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Abstract

Dual-energy computed tomography (DECT) is of great significance for clinical practice due to its huge potential to
provide material-specific information. However, DECT scanners are usually more expensive than standard single-
energy CT (SECT) scanners and thus are less accessible to undeveloped regions. In this paper, we show that the
energy-domain correlation and anatomical consistency between standard DECT images can be harnessed by a deep
learning model to provide high-performance DECT imaging from fully-sampled low-energy data together with single-
view high-energy data. We demonstrate the feasibility of the approach with two independent cohorts (the first cohort
including contrast-enhanced DECT scans of 5,753 image slices from 22 patients and the second cohort including
spectral CT scans without contrast injection of 2463 image slices from other 22 patients) and show its superior perfor-
mance on DECT applications. The deep-learning-based approach could be useful to further significantly reduce the
radiation dose of current premium DECT scanners and has the potential to simplify the hardware of DECT imaging
systems and to enable DECT imaging using standard SECT scanners.
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1. Introduction

Material differentiation and quantification using a stan-
dard single-energy computed tomography (SECT) are ex-
tremely challenging because different materials may have
the same CT value (McCollough et al., 2015). To tackle
this challenge, dual-energy CT (DECT) takes full advan-
tage of the energy dependence of the linear attenuation
coefficient by scanning the patients using two different
energy spectra (Alvarez and Macovski, 1976a, Kalender
et al., 1986, Flohr et al., 2006, Johnson et al., 2007, Boll
et al., 2008, Lee et al., 2017, Petrongolo and Zhu, 2018,
Xue et al., 2019). This enables DECT imaging providing
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energy- and material-selective images, and having been
very widely used in clinical practice for many applica-
tions, such as virtual monochromatic imaging (Yu et al.,
2012, Pomerantz et al., 2013), differentiating intracerebral
hemorrhage from iodinated contrast (Phan et al., 2012),
automated bone removal in CT angiography (Sommer
et al., 2009, Buerke et al., 2009, Morhard et al., 2009,
Schulz et al., 2012), virtual non-contrast-enhanced imag-
ing (Takahashi et al., 2008, Ferda et al., 2009, Graser
et al., 2009, Ho et al., 2012, Mangold et al., 2012, Toepker
et al., 2012) and urinary stone characterization (Primak
et al., 2007, Boll et al., 2009, Ascenti et al., 2010, Leng
et al., 2015b). However, it is still an open and challenging
task for clinical DECT imaging due to complex practical
implementations, proprietary patents for major CT ven-
dors, and lower popularity for DECT scanners compared
to the standard SECT scanners.

Since the low- and high-energy CT images acquired
from the DECT scanners have the same anatomical struc-
tures, there is substantial redundant anatomical informa-
tion between the DECT images. For the scanned pa-
tients using the same DECT imaging protocols, the low-
and high-energy CT images are also correlated in the
energy-domain, resulting in information redundancies in
the energy-domain (Leng et al., 2015a, Zhao et al., 2016).
Meanwhile, both DECT images are reconstructed using
fully-sampled projection data which have to meet the clas-
sical Shannon-Nyquist theorem in angular-data sampling
to reconstruct artifacts-free images. By fully exploiting
the anatomical consistency and energy-domain correla-
tion between the DECT images, it is possible to provide
high-quality artifacts-free DECT images using conven-
tional SECT images together with sparse sampling pro-
jection data at different energy levels.

CT imaging with the full use of as low as reasonably
achievable (ALARA) principle has been commonly ac-
cepted in routine practice and further reducing radiation
dose from CT scanning is clinically favorable and has
been extensively studied for almost two decades. Deep
learning (DL) has recently been proved to be a powerful
tool for mapping complex relationships and incorporat-
ing existing knowledge into an inference model through
feature extraction and representation learning (Gulshan
et al., 2016, Esteva et al., 2017, Ting et al., 2017, Liu
et al., 2018, Xing et al., 2018, Zhao et al., 2019a, Maier
et al., 2019, Shen et al., 2019, Lee et al., 2019, Zhao et al.,

2019b). It has also been applied in low-dose CT (Chen
et al., 2017, Yang et al., 2018, Wolterink et al., 2017, Kang
et al., 2018) and DECT imaging (Liao et al., 2018, Zhang
et al., 2019, Poirot et al., 2019, Feng et al., 2018, Zhao
et al., 2020).

To reduce the radiation dose of DECT imaging, in this
study, we synergically exploit the energy-domain corre-
lation and anatomical consistency between DECT images
by leveraging the deep learning approach and the seam-
less integration of the correlation and consistency in a
data-driven DECT imaging process, and eventually push
the sparse sampling to the limit of a single projection
view and demonstrate the feasibility of high-performance
DECT imaging using a deep learning approach termed
fully low-energy and single high-energy DECT imaging
(FLESH-DECT).

2. Material and methods

The flowchart of the proposed FLESH-DECT strategy
is shown in Fig. 1. The input to the model is a single-view
high-energy projection together with the low-energy im-
age Ilow which is reconstructed using fully-sampled low-
energy projection data. For the low-energy image, it is
firstly denoised with a denoising network to mitigate the
impact of image noise. Instead of training a network di-
rectly mapping high-energy images from the low-energy
images, we use a convolutional neural network (CNN) to
perform material-decomposition-type operations and it is
termed material decomposition CNN (MD-CNN). The in-
put of the MD-CNN is the denoised low-energy image
Ide
low while the output is a ”material component” matrix

A. The matrix A has the same image size as Ide
low but

with multiple channels each of which corresponds to a
pseudo-material-specific image. The values are the per-
centages of corresponding ”basis material” on these pix-
els. We ensure that the sum of the percentages equals one
(mass conversation) for each unique pixel. Furthermore,
another CNN is used to pre-process the differences be-
tween the given high-energy projections and their corre-
sponding low-energy projections. This projection-domain
network is used to fill the gap between the denoised im-
ages and the non-denoised projection. Since CT forward
projection can be regarded as linear summations of pixel
values, we can use the least-squares method to solve the
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Figure 1: The workflow of the proposed fully-sampled low-energy and single-view high-energy DECT imaging approach. During the training
phase, the denoised DECT images together with the single-view dual-energy projections are used to train the projection domain convolutional
neural network (CNN) and the MD-CNN. In the testing phase, the trained networks use the input low-energy images and the single-view dual-
energy projections to infer the corresponding high-energy images.

corresponding CT values of each ”material” bdi f accord-
ing to the matrix A and the pre-processed projection dif-
ference. The estimated high-energy image is calculated as
the summation of low-energy images, and the inner prod-
uct of matrix A and vector bdi f . Detailed formula deriva-
tion is described in the following subsections.

2.1. DECT Imaging

In CT imaging, the attenuation coefficient at each po-
sition can be represented as a linear combination of basis
materials’ attenuation coefficient (Alvarez and Macovski,
1976b).

µ = α1µ1 + α2µ2 + · · · + αmµm (1)

where m is the number of basis materials, αi is the per-
centage of the i-th basis material and µi is the attenua-
tion coefficient of the i-th basis material. Since CT values
in Hounsfield Unit (HU) can be represented as the linear
transformation of attenuation coefficient µ with the fol-
lowing equation:

HU = 1000 ×
µ − µwater

µwater
(2)

Eq.(1) can also be written as:

HU = α1HU1 + α2HU2 + · · · + αmHUm (3)

where HUi stands for the Hounsfield Unit CT value for
the i-th basis material. Considering there are npix = W×H
pixels in an image slice, we can write Eq.(3) into the fol-
lowing matrix multiplication form

I = A · bT (4)

where I is the image vector sized npix×1 containing CT
values at each pixel, A = [αi j]npix×m is the material com-
ponent matrix, αi j stands for the percentage of material j
at pixel i, b = [HUi]1×m consists of HU values for each
material.

In DECT, there are two different images Ilow and Ihigh.
The material component matrix A remains the same for
both images because pixel compositions do not change
between low- and high-energy scans. Therefore, we have
the following equations Ilow = A · bT

low

Ihigh = A · bT
high

(5)
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By subtracting the high-energy equation from the low-
energy equation, we get

Idi f = A · bT
di f (6)

where Idi f is the difference image between Ilow and Ihigh,
bdi f is the difference between blow and bhigh. Let Phigh and
Plow be the given high- and low- energy projection mea-
surements, and R be the projection matrix sized nray×npix

corresponding to the high-energy view. We have the fol-
lowing equation

R·A · bT
di f = R·Idi f

= R·Ihigh − R·Ilow

= Phigh − Plow

(7)

For the CT imaging task with fully-sampled low-energy
and single-view high-energy projection, the unknowns in
Eq.(7) are the material component matrix A and the cor-
responding difference values bdi f . Assuming the material
component matrix A is known, let M = R·A ∈ <nray×m,
Pdi f = Phigh − Plow ∈ <

nray×1, the difference values bdi f

can be calculated by solving the equation M·bT = Pdi f . In
regular CT imaging, we have nray >> m, the best bdi f can
therefore be found using least-squares method which can
be computed with Cholesky decomposition, i.e.,

bdi f = argmin
b̃
‖M·b̃T − Pdi f ‖

2
2

= [(MT M)−1MT Pdi f ]T
(8)

The only task now is to estimate the material component
matrix A from the low energy image Ilow.

2.2. Material decomposition-based dual-energy CT map-
ping

Due to its ability to learn complex relationships and in-
corporate existing knowledge into a nonlinear mapping
model, a dedicated CNN model (termed MD-CNN) is
used to estimate the material component matrix A. When
designing the MD-CNN model, a major challenge is the
lack of training labels due to unknown materials in the im-
ages and their percentages. To tackle this challenge, we
train the MD-CNN indirectly. We firstly denoise the dual-
energy image pairs, and the denoised low-energy images
Ide
low are inputted into the MD-CNN to acquire material

component matrices ADL. Meanwhile, we put the projec-
tion differences into another 1-D projection domain CNN
to preprocess the projection data. Then, we compute bdi f

using Eq.(8). The estimated denoised high-energy images
Idl
high can therefore be calculated as

Idl
high = Ide

low + ADL·bT
di f (9)

An image similarity loss is calculated between the de-
noised high-energy image Ide

high and the DL-estimated im-
age Ide

DL, and the mean squared error (MSE) loss is used
for the task:

Lhigh =
1
n
‖Ide

high − Ide
DL‖

2

2
(10)

Instead of getting material component labels, we focus
on the target high-energy image and it is not necessary to
specify each channel in ADL to represent real material or
a linear combination of different materials. Meanwhile,
since matrix ADL is supposed to be the material compo-
nent matrix, it should be able to recover the input denoised
low-energy image as well, resulting in the following loss
function:

Llow =
1
n
‖Ide

low − ADL·bT
low‖

2
2 (11)

The same strategy in Eq.(8) is used to calculate the HU
values blow for each ”material” under low energy,

blow = argmin
b̃
‖ADL·b̃T − Ide

low‖
2
2 (12)

The final loss function is computed as the summation of
Llow and Lhigh, i.e.,

L = Llow +Lhigh (13)

During the inference phase, the low-energy images are
also firstly denoised and then inputted into the trained
MD-CNN for ADL. The projection domain CNN prepro-
cesses the projection difference Pdi f . The estimated dif-
ference images are calculated according to Eq.(8). The
difference between inference and training is that the esti-
mated high-energy image is calculated as the summation
of the original low-energy image Ilow and the difference
image Idi f in the inference phase.
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Figure 2: The architecture of the fully convolutional network for image
denoising. A plain structure that encompasses 13 convolution layers is
applied to learn the residual between the input image and the denoised
image.

2.3. Network details

2.3.1. Denoising CNN
We employed the denoising network in our previous

work (Zhao et al., 2020) to reduce the DECT image noise.
The network uses a plain structure that encompasses 13
convolution layers to learn the residual between the input
image and the denoised image. The first 12 layers are con-
volution layers with kernel size 3 × 3. Each convolution
layer is followed by a batch normalization layer (BN) and
a rectified linear unit (ReLU) activation. The last layer is
a convolution layer with kernel size 1×1 fusing the result.
Fig. 2 shows the detailed structure of the denoising CNN.
The denoised image is computed as the summation of the
input image and the output from the last layer.

2.3.2. MD-CNN
For the material decomposition network, we employ a

U-Net-type structure (Ronneberger et al., 2015) which has
a large receptive field and is quite suitable for many med-
ical image processing tasks. There are 10 normal 3 × 3
convolution layers in the proposed network (Fig. 3). Each
convolution layer is followed by a BN layer and a ReLU
activation layer. There are 3 resolution levels in total. For
down-sampling, we use convolution layers with kernel
size of 2 × 2 and stride equal to 2. Each strided convo-
lution layer is also followed by a BN layer and a ReLU
activation layer. For up-sampling, we use bilinear inter-
polation to double both image width and height. At the
end of the network, a convolution layer with kernel size
of 1× 1 is added to fuse the channels. Since the values on

Figure 3: Structure of the MD-CNN. A much simplified UNet-like struc-
ture with 14 convolution layers is used here to estimate the percentages
of each corresponding ”basis material” from the denoised low-energy
image. Numbers under each block show the channel number of the mul-
tichannel feature maps.

each output channel are supposed to be the percentages
of corresponding ”basis material”, we apply softmax af-
ter the convolution layer with kernel size of 1× 1 to make
sure that the sum of materials’ proportion equals to 1 at
each pixel.

2.3.3. Projection-domain CNN
To enhance the robustness of the least-squares problem

in Eq.(8), the projection-domain network (Fig. 4) is ap-
plied to slightly refine the inputting projection difference
and to make its noise level to be consistent with that of
the denoised DECT difference image, and we employ a
concise 4-layer network for the task. A residual learning
structure is used here for an easier startup at the beginning
iterations. All basic convolution layers have a kernel with
a size of 1 × 5 except for the last one which has a kernel
with a size of 1 × 1. The first three convolution layers are
followed by a BN layer and a ReLU activation layer.

2.3.4. Network training
The denoising CNN was implemented in MATLAB

with MatConvNet framework (Vedaldi and Lenc, 2015).
Denoising was performed as a data preprocessing step for
all DECT images. The material decomposition network
and projection-domain network are implemented using
Python with Tensorflow framework (Abadi et al., 2016).
Those two networks were trained together in an end-to-
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Figure 4: Structure of the projection-domain CNN. A concise 4-layer
network is employed to slightly refine the inputting projection differ-
ence. Numbers under each block show the number of channels of the
multichannel feature maps.

end fashion. The parameters in the networks were op-
timized using ADAM algorithm (Kingma and Ba, 2014)
with β1 = 0.9 and β2 = 0.999. The learning rate was set to
10−3 during the training. The training set was randomly
split into small batches in each epoch with a batch size
of 8. The proposed network was trained for 200 epochs
in total. We perform validation after each training epoch
and the model with the best validation loss was selected
as the final model for testing. The number of materials
m was set to 10 in our experiments according to the loss
on the validation set. We trained models with different
m settings from 2 to 20 and the best validation loss came
with m = 10. It has to note that the model was able to
achieve reasonable results even with m = 3. As shown in
Fig.5, the validation losses are close when m > 2. The
networks were trained and tested on a workstation with
configurations as follows: CPU is Intel(R) Xeon(R) Gold
6130 CPU @ 2.10GHz; GPU is NVIDIA RTX 2080 Ti
with 12 GB memory.

2.4. Projectors for different CT geometries

To calculate matrix M in Eq.(8), a projector corre-
sponding to the CT geometry is indispensable in our algo-
rithm. There are mainly two types of 2D CT geometries,
fan-beam and parallel-beam. The fan-beam geometry can
be further divided into two sub-types, equiangular and eq-
uispaced. For each above-mentioned geometry, we devel-
oped a projector and trained a new model for evaluation.

Figure 5: Validation loss under different m settings. Best validation loss
comes with m = 10.

2.4.1. Equiangular fan-beam
Equiangular geometry is mainly implemented with arc

detectors which keep the angles between two adjacent de-
tector pixels and the source-detector-distance the same.
We tested our model in the anterior-posterior (AP) direc-
tion, but it can be easily extended to any other projection
view. To acquire projection data using the 2D equiangular
fan-beam geometry, we first calculate the intersection of
each projection ray with each image row. The values at
each intersection point are computed using linear interpo-
lation. Suppose the image size is W×H, and a matrix I′

with a size of nray×H can be obtained using the following
rebinning equation:

I′(φ, y) = I((D − y) tan(φ), y) (14)

where φ is the angle between the projection ray and the
central ray (as shown in Fig. 6), and y is the image pixel
position along the y-axis in the Cartesian coordinate sys-
tem centered at the image center O. D is the distance be-
tween the projection source and the rotation center which
is overlapped with the image center O. After the linear in-
terpolation, we calculate the summation of each column
in matrix I′ to obtain ray sum S which is weighted by the
distance to yield the final projection P:

P(φ) =
dy

cos φ
S (φ) (15)

where dy is the image spacing in y-axis. We set D =

600mm, dy = 0.5mm, the number of detector channels
nray = 800 and the angle between adjacent channels ds =

7
11000 rad for all images.
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Figure 6: Illustration of the equiangular fan-beam geometry.

Figure 7: Illustration of the equispaced fan-beam geometry.

2.4.2. equispaced fan-beam

Flat detectors with equal spacing between the adjacent
channels are commonly used to implement the equispaced
geometry. We used a similar strategy to implement the
equispaced fan-beam projection in the AP direction. In
this case, the rebinning procedure is computed with the
following equation:

I′(s, y) = I(
s(D − y)

L
, y) (16)

where s is the distance between the current channel and
the detector center (direction included), and L is the
source to detector distance, as shown in Fig. 7. The rest
part of the implementation is the same as the equiangu-
lar projection. For the parameters, we have D = 600mm,
L = 1100mm, dy = 0.5mm, nray = 800 and the spacing
between nearby channels ds = 0.78mm.

2.4.3. Parallel-beam
For the parallel-beam scenario, We assumed that the

detector channel has the same spacing as the image pix-
els, and each X-ray projects exactly through an image col-
umn in the AP direction. Therefore, the projection in the
AP direction can be computed as the summation of each
image column.

2.5. Dataset

2.5.1. Training data for the denoising network
The AAPM Low-Dose CT Grand Challenge data was

used to train the denoising network. This dataset con-
sists of routine dose CT and the corresponding simu-
lated low-dose CT data from 10 patients. The routine
dose scanning voltage is 100 kV or 120 kV and the X-
ray tube current varies from 200mA to 500mA. The de-
tector has 736 × 64 elements, and each element has a
size of 1.2856 × 1.0947mm2. The source-to-axial dis-
tance is 59.5cm and the source-to-detector distance was
108.56cm. All the images were reconstructed to slice
thickness of 1.0mm and 512 × 512 pixel. The pixel size
varies from 0.66 × 0.66mm2 to 0.78 × 0.78mm2. To sim-
ulate the low-dose CT data, Poisson noise was introduced
into the routine dose to mimic a noise level that corre-
sponded to 25% of the routine dose, and noisy projection
was reconstructed to yield the low-dose image.

2.5.2. Siemens DECT image dataset
Clinical DECT images of 22 patients who underwent

iodine contrast-enhanced DECT exams were collected for
the study. All the exams were performed in Nanjing Gen-
eral PLA Hospital, China, with the approval of the in-
stitutional review board and patient consent forms. The
DECT images (5753 slices in total) were acquired using
a SOMATOM Definition Flash DECT scanner (Siemens
Healthineers, Forchheim, Germany) after administering
iodine contrast agent. The low- and high-energy of the
DECT scans were 100 kV and 140 kV, respectively. All
CT images were reconstructed using the filtered back-
projection (FBP) algorithm provided by the commercial
CT vendor. The dataset was split into a training set, a val-
idation set and a testing set randomly with 16, 3, and 3
patients included respectively.

7
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2.5.3. Philips spectral CT image dataset
We collected clinical spectral CT images of 22 pa-

tients with Philips IQon Spectral CT devices. All exams
were performed in Nanjing Gulou Hospital, China, with
the approval of the institutional review board and patient
consent forms. Philips IQon Spectral CT applies spec-
tral detector technology to implement dual-energy scans.
Virtual mono-energetic images at different X-ray energy
levels can be reconstructed from the data collected. In
our experiments, images at 70 keV, 110 keV, and 150
keV were used to evaluate the proposed method. Non-
contrast-enhanced brain virtual mono-energetic images
(2463 slices in total) were collected for each energy level
and all images were reconstructed using a build-in algo-
rithm provided by the CT vendor. Similar to the Siemens
dataset, the Philips dataset was also split into a training
set, a validation set and a testing set randomly with 16, 3
and 3 patients included respectively.

3. Results

We firstly focus on the results of equiangular geome-
try on the Siemens Dataset, and comparison results using
different geometries are presented in the middle of this
section. Results on the Philips dataset are described at
last.

Fig. 8 shows the original DECT images and the 140 kV
images predicted using the proposed method for a testing
patient. The first, second and third columns show the orig-
inal 100 kV images, the original 140 kV images, and the
predicted results, respectively. The first, third, and fifth
rows show CT images in transverse, sagittal, and coronal
planes, respectively. The second, fourth, and sixth rows
show difference images with respect to the corresponding
real high-energy CT images in transverse, sagittal, and
coronal planes, respectively. As can be seen, the pro-
posed DL-derived high-energy images are highly consis-
tent with the original high-energy images. There are some
differences at sharp boundaries which also appear in the
difference images between original high- and low-images.
Those differences may be motion introduced differences
between original DECT images because there are approx-
imately 90 degrees out of phase for the low- and high-
energy data acquired using a dual-source DECT scan-
ner. When inputting the low-energy image into the model,

Figure 8: Example results on a testing slice and the difference with re-
spect to the corresponding real high-energy image. The first, third and
fifth rows display the images on axial, sagittal and coronal view. From
left to right are real 100 kV image, real 140 kV image and result from
the proposed method, respectively. A kidney lesion in transverse im-
age is labeled using red arrow. The second, fourth and sixth rows are
the corresponding differences with real 140 kV images. The CT images
are displayed with a window width=300 HU and center=50 HU while
the difference images are displayed under window width=300 HU and
center=0 HU.

the model performed prediction based on the anatomical
structure of the low image and can not reflect the change
with respect to the original high-energy image.

Quantitative metrics were calculated to evaluate the ac-
curacy of the predicted high-energy CT images. We used
the well-established metrics MSE, PSNR and SSIM to as-
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Table 1: Quantitative comparisons between the predicted and the real
high-energy CT images for the testing patients.

MSE PSNR SSIM HU error Time(s)
Patient1 875.06 36.80 0.8702 1.65±1.03 2.65
Patient2 887.60 36.99 0.8789 2.09±1.48 2.31
Patient3 927.47 36.89 0.8745 1.50±0.82 3.34

sess the image similarity between the real and the pre-
dicted high-energy images. Additionally, more than 100
region-of-interest (ROIs) were randomly selected for each
testing volume on homogeneous areas (e.g. liver and
stomach). We calculated the mean HU value differences
on those ROIs and the results show that the averaged HU
error between the predicted and the original high-energy
image is smaller than 2.09 HU. For the computation time,
it took around 2.5 seconds for the proposed method to
process 300 slices on our server. All quantitative results
are shown in Table 1. Since most of the differences come
from noise, we also compared the denoised DL-predicted
images with the denoised high-energy images. In this
case, the DL-predicted images were calculated by adding
the denoised low-energy image to the DL-estimated dif-
ference image. For those denoised images, the proposed
method achieved an average MSE of 171.09, PSNR of
44.33 and SSIM of 0.9848.

In our previous work (Zhao et al., 2020), we pro-
posed the DL-DECT method to estimate Idi f directly from
Ilow. In this work, with the introduction of the addi-
tional high-energy single-view projection, we can fur-
ther enhance the accuracy of the predicted high-energy
image and eventually the accuracy of the material- and
energy-specific images. To show the benefit of the addi-
tional high-energy projection, we quantitatively compared
the proposed FLESH-DECT method with the DL-DECT
method. Virtual non-contrast (VNC) images and iodine
maps were derived to demonstrate the clinical utility of
the proposed method. Fig. 9 depicts the VNC images
and iodine maps reconstructed using different methods
on the transverse, sagittal and coronal planes. Both the
DL-DECT and FLESH-DECT algorithms provided high-
quality VNC and iodine images that were consistent with
the images generated by original DECT images. Quan-

Figure 9: VNC images and Iodine maps reconstructed using original
DECT, DL-DECT, and FLESH-DECT images. The first, third and fifth
row are the VNC images on axial, sagittal and coronal view, respec-
tively, while the second, fourth and sixth row are the corresponding Io-
dine maps. The kidney lesion in the transverse images is marked out
with red arrows for better comparison.

titative metrics on VNC and iodine images are shown in
Table 2. The results demonstrate FLESH-DECT can pro-
vide high-quality material-specific images and it outper-
forms the DL-DECT method.

From the VNC images and Iodine maps, we found that
the DL-derived VNC images and iodine maps show a re-
markably reduced noise level compared with those gen-
erated from original DECT images. Here we also com-
pared the noise level by calculating the standard deviation

9



ACCEPTED MANUSCRIPT

Table 2: Quantitative comparisons of the VNC image and the iodine maps reconstructed using original DECT and FLESH-DECT images.

VNC Iodine Map
MSE PSNR MSE PSNR

Patient1 DL-DECT 3882.34 29.03 0.0313 23.65
FLESH-DECT 3808.97 29.11 0.0308 23.73

Patient2 DL-DECT 4216.36 28.95 0.0342 23.78
FLESH-DECT 4128.01 29.04 0.0335 23.87

Patient3 DL-DECT 3508.35 29.71 0.0313 24.85
FLESH-DECT 3431.13 29.81 0.0306 24.95

Table 3: Quantitative Noise Level Comparison on VNCs and Iodine
Maps.

Standard Deviation on ROIs VNC Iodine Map

Patient1 Real 81.58 0.3363
DL-DECT 29.14 0.1618

FLESH-DECT 28.09 0.1499

Patient2
Real 74.69 0.2837

DL-DECT 24.81 0.1017
FLESH-DECT 24.12 0.0998

Patient3
Real 76.95 0.2875

DL-DECT 25.97 0.0946
FLESH-DECT 25.67 0.0891

in ROIs. More than 500 ROIs were selected randomly
within homogeneous areas. The mean standard deviations
in ROIs on each testing patient are provided and com-
pared in Table 3. The mean standard deviations of the
images derived using FLESH-DECT are close to that of
the DL-DECT method which is much lower than those
from the original DECT images. This result shows that
the FLESH-DECT method maintains the denoising fea-
ture.

We tested the proposed method with several 2D CT
geometries. Example results on a testing volume using
different geometries are displayed in Fig. 10. All CT
images are displayed with window width=300HU and
center=50HU while difference images are displayed with
window width=300HU and center=0HU. As can be seen,
all models can provide competitive results that are highly
consistent with the original high-energy image. For bet-
ter comparison, we also calculated quantitative metrics on

those results (Table 4). The differences between the re-
sults obtained using the proposed method with different
geometries are marginal and all of them are superior to
our previous DL-DECT method which does not utilize the
additional single-view projection. Overall, the proposed
method reduces mean-squared error (averaged for all test-
ing cases) from 1858.32 to 898.35 while increasing PSNR
from 33.83 to 36.89 and SSIM from 0.8641 to 0.8744.

Table 4: Quantitative Results for Different Geometries.

MSE PSNR SSIM

Patient1

DL-DECT 2466.07 32.37 0.8558
Parallel 866.48 36.84 0.8707

Equiangular 875.06 36.80 0.8702
equispaced 871.65 36.82 0.8703

Patient2

DL-DECT 1530.75 34.61 0.8723
Parallel 876.68 37.03 0.8793

Equiangular 887.60 36.99 0.8789
equispaced 882.76 37.01 0.8789

Patient3

DL-DECT 1578.13 34.61 0.8660
Parallel 927.47 36.89 0.8745

Equiangular 932.40 36.88 0.8741
equispaced 927.15 36.90 0.8747

The computation time for different methods are dis-
played and compared in Table 5. Note that computation
time for the denoising CNN is not included in the results.
The denoising network takes about 0.01 seconds for each
slice and the denoising time is the same for all methods.
Compared to the DL-DECT method, the proposed method
speeds-up the computation time by 2-fold which can be
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Figure 10: Results on three testing slices for different geometry models. From left to right are original 100 kV images, original 140 kV images,
parallel-beam results, equispaced fan-beam results and equiangular fan-beam results, respectively.

Table 5: Computation Time for Different Methods in Seconds.

Patient1 Patient2 Patient3
Slices 308 265 387

DL-DECT 5.43 4.68 6.86
Parallel 2.33 2.04 2.94

Equiangular 2.65 2.31 3.34
equispaced 2.53 2.18 3.23

attributed to the reduced number of weights and the sim-
ple network structure. There are some differences among
the time using different geometries which means the com-
putational cost of the proposed method depends on the
projector.

To further examine the proposed method, cross-
validation on the Siemens dataset was also derived.
Seven-fold cross-validation was used with 3 testing cases

for each fold (except for the last one with 4 cases). The
results are displayed in Table 6. In cross-validation, the
average mean-squared-error value of all 22 cases achieves
823.63 while average PSNR achieves 37.36 and average
SSIM achieves 0.8862. All those quantitative metrics are
close to the results on our testing set which shows the ro-
bustness of our proposed method. MSE values in each
cross-validation group are also analyzed and the results
are depicted in Fig.11. For each group, the average MSE
value lies between 700 and 1000.

Table 6: Quantitative Results During Cross-validation.

MSE 823.62±141.00
PSNR 37.36±0.7227
SSIM 0.8862±0.0184
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Figure 11: Mean MSE values (standard deviation) in each cross-
validation group.

Figure 12: Clinical evaluation results.

Clinical doctors were invited to evaluate the artificially
generated images. Three experienced radiologists from
Jiangsu People’s Hospital were involved in this process.
The radiologists were supposed to provide a score from
1 to 5 (1 for useless, 5 for high clinical use) to real 100
kV, 140 kV images from practical CT machine as well
as artificial 140 kV images generated using the proposed
method. Images of all 22 patients (together with all gen-
erated results in cross-validation) were evaluated. Fig.12
shows the clinical evaluation results. The average score
of the artificially generated 140 kV images is the same as
that of real 140 kV images because the generated images
look almost the same as the real ones.

Figure 13: Example results on a Philips dataset testing slice and the
difference with respect to the corresponding high-energy image. The
CT images are displayed with a window width=300 HU and center=50
HU while the difference images are displayed under window width=300
HU and center=0 HU.

We also tested the proposed method on the Philips
spectral CT image dataset. One independent model was
trained between each energy level pair (e.g. between 70
keV and 110keV). Therefore, we got 3 models for the
Philips dataset in total. For each model, 1828 slices were
used as training data while 299 slices were used for vali-
dation and 336 for testing. All the hyper-parameters were
set the same as those selected on the Siemens dataset. One
difference that should be noticed is that we did not per-
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form image denoising on Philips dataset because of its
low noise level. The results are concluded in Table 7. For
the task of estimating 150 keV images from 70 keV im-
ages, the average MSE between our results and the target
images is only 13.45. Average PSNR value and SSIM
value achieve 55.84 and 0.9985, respectively. The mod-
els for the other two tasks (estimating 110 keV images
from 70keV images and 150 keV from 110 keV) perform
even better on those metrics since the differences between
real low- and high-energy images are smaller. Low noise
level plays an important roll in the improvement in quan-
titative measurements. Besides, anatomical structures in
non-enhanced brain images are much simpler than those
in abdominal images. Results on one example slice are
displayed in Fig.13. Brain tissue has similar CT values
under different X-ray energy levels and the differences
mainly come from the bone area. The proposed method
performs well on the new Philips dataset acquired using a
different DECT scanning protocol.

4. Discussion

There are substantial redundant information and cor-
relation in both anatomical structure and energy-domain
between the low- and high-energy DECT images. By
incorporating the redundancy and the correlation into a
deep learning model, it is possible to provide material-
and energy-specific images using standard SECT scan-
ners, which has the potential to alleviate the need for pre-
mium DECT scanners. Besides, compared to the standard
fully low- and high-energy sampling DECT mechanism,
the use of sparse sampling at the second energy level can
significantly reduce the radiation dose of DECT imaging.

Our results show both the DL-DECT and FLESH-
DECT methods achieve high-performance DECT imag-
ing by using the input low-energy CT data, and quan-
titative analysis shows FLESH-DECT outperforms DL-
DECT in terms of HU accuracy and calculation speed.
The superior performance of the FLESH-DECT can be at-
tributed to the additional single-view high-energy projec-
tion. Different from the DL-DECT method which directly
infers a high-energy image using the incorporated prior
knowledge, the proposed FLESH-DECT method uses the
learned knowledge to fit the measured high-energy pro-
jection. Namely, the high-energy projection introduces a

penalty to constrain the projection generated by the pre-
dicted high-energy images to be consistent with the mea-
surement, which in turn enhances the accuracy of the pre-
dicted images. The single-view high-energy projection
can be obtained shortly before or after the standard SECT
low-energy data acquisition, and existing SECT systems
are able to implement these scanning protocols without
modifying the hardware.

In the proposed method, the single-view high-energy
projection and the corresponding low-energy projection
view are supposed to be strictly aligned. We moved the
X-ray source under high-energy to mimic patient move-
ments and mismatches between projection source posi-
tions. The results are depicted in Fig.14. The model is
robust to shift in axial direction to some extent. It out-
performs DL-DECT model even when there is a 10mm-
shift. The model is also robust concerning the movements
in horizontal directions (projection source moving left or
right). Changes in distance between patient and projec-
tion source are not accepted as they introduce severe mis-
match on organ boundaries in projections. The proposed
method is unlikely to introduce artifacts when there is
mild mismatch between projections at different energy-
levels. The material maps (in which structural informa-
tion is included) are generated according to the given low-
energy image. The anatomical structure will be well pre-
served when there is no artifact in the low-energy image.
The projection difference only affects the CT values of
each ”material”.

It should be noticed that the high-energy projection in
the proposed method does not need to cover the whole
area the corresponding low-energy projection scanned.
Since in most cases, the number of equations in Eq.7 over-
whelms the number of unknowns, reducing the number of
equations (which means reducing the number of projec-
tions) has little influence on the results. From our exper-
iments, MSE between the real image and the generated
image will not change severely if we cut the projection
channel number into half or even quarter, though full pro-
jections do perform slightly better (see Fig.15).

FLESH-DECT is suitable for different geometries. In
this study, we have tested the method using 2D geome-
tries (fan-beam and parallel beam). However, the method
can be applied straightforwardly to 3D geometries by ex-
tending the networks and the projection operators into 3D
scenarios. Since the reconstructed size is smaller than the
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Table 7: Quantitative Results on Philips Dataset.

Source(keV) Target(keV) MSE PSNR SSIM
70 110 13.45 ± 1.94 55.84 ± 0.64 0.9985 ± 1.43 × 10−4

70 150 22.27 ± 3.46 53.06 ± 0.66 0.9980 ± 2.65 × 10−4

110 150 1.64 ± 0.21 64.22 ± 0.60 0.9999 ± 1.47 × 10−5

projection view size in the rotation axis for a 3D case,
projections generated using the reconstructed image vol-
ume cannot match the measured projection. To solve this
issue, one can use the middle part of the measured projec-
tion which does not propagate through the region beyond
the image volume.

The proposed method employs the MD-CNN to gen-
erate “material-decomposition” maps A from 100 kV im-
ages. Since basis materials in the image do not change
under X-ray at different energy levels, accurate material-
decomposition maps can provide CT images under any
spectrum if combined with the projection view acquired
using the corresponding spectrum (e.g. 120 kV image
from 120 kV projection, 150 kV image from 150 kV pro-
jection). In our experiments, the models were trained
and tested using DECT images under 100 kV/Sn 140 kV
scanning protocol. Therefore, the generated “material-
decomposition” maps are likely to be optimized for this
specific protocol and may not be applied to images ac-
quired using a different protocol (such as 80 kV/Sn 140
kV). An example is shown in Fig. 16. However, if
the model was trained using images acquired from sev-
eral different spectra, the “material-decomposition” maps
would be much closer to the real ones and the model
would have the potential to generate images under differ-
ent spectra without re-training the MD-CNN. Also, regu-
larizers may further be introduced and applied to matrix A
during network training to enhance the robustness of the
model.

There is a denoising-CNN included in the flowchart of
FLESH-DECT. We use this network to reduce the im-
pact of image noise and the results show its effective-
ness. However, the denoising network is not manda-
tory and it can be replaced with other image denoising
techniques (Ma et al., 2011), such as non-local mean
(NLM) (Zhang et al., 2013), block-matching and 3D fil-
tering (BM3D) (Salehjahromi et al., 2017), without see-

ing severe degradation in performance. The denoising
step may also be removed when inputting extremely-high
quality images.

In this paper, the proposed method was tested on the
Siemens DECT dataset as well as Philips spectral CT
dataset. For Siemens DECT, both low- and high-energy
projections can be attained from a CT system while in
Philips spectral CT dataset, the projection views of those
virtual monoenergetic images are unable to acquire from
real CT machines. Here, we are using those simulated
data to demonstrate that the proposed method has the po-
tential to deal with different energy-level settings.

Despite all the advantages and potentials mentioned
above, the proposed method has limitations. FLESH-
DECT relies highly on the deep neural network to perform
the material-decomposition-like operation. Since the do-
main knowledge learned by the network highly depends
on training data, it is unlikely to provide reasonable results
when there is a huge difference between training and test-
ing data. For example, models trained under 100 kV/Sn
140 kV protocol may not generate correct results when
inputting low-energy images scanned under 70 kV proto-
col. However, these limitations can be solved by training
different models for different protocols.

5. Conclusion

In this paper, we proposed a deep learning approach
to perform DECT imaging using a low-energy image
and a single-view high-energy projection. Compared to
standard DECT imaging, the approach can provide su-
perior material-specific images with significantly reduced
noise. It also has the potential to simplify the system
design and reduce the radiation dose and allows us to
perform high-quality DECT imaging without the conven-
tional hardware-based DECT solutions. The approach
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Figure 14: MSE values on test patient1 when there is shift between pro-
jections at different energy-levels. (a) Shift in axial direction. (b) Shift
in horizontal directions.

may significantly extend the usage of the widespread stan-
dard SECT scanners by providing advanced DECT clin-
ical applications, such as urinary stone characterization
and differentiating intracerebral hemorrhage from iodi-
nated contrast, and thus lead to a new paradigm of SECT
imaging.
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