressed as a Horn clause. In the ex-
ample above, write the following:

qeven(O) qeven(s(X))⇐ qodd(X) qodd(s(X))⇐ qeven(X)

qlist-even(cons(X,Y ))⇐ qeven(X), qlist-even(Y ) qlist-even(nil)

Then observe that this does not just give the semantics of the tree automaton, but in
fact completely describes it. Accordingly, define a tree automaton as a finite set of tree
automaton clauses, defined as being of the form P (f(X1, . . . , Xn)) ⇐ P1(X1), . . . ,
Pn(Xn), where X1, . . . , Xn are pairwise distinct; such clauses are just tree automaton
transitions from P1, . . . , Pn to P .

One can generalize the notion of acceptance at a state to any satisfiable set of Horn
clauses: for each satisfiable set S of Horn clauses, and each predicate symbol P (i.e.,
each state P ), let LP (S) be the set of ground terms t such that P (t) is in the least
Herbrand model of S. LP (S) is the language recognized at state P . When S is a tree
automaton, this coincides with the usual definition of the set of terms recognized at P .

This connection between tree automata and Horn clauses was pioneered by Frühwirth
et al. [38]; there, LP (S) is called the success set for P . This connection was then used
in a number of papers: see the comprehensive textbook [25], in particular Section 7.6
on tree automata as sets of Horn clauses.

Tree automata clauses can be generalized right away to alternating tree automata
[25, Chapter 7]. Call ε-block any finite set of atoms of the form P1(X), . . . , Pm(X)
(with the same X , and m ≥ 0); it is non-empty iff m ≥ 1. We abbreviate ε-blocks as
B(X) to make the variableX explicit. We shall also writeB for the set {P1, . . . , Pm}.
Alternating automaton clauses are of the form:

P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk) (25)

where B1(X1), . . . , Bk(Xk) are ε-blocks, and X1, . . . , Xk are pairwise distinct. It is
harder to find a graphical rendition of such clauses. One can think of them as giving the
additional power to compute intersections

⋂
P∈Bi

LP (S) of recognizable languages:
for a term f(t1, . . . , tk) to be recognized at state P , one must find a clause (25) such
that t1 is recognized at all the states inB1, and . . . , and tk is recognized at all the states
in Bk.
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For technical reasons, we shall also consider universal clauses, of the form P (X).
These are meant to state that every term is recognized at state P .

We define alternating tree automata as any finite set S of alternating automaton
clauses and universal clauses. (The standard definition [25] does not include universal
clauses; on a fixed first-order signature Σ, a universal clause P (X) may be replaced by
the clauses P (f(X1, . . . , Xk)) ⇐ P (X1), . . . , P (Xk), where f ranges over Σ.) Tree
automata are the special case without universal clauses, and where ε-blocks contain at
most one atom.

Given any clause set S, h1 first applies a canonical abstraction [42, Proposition 3]
to get a clause set S′ in the decidable class H1 [68, 84], and such that S is satisfiable
whenever S′ is. Then h1 saturates S′ by ordered resolution with selection [42], getting
a saturated set S∞. The point is that the subset Sprod ⊆ S∞ of productive clauses that
h1 returns is always an alternating tree automaton [42, Proposition 9]. Determinizing
Sprod can be done by a standard powerset construction, and we have implemented this
in the tool pldet, also a part of the h1 tool suite [40]. The states of the determinized
automaton Det(Sprod) are sets of states of Sprod, i.e., sets of predicate symbols.

We shall assume that the following procedure is used to define Det(Sprod), which
builds new states on demand. Initially, the set Q of states, and the set of transi-
tions of Det(Sprod), are empty. Then, while there is a function symbol f , say of
arity k, and k states q1, . . . , qk already constructed in Q such that (†) q = {P |
(∃P (X) ∈ Sprod) or ∃(P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk)) ∈ Sprod · ∀i ·
Bi ⊆ qi} is non-empty, add q to Q, and add the transition q(f(X1, . . . , Xk)) ⇐
q1(X1), . . . , qk(Xk) to Det(Sprod). Call this the powerset construction. It is well-
known that the powerset construction has the property that the languageLq(Det(Sprod))
of the state q = {P1, . . . , Pn} inDet(Sprod) is exactly the intersection

⋂
P∈q LP (Sprod)\⋃

P 6∈q LP (Sprod). The fact that states q are built on demand also implies thatLq(Det(Sprod)) 6=
∅ for all q.

The connection with finite models was done by Kozen [54], who observed that
complete deterministic tree automata were just finite models. (In fact, Kozen defined
them this way.) There is a transition from the tuple of states (q1, . . . , qm) to q labeled f ,
i.e., a clause q(f(X1, . . . , Xm))⇐ q1(X1), . . . , qm(Xm) in the clausal representation
of the automaton, if and only if the semantics of f maps the tuple of values (q1, . . . , qm)
to q. That is, the states of a complete deterministic automaton are the values of the
corresponding finite model.

The example tree automaton of Figure 15 is deterministic, but not complete. One
gets an equivalent complete deterministic automaton by adding a new, catch-all state
−, and adding all missing transitions to −. This results in a rather messy drawing.
However, we can describe it as a finite model as indicated above:

0 : qeven

nil : qlist-even

s
qeven qodd
qodd qeven

qlist-even −
− −

cons qeven qodd qlist-even −
qeven − − qlist-even −
qodd − − − −

qlist-even − − − −
− − − − −

The powerset construction is easier to understand in this light. For every f satisfy-
ing (†) above, instead of adding the transition q(f(X1, . . . , Xk))⇐ q1(X1), . . . , qk(Xk)
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to Det(Sprod), add the table entry f(q1, . . . , qk) = q to the model. This requires one
to write q into the (q1, . . . , qk) entry of table f , possibly after extending all tables with
entries for the value q, in case q is fresh. Additionally, tables for predicates are given
as truth-tables; for each predicate P , this is defined in Det(Sprod) so that P holds of
state q if and only if P ∈ q.

We can now explain how we estimated the size of models returned by h1 in Fig-
ure 10: we ran pldet, which builds Det(Sprod), and we counted states (values) and
transitions (table entries).

Finally, while our model-checking technique will work on alternating tree automata,
it will in particular work on finite models encoded as alternating tree automata (which
will necessarily be deterministic); i.e., each entry in a table, stating that f applied
to values (v1, . . . , vm) should yield value v, will give rise to a tree automaton clause
is v(f(X1, . . . , Xm))⇐ is v1(X1), . . . , is vm(Xm), where there is one is v pred-
icate for each value v; the truth-table of each predicate P is encoded as the collection
of clauses P (X) ⇐ is v(X), where v ranges over the values that satisfy P in the
model. While this won’t decrease the size of the description of the model in Coq—still
proportional to #entries—, our model-checker will have the opportunity to find proofs
that are shorter than the #checks steps needed in enumeration proofs. E.g., our model-
checker will produce the obvious proof that P (X) ⇐ P (X) holds (in any model),
without enumerating all possible values for X .

Finally, we loop the loop and observe that model-checking against Det(Sprod) or
against our old friend lfpTSprod

are the same thing:

Lemma 6.1 Let Sprod be an alternating tree automaton. For any set S of first-order
clauses, Det(Sprod) |= S if and only if lfpTSprod

|= S.

Proof. Say that a value v in a modelM is definable iff v is the denotation of some
ground term. A model is fully complete if and only if all its values are definable.
Clearly, lfpTSprod

is fully complete, as every value is its own denotation. Det(Sprod)
is also fully complete, since every value (state) q in Det(Sprod) is the denotation of
any ground term in Lq(Det(Sprod)), and this is non-empty by construction.

For any ground term t, observe that Det(Sprod) |= P (t) if and only if t is in⋃
q/P∈q Lq(Det(Sprod)) =

⋃
q/P∈q

(⋂
P ′/P ′∈q LP ′(Sprod) \

⋃
P ′/P ′ 6∈q LP ′(Sprod)

)
=

LP (Sprod), where the latter equality is by standard set reasoning. That is,Det(Sprod) |=
P (t) if and only if lfpTSprod

|= P (t). It follows that Det(Sprod) |= F if and only if
lfpTSprod

|= F for every universal closed formula F : this is by structural induction on
F , using the easy fact that, wheneverM is fully complete,M |= ∀X · G(X) if and
only if M |= G(t) for every ground term t. Since every set S of first-order clauses
is a universal sentence (taking into the implicit universal quantifications over free vari-
ables), we conclude. �

7 Model-Checking Against Alternating Tree Automata
Since Det(Sprod) can have exponential size in the size of Sprod, one may say that
alternating tree automata are compact representations of possibly large finite models.
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Figure 16: A tree automaton for numbers modulo 2, 3, and 6

We describe how to model-check S againstM = Det(Sprod) efficiently in practice.
But compactness has its toll:

Proposition 7.1 Checking whether M |= S, where M = Det(Sprod) is compactly
represented by an alternating tree automaton Sprod, and S is a set of Horn clauses, is
EXPTIME-complete. It is EXPTIME-hard already if Sprod is a (non-alternating)
automaton, and S only contains one positive, unit clause.

Proof. Let n be the number of predicates in Sprod, S, k be the largest number
of variables in a clause C of S, α the largest symbol arity. Note that we don’t re-
quire to compute Det(Sprod). However, computing it yields the desired upper bound:
Det(Sprod) can be computed in time exponential in the size of Sprod, producing a
model with at most 2n states, and tables with at most 2nα entries. We then enumerate
up to (2n)

k
= 2nk tuples ρ of values for variables. For each, we can check whether C

holds under ρ in exponential time on a Turing machine (we need exponential time to
travel along exponential-sized tables stored on the tapes).

Conversely, non-deterministic tree automaton universality is EXPTIME-complete
[25, Section 1.7, Theorem 14]. This is the problem of checking whether, given a (non-
alternating) tree automaton Sprod and a state P , LP (Sprod) is the set of all ground
terms. This is the same as checking lfpTSprod

|= S, where S only contains the clause
P (X), hence to Det(Sprod) |= S by Lemma 6.1. �

7.1 Model-Checking Against Automata, Step by Step
We first explain the idea of our model-checking algorithm on an example. We use the
tree automaton of Figure 16 as modelM. Note that this is no longer a deterministic
tree automaton, since 0 is recognized at three distinct states. The names of states should
make the automaton self-explanatory; e.g., q2 mod 6 recognizes exactly the numbers that
are equal to 2 modulo 6.

Imagine we would like to check thatM |= [q2 mod 6(s(s(s(Z))))⇐ q0 mod 2(s(Z)),
q1 mod 3(s(s(Z)))], whereZ is implicitly universally quantified in q2 mod 6(s(s(s(Z))))⇐
q0 mod 2(s(Z)), q1 mod 3(s(s(Z))). Intuitively, this states that ifZ+1 is even (= 0 mod 2)
and Z + 2 = 1 mod 3, then Z + 3 = 2 mod 6.
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We may first look at all the ways that the model can make Z + 1 be even. There
is only one way to do so in M, i.e., there is only one way that s(Z) be recognized
at q0 mod 2, namely by using the unique transition from q1 mod 2 to q0 mod 2; as an au-
tomaton clause, this is q0 mod 2(s(X)) ⇐ q1 mod 2(X). Then Z must have been rec-
ognized at q1 mod 2, i.e., Z must be odd. So we are left with checking that M |=
[q2 mod 6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q1 mod 3(s(s(Z)))]. In general, to model-check
M |= [H ⇐ B, P (f(t1, . . . , tn))], where B is any set of atoms, we shall look for all
alternating automaton clauses P (f(X1, . . . , Xn)) ⇐ B1(X1), . . . , Bn(Xn), with the
same P and f , in the alternating tree automaton describing the model M: replacing
X1 by t1, . . . , Xn by tn, this describes all the ways that f(t1, . . . , tn) can be recog-
nized at P ; then it remains to check thatM |= [H ⇐ B, B1(t1), . . . , Bn(tn)] for all
such clauses. This will be formalized in the (−P, f Elim) rule below: see Figure 18.
The (−P, f Elim) works on more complex judgments, for reasons we shall explain
shortly. Also, the above discussion assumed that there was no universal clause P (X)
inM; otherwise, we shall also use another rule (−Univ) (Figure 17), which simplifies
the problem of checkingM |= [H ⇐ B, P (f(t1, . . . , tn))] toM |= [H ⇐ B]: in this
case indeed, every term is recognized at P .

Returning to our example, we again apply (−P, f Elim) to reduce the verifi-
cation of M |= [q2 mod 6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q1 mod 3(s(s(Z)))] to M |=
[q2 mod 6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q0 mod 3(s(Z))] (if Z + 2 = 1 mod 3, then
Z + 1 = 0 mod 3), then toM |= [q2 mod 6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q2 mod 3(Z)]
(. . . and Z = 2 mod 3). We have simplified the body of the clause as much as we
could in this way.

Now look at the head, q2 mod 6(s(s(s(Z)))) (“Z + 3 = 2 mod 6”). In a similar
way, we realize that Z + 3 can only be equal to 2 modulo 6 if Z + 2 = 1 mod 6,
so we are left with checkingM |= [q1 mod 6(s(s(Z))) ⇐ q1 mod 2(Z), q2 mod 3(Z)]. In
general, and assuming as above that there is no universal clause P (X) in M (oth-
erwise we shall prefer to use rule (+Univ) of Figure 17), to model-check M |=
[P (f(t1, . . . , tn)) ⇐ B], we shall look for all alternating automaton clauses in M
whose head starts with P (f(. . .)). Let Pi(f(X1, . . . , Xn))⇐ Bi1(X1), . . . , Bin(Xn)
be these clauses, 1 ≤ i ≤ p. Now P (f(t1, . . . , tn)) holds inM if and only if the dis-
junction

∨p
i=1(Bi1(t1)∧ . . .∧Bin(tn)) holds inM. This is the familiar Clark comple-

tion from logic programming [23]. It then remains to check thatM |= [
∨p
i=1(Bi1(t1)∧

. . . ∧ Bin(tn)) ⇐ B]. However, the latter is far from being a clause in general. So, in
Figure 18 below, we shall first convert the formula

∨p
i=1(Bi1(t1)∧ . . .∧Bin(tn))⇐ B

into a conjunction of clauses. This will be our rule (+P, f Elim).
This is also the rule that forces us to consider not just Horn clauses, but general

clauses. Imagine that, in our example, there had been two clauses with head of the
form q2 mod 6(s(. . .)): the clause q2 mod 6(s(X)) ⇐ q1 mod 6(X) we used above, plus
another one, say q2 mod 6(s(X)) ⇐ P (X). Then using (+P, f Elim) would reduce
checkingM |= [q2 mod 6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q2 mod 3(Z)] to checkingM |=
[q1 mod 6(s(s(Z)))∨P (s(s(Z)))⇐ q1 mod 2(Z), q2 mod 3(Z)]. The latter formula is not
Horn, and we shall therefore need to define our model-checking procedures so that it
takes general, possibly non-Horn clauses C as input, and checks whether M |= C.
(We shall in fact need a bit more again, in the form of histories Γ, see below.)

Let us return to our, unmodified, example. We must check whether it holds that
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M |= [q1 mod 6(s(s(Z)))⇐ q1 mod 2(Z), q2 mod 3(Z)]. Using (+P, f Elim) twice, we
reduce this to the problem of checkingM |= [q5 mod 6(Z)⇐ q1 mod 2(Z), q2 mod 3(Z)].
Now this clause is something we shall call an ε-clause below, i.e., one without a func-
tion symbol: on these, we cannot apply either (−P, f Elim) or (+P, f Elim). How-
ever, any ground term that we may plug in for Z must be of the form 0 or s(t) for
some ground term t. So we only have to check the two clauses obtained by replacing Z
by 0 and by s(Z1) respectively, namelyM |= [q5 mod 6(0) ⇐ q1 mod 2(0), q2 mod 3(0)]
and M |= [q5 mod 6(s(Z1)) ⇐ q1 mod 2(s(Z1)), q2 mod 3(s(Z1))]. This is what rule
(−P Elim) does in Figure 18, with a few added twists (in particular, it only applies
when there is an atom in the body of the clause to model-check, and uses this as a
guide as to which shapes of Z should actually be considered, looking at the modelM.)
The first clause is easy to check: a single application of (−P, f Elim) reduces it to
no clause at all (in informal terms, 0 6= 1 mod 2, so the body of the clause is false,
hence the clause itself is vacuously true). Applying (−P, f Elim) and (+P, f Elim)
for as long as we can on the second one eventually leads us to checking the ε-clause
M |= [q4 mod 6(Z1) ⇐ q0 mod 2(Z1), q1 mod 3(Z1)]. Repeating the process, we are led
to consider model-checking the following clauses, of which we have kept only the
ε-clauses:

M |= [q5 mod 6(Z)⇐ q1 mod 2(Z), q2 mod 3(Z)]

M |= [q4 mod 6(Z1)⇐ q0 mod 2(Z1), q1 mod 3(Z1)] (which we have just arrived at)
M |= [q3 mod 6(Z2)⇐ q1 mod 2(Z2), q0 mod 3(Z2)]

M |= [q2 mod 6(Z3)⇐ q0 mod 2(Z3), q2 mod 3(Z3)]

M |= [q1 mod 6(Z4)⇐ q1 mod 2(Z4), q1 mod 3(Z4)]

M |= [q0 mod 6(Z5)⇐ q0 mod 2(Z5), q0 mod 3(Z5)]

M |= [q5 mod 6(Z6)⇐ q1 mod 2(Z6), q2 mod 3(Z6)]

...

Note that this is looping, as the last ε-clause shown is the same as the first one, up
to renaming (which is implicit, since all clauses are implicitly universally quantified).
When this happens, we stop, and conclude that the last ε-clause thus obtained holds
in M. One may get an intuition of why this must be so as follows. In the sequence
of ε-clauses above, Z1 is obtained by assuming that Z denotes a ground term of the
form s(Z1) (see above). Similarly, Z1 = s(Z2), Z2 = s(Z3), . . . , Z5 = s(Z6), so that
the term that Z6 denotes is a proper subterm of that denoted by Z. It follows that, if
there were a ground term t for Z that made the first clause, q5 mod 6(Z)⇐ q1 mod 2(Z),
q2 mod 3(Z), false inM, then there would be a proper subterm of t for Z6 that would
make the last clause false; i.e., there would be a proper subterm of t for Z that would
also make the first clause false. By a classical argument of descente infinie, since the
subterm ordering is well-founded, this is impossible.

Descente infinie is, at least in classical logic, equivalent to induction. So the Coq
proofs we shall produce from this looping argument will be proofs by induction, on the
structure of terms.

To formalize this, we keep a history Γ of all ε-clauses that we have encountered so
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Γ ` C (P universal)
(−Univ)

Γ ` C ∨ ¬P (t)

(Loop)
Γ, C ` C

(P universal)
(+Univ)

Γ ` C ∨ P (t)

Figure 17: Basic model-checking rules

far. Loop-checking is performed by checking whether the current clause is in Γ (see
rule (Loop) in Figure 17). Because loop-checking is induction in disguise, one can
also see Γ as a collection of induction hypotheses that may be freely applied.

The pair of the clause C to check and the history Γ will be kept in a judgment
Γ ` C, and we shall define our model-checking procedure so thatM |= C holds in
history Γ if and only if we can derive the judgment Γ ` C in the system of Figure 17
and Figure 18. In particular, model-checking proceeds by applying rules from the goal,
and must therefore be read from conclusions, below, to premises, above.

7.2 The Model-Checking Algorithm, Formalized
The actual definition of our model-checking procedure (Figure 17, Figure 18) is made
more concise by relying on a few definitions. Let Sprod be an alternating tree automa-
ton. Call a predicate P universal in Sprod if and only if Sprod contains the clause
P (X). Judgments Γ ` C are composed of a clause C and a history Γ, which is
a finite set of ε-clauses. An ε-clause, E(X) is a disjunction of literals of the form
P (X) or ¬P (X), with the same variable X; ε-blocks are the special case with no
negation. All clauses in a judgment are implicitly universally quantified, and do not
share variables. Here it is convenient that clauses may be non-Horn, and are written
as disjunctions L1 ∨ L2 ∨ . . . ∨ Lk. We let Sprod/P be the the set of clauses of the
form P (f(X1, . . . , Xn)) ⇐ B in Sprod for some body B and some function symbol
f ; Sprod/P, f is the set of clauses of the same form, this time with given function
f . We write ~t for t1, . . . , tn, and ~X similarly in the name of brevity; [~t/ ~X] is the
substitution [t1/X1, . . . , tn/Xn]. The notation E(f( ~X)), used in rule (−P Elim),
stands for E(X)[f( ~X)/X]; this rule is the only one that adds a clause to the history Γ,
preparing for an argument by induction. The brace notation used above the premises
of this rule means that there are as many premises as there are clauses P (f( ~X)) ∨ D
in Sprod/P ; similarly for (−P, f Elim). In rule (+P, f Elim), we enumerate the
clauses P (f( ~X))⇐ B of Sprod/P, f ;

∧
B denotes the conjunction of all atoms in the

body B. By cnf, we mean a conjunctive normal form, obtained by distributing ands
over ors. The (Split) rule is the only non-deterministic rule, and picks one subclause
Ci of C1 ∨ . . . ∨ Cn, provided the latter is block-decomposed, i.e., C1, . . . , Cn are all
non-empty and share no free variable. The rules in Figure 18 apply only if no rule from
Figure 17 applies. This implies that no universal predicate occurs on the right of `.

To produce a Coq proof that Det(Sprod) |= S, we check that ` C for each clause
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(P (f( ~X))∨D)∈Sprod/P,f︷ ︸︸ ︷
Γ ` C ∨D[~t/ ~X]

(−P, f Elim)
Γ ` C ∨ ¬P (f(~t))

(P (f( ~X))∨D)∈Sprod/P︷ ︸︸ ︷
Γ, ∀X · E(X) ∨ ¬P (X) ` E(f( ~X)) ∨D

(−P Elim)
Γ ` E(X) ∨ ¬P (X)

Γ ` C1 . . . Γ ` Ck

(+P, f Elim)
Γ ` C ∨ P (f(~t))

where
∧k

i=1 Ci is a cnf for
C ∨

∨
(P (f( ~X))⇐B)∈Sprod/P,f

∧
B[~t/ ~X]

Γ ` Ci (1 ≤ i ≤ n, n ≥ 2)
(Split)

Γ ` C1 ∨ . . . ∨ Cn

where C1 ∨ . . . ∨ Cn is block-decomposed

Figure 18: Model-checking rules, end

C in S. Our tool h1mc, also part of the h1 tool suite [40], looks for a proof $ of
` C by applying the model-checking rules from the bottom up. The important result
here is the following soundness theorem. This is proved by induction on a derivation
$ of ` C; apart from this outer induction, the rest of the proof is the skeleton of the
Coq proof that h1mc extracts from $. Let � denote the proper subterm ordering, and
observe this is well-founded. Let � be defined by s � t if and only if s � t or s = t.

Theorem 7.2 (Soundness) Let Γ = ∀X·E1(X), . . . ,∀X·Em(X), andC = C(X1, . . . , Xk)
be a clause with free variables in X1, . . . , Xk. If Γ ` C is derivable using the model-
checking rules, then the following formula holds in lfpTSprod

, where all variables
range over ground terms:

∀X1, . . . , Xk ·
∧

1≤i≤k
1≤j≤m

(∀X � Xi · Ej(X))⇒ C(X1, . . . , Xk)

Proof. By induction over a derivation$ of the judgment. We look at the last rule. The
cases of (−Univ) and (+Univ) are clear. For (Loop), we observe that C must be of
the form Ej(Xi) for some i, j, and we conclude by the antecedent ∀X � Xi ·Ej(X).

For (−P Elim), let X1, . . . , Xk contain at least the variable X free in E(X) ∨
¬P (X). Without loss of generality, letX beX1. We prove ∀X1, . . . , Xk·

∧
1≤i≤k
1≤j≤m

(∀X �

Xi ·Ej(X))⇒ C(X1, . . . , Xk)⇒ E(X1)∨¬P (X1) by an auxiliary induction onX1,
well-ordered by�. (In Coq, we use the fix tactic to do this.) Our new induction hypoth-
esis is (∗) ∀X ≺ X1 ·E(X)∨¬P (X). We must then show thatE(X1)∨¬P (X1) holds
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in lfpTSprod
. Assume P (X1) holds: we must showE(X1). But the only way that P (t)

can hold in lfpTSprod
, for any ground term t, is that t is of the form f(~t), and that there

is a clause with head P (f( ~X)), say P (f( ~X)) ⇒ B, in Sprod/P , where
∧
B[~t/ ~X]

holds in lfpTSprod
. (In Coq, we use case and inversion.) We may also write this

clause as P (f( ~X)) ∨ D, where D is equivalent to the negation of
∧
B. Let ~X be

Xk+1, . . . , Xk+p, and let Em+1(X) be E(X)∨¬P (X). By the outer induction on $,
we have a proof of ∀X2, . . . , Xk, Xk+1, . . . , Xk+p ·

∧
2≤i≤k+p
1≤j≤m+1

(∀X � Xi ·Ej(X))⇒

E(f( ~X)) ∨D. For X1 = f(Xk+1, . . . , Xk+p), we have that every X � Xk+i is such
that X ≺ X1, so we may apply (∗). Simple logic then shows that E(X2) holds. So
∀X1, . . . , Xk ·

∧
1≤i≤k
1≤j≤m

(∀X � Xi ·Ej(X))⇒ C(X1, . . . , Xk)⇒ E(X1)∨¬P (X1)

holds in lfpTSprod
.

Rule (−P, f Elim) is justified by the same case analysis, using Coq’s case and
inversion tactics, but does not require to introduce any new induction hypothesis
into the history. The correctness of (Split) is obvious. Finally, for (+P, f Elim),
propositional reasoning (using Coq’s tauto tactic) shows that

∧k
i=1 Ck implies C ∨∨

(P (f( ~X))⇐B)∈Sprod/P,f

∧
B[~t/ ~X]. Using the fact that, for any clause P (f( ~X))⇐ B

in Sprod/P, f ,
∧
B[~t/ ~X] implies P (f(~t)) in lfpTSprod

, we infer thatC∨P (f(~t)) must
also hold in lfpTSprod

�

Using Theorem 7.2 and Lemma 6.1, we then obtain:

Corollary 7.3 If ` C is derivable using the model-checking rules for every C ∈ S,
then Det(Sprod) |= S.

For the sake of efficiency, h1mc actually uses a number of extra rules that act as
shortcuts in common cases, and which we describe later. As defined in Figure 17 and
Figure 18 above, and provided the extra rule (+Elim) of Section 7.4 below is added,
these would essentially define Matzinger’s procedure [62]. The fact that we do not need
the costly rule (+Elim) is already an optimization over Matzinger’s procedure, which
depends on a subtlety related to the kind of models that h1 finds: see Section 7.4.
However, even this is not enough to make this model-checking algorithm efficient in
practice. We shall describe the required optimizations in Sections 7.5 and later.

7.3 Producing Coq Proofs
As we have said above, h1mc produces Coq proofs by mimicking the proof of The-
orem 7.2, and output corresponding Coq proof arguments. While we have given the
bare Coq ingredients in the proof of Theorem 7.2, we illustrate this through the exam-
ple of Section 7.1. While this is not an example from security, it will be sufficient to
explain how h1mc generates Coq proofs. Moreover, it will be clear that the resulting
Coq proofs are in any case unreadable—the real security argument lies in the model,
not in the proof that it is a model.

For basics on Coq, we refer the reader to the Coq’Art [12]. We take some liberties
with actual Coq syntax, for readability purposes [83]. While we believe our model-
checking algorithm can be made to produce proofs in most standard proof assistants,
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the actual details presented in this section definitely rely on Coq’s specific ways, and
particularly as far as induction proofs are concerned.

First, h1mc outputs a definition of all possible ground terms:

Inductive term : Set := s : term→ term | 0 : term

and of all clauses in the model, as an inductively defined collection of predicates, taking
terms (of type term above) and returning formulae (of type Prop):

Inductive q0 mod 2 : term→ Prop :=
trans q0 mod 2 s1 : ∀X1 : term · q1 mod 2(X1)⇒ q0 mod 2(s(X1))
| trans q0 mod 2 01 : q0 mod 2(0)

with q1 mod 2 : term→ Prop :=
trans q1 mod 2 s1 : ∀X1 : term · q0 mod 2(X1)⇒ q1 mod 2(s(X1))

We omit similar definitions for the other predicates qi mod 3 (i ∈ {0, 1, 2}) and qi mod 6

(0 ≤ i ≤ 5). This defines q0 mod 2 as the least predicate satisfying clauses trans q0 mod 2 s1

and trans q0 mod 2 01, simultaneously defining q1 mod 2 as the least predicate satisfy-
ing clause trans q1 mod 2 s1. Note that these clauses are Coq incarnations of the cor-
responding alternating automaton clauses of the model.

Our goal in Section 7.1 was to prove the clause q2 mod 6(s(s(s(Z))))⇐ q0 mod 2(s(Z)),
q1 mod 3(s(s(Z))) in this model. Accordingly, h1mc will output a proof of the follow-
ing remark:

Remark rem76 : ∀X1 : term·q0 mod 2(s(X1))⇒ q1 mod 3(s(s(X1)))⇒ q2 mod 6(s(s(s(X1)))).

(The funny number “76” results from the numbering scheme that h1mc uses, and is
not indicative of anything per se. Also, h1mc will use the ancillary remark rem76 to
produce a trivial proof of the actual lemma we are interested in, which only differs by
names of variables and order of atoms.)

The remark rem76 is proved by using rule (−P, f Elim) to examine all the ways
that one can derive q0 mod 2(s(X1)) in the model. Although one could directly use
the inversion tactic here, it is more convenient in an automatically derived proof
to generate an auxiliary lemma that embodies this instance of inversion. The gen-
eral form of such a lemma will prove ∀X1, . . . , Xn : term · P (f(X1, . . . , Xn)) ⇒
orp(B1, . . . ,Bp), whereB1, . . . , Bp are the bodies of the clausesP (f(X1, . . . , Xn))⇐
Bi, 1 ≤ i ≤ p, of Sprod/P, f in the usual clause notation, and orp is p-ary disjunc-
tion. The latter is defined by h1mc as a type with p constructors orpintroi : Hi ⇒
orp(H1, . . . ,Hi, . . . ,Hp), 1 ≤ i ≤ p, where H1, . . . ,Hp are parameter formulae, of
type Prop. Instead of orp(B1, . . . ,Bp), it would seem simpler to use the semantically
equivalent B1 ∨ . . . ∨ Bp. However, to do a case analysis on the latter, we would have
to use the elim tactic p − 1 times, whereas the orp trick allows use to use elim just
once, and get all cases of the disjunctions in one step.

In our example, h1mc produced the following inversion lemma:

Remark rem22 : ∀X1 : term · q0 mod 2(s(X1))⇒ or1(q1 mod 2(X1)).
Proof . intros. inversion H. intros. apply or1intro1; tauto. Qed.
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The proof of rem76 then reads:

Proof . intros X1. intro H. intros. elim rem22(X1, H); intros.
apply rem75(X1); tauto. Qed.

The first intro and intros tactics introduceX1 : term, the assumptionH : q0 mod 2(s(X1)),
and various other assumptions we don’t care about. The goal is now to prove q2 mod 6(s(s(s(X1)))).
To this end, we apply the elim tactic on the inversion lemma rem22 applied to X1 and
H (so that rem22(X1, H) is a proof of or1(q1 mod 2(X1))). In general, if our current
proof goal is some formula F , calling elim on a proof of orp(H1, . . . ,Hp) will sub-
divide the proof task in p sub-goals. For each i, 1 ≤ i ≤ p, the ith subgoal will
still be F , only with Hi as added assumption. Here p = 1, a seemingly trivial case,
where however this mechanism allows us to assert that q1 mod 2(X1)) holds, as an extra
assumption. To complete the proof of rem76, it only remains to prove the correspond-
ing premise of the (−P, f Elim) rule, namely q2 mod 6(s(s(s(Z)))) ⇐ q1 mod 2(Z),
q0 mod 3(s(Z)), and to apply it to the case where Z is X1. The h1mc tool completes
the proof of the latter clause by a recursive call, producing some other lemma named
rem75, and uses it as shown above, by invoking the apply tactic on rem75(X1); we
then let Coq find the trivial proofs of the assumptions left unproved by doing some
elementary propositional reasoning using tauto. Accordingly, rem75 is declared as
follows.

Remark rem75 : ∀X1 : term·q1 mod 2(X1)⇒ q1 mod 3(s(s(X1)))⇒ q2 mod 6(s(s(s(X1)))).

and is proved in a similar way, using (−P, f Elim) and other auxiliary sub-remarks
with lower numbers.

After a series of applications of (−P, f Elim), h1mc will arrive at the following
clause, which it will have to prove by using (+P, f Elim) instead:

Remark rem72 : ∀X1 : term·q1 mod 2(X1)⇒ q2 mod 3(X1)⇒ q2 mod 6(s(s(s(X1)))).

Our example is too degenerate to actually show what will happen in this case, and
the general case produces hairy proofs. So let’s explain the main technical diffi-
culty instead. We use intro and intros to separate the variables X1, . . . , Xm of the
clause, and its assumptions H1 : A1, . . . , H` : A`, from the head of the clause, here
q2 mod 6(s(s(s(X1)))). In the general case, this head will be P (f(t1, . . . , tn)) ∨ D,
for some disjunction D of atoms. Look at all the clauses P (f(X1, . . . , Xn)) ⇐ Bj ,
1 ≤ j ≤ q, in Sprod/P, f . Then h1mc will, by using (+P, f Elim), obtain proofs $i

of the formulae ∀X1, . . . , Xm · A1 ⇒ . . . ⇒ A` ⇒ Ci ∨ D, for each i, 1 ≤ i ≤ k,
where

∧k
i=1 Ci is a cnf for

∨q
j=1

∧
Bj . So $i(X1, . . . , Xm, H1, . . . ,H`) will be a

proof of Ci ∨D for each i. Now h1mc produces a proof $Distr of C1 ∧ . . . ∧ Ck ⇒
B1 ∨ . . . ∨ Bq , and uses it to derive a proof of B1 ∨ . . . ∨ Bq ∨D (under assumptions
X1 : term, . . . , Xm : term, H1 : A1, . . . ,H` : A`). An inversion lemma as used
above allows h1mc to deduce the desired head P (f(t1, . . . , tn)) ∨D from the latter.

The main difficulty is to generate $Distr. First, we know that C1 ∧ . . . ∧ Ck is
equivalent to B1 ∨ . . . ∨ Bq in classical logic, however Coq is based on intuitionis-
tic logic. (While we could import the Classical module that implements classical
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reasoning in Coq, we do not wish to do so.) It turns out that, since none of these propo-
sitional formulae involve negation, these two formulae must also be intuitionistically
equivalent—something that is obvious from the Kripke semantics of propositional in-
tuitionistic logic.

The second difficulty is complexity-theoretic. We illustrate it through an example
that an early version of h1mc actually produced in 2003. This example has q = 13,
B1 through B5 are conjunctions of just 2 atoms, while B6, . . . , B13 each contain just
one atom. Distributing ands over ors yields a cnf with 25 = 32 clauses C1, . . . , C25 ,
each with 13 atoms. It is tempting to let Coq prove C1 ∧ . . . C25 ⇒ B1 ∨ . . . ∨ B13 by
invoking tauto, however this is hopeless. This is because tauto, just like any other
reasonable tableaux prover for propositional formulae, will attempt to use the invertible
rules of its calculus eagerly. Concretely, this means that tauto will do a case analysis
over the 13 atoms of C1; then a case analysis on the 13 atoms of C2, and similarly
on C3, . . . , C25 . Eventually, the resulting 1325

clauses are trivial to prove. But no
prover we know, including tauto, is able to deal with that many clauses. In general,
the problem is that, while a cnf C1 ∧ . . . ∧ Ck for B1 ∨ . . . ∨ Bq is of exponential size
already in q, checking this by distributing back the ors over the ands, as all tableaux
provers we know do, is of complexity doubly exponential in q.

To solve this, it would in principle be best to keep a trace of the operations used to
obtain C1 ∧ . . . ∧ Ck from B1 ∨ . . . ∨ Bq , and using this trace to guide a Coq proof
that would not rely on tauto but would use the elementary tactics elim, split, left,
and right on ∧ and ∨, explicitly. We haven’t done so in h1mc, as the optimizations
presented in Section 7.5 and later, plus a few tricks that eliminate tautological clauses
and subsumed clauses among C1, . . . , Ck, happen to suffice in practice.

Let us turn to induction. Eventually, h1mc needs to prove the ε-clause q5 mod 6(Z)⇐
q1 mod 2(Z), q2 mod 3(Z). To this end, h1mc produces:

Remark rem66 : ∀X1 : term · q1 mod 2(X1)⇒ q2 mod 3(X1)⇒ q5 mod 6(X1).
Proof . fix Hind 1. introX. case X.

intros X1; exact rem65(Hind, X1).
introH. elim rem35(H). Qed.

The key here is the fix tactic: fix Hind 1 simply adds the whole goal to prove as a new
assumption Hind : ∀X1 : term · q1 mod 2(X1) ⇒ q2 mod 3(X1) ⇒ q5 mod 6(X1). This
serves as induction hypothesis. We can then apply it to any proper subterm X2 of X1

by invoking Hind(X2). The extra number “1” informs Coq that subterms should be
extracted from first quantified term, here X1.

The fix tactic is rarely used in man-made proofs, because it is error-prone: only
when typing the final Qed will Coq check that all calls to the induction hypothesis
Hind were really applied to proper subterms, and are therefore valid. However, using
more standard induction tactics such as induction would require us to specify in
advance the actual subterm of X1 that we shall apply our induction hypothesis on; fix
relieves us from the difficulty.

Once this is done, introX and case X rip the formula of its initial universal
quantification, renames X1 as X : term, and does a case analysis on the shape of X .
The second line of the proof, which invokes rem65, deals with the case where X is of
the form s(X1) for some X1 : term, the third line deals with the case where X = 0.
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A curious thing in the proof of rem66 shown above is that, although it introduces
the induction hypothesis Hind, it never uses it directly. Instead, it passes it on to the
auxiliary sub-remarks that need it. This is why rem65 is invoked with both X1 and
Hind as arguments, so that it can use the latter at all. Accordingly, rem65 is declared
as:

Remark rem65 : (∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X))⇒
∀X1 : term · q1 mod 2(s(X1))⇒ q2 mod 3(s(X1))⇒ q5 mod 6(s(X1)).

where the second line, quantified over X1, is the actual formula we want to prove, and
the formula ∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X) on the first line is
the induction hypothesis that rem65 can use.

In general, when h1mc has managed to derive a sequent of the form Γ ` C, where
Γ consists of the ε-clauses C1, . . . , Ck, it will output a Coq proof of C1 ⇒ . . . ⇒
Ck ⇒ C. More precisely, it will output a proof of C1 ⇒ . . . ⇒ Ck ⇒ C, where
C1, . . . , Ck are the relevant induction hypotheses from Γ, i.e., the ones that have really
been used in an instance of (Loop) in the given derivation of Γ ` C. This way, instead
of carrying up to 6 induction hypotheses as at the end of Section 7.1, h1mc will only
need one for each of the sub-remarks leading to rem66:

Remark rem60 : (∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X))⇒
∀X1 : term · q0 mod 2(X1)⇒ q1 mod 3(X1)⇒ q4 mod 6(X1). [. . .]

Remark rem53 : (∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X))⇒
∀X1 : term · q1 mod 2(X1)⇒ q0 mod 3(X1)⇒ q3 mod 6(X1). [. . .]

Remark rem45 : (∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X))⇒
∀X1 : term · q0 mod 2(X1)⇒ q2 mod 3(X1)⇒ q2 mod 6(X1). [. . .]

Remark rem36 : (∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X))⇒
∀X1 : term · q1 mod 2(X1)⇒ q1 mod 3(X1)⇒ q1 mod 6(X1). [. . .]

Remark rem26 : (∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X))⇒
∀X1 : term · q0 mod 2(X1)⇒ q0 mod 3(X1)⇒ q0 mod 6(X1).

As above, rem26 requires an inductive argument on X1. This eventually leads to the
following sub-remark rem15, obtained by using (Loop), i.e., by invoking the induction
hypothesis. (We have slightly edited its proof, which contained some useless steps.)

Remark rem15 : (∀X : term · q1 mod 2(X)⇒ q2 mod 3(X)⇒ q5 mod 6(X))⇒
∀X1 : term · q1 mod 2(X1)⇒ q2 mod 3(X1)⇒ q5 mod 6(X1).

Proof . intro Hind. intros X1. exact Hind(X1). Defined.

We finish with a subtle point. While all our proofs were terminated by Qed until
now, the proofs of all sub-remarks that require at least one induction hypothesis, among
which not only rem15, but also rem26, rem36, . . . , rem60 and rem65 above, are ended
with the Defined keyword. This is required to make their proofs transparent, as
needed by Coq to be able to check that all uses of induction hypothesis indeed apply
to proper subterms, as discussed above. This check involves traversing the proof terms
generated by Coq, along all possible paths from the root of the proof to variables such
as Hind: to check the proof term we have given for rem66, Coq will have to traverse all
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remarks used in its definition, including rem65, rem60, . . . , rem36, rem26, and rem15,
where the induction hypothesis is finally used.

It is algorithmically practical to produce such delocalized induction proofs, where
induction hypotheses are introduced in one lemma (rem66) but used in another (rem15).
However, we must admit that such proofs are not the most readable kind.

7.4 Completeness
The model-checking procedure is also complete, in a subtle sense. We now need to
quantify over all signatures Σ that contain all the symbols of Sprod and S. While
lfpTSprod

is a set of ground atoms that is independent of the signature Σ, as a model,
it is a subset of the set of all ground atoms, which does depend on Σ. To make the
dependency on Σ explicit, write this model lfpΣ TSprod

.
The model-checking procedure now only has the following weak completeness

property: if lfpΣ TSprod
|= C for every Σ, then there is a derivation of ` C. It is easy to

see that h1, as a resolution algorithm, produces a set Sprod satisfying this stronger as-
sumption. This is because resolution algorithms do not depend on the chosen signature,
only on the clauses that they work on.

The difference between checking lfpΣ TSprod
|= C for every Σ, or checking lfpΣ TSprod

|=
C just for a given Σ = Σ0 can be illustrated by considering the case Sprod = {p(a)}
and S = {p(X)}: we certainly have lfpΣ TSprod

|= S if Σ only contains a, but this fails
otherwise. Note that the soundness Theorem 7.2 is in fact true whatever the signature
Σ. This being, hopefully, clarified, we obtain:

Proposition 7.4 (Completeness) If lfpΣ TSprod
|= S for every signature Σ containing

all the symbols of Sprod and S, then one may find a derivation of ` C for every C ∈ S,
in an effective way.

Proof. We first claim that, if C1 holds in lfpΣ TSprod
for all Σ, then for any history

Γ, some rule applies that has Γ ` C1 as its conclusion. This is obvious if C1 con-
tains a universal predicate, in which case (−Univ) or (+Univ) applies. Otherwise,
the key observation is that the only way that an atom of the form P (f(~t)) can hold in
lfpΣ TSprod

is that there is a clause P (f( ~X)) ⇐ B in Sprod/P, f such that
∧
B[~t/~x]

holds in Sprod. In other words, P (f(~t)) is equivalent to
∨

(P (f( ~X))⇐B)∈Sprod/P,f

∧
B[~t/ ~X]

in lfpΣ TSprod
. This is Clark completion [23]. This directly justifies using (+P, f Elim)

in case C1 contains a positive atom with non-variable argument, i.e., C1 is of the form
C ∨ P (f(~t)). In case C1 can be written C ∨ ¬P (f(~t)), then Clark completion and
Boolean reasoning show that all the premises C ∨D[~t/ ~X] of rule (−P, f Elim) must
hold in lfpTSprod

.
In all other cases,C1 is of the formE1(X1)∨. . .∨Ek(Xk). If k ≥ 2, we may apply

(Split). If k = 0, thenC1 would be false, so the case does not happen. Otherwise, ifC1

contains a negative atom with variable argument, i.e., C1 = E(X)∨¬P (X), a variant
of Clark completion (above), using the fact that P is not universal, shows that P (X)
is equivalent to

∨
(P (f( ~X))⇐B)∈Sprod/P

∧
B[f(~t)/X] in lfpΣ TSprod

, justifying using
(−P Elim). In the remaining case,C1 is a disjunction P1(X)∨. . .∨Pn(X) of positive
atoms with variable arguments; however, for Σ large enough, i.e., containing some
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constant a not in Sprod, we observe that P1(a), . . . , Pn(a) are all false in lfpΣ TSprod
,

contradicting that C1 is true: so this case does not happen.
Second, we observe that applying (Split) and (Loop) eagerly forces proof search

to terminate. This rests on the fact that there can only be finitely many ε-clauses, hence
also finitely many possible histories Γ, in particular. The missing, easy details are left
to the reader. �

We have observed that h1 produces proofs that are independent on Σ, hence sat-
isfy the assumption of Proposition 7.4. Models produced by Paradox only satisfy
lfpΣ TSprod

|= S for Σ equal to—no larger than–the signature Σ0 defined by S. To
regain completeness under this weaker assumption, we need an additional rule:

f∈Σ0︷ ︸︸ ︷
Γ,∀X · E(X) ` E(f( ~X))

(+Elim)
Γ ` E(X)

whenever E(X) is an ε-block consisting only of positive atoms +P (X), and there
is one premise for each function symbol f in the given signature Σ0. This is costly:
the only rule that can be applied to derive the premise is (+P, f Elim), which we
had better avoid. We have experimented h1mc with the (+Elim) rule on (i.e., using
its so-called -exact-sig option), and found this not to be competitive relative to
the simple-minded approach of Section 5 on models found by Paradox, despite extra
algorithmic optimizations in h1mc in this case. This seems to be due to the fact that
tables are dense, and that h1mc still has to enumerate them in some way. (E.g., we
have witnessed h1mc generate 510 premises in one instance of (−P Elim).)

On the other hand, the approach of Figure 17 and Figure 18, i.e., without the
(+Elim) rule, is effective in all cases where we can find a model using h1. We
believe this is due to the fact that transitions in alternating tree automata found by h1
are very sparse, so that, in particular, instances of (−P Elim) have very few premises
in general. The role of optimizations (see below) is crucial, too.

Figure 19 gives an indication of the size of Coq proofs produced by h1mc on
the models found by h1. We have copied back the #elts, #entries and #checks from
Figure 10 for easy reference. Times (rightmost column) are reported as t1 + t2, where
t1 is the time taken by h1mc, and t2 is the time taken by Coq to check the proof. Note
that producing and checking a formal Coq proof of the amended NS protocol, even on
the 57 element model found by h1, is practical, even though there is probably a smaller
model—which we didn’t find. It is also rather remarkable that while we haven’t been
able to determinize Sprod in the Yahalom case and in the X.509 case, h1mc manages
to find a proof in a reasonable amount of time.

7.5 Optimization I: Simulation Testing
A very effective shortcut is as follows. Proving Γ ` P (X) ⇐ Q(X), i.e., proving
that LQ(Sprod) ⊆ LP (Sprod), can be done in many cases by exhibiting a form of
simulation relation between automaton states such that Q simulates P .

First, letNE(S) be the smallest set of predicate symbols such that, for every clause
of the form (25) in S, if B1 ⊆ NE(S) and . . . and Bk ⊆ NE(S), then P ∈ NE(S).
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Det(Sprod) Coq proof
Protocol #elts #entries #checks size #lines time
NS 46 217 312 430 106 0.66 Mb 15 560 0.53+10.73s
amended NS 57 188 724 1.245 109 1.40 Mb 31 640 1.90+25.67s
Yahalom ≥ 57 ≥ 2.46 109 3.50 Mb 60 938 7.34+53.77s
Kerberos 57 7 952 84.5 106 1.48 Mb 30 326 2.02+23.97s
X.509 ≥ 29 ≥ 228.5 106 0.97 Mb 20 471 0.95+23.33s
EAP-AKA 72 22 550 7.74 109 1.90 Mb 32 229 0.88+43.30s
EKE 48 16 016 64.5 106 3.20 Mb 73 683 3.18+89.94s

Figure 19: Coq proofs

Clearly, if LP (S) 6= ∅, then P ∈ NE(S). In fact, if S is a non-deterministic au-
tomaton, this yields a decision procedure for non-emptiness: if P ∈ NE(S) then
LP (S) 6= ∅. This is not so for alternating automata, for which non-emptiness is
EXPTIME-complete [25, Theorem 55, Section 7.5]. NE(S) can be computed in
polynomial time by a marking algorithm.

We say that R is a simulation on the states of Sprod if and only if for every clause:

P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk) (26)

with P ∈ NE(Sprod), for every state P ′ with P R P ′, there is a clause:

P ′(f(X1, . . . , Xk)) ⇐ B′1(X1), . . . , B′k(Xk) (27)

in Sprod with Bi R] B′i for every i, 1 ≤ i ≤ k—we let B R] B′ if and only if for
every Q′ ∈ B′, there is a Q ∈ B with Q R Q′.

There is always a largest simulation, which is computable in polynomial time, by a
largest fixpoint computation on the set of pairs (P, P ′) of predicates.

The next two results are probably folklore, at least for non-deterministic automata.

Lemma 7.5 For any two simulations R and R′, (R;R′), defined by P (R;R) P ′′ if
and only if P R P ′ and P ′ R′ P ′′ for some P ′ ∈ P , is a simulation.

Proof. First, we claim that: (∗) if P R P ′, where R is a simulation, and P ∈
NE(Sprod), then P ′ ∈ NE(Sprod). This is by structural induction on a proof that
P ∈ NE(Sprod). Since P ∈ NE(Sprod) there must be a clause (26) with B1 ⊆
NE(Sprod), . . . , Bk ⊆ NE(Sprod). By definition of a simulation, and since P ∈
NE(Sprod), there must be a clause (27) such that Bi R] B′i for every i, 1 ≤ i ≤ k.
For every Q′ ∈ B′i, there is a Q ∈ Bi such that Q R Q′. By induction hypothesis,
since Q ∈ Bi ⊆ NE(Sprod), Q′ ∈ NE(Sprod). So B′i ⊆ NE(Sprod) for every i,
1 ≤ i ≤ k. Whence P ′ ∈ NE(Sprod).

Let R and R′ be as in the Lemma. Let P (R;R′) P ′′, say P R P ′ R ′P ′′. If
P 6∈ NE(Sprod), then we are done, so assume P ∈ NE(Sprod). For every clause (26)
in Sprod there is a clause (27) in Sprod with Bi R] B′i for every i, 1 ≤ i ≤ k. By (∗),
P ′ ∈ NE(Sprod), so there is a clause P ′′(f(X1, . . . , Xk)) ⇐ B′′1 (X1), . . . , B′′k (Xk)

in Sprod such that B′i R
′] B′′i for every i, 1 ≤ i ≤ k. It follows that Bi (R;R′)

]
B′′i

for every i, showing that (R;R′) is a simulation. �
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Proposition 7.6 Let R be the largest simulation. Then R is a quasi-ordering. If E ⊇
E′ then E R] E′. If E R] E′ then LE(Sprod) ⊆ LE′(Sprod).

Proof. First, R is reflexive, because the equality relation is a simulation. To show that
R is transitive, we realize that (R;R) is a simulation, by Lemma 7.5, so by maximality
(R;R) ⊆ R: so R is transitive. That E ⊇ E′ implies E R] E′ is by the definition of
R] and the fact that R is reflexive. The last claim is shown by proving that whenever
R is a simulation, then for every ground term t ∈ LE(Sprod), whenever E �] E′
then t ∈ LE′(Sprod). This is proved by structural induction on t = f(t1, . . . , tk). Let
E′ = {P ′1, . . . , P ′m}. Since E �] E′, for every j, 1 ≤ j ≤ m, there is a Pj ∈ E such
that Pj � P ′j . Since t ∈ LE(Sprod), t ∈ LPj

(Sprod) for every j, so there is a clause:

Pj(f(X1, . . . , Xk))⇐ Bj1(X1), . . . , Bjk(Xk)

in Sprod such that ti ∈ LBji(Sprod) for every i, 1 ≤ i ≤ k. Since t ∈ LPj (Sprod),
LPj (Sprod) 6= ∅, so Pj ∈ NE(Sprod), and because Pj R P ′j , by definition there must
be a clause:

P ′j(f(X1, . . . , Xk))⇐ B′j1(X1), . . . , B′jk(Xk)

such that Bji R] B′ji for every i, 1 ≤ i ≤ k. By induction hypothesis, since ti ∈
LBji

(Sprod), ti ∈ LB′ji(Sprod). So, using the clause above, t ∈ LP ′j (Sprod). As j is
arbitrary between 1 and m, t ∈ LE′(Sprod). �

It follows that, if there is a simulation R with Q R P , then LQ(Sprod) ⊆ LP (Sprod).
This again compiles into a Coq proof using fix, case and inversion.

7.6 Optimization II: Checking the Abstracted Clauses, not the Orig-
inal Set

Another h1-specific optimization is the following. Remember that h1 first abstracts
the initial clause set S into another clause set S′ that falls into the class H1. Instead
of model-checking S directly against Det(Sprod), we model-check S′ instead, then
produce a Coq proof that S′ implies S. Since S′ is obtained from S by some reversed
form of resolution, showing that S′ implies S is particularly easy.

7.7 Optimization III: Memoization
The final important optimization is that h1mc memoizes proof attempts. That is, when
attempting to derive Γ ` C, it first checks whether it has already derived Γ′ ` C ′ for
some Γ′ ⊆ Γ and some clause C ′ that subsumes C, i.e., such that C = C ′σ ∨ D for
some substitution σ and some subclauseD. If so, it reuses the proof of Γ′ ` C ′ to infer
Γ ` C directly.

Our tool h1mc also rests on less important optimizations, which we therefore omit.
See the appendices of the full version of the paper [43], available from the author’s
Web page.
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8 Equational Theories
More and more protocols in the literature can only be modeled using equational theo-
ries, to represent e.g. bitwise exclusive-or (xor) or modular exponentiation [29]. Our
tool h1 really cannot deal with such equational theories, unless the equations can be
eliminated, as we have suggested in the case of EKE in Section 5. This trick generalizes
Blanchet’s rule compilation trick [14].

However, xor and modular exponentiation are two examples of theories that cannot
be dealt with in such a way. While h1 cannot deal with them, this is in principle easy
to Paradox: just add the needed equations as unit clauses. For example, Figure 22
lists axioms for modular exponentiation as used in Diffie-Hellman key agreement [35],
where exponents obey an Abelian group law ∗; g(M) is meant to denote gM for a fixed
generator g. (Following an established tradition in automated deduction, we use ≈ for
the equality symbol, to distinguish it visually from actual equality.)

It is easy to extend the approach of Section 5 to the equational case. Indeed, to
model-check the clause set S against the finite modelM, modulo the equational theory
E, we only need to model-check S∪E, under the interpretation that≈ is equality. One
might let a finite model finder find a model for S ∪ E ∪ Eq, where Eq is the theory of
equality (see below) to this end, however this is not needed: any model found by a
finite model finder such as Paradox will interpret ≈ as equality, so we only have to
check S ∪ E.

Generating Coq proofs from an explicit finite model M of S ∪ E, where ≈ is
equality overM, is done as in Section 5. The only difference has to do with equality.
Indeed, ≈ cannot be interpreted as Coq’s default equality. We illustrate this on a small
example. Remember the definition Inductive term : Set := s : term→ term | 0 :
term that we used that we used in Section 7.3, and imagine we want to interpret natural
numbers (of type term) modulo the equation s(s(X)) = X; i.e., modulo 2. Then one
can prove in Coq that s(s(X)) 6= X for all X , so Coq equality = cannot be used
for our equality modulo 2. (Beginners in Coq should be warned not to attempt to use
Axiom eqn1 : ∀X : term ·s(s(X)) = X to this end. This is a gross misinterpretation
of what axioms are, and results in an inconsistency.)

In fact, one should define another type of “terms modulo 2”. (Admittedly, in this
simple example, one could also cheat and observe that this is just the finite type of bits.)
The standard way of doing so in Coq is to use a so-called setoid type, i.e., a record
type whose first field is the carrier type (e.g., term), the second one is an equivalence
relation over the carrier type, and the remaining field is a proof that this is indeed
an equivalence relation. Several proposals to include so-called quotient types in type
theories have been considered [48, 47]. Whether they are based on defining actual,
new quotient types, or on using setoids, their mere definition requires one to produce
proofs of reflexivity, symmetry, and transitivity. Similarly, one also has to show that
every function symbol f and every predicate symbol is defined on equivalence classes,
independently of their representatives. Moreover, since our intended equality is not
Coq’s built-in equality, we will have to use a distinct predicate equal for our equality.

Accordingly, to check the finite modelM found by Paradox, we have to produce
Coq proofs of S ∪ Ẽ ∪ Eq, where Ẽ is the set of clauses equal(M,N) when M ≈ N
ranges over the equations ofE, and Eq is the theory of equality: for each function sym-
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atti(g(nai(A,B)))⇐ agent(A), agent(B)

atti(g(nbi(A,B)))⇐ agent(A), agent(B)

atti({one}g(nai(A,B)∗Nb)⇐ atti(g(Nb))

att2(M)⇐ att1(M)

att2(na1(A,B)) att2(nb1(A,B))

att2(g(na1(A,B) ∗ nb1(A,B)))

⊥⇐ att2(na2(a, b) ∗ nb2(a, b))

Figure 20: Diffie-Hellman protocol rules, phases, and security goal

bol f of arity k, a clause equal(f(X1, . . . , Xk), f(Y1, . . . , Yk)) ⇐ equal(X1, Y1),
. . . , equal(Xk, Yk), for each predicate symbol P , a clause P (X)⇐ P (Y ), equal(X,
Y ), and finally the clauses equal(X,X), equal(X,Y ) ⇐ equal(Y,X) and finally
equal(X,Z)⇐ equal(X,Y ), equal(Y, Z).

This is easily achieved, using the approach of Section 5. Note that this contrasts
with handling equality in automated theorem proving, which can make proof search
harder (e.g., H1 plus equality is undecidable [42, Theorem 11]). But checking them
against a finite model is no harder than in the non-equational case, and producing Coq
proofs induces no extra difficulty.

We were happily surprised to see that this approach worked fine. Paradox runs
slowly, but finds models with few elements on all the secure protocols we have found
in the literature again.

8.1 Diffie-Hellman Key Exchange
We start with the small Diffie-Hellman protocol (A → B : gNa , B → A : gNb , fol-
lowed by some message exchange A→ B : {1}gNa∗Nb ), again with old compromised
sessions, and more recent sessions.

Precisely, we model the Diffie-Hellman protocol by the clauses in Figure 1 (i =
1, 2), Figure 21 (i = 1, 2), Figure 20 (i = 1, 2), Figure 22 and Figure 4.

The first three clauses of Figure 20 model the protocol itself, both in old and cur-
rent sessions (i = 1, 2). The next clause is just (18). The next three clauses model
corruption of old values of Na = na1(A,B) and Nb = nb1(A,B), together with the
old session keys gNa∗Nb = g(na1(A,B) ∗ nb1(A,B)). Finally, the last clause states
that we would like the key gNa∗Nb = na2(a, b) ∗ nb2(a, b) shared between Alice (a)
and Bob (b) in current sessions to be secret.

Figure 21 shows the additional deduction rules we require. While most of them
are standard, one should note the clause atti(g(X ∗ Y )) ⇐ atti(g(X)), atti(Y ),
which states that one can get gX∗Y from gX and Y—by computing (gX)

Y . We could
have modeled this by adding an equation such as (gX)

Y ≈ gX∗Y to Figure 22, but this
would have complicated the theory, and would have required us to replace the unary
operation g( ) by binary exponentiation. The approach we take was used in [45].
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atti(zero) atti(one)

atti(g(X)) ⇐ atti(X)

atti(g(X ∗ Y )) ⇐ atti(g(X)), atti(Y )

atti(X ∗ Y ) ⇐ atti(X), atti(Y )

atti(inv(X)) ⇐ atti(X)

Figure 21: Diffie-Hellman extra intruder deduction rules

X ∗ one ≈ X X ∗ Y ≈ Y ∗X X ∗ (Y ∗ Z) ≈ (X ∗ Y ) ∗ Z
X ∗ inv(X) ≈ one g(zero) ≈ one

Figure 22: Diffie-Hellman equations

Paradox finds that the common key gNa∗Nb of current sessions is unknown to the
intruder in 0.34 s, producing a 3 element model (namely Z/3Z) with 100 entries. Us-
ing the approach of Section 5, we obtain a 641 line Coq proof of the Diffie-Hellman
protocol, which is checked in 0.74s.

8.2 The EKE Protocol, Take 2
While we have already used the EKE protocol as example in Section 5, we somehow
cheated. Indeed, we removed equations by superposition as a preprocessing step. How-
ever, we did not prove that any model of the preprocessed clause set could be converted
to one of the original clause set.

We now run Paradox again, this time without preprocessing, and with the equations
dec(enc(X,Y ), Y ) = X and enc(dec(X,Y ), Y ) = X . Paradox finds a 4-element
model in 0.40s (not the same as the one reported in Section 5, though), and the approach
of Section 5 yields a 5 465 line Coq proof, which is checked in 2.90s.

8.3 The SKEME Protocol
The SKEME protocol [55] allows two agents to exchange a secret key, and uses Diffie-
Hellman exponentiation, plus message authentication codes (macs). Although it is
meant to run in several separate phases called SHARE, EXCH, and AUTH, which are meant
to be playable independently, so as to avert denial of service attacks, such phases have
nothing to do with our phases. We shall call them the sub-protocols of SKEME. In
particular, we consider that any message exchange from any of the SHARE, EXCH, and
AUTH sub-protocols can be played, and even interleaved, during one of the two phases
we consider, although some session of both SHARE and EXCH should have been played
before AUTH can proceed. The nonces Na, Nb, and the Diffie-Hellman secrets Xa,
Xb that are created fresh in each phase. As before, we consider that these values, as
created in phase 1, have been possibly disclosed in phase 2. That the protocol is secure
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shows that, as claimed, SKEME has perfect forward secrecy of the final shared key
K0 = h(Na, Nb).

As additional symbols, we use a two-place hash functions h, with the Dolev-Yao
intruder axiom atti(h(X,Y )) ⇐ atti(X), atti(Y ), and a one-place mac function
mac, with the axiom atti(mac(X,Y ))⇐ atti(X), atti(Y ).

The three sub-protocols of the SKEME protocol are shown in Figure 23.

SHARE :
1. A −→ B : {A,Na}Kb

2. B −→ A : {Nb}Ka

EXCH :
1. A −→ B : gXa

2. B −→ A : gXb

AUTH :
1. A −→ B : mac([gXb , gXa , A,B], h(Na, Nb))
2. B −→ A : mac([gXa , gXb , B,A], h(Na, Nb))

Figure 23: The SKEME Protocol

Paradox finds a 6 element model in 2 218s (37 minutes), and the approach of
Section 5 produces a 7 352 line Coq proof, which is checked in 76s.

8.4 The Just-Fast-Keying Protocol, with Responder Security
The penultimate protocol involving an equational theory that we have tested in the JFKr
protocol [5]. This one uses the Diffie-Hellman equational theory, plus asymmetric key
signatures sign(M,A) (of message M , using A’s private key). Although signatures
are assumed without message recovery, the security of JFKr does not depend on sig-
natures hiding the signed message. So, we include a clause stating that the Dolev-Yao
intruder may actually be able to recover the message from its signed version.

1. A −→ B : h(Na), gXa

2. B −→ A : h(Na), Nb, g
Xb , grpinfoR, mac([gXb , Nb, h(Na), ip], Hkb)

3. A −→ B : Na, Nb, g
Xa , gXb , mac([gXb , Nb, h(Na), ip], Hkb),M, mac([tagI,M ],Ka)

where M = {A,B, sa, sign([h(Na), Nb, g
Xa , gXb , grpinfoR], A)}Ke

Ke = mac([h(Na), Nb, one], gXa∗Xb)
Ka = mac([h(Na), Nb, two], gXa∗Xb)

4. B −→ A : M ′, mac([tagR,M ′],Ka)
where M ′ = {B, sa, sign([gXb , Nb, g

Xa , h(Na)], B)}Ke

Figure 24: The JFKr Protocol

The protocol is displayed in Figure 24, where h is a (unary) hash function and
mac is a binary mac function, axiomatized as in Section 8.3. The constants grpinfoR
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1. A −→ B : A,B,Na

2. B −→ S : A,B,Na, Nb

3. S −→ B : Ns,
f1(Ns, Nb, A, Pb)⊕ f1(Ns, Na, B, Pa)︸ ︷︷ ︸

K

,

f2(Ns, Nb, A, Pb)⊕ f2(Ns, Na, B, Pa)︸ ︷︷ ︸
Ha

,

f3(Ns, Nb, A, Pb)⊕ f3(Ns, Na, B, Pa)︸ ︷︷ ︸
Hb

,

g(K,Ha, Hb, Pb)
4. B −→ A : Ns, Hb

5. A −→ B : Ha

Figure 25: Gong’s protocol, from SPORE

and ip abstract away some relatively unimportant details of the protocol: grpinfoR

is a record containing information as to the group used in Diffie-Hellman exponen-
tiation, and allows one to check, for example, that g is indeed a primitive element
of this group, and that this group has sufficiently high order; sa is the so-called se-
curity association record; the constant ip abstracts away the IP addresses of A and
B, which are easy to spoof, and cannot be trusted—so we merge all these addresses
into just one constant. Other constants such as tagI, tagR, zero, one, two, are
tags and should typically remain distinct; they are well-known to the Dolev-Yao in-
truder. The key Hkb is a long term secret, known to B only. The final, secret key is
Kab = mac([h(Na), Nb, zero], gXa∗Xb).

Paradox finds a 3-element model in 524s (8 minutes 44), and the approach of Sec-
tion 5 produces a 6 335 line Coq proof, which is checked in 47.6s.

8.5 Spore’s Version of Gong’s Protocol
For a final, even more complicated example, we modeled Gong’s protocol [39], or
rather the variant from the SPORE repository [78]. This is shown in Figure 25, and
uses an operator ⊕ (exclusive-or) that is associative, commutative, has a unit 0 and
is nilpotent (M ⊕M ≈ 0). Here f1, f2, f3, g are one-way functions, Pa is a long-
term secret shared between A and S, and similarly for Pb. We omit the clauses, which
again include two phases separated by an Oops move revealing all session keys from
the first phase. Using Paradox, we have been able to verify that the session key K =
f1(Ns, Na, B, Pa) remained secret in current sessions, from the point of view of Alice,
Bob and the trusted third-party: Paradox finds a 4 element model in two hours, with
1 774 table entries.

Gong’s protocol is based on the equational theory of bitwise exclusive or, shown in
Figure 27.

We also need extra intruder deduction rules, shown in Figure 28.
The protocol rules are given in Figure 26. The first five clauses correspond to the
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atti([A,B, nai(A,B)])⇐ agent(A), agent(B)
atti([A,B,Na, nbi(A,B,Na)])⇐ atti([A,B,Na])
atti([ nsi(A,B,Na, Nb),

f1(nsi(A,B,Na, Nb), Nb, A, p(B))⊕ f1(nsi(A,B,Na, Nb), Na, B, p(A)),
f2(nsi(A,B,Na, Nb), Nb, A, p(B))⊕ f2(nsi(A,B,Na, Nb), Na, B, p(A)),
f3(nsi(A,B,Na, Nb), Nb, A, p(B))⊕ f3(nsi(A,B,Na, Nb), Na, B, p(A)),
g( f1(nsi(A,B,Na, Nb), Na, B, p(A)),

f2(nsi(A,B,Na, Nb), Na, B, p(A)),
f3(nsi(A,B,Na, Nb), Na, B, p(A)),
p(B))

]) ⇐ atti([A,B,Na, Nb])
atti([Ns, Hb])⇐ atti([Ns,

f1(Ns, nbi(A,B,Na), A, p(B))⊕K),
f2(Ns, nbi(A,B,Na), A, p(B))⊕Ha,
f3(Ns, nbi(A,B,Na), A, p(B))⊕Hb,
g(K,Ha, Hb, p(B))])

atti(f2(Ns, nai(A,B), B, p(A)))⇐ atti([Ns, f3(Ns, nai(A,B), B, p(A))])
alice keyi(A, f1(Ns, nai(A,B), B, p(A)))⇐ atti([Ns, f3(Ns, nai(A,B), B, p(A))])

bob keyi(B,K)⇐ atti([Ns,
f1(Ns, nbi(A,B,Na), A, p(B))⊕K),
f2(Ns, nbi(A,B,Na), A, p(B))⊕Ha,
f3(Ns, nbi(A,B,Na), A, p(B))⊕Hb,
g(K,Ha, Hb, p(B))]),

atti(Ha)

Figure 26: Gong protocol rules

(X ⊕ Y )⊕ Z ≈ X ⊕ (Y ⊕ Z) X ⊕ Y ≈ Y ⊕X
X ⊕ zero ≈ X X ⊕X ≈ zero

Figure 27: Axiomatizing xor

atti(zero) atti(X ⊕ Y )⇐ atti(X), atti(Y )

Figure 28: Gong extra intruder deduction rules
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att2(M)⇐ att1(M)

att2(f1(ns1(A,B,Na, Nb), Na, B, p(A)))

att2(na1(A,B))

att2(nb1(A,B,Na))

att2(ns1(A,B,Na, Nb))

Figure 29: Phases in Gong’s protocol

five messages of Figure 25, the last two clauses define the keys K that Alice (A) and
Bob (B) get, respectively. In Bob’s case, note that we obtain K from message 3, and
we check the value of Ha using message 5. The latter just means checking whether
atti(Ha) holds in our model.

Handling phases is done by slight variants of the rules of Figure 5, shown in Fig-
ure 29. We now assume the old keys f1(ns1(A,B,Na, Nb), Na, B, p(A)) are known
in phase 2, as well as all old nonces.

Our security goals are again, that all session keys, as generated by the server, and
as received by Alice and Bob, are unknown to the intruder, see Figure 30.

⊥⇐ att2(f1(ns2(a, b, Na, Nb)))

⊥⇐ att2(Kab), alice key2(a,Kab)

⊥⇐ att2(Kab), bob key2(b,Kab)

Figure 30: (Negated) security goals for Gong’s protocol

Finally, Gong’s protocol as a whole is defined by the rules in Figures 6, 4, 27, 1,
28, 26, and 30.

Using the approach of Section 5, we have produced a 2 555 line Coq proof of
Gong’s protocol, which is checked in 1 204 s (20 minutes).

9 Conclusion
We hope to have demonstrated, first, that producing formally checkable proofs from
first-order formulations S of security goals π was difficult, and sometimes more diffi-
cult than verification itself.

On the other hand, we hope to have shown that formal Coq proofs of security could
be extracted and checked efficiently from a model (in the explicit model approach of
Section 5), or from a model-checking process (in the automata-theoretic approach of
Section 7). A summary of our results can be found in Figure 31.

This endeavor is a first step towards formally verifying full security protocols, and
many things remain to be done. For one, complementing this work with formally
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Finding the model Coq proofs
Protocol Time #elts #entries #checks #lines time

Without equality:
NS [66] (Paradox) 1.62s 4 824 3 908 1 038 0+3.29s

(h1) 0.70s 46 217 312 430 106 15 560 0.53+10.73s
amended (Paradox) – – – – – –
NS [67] (h1) 1.71s 57 188 724 1.245 109 31 640 1.90+25.67s
NSL7 (Paradox) 4.85s 4 2 729 2 208 4 415 0+1.76s
[67, 59] (h1) 8.03s over-approximated – –
Yahalom (Paradox) 3 190s 6 5 480 38 864 14 646 0+36.6s
[72] (h1) 4.82s ≥ 57 ≥ 2.46 109 60 938 7.34+53.77s
Kerberos (Paradox) 17.87s 5 1 767 5 518 2 584 0+2.57s
[19] (h1) 0.94s 57 7 952 84.5 106 30 326 2.02+23.97s
X.509 [78] (Paradox) 3 395s 4 142 487 12 670 35 472 0+11.01s

(h1) 0.44s ≥ 29 ≥ 228.5 106 20 471 0.95+23.33s
EAP-AKA (Paradox) 54.3s 3 2 447 1 457 3 763 0+4.42s
[7] (h1) 1.93s 72 22 550 7.74 109 32 229 0.88+43.30s
EKE [11] (Paradox) 0.44s 4 3 697 4 632 5 023 0+1.99s

(h1) 1.88s 48 16 016 64.5 106 73 683 3.18+89.94s
Requiring an equational theory (using Paradox):

Diffie-Hellman [35] 0.34s 3 229 1 191 641 0+0.74s
EKE [11] 0.40s 4 1 055 9 939 5 465 0+2.90s
SKEME [55] 2 218s 6 1 968 125 753 7 352 0+76s
JFKr [5] 524s 3 577 13 028 6 335 0+47.6s
Gong [78] 7 161s 4 4 066 471 145 2 555 0+1 204s

Figure 31: Summary of practical results
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checkable proofs of computational soundness of the Dolev-Yao model, when it is in-
deed sound [51, 79], would be desirable. There is a growing interest from industrial
firms and defense agencies towards formally checked proofs of security models, and
we believe our work solves an important part of it.

Another necessary step is to find techniques that would scale up better. While Para-
dox and the explicit model approach of Section 5 work fine when there is a model of
at most, say, 6 elements, the automata-theoretic approach of Section 7 handles much
larger models, but cannot cope with equational theories yet. However, note that the
number of elements of a model is a very bad measure of its size: function and predi-
cate tables are much larger than what the number of elements suggests. We have also
observed that the size of the model is independent of the size of the protocol to be
proved secure. Rather, the size of the model seems to be correlated to its logical com-
plexity. In particular, we have observed, reproducing an experiment by Koen Claessen,
that some safe C implementations of roles in the Needham-Schroeder asymmetric key
protocol [44] only required models with 3 elements.

It remains to be examined whether scaling up is necessary, or is in fact a non-
problem. The experiments we conducted show, for example, that Paradox, although
generally slower than h1 on non-equational problems (or equational problems that can
be converted to non-equational problems), tends to find models with very few elements
almost all the time. Further research might help in finding models with possibly more
elements, but faster, and which would be easier to check, using h1mc for example.
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[12] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment Coq’Art: The Calculus of Inductive Constructions, volume XXV of Texts
in Theoretical Computer Science. An EATCS Series. Springer Verlag, 2004. 469
pages.

[13] K. Bhargavan, C. Fournet, A. D. Gordon, and A. R. Pucella. Tulafale: A security
tool for Web services. In Proc. 2nd International Symposium on Formal Methods
for Components and Objects (FMCO’03), pages 197–222. Springer Verlag LNCS
3188, 2004.

[14] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages
82–96. IEEE Computer Society Press, 2001.

[15] B. Blanchet. An automatic security protocol verifier based on resolution theorem
proving (invited tutorial). In R. Nieuwenhuis, editor, Proc. 20th International
Conference on Automated Deduction (CADE-20), Tallinn, Estonia, July 2005.
Springer Verlag LNAI 3632.

[16] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiv-
alences for security protocols. Journal of Logic and Algebraic Programming,
75(1):3–51, Feb.–Mar. 2008.

[17] D. Bolignano. An approach to the formal verification of cryptographic proto-
cols. In Proc. 3rd ACM Conference on Computer and Communications Security
(CCS’96), New Delhi, India, Mar. 1996. ACM Press.

47



[18] J. Bull and D. J. Otway. The authentication protocol. Technical Report
DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Research Agency,
Malvern, UK, 1997.

[19] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings
of the Royal Society, 426(1871):233–271, Dec. 1989.

[20] R. Chadha, S. Kremer, and A. Scedrov. Formal analysis of multi-party contract
signing. Journal of Automated Reasoning, 36(1-2):39–83, Jan. 2006.
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