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We investigate equilibrium configurations of the ideal 3D elastica, i.e. inextensible,
unshearable, isotropic, uniform and naturally straight and prismatic rods. Infinite
solution trajectories are expressed analytically and classified in terms of only three
parameters related to physical quantities. Orientation of sections and mechanical
loading are also well described analytically with these parameters. Detailed analysis
of solution trajectories yields two main results. Firstly, all special trajectories are
completely characterized and located in the space of these parameters. Secondly,
a general geometric structure is exhibited for every ideal 3D elastic rod, where the
trajectory winds around a core helix in a tube-shaped envelope. This remarkable
structure leads to a classification of the general case according to three properties
called chirality components. In addition, the geometry of the envelope provides
another characterization of the ideal 3D elastica. For both results, the domains
and the frontiers of every class are plotted in the space of the parameters.

I. INTRODUCTION

Elastic rod models are acting in various problems of different scales, among which the de-
formation of guidewires in interventional radiology1, the anguilliform swimming simulation2

and the study of cell mobility through flagella3. Recently, carbon nanotubes provoked a
great interest in micro- and nano-scale engineering, and continuum mechanics beam models
proved to be useful to simulate their behavior4. Even the important development of micro-
electro-mechanical systems (MEMS) can lead to numerous problems treated with elastic
rods, as the wrong actuation of micro-cantilevers due to capillarity5. In biochemistry, the
elastic deformations of rods provide a good model for filamentary structures such as DNA
molecules6–10, bacterial fibers11,12 and proteins13.

Although it has been studied for over two centuries, the static equilibrium of elastic rods
in large deformation remains not entirely solved. There were various works that successfully
obtained the 3D shape equations in terms of a set of parameters14–16, but these parameters
are not always easily related to physical quantities. It is also difficult to obtain an intuitive
parametrization, with clear effects on the geometry of the rod. To improve the knowledge
of elastic rod configurations, it is necessary to take interest in the corresponding bifurca-
tion problem17. In this perspective, authors proposed classifications of particular cases as
planar elastica18, buckling19, rings20–22, helices23 and clamped elastica24,25. A step toward
a general geometric classification was accomplished by regrouping the majority of cases in
one formalism26. Still the parameters used, roots of a third degree polynomial, have no
immediate physical meaning. Moreover, a graphic representation of the frontiers between
the classes of solutions would improve the understanding of the bifurcation possibilities.
Even though such kind of cartography could be proposed, it is still lacking.

In this paper, we use the formalism of L. D. Landau and E. M. Lifshitz27 to classify all

analytical solutions of ideal 3D elastica. This formalism yields three parameters {λ̃, t̃P , a}
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that are related to physical quantities. These three parameters are sufficient to define
analytically all infinite rod trajectories. Only the case where no force is acting on the
rod is treated separately in supplementary material, using two parameters that are very

similar to λ̃ and t̃P . In all cases, each set of parameters refers to a unique solution, except

in a line interval in space {λ̃, t̃P , a} where two solutions are possible. In addition to the
trajectory, these parameters are relevant to describe analytically orientation of sections and
mechanical loading. Furthermore, the global reference frame chosen by Landau makes the
solutions conveniently and automatically written in a cylindrical coordinate system with
axis z. Thus, it is very convenient to focus on the geometry of the rod and not on its
position and orientation in space.

With this setting, two main results are obtained. Firstly, we localize all well-known

particular trajectories in the space described by the parameters {λ̃, t̃P , a} : straight rods,
circular trajectories, planar elastica, helices, homoclinic shapes and closed shapes. Secondly,
we exhibit a geometric structure of every 3D elastic rod at equilibrium: they all wind
around a core helix of axis z, and are contained within a tube-shaped envelope with circular
section. This structure leads to a general classification of ideal 3D elastica according to three
chiral properties introduced in this article. We have plotted the surfaces that delimit the

corresponding chiral classes in the {λ̃, t̃P , a} space. It also yields analytical expressions of
infinite trajectories in terms of three other parameters {ρ̃H , ρ̃G, a}, that are clearly related to
the geometry of the tube-shaped envelope. Thus, another general characterization of ideal
3D elastica is obtained, according to the pitch and radii of this envelope. These results
provide a precise analytic and geometric representation of the global bifurcation problem
in the general case of ideal elastica.

In section II we present the formalism to express the solutions of ideal 3D elastica, taking
into account all singular cases for numeric implementation. In section III, we obtain the

domain of definition of the parameters, i.e. the region of space {λ̃, t̃P , a} for which there
exist solution rod shapes. Then, in section IV, particular rod geometries are located in this
region. Finally in section V, we present the classification of the general case according to
chiral properties, and the characterization according to the geometry of the tube-shaped
envelope.

Note that all figures with a star (*) in the caption can be viewed interactively in sup-
plementary material. This requires Wolfram CDF Player, which is freely downloadable
at http://www.wolfram.com/cdf-player/. All computations and graphics were executed
with Wolfram Mathematica 1028.

II. PRESENTATION OF THE FORMALISM

A. System of mechanical equilibrium

Ideal elastica24 refers to inextensible, unshearable, isotropic, uniform and naturally
straight and prismatic rods, made of an hyper-elastic material with linear constitutive
relations. Such rods can be described by the Cosserat theory17. We consider them as parts
of generic geometries characterized by the infinite trajectory {r(s) = OG(s), s ∈ R} of
their centre line, together with a local reference frame {G(s),d1,d2,d3} called the Dar-
boux frame and giving the orientation of sections. This description is made in a global
reference frame {O, ei, ej , ek}. Noting with an apostrophe the derivative with respect to s,
inextensibility and unshearability write ||r′(s)|| = 1 and imply that the curvilinear abscissa
is also the arc length. Furthermore, ideal elastica leads to sections perpendicular to the
trajectory, thus the Darboux frame is obtained by a rotation of the Frenet reference frame
{G(s),n, b, t} around the tangent t:

r′(s) = t(s) = d3(s) ∀ s ∈ R. (II.1)

Figure 1 defines the Euler angles {ψ, θ, ϕ} which transform the basis {ei, ej , ek} to the
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local Darboux basis {d1,d2,d3}, so that

dµ = Eµ,1ei + Eµ,2ej + Eµ,3ek ∀ µ ∈ {1, 2, 3} (II.2)

with

E =

 cosψ cos θ cosϕ− sinψ sinϕ sinψ cos θ cosϕ+ cosψ sinϕ −sin θ cosϕ
−cosψ cos θ sinϕ− sinψ cosϕ −sinψ cos θ sinϕ+ cosψ cosϕ sin θ sinϕ

cosψ sin θ sinψ sin θ cos θ

 .

(II.3)
In (II.2), Eµ,ν denotes the coefficient of matrix E at line µ and column ν.

Figure 1. Euler angles : (ψ,ϕ) ∈ [0, 2π[2 and θ ∈ [0, π].

The angular deformation Ω(s) of the rod is defined as the angle density vector

Ω(s) = ψ′(s)ek + θ′(s)v2(s) + ϕ′(s)d3(s) , (II.4)

where v2(s) = −sin(ψ)ei + cos(ψ)ej . Ω(s) is also called the Darboux vector, and can be
defined equivalently by

d′µ(s) = Ω(s)× dµ(s) ∀ µ ∈ {1, 2, 3}. (II.5)

This vector can be written in the Frenet frame as follows27:

Ω(s) = κ(s)b(s) + Ωtt(s) (II.6)

where Ωt is the constant physical twist density and κ(s) is the local curvature, defined in
the inextensible case as

κ(s) = ||t′(s)|| = ||r′′(s)||. (II.7)

Calling F the force and M the moment that act across each section, the mechanical
equilibrium is given by27

{
F ′(s) = 0

M ′(s) + t(s)× F (s) = 0.

(II.8a)

(II.8b)

Considering only rods with isotropic cross-sections, K0 = K1 = K2 denotes the bending
rigidity and K3 the twisting rigidity. The integration of system (II.8) from 0 to s, together
with the hyper-elastic constitutive relations, lead to{

F (s) = F = cst

M(s) = K0κ(s)b(s) +K3Ωtt(s) = F × r(s) + MO

(II.9a)

(II.9b)

with

MO = −F × r(0) + M(0). (II.10)
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(II.9) can also be written as a s-independent Hamiltonian system21, whose constant
Hamiltonian is the total energy density

H =
1

2
M ·Ω + F · d3. (II.11)

B. Constants of the problem

Four constants F , MO, M(s) · t and H can be identified in (II.9). When F 6= 0,
Landau’s formalism reduces these constants to four scalar quantities, through a judicious
choice of the initial curvilinear abscissa and of the reference frame. Then, it introduces three
combinations {λ, tP , a} of these constants, that prove sufficient to express the solutions16,27.
Case F = 0 is treated in supplementary material.

1. Initial curvilinear abscissa

It has been demonstrated in many works that for all ideal elastic rods, the quantity
F · d3 has a minimal value16,19,26. With (II.6), (II.9b) and (II.11) it implies the existence
of an abscissa for which ||M || is maximal : this abscissa is chosen as the reference s = 0.
From (II.8b), vectors F , d3(0) and M(0) are coplanar with this choice. Thus, as n(0) is
orthogonal to d3(0) and M(0), it is also orthogonal to F . This interesting property is used
to propose a judicious reference frame, in which elastic trajectories are conveniently written.

2. Global reference frame

Noting F > 0 the norm of the constant vector force F , the global reference frame
{O, ei, ej , ek} is chosen by imposing

ek =
1

F
F , ei = −n(0) , r(0) =

1

F
(M(0) · ej) ei . (II.12)

Note that the curvature κ is maximal at s = 0, hence κ(0) = 0 only occurs for straight
rods.

In this frame

M(0) · ei = K0κ(0)b(0) · ei +K3Ωtt(0) · ei = 0 , (II.13)

and using equations (II.9) to (II.13):

MO = (M(0) · ek) ek = (M(s) · ek) ek ∀ s ∈ R. (II.14)

As a result, this choice reduces the constant force F = Fek to a scalar quantity, and
cancels all components of MO perpendicular to F .

3. Landau’s parameters {λ, tP , a}

The first parameter λ is the component along ek of the moment, divided by the force F :

λ =
1

F
MO · ek =

1

F
M(s) · ek ∀ s ∈ R. (II.15)

The second parameter is the scaled physical twist density

tP =
1

K0
M(s) · t =

K3

K0
Ωt ∀ s ∈ R. (II.16)
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Finally, noting M⊥ek = M − (M · ek) ek, the third parameter a is defined as

a =
2

F
F · t +

1

K0F
||M⊥ek ||2. (II.17)

This parameter can be seen as the sum of the contribution of traction (or compression) and
of the component of the moment orthogonal to ek. With r⊥ek = r − (r · ek) ek, equations
(II.9b), (II.12) and (II.14) lead to

||M⊥ek || = ||F × r|| = ||r⊥ek || F. (II.18)

Using equations (II.6), (II.9b) and (II.11), a can be written as

a = 2
H

F
+

(
1− K0

K3

)
K0

F
t2P −

F

K0
λ2, (II.19)

so that it is a combination of the four constants F , MO · ek, M(s) · t and H.

C. Elastic trajectories

Equation (II.9b) can be written as follows:

M(s) = K0r
′(s)× r′′(s) +K0tPr

′(s) = F × r(s) + λF . (II.20)

Solutions of (II.20) give all the possible elastic trajectories r(s). They can be expressed
analytically in terms of the three parameters {λ, tP , a}. With this objective, the units of
force and length are changed to write (II.9) more generally for every F , K0 and K3. Then,
the cylindrical coordinates (ρ̃, φ, z̃) are identified as the most convenient ones to describe
the solutions. The integration of the resulting system requires firstly to solve a third-
degree polynomial equation: we give the expressions of the corresponding roots. Finally,
the analytical solutions of the trajectory of the centre line are expressed. We take special
interest in every particular cases that may be usually ignored.

1. Dimensionless equation

In (Ref. 16),
√

2K0/F is judiciously proposed as the unit of length. We prefer to choose√
K0/F , because it leads to the most convenient set of parameters {λ̃, t̃P , a} to classify the

solutions. We also take F as the unit of force. Dimensionless quantities are denoted with a
tilda:

F = F F̃ M =
√
K0F M̃ r =

√
K0

F
r̃

κ =

√
F

K0
κ̃ λ =

√
K0

F
λ̃ tP =

√
F

K0
t̃P

(II.21)

Under this nondimensionalization, equation (II.20) becomes

M̃(s̃) = Ω̃⊥t + t̃P t = r̃′ × r̃′′ + t̃P r̃′ = ek × r̃ + λ̃ ek. (II.22)

2. Cylindrical coordinates

The dimensionless cartesian coordinates are noted (x̃, ỹ, z̃), such as

r̃(s̃) = x̃(s̃)ei + ỹ(s̃)ej + z̃(s̃)ek. (II.23)
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Solutions of (II.22) are conveniently expressed with the cylindrical coordinates (ρ̃, φ, z̃):

x̃ = ρ̃ cos(φ) , ỹ = ρ̃ sin(φ). (II.24)

Noting ũ = ρ̃2, equation (II.22) yields16

z̃′(s̃) =
1

2
(a− ũ)

φ̃′(s̃) =
1

ũ

(
t̃P −

λ̃

2
(a− ũ)

)

ũ′(s̃) = ±
√
p3(ũ).

(II.25a)

(II.25b)

(II.25c)

p3(ũ) is a polynomial of the third degree, with roots {ũ1, ũ2, ũ3}, defined as

p3(ũ) = −
(
ε3ũ

3 + ε2ũ
2 + ε1ũ+ ε0

)
= −(ũ− ũ1)(ũ− ũ2)(ũ− ũ3) (II.26)

where

ε0 = (λ̃a− 2t̃P )2, ε1 = 4λ̃t̃P − 2λ̃2a+ a2 − 4, ε2 = λ̃2 − 2a, ε3 = 1. (II.27)

3. Roots of p3(ũ)

To integrate (II.25c) it is convenient to factorize p3(ũ), which requires to express its roots
{ũ1, ũ2, ũ3}. These roots are related to the coefficients εk through

ũ1 + ũ2 + ũ3 = −ε2 = 2a− λ̃2

ũ1ũ2 + ũ1ũ3 + ũ2ũ3 = ε1 = 4λ̃t̃P − 2λ̃2a+ a2 − 4

ũ1ũ2ũ3 = −ε0 = −(λ̃a− 2t̃P )2 ≤ 0.

(II.28a)

(II.28b)

(II.28c)

The discriminant ∆ of p3(ũ) is defined by

∆ = ∆(λ̃, t̃P , a) = −(4p3 + 27q2) (II.29)

where

p = p(λ̃, t̃P , a) = −1

3
ε2

2 + ε1 , q = q(λ̃, t̃P , a) =
2

27
ε3

2 −
1

3
ε1ε2 + ε0. (II.30)

The roots ũk (k ∈ {1, 2, 3}) are all real if and only if ∆ ≥ 0, and in this case they are
expressed as29

ũk = ũk(λ̃, t̃P , a) =
1

3
(2a− λ̃2) + 2

√
−p

3
cos

(
1

3
arccos

(
−q

2

√
−27

p3

)
+

2kπ

3

)
. (II.31)

With this definition, we obtain real-ordered roots such that ũ1 ≤ ũ2 ≤ ũ3. The case p = 0

may occur only when ∆ = 0 and leads to one triple root ũk = (2a− λ̃2)/3.

4. Solutions

(II.25) has solutions if {ũ1, ũ2, ũ3} are real and under other conditions that are exposed
in section III. When ũ3 6= 0, these solutions are expressed in terms of elliptic functions and
elliptic integrals of modulus m and characteristic n defined as

m =
ũ3 − ũ2

ũ3 − ũ1
, n =

ũ3 − ũ2

ũ3
. (II.32)
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In supplementary material, it is demonstrated that ũ3 = 0 corresponds to straight rods.

To obtain the solutions, the inverse of equation (II.25c) is integrated from ũ to ũ3. This
integration is achieved through a change of variable sin2Ψ = (ũ3 − ũ)/(ũ3 − ũ2), that we
translate into

Ψ(s̃) = am(cΨs̃,m) , with cΨ =
1

2

√
ũ3 − ũ1 , (II.33)

where am(·,m) denotes the Jacobi amplitude function. This results in16

ũ(s̃) = ũ3 − (ũ3 − ũ2) sn2 (cΨ s̃,m)

φ(s̃) =
1

2
λ̃ s̃+

2 t̃P − λ̃ a
2 cΨ ũ3

Π(n,Ψ(s̃),m) + φcor(s̃)

z̃(s̃) =
1

2
(a− ũ1) s̃− 2 cΨE(Ψ(s̃),m)

(II.34a)

(II.34b)

(II.34c)

where φcor(s̃) is defined as follows to take into account singularities when the trajectory
intersects axis z̃:

φcor(s̃) =

{
(bs̃/s̃per − 1/2c+ 1)π if n = 1 and m 6= 1

0 otherwise
. (II.35)

sn(·,m) is the sinus function of Jacobi and E(·,m), Π(n, ·,m) are the elliptic integrals of
respectively the second and the third kind. See appendix A for the expressions of the
elliptic functions used in this article. b·c represents the floor function.

Note that when m 6= 1 and ũ1 6= ũ3, the function ũ(s̃) of (II.34a) is periodic with period

s̃per =
2K(m)

cΨ
, (II.36)

where K(m) = F (π/2,m) is the complete elliptic integral of the first kind. Then, ũ2 and
ũ3 are respectively the minimum and the maximum values of ũ(s̃) and

ũ(0) = ũ3 , ũ (s̃per/2) = ũ2. (II.37)

The angular coordinate φ(s̃) of (II.34b) vary in R, so that it is continuous when the
trajectory does not intersect axis z̃. As φ(0) = 0, the integer value of φ(s̃)/2π is the signed
number of turns done by r̃⊥ek around ek from 0 to s̃ (positive if the turns are achieved
in the trigonometric orientation). When n = 1, which is equivalent to ũ2 = 0, the term
involving n in (II.34b) has to be removed. In this case, the corrective value φcor(s̃) is
necessary to add π to φ(s̃) each time the trajectory intersects axis z̃.

System (II.34) gives the equations of almost all infinite elastic trajectories, parametrized

by only three constants {λ̃, t̃P , a}. For a complete overview of ideal elastica, we only need to
add the straight rods obtained in subsection IV A and the force-less configurations studied
in supplementary material.

D. Orientation of sections

There are two methods to define the physical orientation of sections. The first one is to
express the Euler angles {ψ, θ, ϕ} that orientate {d1,d2,d3} in {ei, ej , ek}. The second one
is to express the angle ζ between the Darboux frame and the Frenet frame. Whatever the

method, the three parameters {λ̃, t̃P , a} are pertinent to define the orientation of sections:
only two additional parameters {ϕ(0),K3/K0} or {ζ(0),K3/K0} are needed.
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1. Expressions of Euler angles

To express Euler angles we first write the angular deformation Ω in the Darboux frame30:

Ω(s) = Ω1d1 + Ω2d2 + Ω3d3 (II.38)

with

Ω1 = θ′sin(ϕ)− ψ′sin(θ)cos(ϕ) (II.39a)

Ω2 = θ′cos(ϕ) + ψ′sin(θ)sin(ϕ) (II.39b)

Ω3 = Ωt = ψ′cos(θ) + ϕ′. (II.39c)

We note zθ = cos(θ) = t · ek = z̃′. Non-dimensionalizing the definitions of λ and tP in
II B and using equations (II.2), (II.22), (II.38) and (II.39) yield

λ̃ = ψ̃′
(

1 +

(
K3

K0
− 1

)
z2
θ

)
+
K3

K0
ϕ̃′zθ

t̃P =
K3

K0

(
ψ̃′zθ + ϕ̃′

)
.

(II.40a)

(II.40b)

Then with equation (II.25a), we arrive at

ψ′(s̃) =
λ̃− t̃P zθ
1− z2

θ

ϕ′(s̃) =

(
K0

K3
− 1

)
t̃P +

t̃P − λ̃zθ
1− z2

θ

zθ(s̃) = z̃′(s̃) =
1

2
(a− ũ).

(II.41a)

(II.41b)

(II.41c)

The solutions of this system are expressed in terms of elliptic functions26 (see appendix B):



ψ(s̃) ≡ ψ(0) + ψ+(s̃) + ψ−(s̃) + ψcor(s̃) [2π]

θ(s̃) = arccos

(
a− ũ3

2
+
ũ3 − ũ2

2
sn2 (cΨs̃,m)

)
ϕ(s̃) ≡ ϕ(0) + (K0/K3 − 1) t̃P s̃+ ψ+(s̃)− ψ−(s̃) + ψcor(s̃) [2π]

(II.42a)

(II.42b)

(II.42c)

with

ψ+(s̃) =
λ̃+ t̃P

2 + a− ũ3

1

cΨ
Π
(
n+,Ψ(s̃),m

)
, ψ−(s̃) =

λ̃− t̃P
2− a+ ũ3

1

cΨ
Π
(
n−,Ψ(s̃),m

)
. (II.43a)

The characteristics n+ and n− are related to {ũ1, ũ2, ũ3} by

n+ =
ũ3 − ũ2

ũ3 − (a+ 2)
, n− =

ũ3 − ũ2

ũ3 − (a− 2)
. (II.44)

When n+ (respectively n−) has a vanishing denominator, equations (II.42) can be modified
by suppressing the terms ψ+(s̃) (respectively ψ−(s̃)). The correction ψcor(s̃) is not zero
only when θ(s̃) reaches the value 0 or π, which implies a discontinuity of ψ and ϕ in [0, 2π].
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The value ψ(0) is equal to the precession angle of the Frenet frame at s̃ = 0:

ψ(0) =


π if θ(0) = 0

0 if θ(0) = π

sign

(
t̃P −

λ̃

2
(a− ũ3)

)
π

2
otherwise.

(II.45)

The value ϕ(0) ∈ [0, 2π[ is chosen arbitrarily: it is the reference for the angular position of
the Darboux frame around t = d3.

System (II.42) gives the orientation of sections parametrized by the three constants

{λ̃, t̃P , a}. Note that both the trajectory and the orientation of sections can also be conve-
niently expressed with five other parameters {z1, z2, z3, sg1, sg2}26 (see appendix C).

2. Expression of angle ζ = (n̂,d1)

Another way to define the orientation of sections is to express the angle ζ = (n̂,d1) that
orientates the Darboux frame in the Frenet frame around the tangent t = d3. This angle is
such that30

ζ̃ ′(s̃) = Ω̃t − t̃G , (II.46)

where t̃G is the geometric torsion, defined as

t̃G = −b̃′ · n. (II.47)

With this sign convention, right-handed helices have a constant positive t̃G. Using the

equation of equilibrium (II.9b) to calculate b̃′, it is possible to demonstrate that16

t̃G(s̃) =
1

2

(
t̃P −

2λ̃− t̃P (a+ λ̃2 − t̃P
2
)

κ̃2(s̃)

)
, (II.48)

where κ̃2(s̃) is given by the square of (II.22):

κ̃2(s̃) = ũ(s̃) + λ̃2 − t̃P
2
. (II.49)

Integration of equation (II.46) gives

ζ(s̃) = ζ(0) +

(
K0

K3
− 1

2

)
t̃P s̃+

2λ̃− t̃P (a+ λ̃2 − t̃P
2
)

2cΨκ̃2(0)
Π(nζ ,Ψ(s̃),m) + ζcor(s̃) (II.50)

with

nζ =
ũ3 − ũ2

κ̃2(0)
(II.51)

ζcor(s̃) =

{
(bs̃/s̃per − 1/2c+ 1)π if t̃G = ũ2 = 0 and ũ1ũ3 6= 0

0 otherwise
. (II.52)

The correction ζcor(s̃) takes care of the singularities of 2D trajectories at inflexion points.
The value ζ(0) ∈ [0, 2π[ is chosen arbitrarily: it is the reference for the angular position of
the Darboux frame around t = d3.
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E. Symmetry of elastic rods

An important property of elastic rods is their symmetry through the transformation

{λ̃, t̃P , a} −→ {−λ̃,−t̃P , a}. With definition (II.26) of p3(ũ) we observe that this transfor-
mation leaves p3(ũ) unchanged, and the roots {ũ1, ũ2, ũ3} are therefore unchanged. Con-
sidering the equations of trajectory (II.34) we conclude that

{ρ̃, φ, z̃} −→ {ρ̃,−φ, z̃}, (II.53)

which corresponds to a symmetry of the trajectory with respect to the plane {O, ei, ek}.
This symmetry also bears on the Darboux frame, as we see with equation (II.50) that

ζ(s)− ζ(0) −→ −(ζ(s)− ζ(0)). (II.54)

III. DOMAIN OF DEFINITION

Differential equations (II.25) can be solved if and only if there exists an interval Dũ ⊂ R+

such that

∀ ũ ∈ Dũ, p3(ũ) ≥ 0. (III.1)

Dũ can be reduced to a single real value. The polynomial p3(ũ) is expressed in (II.26), and
its sign is readily obtained for large |ũ|: it is positive when ũ −→ −∞ and negative when
ũ −→ +∞. To study more precisely the sign of p3(ũ), we discuss its discriminant ∆ defined
in (II.29).

If ∆ < 0 then p3(ũ) has only one simple real root, which is negative. This invalidates
condition (III.1), excepted when the real root is null, which imply that Dũ = {0} can be
chosen to obtain straight rods: the results exposed in subsection IV A show that these
trajectories are not pertinent, because all straight rods are located in another region. As a
consequence, equations (II.25) require ∆ ≥ 0. In this case, p3(ũ) has three real roots and
with (II.28c) we note that ũ1 is negative, and ũ2 and ũ3 are of the same sign (we show in
supplementary material that ũ3 = 0 implies ũ2 = 0). Thus condition (III.1) is satisfied if

and only if ũ3 is positive, by taking Dũ = [ũ2, ũ3]. As ∆ and ũ3 are functions of {λ̃, t̃P , a},
this implies that the three parameters must evolve within a domain of definition D ⊂ R3

defined as follows:

(λ̃, t̃P , a) ∈ D⇐⇒


∆(λ̃, t̃P , a) ≥ 0

and

ũ3(λ̃, t̃P , a) ≥ 0

. (III.2)

As λ̃ and t̃P are related to the force and moment that are imposed to the rod, they
may vary in all R. Thus, condition (III.2) only bears on a. With the same argument and
considering the definition of a in (II.17), this parameter cannot be bounded by an upper
value. However, the condition ||r′(s)|| = 1 readily leads to a ≥ −2. As a consequence, the
domain of definition D is searched in the form

a ≥ aMin(λ̃, t̃P ) ≥ −2, (III.3)

where aMin(λ̃, t̃P ) is obtained by resolving system (III.2).

A. Positive discriminant ∆

∆ is a fourth-degree polynomial of a (see appendix D). To solve ∆(λ̃, t̃P , a) ≥ 0, we

study its four roots {a1, a2, a3, a4}. These roots ak(λ̃, t̃P ) are expressed analytically in
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appendix D. We choose to classify them as when the four are real, a1 ≤ a2 ≤ a3 ≤ a4.
Then when only two of them are real, they are named a1 and a4. This is done numerically.

In the case t̃P = −λ̃, ∆ has only one double real root

a1(λ̃,−λ̃) = a4(λ̃,−λ̃) = −2. (III.4)

When t̃P = λ̃, ∆ has four real roots shown in figure 2. In the general case when t̃P 6= ±λ̃,
∆ possesses at least two real roots, and all its roots are plotted in figure 3. Note that the

plots are symmetric with respect to the axis λ̃ = t̃P = 0. This is due to the invariance of

∆ with respect to the transformation {λ̃, t̃P , a} −→ {−λ̃,−t̃P , a}, visible in (II.29).

-4 -2 2 4

-4

-2

2

Figure 2. Plot of the real roots {a1, a2, a3, a4} of the discriminant ∆ superposed to a plot of aLow,

as functions of λ̃ in the case t̃P = λ̃. When λ̃ ∈ ]−∞,−2[ ∪ ]2,+∞[, the condition a ≥ aLow
implies that a ∈ ]−∞, a3 = a4[ is excluded, so that the domain of definition is a ∈ [a4,+∞[. When

λ̃ ∈ [−2, 2], a ∈ ]−∞, a1] is not allowed by a ≥ aLow, and a ∈ [a1, a2[ is forbidden by ∆ ≥ 0: in
this case, the domain of definition is a ∈ [a2,+∞[.

This knowledge of the roots of ∆ let us construct table I representing the variations of

the sign of ∆(λ̃, t̃P , a). Seven cases are derived according to the number of real roots and
their multiplicity. We see that in all cases, ∆ is positive for a ∈] −∞, a1] ∪ [a4,+∞[. In
some cases a ∈ [a2, a3] also implies that ∆ is positive, but all other parts of R are forbidden.

B. Positive root ũ3

To complete the resolution of system (III.2), it is necessary to solve ũ3 ≥ 0. Assume that
∆ ≥ 0, then {ũ1, ũ2, ũ3} are real, ũ1 is negative and ũ2 and ũ3 are of the same sign. Thus,
it suffices that one root is positive to ensure that ũ3 is positive. Descartes’s rule of signs
guarantees that there are as many positive roots of p3(ũ) as there are changes of signs in
the sequence (ε3−k)k∈{0,1,2,3} of the coefficients of p3(ũ) defined in (II.27) and ordered by
decreasing subscript (ignoring null εk coefficients). As we only need to identify one positive
root, applying Descartes’s rule of signs leads directly to

∆(λ̃, t̃P , a) ≥ 0 and ũ3(λ̃, t̃P , a) ≥ 0 ⇐⇒ ∆(λ̃, t̃P , a) ≥ 0 and a ≥ aLow(λ̃, t̃P ) (III.5)

where

aLow(λ̃, t̃P ) =


λ̃2 −

√
4− 4λ̃t̃P + λ̃4 if λ̃ 6= 0 and λ̃

(
t̃P − 1/λ̃− 3/16 λ̃3

)
< 0

λ̃2/2 if λ̃ 6= 0 and λ̃
(
t̃P − 1/λ̃− 3/16 λ̃3

)
≥ 0

−2 if λ̃ = 0

(III.6)
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(*) Figure 3. Plots of the roots {a1, a2, a3, a4} of the discriminant ∆ superposed to a plot of the

value aLow, as functions of λ̃ and t̃P : λ̃ ∈ [−b, b], t̃P ∈ [−b, b] and a ∈ [−2b2, b2] where b = 2 in plot

(a) and b = 10 in plot (b). As implicitly shown in these plots, when t̃P 6= ±λ̃ the surface aLow(λ̃, t̃P )

is always located below a4(λ̃, t̃P ) and above a3(λ̃, t̃P ). As a result, the condition a ≥ aLow forbids
the interval a ∈ ]−∞, a3] and the domain of definition is a ∈ [a4,+∞[.

When t̃P = −λ̃, we note that aLow = a1 = a4 = −2 and therefore that a ∈ [a4,+∞[ is

the domain of definition. Figure 2 shows that in the case t̃P = λ̃, for λ̃2 > 4, condition

a ≥ aLow(λ̃, t̃P ) forbids a to be in ] − ∞, a3[ and condition ∆ ≥ 0 (see table I) requires

a ∈ [a3 = a4,+∞[ ; for λ̃2 ≤ 4, a ∈ [a2, a3[ also belongs to the domain of definition. Finally,

figure 3 shows that a is restrained to [a4,+∞[ when t̃P 6= ±λ̃.

As a conclusion, the domain of definition D is such that

(λ̃, t̃P , a) ∈ D ⇐⇒


(λ̃, t̃P ) ∈ R2

a ∈ [aMin(λ̃, t̃P ),+∞[

(III.7)

where

aMin(λ̃, t̃P ) =


a2(λ̃, t̃P ) if t̃P = λ̃ ∈ [−2, 2]

a4(λ̃, t̃P ) otherwise

. (III.8)

This important result is not unexpected as it generalizes the well-known domain of definition
of the Euler elastica to the 3D ideal elastica.
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Table I. Variations of the sign of ∆(λ̃, t̃P , a) : ”+” stands for ∆ > 0, ”−” for ∆ < 0.

t̃P = −λ̃
Case 1 a1 = a4 = −2

t̃P = −λ̃ 6= 0 + 0 +

1 double root

t̃P = λ̃

Case 2 a1 = a2 = −2 a3 = a4 = 2

t̃P = λ̃ = 0 + 0 + 0 +

2 double roots

Case 3 a1 a2 = a3 = a4 = 2

t̃P = λ̃ = ±2 + 0 − 0 +

1 simple & 1 triple roots

Case 4 a1 a2 a3 = a4 = 2

0 6= t̃P = λ̃ 6= ±2 + 0 − 0 + 0 +

2 simple & 1 double roots

t̃P 6= ±λ̃
Case 5 a1 a2 a3 a4

4 simple roots + 0 − 0 + 0 − 0 +

Case 6 a1 a2 = a3 a4
2 simple & 1 double roots + 0 − 0 − 0 +

Case 7 a1 a4
2 simple roots + 0 − 0 +

IV. SPECIAL TRAJECTORIES

With the formalism presented in section II and the definition domain obtained in sec-

tion III, it is possible to position each particular geometry in {λ̃, t̃P , a} space and to charac-
terize them precisely. This is done by imposing geometric constraints on ideal elastic rods

and determining the consequence on parameters {λ̃, t̃P , a}.

A. 1D-2D shapes, helices, homoclinics

Thus, straight rods are obtained for κ̃ = cst = 0, circles for z̃(s̃) constant, 2D elastica
for φ(s̃) piecewise constant, helices for m = 0 and homoclinics for m = 1. In each case,
equations of trajectory (II.34) are simplified and geometric characteristics are identified.
This study is done completely in supplementary material, and leads to the classification

exposed in table II. One particularly remarkable result is that surface aMin(λ̃, t̃P ), the
lower bound of the definition domain, is also the surface of all helices. In figure 4, the

radius and pitch of these helices are plotted as functions of λ̃ and t̃P , which show how

surface aMin(λ̃, t̃P ) is organized. Another important result is that two helices, distinguished
by sg = ±1, correspond to given values of radius ρ̃0 and pitch p̃z :

λ̃ =
ρ̃0 p̃z + sg 2π κ̃ l̃t

2π ρ̃0
, t̃P =

p̃z κ̃+ sg 2π ρ̃0 l̃t
2π ρ̃0

, κ̃ = cst =
ρ̃0

ρ̃2
0 +

(
p̃z
2π

)2 . (IV.1)

In figure 5, straight rods, circles, planar elastica, helices and homoclinics are located in

{λ̃, t̃P , a} space.
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Table II. Location and characterization of special trajectories.

Trajectories Location Roots of p3(ũ) Characteristics

Straight lines
t̃P = aλ̃/2

a = ±2
ũ2 ũ3 = 0

Torsion angle density Ω̃t = (K0/K3)t̃P

Tension if a = 2 , compression if a = −2

Circles

λ̃ = ±1/
√
a

t̃P = 1/λ̃

a > 0

ũ2 = ũ3 = a
Radius ρ̃0 =

√
a

Torsion angle density Ω̃t = (K0/K3)t̃P

Inflexional

2D elastica

t̃P = λ̃ = 0

a ∈ [−2, 2[

ũ1 = a− 2

ũ2 = 0

ũ3 = a+ 2

m = (2 + a)/4

m ∈ [0, 1]

Non-inflexional

2D elastica

t̃P = λ̃ = 0

a ≥ 2

ũ1 = 0

ũ2 = a− 2

ũ3 = a+ 2

m = 4/(2 + a)

m ∈ [0, 1]

Helices a = aMin(λ̃, t̃P ) ũ2 = ũ3

Radius ρ̃0 =

√
1

3

(
2a− λ̃2 +

√
−3p

)
Pitch p̃z = 2π

(a− ρ̃20)ρ̃20

λ̃ ρ̃20 + 2t̃P − aλ̃

p defined in (II.30)

Homoclinics

λ̃2 < 4

t̃P = λ̃

a = 2

ũ1 = ũ2 = 0 Maximal radius ρ̃max =
√

4− λ̃2

B. Closed shapes

1. Equations

Closed shapes are obtained when the trajectory r̃(s̃) and the Darboux frame are periodic
and have the same period. Equations (II.34), (II.35), (II.50) and (II.52) and the properties
of elliptic functions and elliptic integrals tell that, for all (s̃0, qz) ∈ R× Z∗:


z̃(s̃0 + qz s̃per) = z̃(s̃0) + qz z̃(s̃per)

φ(s̃0 + qz s̃per) = φ(s̃0) + qzφ(s̃per)

ζ(s̃0 + qz s̃per) = ζ(s̃0) + qzζ(s̃per)− qzζ(0)

(IV.2a)

(IV.2b)

(IV.2c)

where s̃per is the period of ũ = ρ̃2 defined in (II.36). From these equations,

z̃ periodic ⇐⇒ z̃(s̃per) = 0 ⇐⇒ z̃ periodic of period s̃per

{x̃, ỹ} periodic of period qz s̃per ⇐⇒ ∃ qφ ∈ Z , φ(s̃per) = 2πqφ/qz

{dµ} periodic of period qz s̃per ⇐⇒ ∃ qζ ∈ Z , ζ(s̃per) = ζ(0) + 2πqζ/qz.

(IV.3a)

(IV.3b)

(IV.3c)

Using (II.34) and (II.50), we deduce that an ideal elastic rod is closed if and only if there
exists three integers {qz, qφ, qζ} such that
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

cΨz̃(s̃per) = (a− ũ1)K(m)− (ũ3 − ũ1)E(m) = 0

φ(s̃per) =
ũ3λ̃K(m) + (2t̃P − aλ̃)Π(n,m)

ũ3 cΨ
+ φcor(s̃per) = 2π

qφ
qz

ζ(s̃per)− ζ(0) =(
K0

K3
− 1

2

)
t̃P s̃per +

t̃P − 2t̃G(0)

cΨ
Π(nζ ,m) + ζcor(s̃per) = 2π

qζ
qz
.

(IV.4a)

(IV.4b)

(IV.4c)

Another set of equations can be obtained, involving Euler angles (ψ, θ, ϕ). Indeed, it
has been demonstrated in (Ref. 26) that during one period s̃per of z̃(s̃), the cylindrical
coordinate φ and the Euler angle of precession ψ have congruent angular variations modulo
2π. The same result stands for ζ and ϕ. As a consequence, conditions φ(s̃per) = 2πqφ/qz
and ζ(s̃per) = ζ(0)+2πqζ/qz in respectively (IV.4b) and (IV.4c) can be replaced equivalently
by ψ(s̃per) = ψ(0) + 2πqψ/qz and ϕ(s̃per) = ϕ(0) + 2πqϕ/qz, where qψ and qϕ are integers.
With equations (II.42), this leads to

cΨz̃(s̃per) = (a− ũ1)K(m)− (ũ3 − ũ1)E(m) = 0

ψ(s̃per)− ψ(0) = 2(ψ+
P + ψ−P ) + ψcor(s̃per) = 2π

qψ
qz

ϕ(s̃per)− ϕ(0) =

(
K0

K3
− 1

)
t̃P s̃per + 2(ψ+

P − ψ
−
P ) + ψcor(s̃per) = 2π

qϕ
qz

(IV.5a)

(IV.5b)

(IV.5c)

where

ψ+
P =

λ̃+ t̃P
2 + a− ũ3

1

cΨ
Π
(
n+,m

)
, ψ−P =

λ̃− t̃P
2− a+ ũ3

1

cΨ
Π
(
n−,m

)
. (IV.6)

n+ and n− are defined in (II.44).

2. Practical computation

We approximate the dense discret set of closed shapes in {λ̃, t̃P , a} space by the embed-
ding surface generated by equation (IV.5a). This is a good approximation because Q is
dense in R, hence there can always be found a rational qψ/qz that solves equation (IV.5b)
with any desired precision. Furthermore, there is always one value of K0/K3 that solves
equation (IV.5c).

To solve equation (IV.5a), it is useful to introduce the following variables26:

z1 =
1

2
(a− ũ3)

z2 =
1

2
(a− ũ2)

z3 =
1

2
(a− ũ1).

(IV.7a)

(IV.7b)

(IV.7c)

With these parameters, equation (IV.5a) becomes

(z̃3 − z̃1)E(m) + z̃3K(m) = 0. (IV.8)

The modulus m of equation (II.32) can be equivalently expressed as
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m =
z̃2 − z̃1

z̃3 − z̃1
. (IV.9)

Appendix C explains how to obtain the parameters {λ̃, t̃P , a} from {z1, z2, z3} and the signs

sg1 and sg2 of λ̃+ t̃P and λ̃− t̃P respectively. Thus, the approximate space of closed shapes
can be parametrized by {m, z3, sg1, sg2}. We obtain the red surface in figure 7. All exact
closed shapes are included in this surface, which is a remarkably simple result compared
to what was obtained for instance in (Ref. 21) and (Ref. 25). Note the symmetry with

respect to axis λ̃ = t̃P = 0, explained by the invariance of equation (IV.5a) with respect to

the transformation {λ̃, t̃P , a} −→ {−λ̃,−t̃P , a} (by the same arguments as in II E).
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Figure 4. Radius and pitch of helices as functions of λ̃ (abscissa) and t̃P (ordinate).
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(*) Figure 5. Plot of the regions of {λ̃, t̃P , a} space corresponding to null discriminant (∆ = 0) and

to the specific case of 2D elastica (λ̃ = t̃P = 0). The region ∆ = 0 includes right- and left-handed

helices (a = aMin(λ̃, t̃P )), straight rods (a = ±2 and t̃P = aλ̃/2), circles (a = aMin(λ̃, t̃P ) and

t̃P = 1/λ̃) and homoclinic trajectories (a = 2 and −2 < t̃P = λ̃ < 2).

V. GENERAL CASE

To classify the shapes in the general case, we have identified geometric properties that
characterize all elastic rods.

A. General geometric properties of elastic rods

1. The elastic rods wind around a core helix

Firstly, we observe through equations (IV.2a), (IV.2b) and (II.34) that z̃(s̃) and φ(s̃)
oscillate around linear functions. It is therefore possible to introduce a core helix around
which the 3D elastic shapes are wound. We define this helix by its trajectory

r̃H(s̃H) = x̃H(s̃H)ei + ỹH(s̃H)ej + z̃H(s̃H)ek (V.1)

as 
x̃H(s̃H) = ρ̃H cos(cφs̃H)

ỹH(s̃H) = ρ̃H sin(cφs̃H)

z̃H(s̃H) = cz s̃H ,

(V.2a)

(V.2b)

(V.2c)

where

ρ̃H =

√
ũ3 +

√
ũ2

2
, cφ =

φ(s̃per)

s̃per
=
λ̃

2
+

2t̃P − λ̃a
2ũ3

Π(n,m)

K(m)
, (V.3)
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cz =
z̃(s̃per)

s̃per
=

1

2
(a− ũ1)− ũ3 − ũ1

2

E(m)

K(m)
. (V.4)

Under this definition, ||r̃′H(s̃H)|| =
√
ρ̃2
Hc

2
φ + c2z 6= 1, so that s̃H is not the arc length.

In the case m = 0, the rod has an helical trajectory (given in supplementary material)
that corresponds also to the core helix. A singularity is obtained when ũ3 = 0, where cφ is
not defined. As this corresponds to straight lines, we choose cφ = 0 in this case.

When n = 1, which is equivalent to ũ2 = 0, cφ is not defined. However, generating a
Taylor series expansion of cφ about n = 1 to zeroth order and using (II.28c), for m 6= 1 it
follows that

cφ ≈
n=1

λ̃

2
+ sign(2t̃P − λ̃a)

π

4

√
−ũ1√

1−mK(m)
. (V.5)

With equation (II.28c) we see that the sign of 2t̃P − λ̃a changes when ũ2 = 0, implying
a step change of cφ. It is therefore possible to extend the definition of cφ by choosing

arbitrarily sign(2t̃P − λ̃a) = 1 in equation (V.5).

When n = 1 and m = 1, equation (V.5) with ũ1 = (m− 1)/m ũ3 gives

cφ ∼
m=1 n=1

λ̃

2
. (V.6)

As there is no discontinuity in this case, equation (V.6) extends cφ continuously.

Hence we have exhibited the existence of a core helix for each elastic trajectory, with
radius given by (V.3) and pitch p̃H defined as

p̃H = z̃H

(
s̃H =

2π

cφ

)
=

2πcz
cφ

. (V.7)

The observation that elastic trajectories wind around an helix has been proposed previously,
even in cases of non-ideal 3D rods26,31.

2. The elastic rods are contained in a tube-shaped envelope

Secondly, the choice we have made for ρ̃H implies that elastic trajectories are always
contained within a tube-shaped envelope whose centre line is the core helix. Exemples are
shown in figure 6. The radius ρ̃G of this tube is

ρ̃G =

√
ũ3 −

√
ũ2

2
. (V.8)

Noting {nH , bH , tH} the Frenet basis of the core helix, the tube-shaped envelope is defined
by its surface r̃tube(s̃H , α):

r̃tube(s̃H , α) = r̃H(s̃H) + ρ̃G cos(α)nH + ρ̃G sin(α)bH , α ∈ [0, 2π]. (V.9)

3. The elastic rods have a second pitch p̃G

Thirdly, it is possible to plot the elastic trajectories in the Frenet frame of their core
helix. Let s̃⊥H(s̃) be the curvilinear abscissa of the orthogonal projection of the point r̃(s̃)
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on the core helix. The coordinates (r̃⊥n , r̃
⊥
b , r̃

⊥
t ) of the point r̃(s̃) in the Frenet frame

{nH(s̃⊥H), bH(s̃⊥H), tH(s̃⊥H)} are given by

r̃⊥n (s̃) = ρ̃H − ρ̃(s̃) cos
(
φ(s̃)− cφ s̃⊥H

)
r̃⊥b (s̃) =

−cz ρ̃(s̃) sin
(
φ(s̃)− cφ s̃⊥H

)
+ cφρ̃H

(
z̃(s̃)− cz s̃⊥H

)√
c2z + c2φρ̃

2
H

r̃⊥t (s̃) = cφρ̃H sin
(
φ(s̃)− cφ s̃⊥H

)
+ cz

(
z̃(s̃)− cz s̃⊥H

)
= 0.

(V.10a)

(V.10b)

(V.10c)

The abscissa s̃⊥H(s̃) is obtained by resolving numerically equation (V.10c).

The curve

r̃F (s̃) = r̃⊥n (s̃)nH(0) + r̃⊥b (s̃)bH(0) +
√
c2z + c2φρ̃

2
H s̃
⊥
H tH(0) (V.11)

gives the elastic trajectory in the Frenet frame of the core helix. The cylindrical coordinates
(ρ̃F , φF , z̃F ) are used to describe this curve, with −r̃⊥n = ρ̃F cos(φF ) and −r̃⊥b = ρ̃F sin(φF ).
φF (s̃) ∈ R is continuous for every trajectory that does not intersect the core helix, and it
is such that φF (0) = 0.

Equations (V.3), (V.4) and (V.10) imply that s̃⊥H(s̃per) = s̃per and that φF (s̃) makes one
turn during one period s̃per. It is therefore possible to define a pitch p̃G as

p̃G = z̃F

(
φF = 2π

s̃ = ±s̃per

)
= ±

√
c2z + c2φρ̃

2
H s̃per . (V.12)

The sign of p̃G can be obtained by writing the condition for an elastic trajectory to intersect
its core helix. With (V.10), this condition is

∃ s̃ ∈ R, r̃⊥n (s̃) = r̃⊥b (s̃) = 0 ⇐⇒ czφ(s̃0)− cφz̃(s̃0) = 0 (V.13)

with

s̃0 =
1

cΨ
sn−1

√ ũ3 − ρ̃2
H

ũ3 − ũ2
,m

 .

Trajectories that hold (V.13) true never hold φF = 2π true for any abscissa s̃: they are
transitional trajectories for which the sign of the pitch cannot be defined. Furthermore, it
can be observed that

sign (p̃G) = sign (czφ(s̃0)− cφz̃(s̃0)) . (V.14)

4. The elastic rods have three chirality components

Fourthly, 3D elastic rods are chiral, which means that they cannot be superimposed onto
their mirror image. We identify three chirality components for every elastic rod:

(i) The core helix has a chirality SH , i.e. it can be right-handed (SH = +1) or a left-
handed (SH = −1). SH is the sign of the pitch p̃H ;

(ii) Elastic rods wind around their core helix with a chirality SG, i.e. their trajectory in
the Frenet frame of their core helix can be right-handed (SG = +1) or left-handed
(SG = −1). SG is the sign of the pitch p̃G ;

(iii) Cross-sections turn around t with a chirality SP , i.e. they are subjected to a positive
(SP = +1) or negative (SP = −1) torsional moment M(s) · t. SP is the sign of tP .
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Figure 6. Two examples showing the global structure of 3D elastic shapes. In example (a), the
trajectory is plotted in the global reference frame {O, ei, ej , ek} in (a.1) and in the Frenet frame
{r̃H(s̃⊥H),−nH(s̃⊥H),−bH(s̃⊥H), tH(s̃⊥H)} of the core helix in (a.2). In example (b), it is only plotted
in the global reference frame. The thick dashed lines are the core helices about axis z̃, right-
handed in (a) (SH = +1) and left-handed in (b) (SH = −1). The elastic rods wind around these
helices with a negative sign in (a) (SG = −1) and a positive sign in (b) (SG = +1). As shown
by the multicolored thin tubes, the rods are respectively negatively twisted in (a) (SP = −1) and
positively in (b) (SP = +1). The elastic trajectories are contained in a tube-shaped envelope.

B. Classification of elastic rods according to chirality

Bending or turning one way or the other are at the roots of bifurcation theory. Here, this
defines 23 distinct chiral classes. To make the classification precise, we need to plot in the

{λ̃, t̃P , a} space the surfaces that correspond to a change of chirality components. Trivially,

the plane t̃P = 0 is one of them, related to SP .

1. Change of chirality component SH

A change of chirality component SH corresponds to a sign change of the pitch p̃H . Ac-
cording to (V.7), such a modification can occur when cz or cφ changes sign. cz changes sign
when the pitch p̃H is null and the core helix is a circle: this has already been treated with
closed shapes through equation (IV.5a) and leads to a surface shown in figure 7. cφ may
change sign continuously or through a step change. The continuous change occurs when

cφ = 0, i.e. when the core helix is a straight line: the corresponding surface in the {λ̃, t̃P , a}
space is generated numerically and plotted in figure 7. As seen in subsubsection V A 1, the
discontinuous change of sign of cφ may occur when ũ2 = 0. Solving equation ũ2 = 0 is
achieved with (II.28) and conditions ũ1 ≤ 0 ≤ ũ2 ≤ ũ3 and a ≥ −2:

(λ̃, t̃P , a) ∈ D and ũ2 = 0 ⇐⇒ t̃P =
aλ̃

2
and − 2 ≤ a ≤ 2. (V.15)

Then, we need to determine when ũ2 = 0 implies a discontinuous change of sign of cφ.
This is done by computing the intersection between cases ũ2 = 0 and cφ = 0, which with
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equation (V.5) yields the line

ũ2 = 0 and
λ̃

2
= ±π

4

√
−ũ1√

1−mK(m)
. (V.16)

Note that equations ũ2 = 0 and cφ = 0 are invariant with respect to the transformation

{λ̃, t̃P , a} −→ {−λ̃,−t̃P , a}. Therefore, their intersection is symmetric with respect to axis

(*) Figure 7. Plots of the surfaces that delimit the bifurcation frontiers of chirality components

{SH , SG}. The surface a = aMin(λ̃, t̃P ) of helices defines the lower bound of allowed {λ̃, t̃P , a}
space. (a) The part of surface ũ2 = 0 (discontinuous change of sign of cφ) that corresponds to a
change of chirality, and the whole surface cφ = 0 (continuous change of sign of cφ, where the core
helix is a straight line). (b) With addition of the surface SG = 0 of trajectories that intersect their
core helix. (c) With addition of the surface p̃H = 0 of approximate closed curves, for which the
core helix is a circle. The transformations corresponding to these surfaces are given in the legend.
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λ̃ = t̃P = 0. In addition, we see in figure 7 that cφ = 0 occurs only when λ̃ and t̃P
have the same sign. With equation (V.15) this also implies that a ≥ 0. Considering these

properties, we first compute the part {λ̃ ≥ 0, t̃P ≥ 0} of the line (V.16), and obtain the

part {λ̃ ≤ 0, t̃P ≤ 0} by symmetry. Using (V.16) and (II.28), we arrive at the following
equations parametrized by m 6= 1:

λ̃ =
2π

(π4 + 8(2m− 1)π2K(m)2 + 16K(m)4)
1/4

, (V.17)

ũ1 = − 16(1−m)K(m)2

(π4 + 8(2m− 1)π2K(m)2 + 16K(m)4)
1/2

, (V.18)

ũ3 =
m

m− 1
ũ1 , a =

√
4 + ũ1ũ3 , t̃P =

aλ̃

2
. (V.19)

The case m = 1 adds only the point {λ̃ = 0, t̃P = 0, a = 2} to the line defined by equations
(V.17) to (V.19). This line is the intersection between cφ = 0 and ũ2 = 0, shown in figure 7.
It is an important border, as only the part of the surface ũ2 = 0 below this line (i.e. with
lower values of a) corresponds to a change of chirality component SH .

Figure 8. Sectional plot of chiral classes {SH , SG} in the {λ̃, t̃P , a} space, for t̃P ≤ −λ̃. The transfor-

mation {λ̃, t̃P , a} −→ {−λ̃,−t̃P , a} gives the region t̃P ≥ −λ̃ through {SH , SG} −→ {−SH ,−SG}.
Superposing the plane t̃P = 0 leads to the whole bifurcation diagram {SH , SG, SP }.

2. Change of chirality component SG

Chirality component SG is the sign of the pitch p̃G, given in equation (V.14). As for
chirality component SH , a change of SG can occur continuously or through the step change
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of cφ induced by ũ2 = 0. The surface corresponding to the continuous change is computed
numerically and shown in figure 7. As no chirality SG can be defined for the related
trajectories, we impose SG = 0 in this surface. To obtain the discontinuous change of SG,
the intersection between surfaces SG = 0 and ũ2 = 0 has to be plotted: it is a line computed
numerically and shown in figure 7. The part of the surface ũ2 = 0 below this line (i.e. with
lower values of a) corresponds to a change of chirality component SG.

3. Classification

As a result, the {λ̃, t̃P , a} space is subdivided into ten regions of constant chirality com-

ponents {SH , SG, SP }. Figure 8 is a sectional drawing for t̃P ≤ −λ̃. Because the represen-

tation of the delimiting surfaces is complex, the plane t̃P = 0 for SP is not displayed. The

symmetry with respect to axis λ̃ = t̃P = 0 is used to deduce the part t̃P ≥ −λ̃ from the

transformation {λ̃, t̃P , a} −→ {−λ̃,−t̃P , a}, that gives {SH , SG} −→ {−SH ,−SG}.

C. Classification of elastic rods according to tube-shaped envelope

For a more precise classification, we decompose ideal elastic rods in classes with iden-
tical tube-shaped envelope. The geometry of such an envelope is fully characterized by
{ρ̃H , ρ̃G, p̃H}, respectively the radius of the core helix, the radius of the tube and the pitch
of the core helix. It is possible to find all elastic rods that correspond to a set of these

parameters. This is done by obtaining analytically the parameters {λ̃, t̃P , a} as functions
of {ρ̃H , ρ̃G, a}, and plotting the relation between a and p̃H for constant {ρ̃H , ρ̃G}.

To obtain {λ̃, t̃P , a} as functions of {ρ̃H , ρ̃G, a}, we first express ũ2 and ũ3 as

ũ2 = (ρ̃H − ρ̃G)2 , ũ3 = (ρ̃H + ρ̃G)2. (V.20)

Then we use equations (II.28) and obtain four remarkably simple expressions of λ̃:

λ̃k∈{1,2} = (−1)k+1

√
ũ2(4− (a− ũ2)2)−

√
ũ3(4− (a− ũ3)2)

ũ3 − ũ2
, (V.21)

λ̃k∈{3,4} = (−1)k+1

√
ũ2(4− (a− ũ2)2) +

√
ũ3(4− (a− ũ3)2)

ũ3 − ũ2
. (V.22)

Therefore there exists four elastic rods (possibly identical) related to one set of {ρ̃H , ρ̃t, a}.
They are not defined when ũ2 = ũ3, but this case corresponds to simple helices and has
been fully treated in subsection IV A and supplementary material.

With equation (II.28a) the expressions of ũ1 can be obtained as (k ∈ {1, 2, 3, 4})

ũ1k = 2a− ũ2 − ũ3 − λ̃2
k. (V.23)

When λ̃k 6= 0 with k ∈ {1, 2, 3, 4}, equation (II.28b) gives

t̃P k =
4− a2 + ũ1kũ2 + ũ1kũ3 + ũ2ũ3 + 2aλ2

k

4λk
. (V.24)

When λ̃k = λ̃k+1 = 0 with k ∈ {1, 3}, we use equation (II.28c) and arrive at

t̃P k =
1

2

√
−ũ1kũ2ũ3 , t̃P k+1 = −1

2

√
−ũ1kũ2ũ3. (V.25)
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Equations (V.21) to (V.25) give the four elastic rods related to {ρ̃H , ρ̃G, a}. Yet, not
all values of {ρ̃H , ρ̃G, a} are allowed. With equations (II.25a) and (V.20) and the condi-
tion ||r′(s)|| = 1, we find two equivalent systems (the first for {ũ2, ũ3, a}, the second for
{ρ̃H , ρ̃G, a}):

max(0, ũ3 − 4) ≤ ũ2 ≤ ũ3

and

−2 ≤ ũ3 − 2 ≤ a ≤ ũ2 + 2

⇐⇒


0 ≤ ρ̃H ρ̃G ≤ 1

and

(ρ̃H + ρ̃G)2 − 2 ≤ a ≤ (ρ̃H − ρ̃G)2 + 2

. (V.26)

We thus have parametrized the geometries of elastic rods by {ρ̃H , ρ̃G, a}. For constant
{ρ̃H , ρ̃G}, a only modifies the pitch p̃H and the function p̃H(a) can be easily plotted: a
typical example is shown in figure 9. Finally, all rods corresponding to one class {ρ̃H , ρ̃G, p̃H}
are obtained by intersecting the plots p̃H(a) with the value of p̃H . This leads to a maximum
of four elastic rods corresponding to a tube-shaped envelope. Then these rods can be
discriminated by criterions like chirality components {SH , SG, SP } or m-modulus.

1.5 2.0 2.5

-20

-10

10

20

(*) Figure 9. Plot of the pitch p̃H of the core helix as a function of a, for ρ̃H = 1.2 and ρ̃G = 0.5.

For a given value of a, there exists four solutions {λ̃k, t̃P k, a} (possibly identical) expressed in
equations (V.21) to (V.25). For a given value of p̃H , there are at most four corresponding elastic
rods, for which the value of a can be obtained numerically. The vertical lines a ' 1.86 are the
asymptotes of the curves k = 3 and k = 4.

VI. CONCLUSIONS

The formalism introduced by Landau and Lifshitz27, developed by Tobias et al.16 and
that we have extended here gives the analytical expressions of infinite solution trajectories

as functions of only three parameters {λ̃, t̃P , a}. Furthermore, the orientation of sections
and the mechanical loading are well described analytically with these parameters. We have

shown how {λ̃, t̃P , a} are related to physical quantities. In particular, a represents the sum
of the contribution of traction/compression and of the component of the moment orthogonal
to the force.

The domain of definition D ⊂ R3 of the parameters {λ̃, t̃P , a} where the trajectories

are defined is simply a ≥ aMin(λ̃, t̃P ), (λ̃, t̃P ) ∈ R2. All particular geometries have been
completely characterized and located in this domain, as shown in one single figure : straight
lines, circles, 2D elastica, helices and homoclinic trajectories.

As the global reference frame has been chosen so that all solutions are conveniently
written in a cylindrical coordinate system with axis z, we have identified a general geometric
structure for all elastic rods. All trajectories wind around a core helix and are contained in
a tube-shaped envelope that we have both described analytically. This structure possesses
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three chirality properties that subdivide the {λ̃, t̃P , a} space in ten regions of constant
chiralities {SH , SG, SP }. As chirality properties have a dramatic incidence on the geometry,
this space reduction should be useful to initiate numerical methods without divergences to
solve trajectories of elastic rods.

Finally, the geometries of all elastic rods are expressed analytically in terms of three other
parameters {ρ̃H , ρ̃G, a} that provide a good geometric control of infinite trajectories through
their envelope. With this, elastic rods are characterized by the parameters {ρ̃H , ρ̃G, p̃z}
that define the geometry of the tube-shaped envelope. A diagram can always be generated
analytically to describe precisely the relation between a and p̃z for any given {ρ̃H , ρ̃G}.

All these results provide a more complete view of ideal 3D elastica. They give detailed
expressions and tools to resolve the equilibrium of elastic rods in applied research. They
open different perspectives to address important topics such as stability and structural
stability.

SUPPLEMENTARY MATERIAL

See text supplementary material for more detailed information about particular tra-
jectories, force-less configurations and relations between trajectories and Darboux refer-
ence frames. See also CDF supplementary material for interactive view of figures with
a star (*) in the caption. This requires Wolfram CDF Player, freely downloadable at
http://www.wolfram.com/cdf-player/.
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Appendix A: Elliptic functions

Here we give the expressions used for elliptic functions, with the modulus m ∈ [0, 1] and
the characteristic n ∈ R.

1. Incomplete elliptic integrals

The incomplete elliptic integrals respectively of the first, second and third kind are de-
fined as

F (Ψ,m) =

∫ Ψ

0

dΨ√
1−m sin2(Ψ)

, (A.1)

E(Ψ,m) =

∫ Ψ

0

√
1−m sin2(Ψ)dΨ, (A.2)

Π(n,Ψ,m) =

∫ Ψ

0

dΨ(
1− n sin2(Ψ)

)√
1−m sin2(Ψ)

. (A.3)



J. Math. Phys. 26

2. Complete elliptic integrals

The complete elliptic integrals respectively of the first, second and third kind are de-
fined as

K(m) = F
(π

2
,m
)

, E(m) = E
(π

2
,m
)

, Π(n,m) = Π
(
n,
π

2
,m
)
. (A.4)

3. Jacobi’s elliptic functions

The amplitude function of Jacobi is given by

am(s,m) = (F−1)(s,m), (A.5)

and serves to define the functions sn, cn and dn by

sn(s,m) = sin (am(s, k)) , (A.6)

cn(s,m) = cos (am(s, k)) , (A.7)

dn(s,m) =
√

1−m sn2(s, k). (A.8)

Appendix B: Resolution of system (II.41)

System (II.41) can be written as :

ψ′(s̃) =
1

2

λ̃+ t̃P
1 + zθ

+
1

2

λ̃− t̃P
1− zθ

ϕ′(s̃) =

(
K0

K3
− 1

)
t̃P +

1

2

λ̃+ t̃P
1 + zθ

− 1

2

λ̃− t̃P
1− zθ

zθ(s̃) =
1

2
(a− ũ) =

a− ũ3

2
+
ũ3 − ũ2

2
sn2 (cΨs̃,m) .

(B.1a)

(B.1b)

(B.1c)

To solve this system, let us define

n+ = − ũ3 − ũ2

2 + a− ũ3
, n− =

ũ3 − ũ2

2− a+ ũ3
. (B.2)

We arrive at



ψ′(s̃) =
λ̃+ t̃P

2 + a− ũ3

1

1− n+sn2 (cΨs̃,m)
+

λ̃− t̃P
2− a+ ũ3

1

1− n−sn2 (cΨs̃,m)

ϕ′(s̃) =

(
K0

K3
− 1

)
t̃P +

λ̃+ t̃P
2 + a− ũ3

1

1− n+sn2 (cΨs̃,m)
− λ̃− t̃P

2− a+ ũ3

1

1− n−sn2 (cΨs̃,m)

zθ(s̃) =
a− ũ3

2
+
ũ3 − ũ2

2
sn2 (cΨs̃,m) .

(B.3)
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Integrating this system leads to the final expressions

ψ(s̃) ≡ ψ(0) + ψ+(s̃) + ψ−(s̃) + ψcor(s̃) [2π]

θ(s̃) = arccos

(
a− ũ3

2
+
ũ3 − ũ2

2
sn2 (cΨs̃,m)

)
ϕ(s̃) ≡ ϕ(0) + (K0/K3 − 1) t̃P s̃+ ψ+(s̃)− ψ−(s̃) + ψcor(s̃) [2π]

(B.4a)

(B.4b)

(B.4c)

with

ψ+(s̃) =
λ̃+ t̃P

2 + a− ũ3

1

cΨ
Π
(
n+,Ψ(s̃),m

)
, ψ−(s̃) =

λ̃− t̃P
2− a+ ũ3

1

cΨ
Π
(
n−,Ψ(s̃),m

)
, (B.5a)

ψcor(s̃) =



0 if s̃ = 0

(1 + sign(s̃))π/2 if m = 1 and t̃P = 0

0 if m = 1 and t̃P 6= 0

(bs̃/s̃perc+ bs̃/s̃per − 1/2c+ 2)π if ũ2 = a− 2 and ũ3 = a+ 2

(bs̃/s̃perc+ 1)π if ũ2 6= a− 2 and ũ3 = a+ 2

(bs̃/s̃per − 1/2c+ 1)π if ũ2 = a− 2 and ũ3 6= a+ 2

0 otherwise

, (B.5b)

where b·c is the floor function. In equation (B.5b), the conditions must be considered
successively from the top to the bottom, and the first that holds true gives the value of
ψcor(s̃). This corrective term is used to take into account the discontinuity of ψ and ϕ
when θ(s̃) reaches the value 0 or π.

Appendix C: Parametrization with {z1, z2, z3}

Following the work of M. Nizette and A. Goriely in (Ref. 26), it can be useful to
parametrize the solutions (II.34) and (II.42) by three quantities {z1, z2, z3}. They are
related to our set of variables by the following definitions:

z1 =
1

2
(a− ũ3) , z2 =

1

2
(a− ũ2) , z3 =

1

2
(a− ũ1). (C.1)

As ũ1, ũ2 and ũ3 are ordered when real, these definitions ensure that z1 ≤ z2 ≤ z3. Giving

these three parameters plus the sign sg1 of λ̃+ t̃P and the sign sg2 of λ̃− t̃P , we can deduce

{λ̃, t̃P , a}.

To do this, it is useful to introduce the following positive variables M+ and M−:

M+ = sg1
λ̃+ t̃P

2
, M− = sg2

λ̃− t̃P
2

. (C.2)

Equation (C.2) can be written equivalently as

λ̃ = sg1M+ + sg2M− , t̃P = sg1M+ − sg2M−. (C.3)

Then, evaluating equation (II.26) with ũ = a− 2 and ũ = a+ 2, we obtain

4(λ̃− t̃P )2 = (a− 2− ũ1)(a− 2− ũ2)(a− 2− ũ3), (C.4)

4(λ̃+ t̃P )2 = (a+ 2− ũ1)(a+ 2− ũ2)(a+ 2− ũ3). (C.5)
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This leads to

(λ̃− t̃P )2 = 2(z1 − 1)(z2 − 1)(z3 − 1), (C.6)

(λ̃+ t̃P )2 = 2(z1 + 1)(z2 + 1)(z3 + 1). (C.7)

Therefore, M+ and M− are

M+ =

√
(z1 + 1)(z2 + 1)(z3 + 1)

2
, M− =

√
(z1 − 1)(z2 − 1)(z3 − 1)

2
. (C.8)

Equations (C.3) and (C.8) lead to the expressions of λ̃ and t̃P as functions of {z1, z2, z3}
and {sg1, sg2}. Finally, with equation (II.28a) we obtain a:

a = 2(z1 + z2 + z3)− λ2. (C.9)

Appendix D: Roots of ∆

Using equations (II.27) to (II.30), the discriminant ∆ of the polynomial p3(ũ) is a fourth-
degree polynomial of a:

∆(λ̃, t̃P , a) = 16
(
a4 + µ3a

3 + µ2a
2 + µ1a+ µ0

)
(D.1)

with 

µ3 = −t̃P
2

+ 3λ̃2

µ2 = −8− 20λ̃t̃P − 2λ̃2t̃P
2

+ 3λ̃4

µ1 = 36t̃P
2

+ 18λ̃t̃P
3

+ 20λ̃2 − 22λ̃3t̃P − λ̃4t̃P
2

+ λ̃6

µ0 = 16− 27t̃P
4
− 48λ̃t̃P + 30λ̃2t̃P

2
+ 2λ̃3t̃P

3
+ λ̃4 − 2λ̃5t̃P .

(D.2)

Here, we express its four roots {a1, a2, a3, a4} through a method proposed by J. L. La-

grange. This method is particularly convenient to plot the solutions in the {λ̃, t̃P , a} space,
as there are no singularities in the expressions. We finish by presenting the ordering of these
roots, that is achieved numerically and is also important to obtain pertinent graphs.

1. Intermediate equation

The first step to obtain Lagrange’s expressions is to solve the following cubic equation:

y3 + 2p1y
2 + (p2

1 − 4r1)y − q2
1 = 0 (D.3)

where

p1 = −3

8
µ2

3 + µ2 , q1 =
(µ3

2

)3

− µ2µ3

2
+ µ1 , (D.4)

r1 = −3
(µ3

4

)4

+ µ2

(µ3

4

)2

− µ1µ3

4
+ µ0. (D.5)

This is done by defining the discriminant ∆int as

∆int = −(4p3
2 + 27q2

2) (D.6)
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where

p2 = −1

3
p2

1 − 4r1 , q2 = − 2

27
p3

1 +
8

3
p1r1 − q2

1 . (D.7)

Then, Cardano’s formula is used to express the solutions yk (k ∈ {1, 2, 3}):

yk = −2

3
p1 + jky01 + j−ky02 (D.8)

with

j = exp

(
i
2π

3

)
, y01 = 3

√√√√1

2

(
−q2 +

√
−∆int

27

)
, y02 = 3

√√√√1

2

(
−q2 −

√
−∆int

27

)
. (D.9)

Note that in these expressions, the cubic root of any number x0 is defined as:

• The unique solution to x3 = x0 when x0 ∈ R ;

• The number exp

(
1

3
Ln x0

)
when x0 ∈ C\R.

2. Lagrange’s expressions of the roots

Once given the intermediate solutions {y1, y2, y3}, Lagrange’s method leads to the fol-
lowing expressions {a1, a2, a3, a4} of the roots of ∆:

a1 = −µ3

4
+

1

2

(
−√y1 −

√
y2 + r (y3)

)
a2 = −µ3

4
+

1

2

(
−√y1 +

√
y2 − r (y3)

)
a3 = −µ3

4
+

1

2

(√
y1 −

√
y2 − r (y3)

)
a4 = −µ3

4
+

1

2

(√
y1 +

√
y2 + r (y3)

)
(D.10)

where

r (y3) =

{√
y3 if q1

√
y1
√
y2
√
y3 ≤ 0

−√y3 if q1
√
y1
√
y2
√
y3 > 0

. (D.11)

These expressions are functions of λ̃ and t̃P defined in R2 without any singularity, hence
they can be easily plotted.

3. Ordering of the roots

Finally, we choose numerically the values {a1, a2, a3, a4} among the solutions {a1, a2, a3, a4}
such that when the four roots are real, a1 ≤ a2 ≤ a3 ≤ a4. Then when only two roots are
real, we impose that they are a1 and a4. This ordering leads to the most pertinent plot, as
we demonstrate in section III that elastic rods are most often defined for a ≥ a4.
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