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ABSENCE OF WARM PERCOLATION
IN THE VERY STRONG REINFORCEMENT REGIME
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We study a class of reinforcement models involving a Poisson
process on the vertices of certain infinite graphs G. When a vertex
fires, one of the edges incident to that vertex is selected. The edge
selection is biased towards edges that have been selected many times
previously, and a parameter α governs the strength of this bias.

We show that for various graphs (including all graphs of bounded
degree), if α � 1 (the very strong reinforcement regime) then the
random subgraph consisting of edges that are ever selected by this
process does not percolate (all connected components are finite).

Combined with results appearing in a companion paper, this proves
that on these graphs, with α sufficiently large, all connected compo-
nents are in fact trees. If the Poisson firing rates are constant over
the vertices, then these trees are of diameter at most 3.

The proof of non-percolation relies on coupling with a percolation-
type model that may be of interest in its own right.
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1. Introduction. Pólya-type urn models are random processes where
balls are repeatedly sampled from an urn, and additional balls are added
depending on the colours of the sampled balls. Since their introduction in
1931 [20], there have been many generalisations of Pólya urn models (see
e.g. [18, 15]), and many more examples of random processes with reinforce-
ment (see e.g. [19]). Some of these models take place on (hyper-)graphs and
have been introduced as toy models for market competition or for neuronal
connections in the brain (see e.g. [1, 2, 9]).

In this paper we study a version of the so-called WARMs introduced in [9],
but defined on infinite graphs. These models involve a parameter α, which
in this paper will always be larger than 1, and typically much larger. For
finite graphs α > 1 has been studied in [9, 10]. Situations (infinite or finite
graphs) with α = 1 and α < 1 are studied in [11] and [3] respectively.

The fact that the underlying graphs G = (V,E) are infinite means that
the definition of the model is more technical. Time t ∈ [0,∞) in this paper
is continuous (note that t ∈ Z+ in [9, 10]), and Nt(e) ∈ N denotes the edge
count of edge e ∈ E at time t. Starting with edge counts N0(e) = 1 for
each e ∈ E, the dynamics is induced by Poisson-based firings with rates
λV := (λv)v∈V at the vertices V as follows:

1. When a firing occurs at v ∈ V , choose an edge from those incident
to v with probability proportional to the current count raised to the
power α, i.e., choose e ∼ v with probability proportional to N·(e)

α. (If
there are no edges incident to v, do not choose an edge).

2. Increment the count of the chosen edge (if one was chosen).

When the graph G is finite and all vertices fire at the same rate, the jump
process of our model is the discrete-time WARM process studied in [9, 10].
In general in the infinite graph setting, because of possibly infinite depen-
dencies, some restrictions (see Definition 1 below) are required on G,λV to
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WARM PERCOLATION 3

even ensure that the process is well-defined.
In this paper we are interested in the random subset of edges N = {e ∈

E : supt≥0Nt(e) = 1} that are never reinforced, or more precisely it’s com-
plement N c = E \ N .

Given G, α, and λV , let PG,α,λV
denote a probability measure on a mea-

sureable space under which NG := (Nt(e))t≥0,e∈E has the law of a WARM
on G with firing rates λV and reinforcement parameter α.

The following is straightforward to prove.

Lemma 1. Let G = (V,E) be a graph on which the process is well defined,
and α > 1. Then PG,α,λV

(e ∈ N ) = 0 ⇐⇒ e is incident to a leaf of G.

This shows that except on star graphs,N is non-empty with positive prob-
ability. Our main result is that on various natural infinite graphs, when α is
sufficiently large, all connected components of N c are finite. In preparation
for that result we define the following.

For a graph G = (V,E), let dx = dx(G) denote the degree of x ∈ V . A
graph G is said to have bounded degree if ∂ = ∂(G) := supx∈V dx is finite.
Standard examples include Zd (where ∂ = 2d).

In this paper G = (V, E) denotes a random graph with law ν. Examples
will include Galton-Watson (G-W) trees and the so-called Gilbert spatial
graph. The latter is defined as follows. Let Φ be a homogeneous Poisson point
process in Rd with intensity µ > 0. That is, the expected number of points
in a region of volume 1 is µ. Then, the Gilbert spatial graph is the graph G
with vertex set V = Φ and edge set E = {(v, y) : v, y ∈ V, |v − y| < 1}.

We will assume throughout this paper that the firing rates satisfy the
following condition.

Condition 1. There exists a constant L > 0 such that ν-almost surely,
0 < λv ≤ L for each v ∈ V.

Condition 1 is of course implied by the following.

Condition 2. λv = 1 for each v ∈ V, ν-almost surely.

Our main result is the following.

Theorem 1. Let λV satisfy Condition 1, where G is one of the following:

(a) a G-W tree with offspring distribution having finite mean, or
(b) any random (connected) graph for which the maximal degree is at most

a constant ∂ <∞, ν-almost surely, or
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4 HIRSCH, HOLMES, KLEPTSYN

(c) a Gilbert spatial graph.

Then ν-almost surely, for any α > 0 the WARM process on G is well defined.
Moreover, there exists α0 > 1 such that for every α > α0: for ν-almost every
G, all connected components of G \ N are finite, PG,α,λV -almost surely.

Examining the proof of Theorem 1 reveals that the parameter α0 can
be taken to only depend on: (a) the offspring distribution; (b) the degree
bound ∂; and (c) the spatial dimension and the intensity of the Poisson point
process, respectively. Note that if G = Z then α0 = 1 (see Lemma 8 below).

In a companion paper [7], the finite clusters of (finite or infinite) graphs
are studied. As a consequence of Theorem 1 and the results of [7, 10], we
have the following corollary, in which E∞ = {e ∈ E : supt>0Nt(e) =∞}.

Corollary 1. Let G, λV be as in Theorem 1.

(i) If α > max(α0, 2), then for ν-almost every G, all connected components
of E∞ are (finite) trees, PG,α,λV -a.s.

(ii) If Condition 2 holds, then for α > max(α0, 25), for ν-almost every G
all connected components of E∞ are of diameter at most 3, PG,α,λV -a.s.

The conclusion of (ii) fails in general if Condition 2 does not hold, see [10,
Example 1].

Remarks. To say much more than what we have proved requires more
careful analysis. In particular we don’t know the natural general condition
on a graph and firing rates that makes the conclusion of Theorem 1 true.

The first conclusion of the theorem is that the process is well-defined. Note
that for graphs whose volume (number of vertices within graph distance n
of a fixed vertex) grows too quickly, there are infinite descending chains of
dependencies when Condition 2 holds (i.e. λ ≡ 1). The same is true if the
firing rates (rather than the volume) grow too quickly. Formally speaking,
it does not mean that the process is not well-defined, but it does motivate
the following.

Open Problem 1. Is there an example of a graph G = (V,E) equipped
with intensities λV satisfying Condition 1, for which the process is not well
defined? For instance, such that the limit of WARM processes on finite
subgraphs exhausting G does not exist?

We believe that for any α > 2 there exists a WARM process on a bounded-
degree graph with bounded firing rates that does contain an infinite con-
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WARM PERCOLATION 5

nected component of infinitely reinforced edges. This illustrates the non-
triviality of the conditions of the theorem, since the main conclusion (finite
connected components) cannot be extended to all large α on all bounded
degree graphs.

To be precise, we believe that for any α > 2 one can find a regular
(so bounded degree) rooted tree T (α) with firing rates (λv)v∈T (α) ≤ 1 for
which E∞ almost surely contains an infinite component. The firing rates
in this example decrease exponentially with distance from the root, so in
particular the rates are not bounded away from 0. Moreover, by joining
such trees T (αi) for various values of αi together (gluing them along an
integer line), we believe that the aforementioned construction will also give
rise to a tree T ′ (with finite but unbounded degrees) with bounded firing
rates (λv)v∈T ′ ≤ 1 for which the WARM process is still well-defined, but
with the property that E∞ almost surely contains an infinite component for
any α > 2.

These examples motivate the following open problem(s).

Open Problem 2. Let G be a graph on which the WARM process with
constant firing rates (λv = 1) is well defined for each α > 1. Now consider a
WARM process on G with ε < λv < ε−1 for some ε > 0 and for every v ∈ V
(i.e. that the firing rates are bounded away from 0 and∞). For this process,
does it follow that there exists αG,ε such that all connected components
of E∞ are finite for α > αG,ε?

Open Problem 3. In the setting of Open Problem 2 when can one take
αG,ε = 1?

In this paper we are primarily concerned with the set N of edges that are
never reinforced, and its complement. This is important because (conditional
on N ) the connected components of N c behave independently of each other,
and this fact is exploited in [7]. One can of course also ask about other sets
of edges, such as the set of edges reinforced linearly over time. The latter
is the primary topic of interest in [7], and in particular it is proved therein
that if an edge is used infinitely often then it used linearly over time.

The rest of the article is structured as follows. In Section 2 we show that
the WARM process with bounded firing rates on any graph that “does not
grow too fast” is well defined, and we show that ν-almost surely our graphs
G in Theorem 1 do not grow too fast. In Section 3 we couple the cluster
N c of a WARM process on a graph G with a percolation-type model whose
open clusters dominate N c. In Section 4 we use this coupling/domination
to prove Theorem 1.
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6 HIRSCH, HOLMES, KLEPTSYN

2. Construction of the process. In this section, we fix a a graph G =
(V,E) with vertices of finite degrees, and give an explicit construction of a
probability space on which the WARM process on G exists. Our construction
is more elaborate than what is required to prove existence, however the
additional complexity is used e.g. in the proof of Theorem 1. Since disjoint
components of G do not interact, we lose no generality in assuming that G
is connected in this section.

Let M = {(Xn, Tn)}n≥1 be a Poisson point process on G (to be precise,
on V × [0,∞)) with intensity field λV indicating the vertex-specific firing
rates. Here, we use an arbitrary enumeration of the Poisson point process,
and note that the times {Tn}n≥1 are not increasing in n. The construction
of the WARM process relies on the concept of descending chains [4, 14].

Definition 1. Let M be a Poisson point process on G, and m ≥ 2.

A sequence {(Xni , Tni)}i∈[m] such that for every i ∈ [m− 1],

(i) Xni is adjacent to Xni+1 , and

(ii) Tni > Tni+1 ,

is called a descending chain of length m.
M admits infinite descending chains if there exists an infinite sequence
{(Xni , Tni)}i≥1 such that (i) and (ii) above hold for every i ≥ 1.
A graph G is good if it has vertices of finite degrees, and the associated
Poisson point process with λv = 1 for every v ∈ V a.s. does not admit
infinite descending chains.

Note that for any G with vertices of finite degrees, and λV bounded, G
is good if and only if a Poisson point process M on G with firing rates λV
does not admit infinite descending chains.

Let Ev = {(v, v′) ∈ E} denote the set of edges incident to v ∈ V . For each

x ∈ V and nx = {n(e)}e∈Ex we first define a total ordering
nx≺ of the edges

incident to the vertex x. This ordering depends on an initial edge ordering
x≺0 and the edge counts (n(e))e∈Ex . It is defined by imposing that

e
nx≺ e′if n(e) < n(e′), or if n(e) = n(e′) and e

x≺0 e
′.

That is, fatter edges are preferred. We then define the selection function

selx
(
·; (n(e))e∈Ex

)
: [0, 1]→ Ex

such that selx
(
u; (n(e))e∈Ex

)
is the uniquely determined edge e ∈ Ex satis-

fying

u ∈

[∑
e′

nx≺ e
n(e′)α∑

e′∈Ex
n(e′)α

,
n(e)α +

∑
e′

nx≺ e
n(e′)α∑

e′∈Ex
n(e′)α

)
.
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WARM PERCOLATION 7

That is, higher values of u correspond to choosing fatter edges. This property
is convenient for coupling constructions appearing in Lemma 3.

Lemma 2. Let G be good, α > 0, and suppose that there exists L > 0
such that λv ≤ L for every v ∈ V . Then the PG,α,λV

-WARM process exists.

Proof. Fix G, a good graph. Since nothing happens when there is a
firing at an isolated vertex v ∈ V , by removing such vertices we may assume
that G has no isolated vertices (i.e. every vertex v ∈ V has an edge incident
to it).

Let (Ω,F ,P) denote a probability space on which M = {(Xn, Tn)}n≥1
is a Poisson point process on V × [0,∞) with intensity λV , and U =
{Um(x)}m∈Z+,x∈V is a family of i.i.d. standard uniform random variables
that are independent of M. Since λv ≤ L for every v ∈ V , M does not
admit infinite descending chains.

We construct a family of approximations (Nt;i(e))t≥0,i∈Z+ and first set
Nt;0(e) = 1 for all e ∈ E. Then, letting VXm denote the set of vertices
consisting of Xm and all adjacent vertices, the initial layer

L1 = {(Xm, Tm) ∈M : M ∩ (VXm × [0, Tm)) = ∅}

consists of all firing events such that no firing event has occurred earlier
either at the considered vertex or at one of its neighbouring vertices. Then,
L1 is non-empty because there are no infinite descending chains.

For every (Xm, Tm) ∈ L1 and e ∈ EXm define

Nt;1(e) = Nt;0(e) + 1{
t≥Tm, selXm

(
U0(Xm);(NTm−;0(e′))e′∈EXm

)
=e

}.
For other edges, we put Nt;1(e) = Nt;0(e).

For i ≥ 1 we proceed recursively and define the (i+ 1)th layer

Li+1 = {(Xm, Tm) ∈M : M ∩
(
VXm × [0, Tm)

)
⊂ Li}

as the family of all firing events such that all earlier firing events at this or
adjacent vertices are in layer Li. Let Q(x) denote the event that an edge in
Ex has been reinforced before the first firing time of x and

Ûm(x) =

{
Um(x), if m ≥ 2

U1(x)1Q(x) + U0(x)1Q(x)c , if m = 1.

Note that Û = (Ûm(x))x∈V,m≥1 are i.i.d. since U was an i.i.d. collection,
and that Q(x) is independent of U1(x), U0(x).
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8 HIRSCH, HOLMES, KLEPTSYN

For every (Xm, Tm) ∈ Li+1 \ Li and e ∈ EXm we put

Nt;i+1(e) = Nt;i(e) + 1{
t≥Tm, selXm

(
ÛSm(Xm)(Xm);(NTm−;i(e′))e′∈EXm

)
=e

},
where Sm(x) := #{(Tk, Xk) ∈M : Tk ≤ Tm, Xk = x} denotes the number of
times that x has fired up to (and including) time Tm. Again, for other edges
there are no changes. Note that, we use the U0(Xm) variable to determine
the chosen edge at time Tm if and only if NTm−;i(e

′) = 1 for every e′ ∈ EXm

(otherwise we use USm(Xm)).
Since Nt;i(e) is increasing in i, and Nt;i(e) ≤ #{(Xm, Tm) : Tm ≤ t,Xm ∼

e}, the limiting count
Nt(e) := lim

i→∞
Nt;i(e)

is well-defined, and a.s. finite. Finally, as the Poisson point process does
not admit infinite descending chains, we have ∪i≥0Li = M. That is, every
Poisson firing event is indeed accounted for in this dynamics. �

Based on the above construction, we now provide an upper bound on the
probability that a firing at a vertex leads to a new edge being selected. Let

Tn(x) = inf{t ≥ 0 : #(M ∩ ({x} × [0, t])) = n}

be the nth firing time of the vertex x ∈ V , for n ∈ N. Then,

Fx,n := σ
(
((Xm, Tm) : Tm ≤ Tn(x)),U \ Un(x)

)
denotes the σ-algebra generated by M up to time Tn(x) and all selection
variables except for Un(x). Moreover, Kn(x) = #{e ∈ Ex : NTn(x)−(e) = 1}
denotes the number of edges adjacent to x that are not reinforced before
time Tn(x). Finally define,

Wx,n := PG,α,λV
(NTn(x)(e) = 2 6= NTn(x)−(e) for some e ∈ Ex|Fx,n).

Lemma 3. Fix G, λV so that the process is well defined. Let n ≥ 1 and
x ∈ V be arbitrary, and α > 0. Then,

Wx,n ≤
dx − 1

dx − 1 + maxe∈Ex NTn(x)−(e)α
, a.s. on the event {Kn(x) < dx}.

Proof. Fix x, n and let κn = {e ∈ Ex : NTn(x)−(e) = 1}. Letting m ≥ 1
be such that Tn(x) = Tm, the construction described above shows that on
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WARM PERCOLATION 9

the event {Kn(x) < dx} we have Ûn(x) = Un(x), which is independent of
Fx,n. Therefore, almost surely on {Kn(x) < dx},

Wx,n = PG,α,λV

(
selx
(
Un(x); (NTn(x)−(e))e∈Ex

)
∈ κn

∣∣Fx,n)
≤ Kn(x)

Kn(x) +
∑

e∈Ex\κn NTn(x)−(e)α

≤ Kn(x)

Kn(x) + maxe∈Ex NTn(x)−(e)α

≤ dx − 1

dx − 1 + maxe∈Ex NTn(x)−(e)α
.

�

For a graph G = (V,E), let cn,x denote the number of self-avoiding walks
of length n ≥ 1 in G started from x ∈ V . We will use the following lemma
to show that all of the graphs in Theorem 1 are good, ν-almost surely.

Lemma 4. Let G = (V,E) be a graph for which there exist r > 1 and
non-negative constants {Cx}x∈V such that

cn,x ≤ Cxrn, for all n ≥ 1 and x ∈ V .

Then G is good.

Proof. The fact that cn,x is finite for every x implies that G has finite
degrees.

Next, note that for a fixed finite set V0 ⊂ V the probability that there is
an infinite descending chain {(Xni , Tni)}i≥1 with Xni ∈ V0 for each i is 0.
Since G is countable, the collection of finite subsets of G is also countable,
from which it follows that almost surely no infinite descending chain can be
found on a finite subset of G. Thus, (almost surely) an infinite descending
chain exists if and only if an infinite descending chain {(Xni , Tni)}i≥1 with
{Xni}i≥1 all distinct exists.

Let t > 0 and v ∈ V be arbitrary. From the above, it suffices to show
that the expected number of descending chains of length n ≥ 1 starting at
v before time t consisting of n distinct vertices, tends to 0 as n → ∞. Let
γ = 〈v1, . . . , vn〉 be a fixed self-avoiding path of length n in G starting from
v1 = v. Then, we let Lγ denote the number of n-tuples {(Xki , Tki)}i∈[n] of
points from M such that: 〈Xk0 , . . . , Xkn−1〉 = γ and t > Tki > Tki+1

for
every i ∈ [n − 1]. By the multivariate Mecke formula [16, Theorem 4.4],
applied to the Poisson point process M and the mapping

((x1, t1), . . . , (xn, tn)) 7→ 1{{xi=vi for every i ≤ n}}1{{t1>t2>···>tn}}
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10 HIRSCH, HOLMES, KLEPTSYN

we arrive at

EG,α,λV
[Lγ ] =

n∏
i=1

λvi

∫
[0,t]n

1{t1>t2>···>tn}dt1 · · · dtn ≤
(tL)n

n!
.

Thus, the expected number of descending chains of length n starting from v
with all vertices distinct, is at most cn,v(tL)n/n!. By assumption there exist
Cv, r > 1 such that cn,v ≤ Cvrn for every n. Therefore

lim sup
n→∞

cn,v(tL)n

n!
≤ Cv lim sup

n→∞

(rtL)n

n!
= 0,

as required. �

Proposition 1. All of the graphs in Theorem 1 are good, ν-almost
surely.

Proof. For any graph G with maximal degree ∂, the number of walks of
length n started from any x ∈ V is at most ∂n, so by Lemma 4 G is good.
This verifies the claim for G almost surely having maximal degree at most
∂.

For G-W trees with offspring distribution having mean µ ∈ (0,∞), Mn :=
µ−nKn is a positive martingale (where Kn is the number of individuals in
generation n), so it converges almost surely. Thus, we have that supn µ

−nKn <
C for some (random) finite C > 0, ν-almost surely. In a tree, the number
of self-avoiding walks of length n started from x is precisely the number of
vertices of distance n from x. Since x is some distance kx from the root,
every vertex that can be reached from x in n steps can be reached from the
root in at most kx + n steps. Therefore, ν-almost surely on the event that
x ∈ V, there exists a C > 0 such that

cn,x ≤
n+kx∑
j=0

Kj ≤ C
n+kx∑
j=0

µj ≤ Cxρn,

and the result follows by Lemma 4.
For the Gilbert spatial graph with intensity µ let

N ′n = #{(X1, . . . , Xn) ∈ Φn :X1 ∈ [−1/2, 1/2]d, {Xi}1≤i≤n all distinct

and |Xi −Xi+1| ≤ 1 for all i ∈ [n− 1]},

denote the number of self-avoiding paths of length n starting from the unit
cube. In particular, cx,n ≤ N ′n for every x ∈ Φ ∩ [−1/2, 1/2]d, so that by
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WARM PERCOLATION 11

stationarity, it suffices to show that (ν-almost surely) there exists C > 0
such that N ′n ≤ Crn for every n.

Write B1(x) for the Euclidean ball of radius 1 centered at x ∈ Rd and
κd for the volume of the d-dimensional unit ball in the Euclidean metric.
Applying the multivariate Mecke formula [16, Theorem 4.4] to the mapping

(x1, . . . , xn) 7→ 1{x1∈[−1/2,1/2]d}1{xi+1∈B1(xi) for every i ≤ n− 1}.

we obtain

Eν [N ′n] ≤ µn
∫
[−1/2,1/2]d

∫
B1(x1)

· · ·
∫
B1(xn−1)

1dxn · · · dx2dx1

= µnκd

∫
[−1/2,1/2]d

∫
B1(x1)

· · ·
∫
B1(xn−2)

1dxn · · · dx2dx1

= µnκn−1d .

In particular, writing r = (max{2, µκd})2, the Markov inequality gives that

ν(N ′n ≥ rn) ≤ 1

κd
r−n/2.

Hence, by the Borel-Cantelli lemma, ν-almost surely there exists a random
C > 0 such that N ′n ≤ Crn for every n. �

Lemma 4 amounts to a bound on the rate of growth of the number of
self-avoiding walks on a graph, started from fixed locations. It would be of
interest to consider what happens when Condition 1 is dropped, while still
assuming that the process M on G almost surely does not admit infinite de-
scending chains. The latter condition puts restrictions both on the growth
of the graph and the firing rates. In particular it would be of interest to con-
sider what happens when (λv)v∈V is an (unbounded) i.i.d. sequence, whence
the model becomes a reinforcement model in a random firing environment.

We finish this section with two examples that admit infinite descending
chains: an unbounded degree graph with bounded firing rates; and a bounded
degree graph with unbounded firing rates.

Lemma 5. Consider an infinite rooted tree T , for which all the vertices
at distance n from the root have 5(n+ 2)2 children. Then almost surely T is
not good.

Sketch proof. Call a vertex v at distance n from the root “nice” if
it has fired between moments t = 1

n+2 and t′ = 1
n+1 . It is an interval of
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12 HIRSCH, HOLMES, KLEPTSYN

time of length 1
(n+1)(n+2) >

1
(n+2)2

. Hence, the expectation of the number

of nice children of any vertex is at least 5, and in fact its law converges (as
we take vertices farther and farther from the root) to the Poisson law with
parameter 5. Hence, almost surely there exists an infinite (Galton-Watson-
like) subtree formed by nice vertices. Any infinitely growing branch of such
a subtree provides us with an infinite descending chain. �

Lemma 6. The graph Z+, with λn = (n!)2 almost surely admits infinite
descending chains.

Proof. Let An be the event that n − 1 fires before n. Then P(An) =
1/(1 + n2), so P(An infinitely often) = 0. �

3. Corrupted compass models. In order to prove our main result, we
couple our highly dependent WARM process with an independent percolation-
type model that we call a corrupted compass model on a graph G.

Definition 2 (Corrupted Compass Model onG = (V,E)). Let {p{x}}x∈V
be a collection of elements of [0, 1]. Every non-isolated vertex x ∈ V is inde-
pendently and with probability p{x} called corrupted. Let K ⊂ V denote the
set of corrupted vertices. Independently at each non-isolated vertex y ∈ V ,
choose an edge ηy from Ey uniformly at random, and define

(1) C :=
⋃
x∈K

Ex ∪ {ηy : y ∈ V } ⊂ E.

The uncorrupted compass model is the choice p{x} = 0 for each x.

Corrupted compass models may be of interest in their own right, as on
regular lattices they can be viewed as examples of “degenerate random envi-
ronments” [12, 13], which are generalisations of directed percolation models.
Of particular interest is the case where p{x} = pdx(α), where dx is the degree
of x, p0(α) = 0 and for d ≥ 1,

bn(d) :=
d− 1

d− 1 + (2 ∨ n
d )α

and pd(α) := 1−
∞∏
n=1

(1− bn(d)).

We have the following elementary lemma.

Lemma 7. Let d ≥ 1 and α > 1. Then, pd(α) < 1 and limα↑∞ pd(α) = 0.
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WARM PERCOLATION 13

Proof. Using the inequality log(x) ≥ 1− 1/x for all x > 0 we obtain for
each a > 0, and each {jn}n≥1 ⊂ (0,∞)

∏
n≥1

(
1− a

a+ jn

)
=
∏
n≥1

jn
a+ jn

= exp

{∑
n≥1

log
( jn
a+ jn

)}
≥ exp

{
−a
∑
n≥1

1

jn

}
.

If jn = (2∨ (n/d))α then the above sum is finite for α > 1, which proves the
first claim. Moreover, for this choice of jn, the sum is at most

2d∑
n=1

1

2α
+ dα

∞∑
n=2d+1

1

nα
≤ 2d

2α
+ dα

∫ ∞
2d

1

xα
dx =

d

2α−1
[1 +

1

α− 1
],

which approaches 0 as α ↑ ∞. This proves the second claim. �

For the graphs appearing in Theorem 1 we prove that for large α the
(random) set of edges in the corrupted compass model almost surely has
finite clusters. Therefore, the following result is fundamental to our analysis.

Proposition 2. On the probability space of Section 2 one can define a
corrupted compass model (with p{x} ≡ pdx(α) as above) such that N c ⊂ C.

Proof. Recall the probability space of Section 2. Write (1)f∈Ex for (n(f))f∈Ex

when all such n(f) are equal to 1. Let ηx = selx
(
U0(x); (1)f∈Ex

)
and

S∗ = {ηx : x ∈ V } ⊂ E.

Let τx = inf{t > 0 : Nt(e) > 1 for some e ∈ Ex} denote the first time that
an edge incident to x is reinforced. A vertex x ∈ V is bad if there exists a
firing time Tn(x) > τx at x that reinforces a previously unreinforced edge
e ∈ Ex, i.e. NTn(x)−(e) = 1 and NTn(x)(e) = 2 (note that since Tn(x) > τx
this means that there was at least one e′ ∈ Ex with NTn(x)−(e′) ≥ 2). Define

C∗ = S∗ ∪
⋃

x is bad

Ex.

We now define a corrupted compass model on the probability space of Sec-
tion 2. The compass at (non-isolated) x ∈ V is defined to be the edge
ηx = selx

(
U0(x); (1)f∈Ex

)
. The vertex x is corrupted if and only if Un(x) ≤

bn(dx) for some n ∈ N. Note that these corruption events are independent
over x and are also independent of the compass selection process. Thus,
the above does indeed define a corrupted compass model on G with p{x} =
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14 HIRSCH, HOLMES, KLEPTSYN

pdx(α) for each x. Let C denote the set of edges of this corrupted compass
model, as per (1). Then, to complete the proof it suffices to show that

N c ⊂ C∗, and(2)

C∗ ⊂ C.(3)

To prove (2), suppose that e = (x, x′) ∈ N c. Then, without loss of gen-
erality, the first time that e was reinforced was at a firing time Tn(x) at
x for some n. If e ∈ S∗ then e ∈ C∗. Otherwise e /∈ S∗ so in particular
e 6= selx

(
U0(x); (1)f∈Ex

)
, so there must be some other edge e′ ∈ Ex that was

already reinforced before time Tn(x). Thus, x is a bad vertex, so e ∈ C∗.
To prove (3), note that by construction S∗ ⊂ C is trivially true. Suppose

that x ∈ V is bad. Then, at some firing time Tn(x) at x there was an edge
e′ in Ex such that NTn(x)−(e′) ≥ 2 but an edge e ∈ Ex with NTn(x)−(e) = 1
was chosen. Hence, recalling the notation and proof of Lemma 3,

Un(x) ≤ Kn(x)

Kn(x) +
∑

e∈Ex\κn NTn(x)−(e)α
≤ dx − 1

dx − 1 + maxe∈Ex NTn(x)−(e)α
.

It also implies that maxe∈Ex NTn(x)−(e) ≥ 2∨ (n/dx), since at least one edge
is already reinforced, and after n clock rings at x at least one edge in Ex
must have count at least n/dx. Thus,

Un(x) ≤ dx − 1

dx − 1 + (2 ∨ (n/d))α
= bn(dx),

so x is corrupt. This proves (3). �

Remark 1. Notice that the construction (and hence the law) of the
corrupted compass model in the proof of Proposition 2 does not depend on
λV at all. In particular, the conclusion of the Proposition holds as long as
λV is such that the construction of the WARM process on G in Lemma 2
is valid.

4. Proof of Theorem 1. We let Cx ⊂ V denote the connected cluster
of x ∈ V in C. In view of Proposition 2, the proof of Theorem 1 reduces
to establishing that connected clusters Cx with the choice p{x} = pdx(α)
for each x, are finite almost surely for α sufficiently large. The latter is the
content of the following proposition.

Proposition 3. Let G be any of the graphs in Theorem 1. Then there
exists α0 > 1 such that for all α ≥ α0: ν-almost surely, all connected clusters
of C(G) (with the choice p{x} = pdx(α)) are finite, PG,α,λV -almost surely.
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WARM PERCOLATION 15

The following lemma illustrates this approach in the simplest setting.

Lemma 8. If G = Z then for α > 1, all components of G \N are finite,
almost surely.

Proof. By Proposition 2, it suffices to show that all connected compo-
nents of C are finite. Let Ji = {{2i, 2i + 1} ∈ Cc}. Then Ji is the event
that: neither vertex in V ′i := {2i, 2i + 1} is corrupt, and η2i = (2i − 1, 2i),
and η2i+1 = (2i + 1, 2i + 2). Therefore P(Ji) = c(α) > 0 since α > 1. How-
ever, since the vertex sets V ′i for i ∈ Z are disjoint, the events (Ji)i∈Z are
independent. Thus, we encounter an edge in {{2i, 2i + 1} : i ∈ Z} ∩ N af-
ter examining the status of at most a Geometric(c(α)) number of edges in
{{2i, 2i+ 1} : i ∈ Z} to the right of 0 (and similarly to the left). �

In the following subsections we will verify that (for every x ∈ V ) Cx is
almost surely finite for each of the 3 different settings in the proposition.

4.1. Galton-Watson trees. Let V ∗ = {(n0, n1, . . . , nk) : k, n0, n1, . . . , nk ∈
Z+}. Let ξ = (ξv)v∈V ∗ be i.i.d. random variables taking values in Z+, with
probability mass function f and having finite mean µ =

∑
n≥0 nf(n). Let

U = (Uv)v∈V ∗ and U ′ = (U ′v)v∈V ∗ , and U ′′ = (U ′′v )v∈V ∗ be families of
mutually independent standard uniform random variables that are also in-
dependent of ξ.

We label the root (the unique vertex of generation 0) of our tree as (1),
and for any vertex v = (1, n1 . . . , nk) of generation k, its children are labelled
(v, 1), (v, 2), . . . . If v is not the root then its parent is denoted by v−1. Let
Vn denote the vertices of generation n.

One could generate a Galton-Watson tree G with a corrupted compass
model on it iteratively over n by using the variables ξ to generate the children
(v, 1), . . . , (v, ξv) of each v ∈ Vn and then deciding whether or not each
vertex of generation n is corrupted and whether or not its compass points
towards the root. Corruption occurs with probability pk+1(α) if the number
of children of v is k (unless v is the root in which case corruption occurs
with probability pk(α)). Similarly (unless v is the root) the compass at v
points towards the root with probability 1/(k + 1). We do not generate the
tree and corrupted compass this way.

Instead we generate the tree G and the corrupted compass model on it
as follows (also iteratively over n ≥ 0). Given Vn, for each v ∈ Vn, decide
whether v is corrupted, and (if not) decide on whether ηv is the edge to
the parent or some other edge. Then generate the number of children of v
conditionally on these events.
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16 HIRSCH, HOLMES, KLEPTSYN

To be precise, let n ≥ 1. Given that v ∈ Vn:

• v ∈ K if Uv ≤ qC , where

qC :=

∞∑
n=0

pn+1(α)f(n).

• v /∈ K and ηv is the edge to v−1 if Uv > qC and U ′v < qB/(1 − qC),
where

qB :=
∞∑
n=0

(1− pn+1(α))

n+ 1
f(n),

• otherwise v /∈ K and ηv is not the edge to v−1.

The respective probabilities of these events (given that v ∈ Vn) are qC , qB
and qF := 1− qC − qB respectively.

Given that v ∈ K, v has exactly k ≥ 0 children if U ′′v ∈
(∑k−1

j=0 gC(j),
∑k

j=0 gC(j)
]
,

where

gC(k) := q−1C pk+1(α)f(k).

Similarly, given that v /∈ K and ηv is the edge to v−1, v has exactly k ≥ 0
children if U ′′v ∈ (

∑k−1
j=0 gB(j),

∑k
j=0 gB(j)], where

gB(k) := q−1B
(1− pk+1(α))

k + 1
f(k).

Otherwise, v has exactly k ≥ 0 children if U ′′v ∈
(∑k−1

j=0 gF (j),
∑k

j=0 gF (j)
]
,

where

gF (k) := q−1F
k(1− pk+1(α))

k + 1
f(k), for k ≥ 1

The case n = 0 (i.e. the corruption status and number of children etc. of the
root) is slightly different. It is a simple but tedious exercise to verify that
this construction defines a Galton-Watson tree G with offspring distribu-
tion having probability mass function f , together with a corrupted compass
model (with p{x} = pdx(α) for each x ∈ V) on it.

Proof of Proposition 3 – Galton-Watson trees. LetmC ,mB,mF be
the means of random variables with probability mass functions gC , gB, gF re-
spectively. Let Cn, Bn, Fn denote the number of vertices in generation n that
are (respectively) corrupted, uncorrupted and have their compass pointing
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WARM PERCOLATION 17

to their parent, and uncorrupted with the compass pointing to a child. Fix
L ∈ (0,∞) and let λ be such that λv ≤ L for each v ∈ V ∗.

Let Pα,λ denote the annealed/averaged measure defined by

Pα,λ(G ∈ A,NG ∈ B) :=

∫
A
PG,α,λV (NG ∈ B)dν(G).

Under the annealed measure, conditional on v ∈ Vn, and on the compass type
of v (C=corrupted, B=uncorrupted with edge to parent, or F=uncorrupted
with edge to child), the expected number of children of type a ∈ {C,B, F}
when v is of type β ∈ {C,B, F} is mβqa. Let cn, bn, fn denote the expected
number of vertices of each type in C(1) ∩ Vn, under the annealed measure.
Then, cn+1

bn+1

fn+1

 =

mCqC mBqC mF qC
mCqB mBqB mF qB
mCqF 0 qF

cnbn
fn

 .

Most of the entries of the update matrix are obvious, and correspond to
cases where every child of a given type is also in C(1) ∩Vn+1. The entry 0 is
because if the compass of v ∈ Vn ∩C(1) ∩ Kc points to its parent then any
child v′ of v that is uncorrupted and whose compass does not point towards
v is not in C(1). Similarly, if v ∈ Vn ∩C(1) ∩Kc and its compass points to a
child v′ of v then v can have at most one child (it would have to be v′) that
is uncorrupted and whose compass points away from v. The probability that
this child v′ has this property is qF .

To show that Eα,λ[|C(1)|] < ∞ for α sufficiently large, it is sufficient
to show that the eigenvalues of the update matrix have absolute values
strictly less than 1 for α sufficiently large (since then Eα,λ[|C(1) ∩ Vn|] is
decreasing exponentially in n and is therefore summable). The eigenvalues
are the solutions to the cubic equation

0 = (λ−mBqB)(qF − λ)λ+mCqCλ[mF qF − (qF − λ)].

Now

mCqC =

∞∑
k=0

kpk+1(α)f(k).

Since µ is finite, and pk+1(α) → 0 as α → ∞ for each k, we have that
mCqC → 0 as α→∞. Similarly, as α→∞, the quantities qB(α), qF (α),mB(α),mF (α)
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18 HIRSCH, HOLMES, KLEPTSYN

converge respectively to

qB(∞) :=
∞∑
n=0

f(n)

n+ 1
, qF (∞) :=

∞∑
n=0

nf(n)

n+ 1
,

mB(∞) :=

∑∞
k=0

kf(k)
k+1∑∞

n=0
f(n)
n+1

, mF (∞) :=

∑∞
k=0

k2f(k)
k+1∑∞

n=0
nf(n)
n+1

,

which are all finite and positive. It follows that as α → ∞ the eigenvalues
of our update matrix approach the solutions to

0 = (λ−mB(∞)qB(∞))(qF (∞)− λ)λ.

The solutions are λ = 0, λ = qF (∞) ∈ (0, 1) and λ = mB(∞)qB(∞) =
qF (∞) ∈ (0, 1). This proves that there exists α0 > 1 such that Eα,λ[|C(1)|] <
∞ for all α > α0. From this one can conclude that Eα,λ[|Cx|1{x∈V}] < ∞
for α > α0. �

4.2. Bounded-degree graphs. Here we fix a graphG with degrees bounded
by ∂, and let P = PG,α,λV

, and E the corresponding expectation. Since
pdx(α) ≤ p∂(α) for every x ∈ V , it is sufficient to show that for the corrupted
compass model with py = p∂(α) for every y ∈ V , the expectation of the size
of the component of x is finite.

Proof of Proposition 3 – bounded degrees. Set p = py = p∂(α) (which
can be made arbitrarily small by taking α sufficiently large) for every y ∈ V .
Fix x ∈ V . Then

E[|Cx(α)|] ≤ 1 +
∑
n≥1

∑
v∈V

∑
γ:x

n−→v

P(γ ⊂ C),

where the interior sum is over the simple paths γ from x to v of length n
(i.e. containing n edges), and γ ⊂ C means that the edges of γ are all in C.

For neighbours x, x′, write x → x′ if ηx = {x, x′} or x ∈ K, and x 9 x′

otherwise. Clearly, for any simple path γ of length n ≥ 1 from γ0 = x to
γn = v we have

P(γ ⊂ C) =P(γ ⊂ C, v ∈ K)

+ P(γ ⊂ C, v /∈ K, γn−1 → v)

+ P(γ ⊂ C, v /∈ K, v → γn−1, γn−1 9 v).
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WARM PERCOLATION 19

Define

cn(α) :=
∑
v∈V

∑
γ:x

n−→v

P(γ ⊂ C, v ∈ K).

fn(α) :=
∑
v∈V

∑
γ:x

n−→v

P(γ ⊂ C, v /∈ K, γn−1 → v),

bn(α) :=
∑
v∈V

dv
∑

γ:x
n−→v

P(γ ⊂ C, v /∈ K, v → γn−1, γn−1 9 v),

We claim that all these three sequences are exponentially decreasing for
sufficiently large α. We are going to show that each component of the vec-
tor (cn+1, fn+1, bn+1) does not exceed the corresponding component of the
vector

(4)

(∂ − 1)p (∂ − 1)p ∂−1
∂ p

∂ − 1 ∂−1
∂ 0

0 ∂ − 1 ∂−1
∂

cnfn
bn

 .

Note that for p sufficiently small, all the eigenvalues of the above matrix are
less than 1 in absolute value, since as p→ 0, this matrix tends to 0 0 0

∂ − 1 ∂−1
∂ 0

0 ∂ − 1 ∂−1
∂

 ,

and its eigenvalues are ∂−1
∂ , ∂−1

∂ and 0. Thus, iterations of this matrix are
exponentially decreasing, and we get the desired upper bound.

We now have to establish the upper bound for cn+1, fn+1, bn+1. Note that

cn+1 =
∑
v∈V

∑
γ:x

n+1−→v

P(γ ⊂ C, v ∈ K)

=
∑
u∈V

∑
γ∗:x

n−→u

∑
v∼u

1{v/∈γ∗}P(γ∗ ⊂ C, v ∈ K).

Now

P(γ∗ ⊂ C, v ∈ K) = pdv(α)P(γ∗ ⊂ C) ≤ pP(γ∗ ⊂ C).
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20 HIRSCH, HOLMES, KLEPTSYN

Thus,

cn+1 ≤ p
∑
u∈V

∑
γ∗:x

n−→u

P(γ∗ ⊂ C)
∑
v∼u

1{v/∈γ∗}

≤ p
∑
u∈V

(du − 1)
∑

γ∗:x
n−→u

[
P(γ∗ ⊂ C, u ∈ K)

+ P(γ∗ ⊂ C, u /∈ K, γ∗n−1 → u)

+ P(γ∗ ⊂ C, u /∈ K, u→ γ∗n−1, γ
∗
n−1 9 u)

]
≤ p(∂ − 1)[cn + fn] + p

∂ − 1

∂
bn.

Similarly,

fn+1 =
∑
v∈V

∑
γ:x

n+1−→v

P(γ ⊂ C, v /∈ K, γn → v)

≤
∑
u∈V

∑
γ∗:x

n−→u

∑
v∼u

1{v/∈γ∗}P(γ∗ ⊂ C, u→ v)

=
∑
u∈V

∑
γ∗:x

n−→u

∑
v∼u

1{v/∈γ∗}[P(γ∗ ⊂ C, u ∈ K) + P(γ∗ ⊂ C, u /∈ K, u→ v)]

≤
∑
u∈V

∑
γ∗:x

n−→u

∑
v∼u

1{v/∈γ∗}[P(γ∗ ⊂ C, u ∈ K) + P(γ∗ ⊂ C, u /∈ K, γ∗n−1 → u)d−1u ].

The first term is bounded by∑
u∈V

(du − 1)
∑

γ∗:x
n−→u

P(γ∗ ⊂ C, u ∈ K) ≤ (∂ − 1)cn.

The second term is bounded by∑
u∈V

du − 1

du

∑
γ∗:x

n−→u

P(γ∗ ⊂ C, γ∗n−1 → u, u /∈ K) ≤ ∂ − 1

∂
fn.
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Finally,

bn+1 =
∑
v∈V

∑
γ:x

n+1−→v

dv · P(γ ⊂ C, v /∈ K, v → γn, γn 9 v)

=
∑
u∈V

∑
γ∗:x

n−→u

∑
v∼u

dv1{v/∈γ∗}P(γ∗ ⊂ C, u /∈ K, u9 v)P(v /∈ K, v → u)

≤
∑
u∈V

∑
γ∗:x

n−→u

∑
v∼u

1{v/∈γ∗}P(γ∗ ⊂ C, u /∈ K, u9 v).

The interior probability is at most

P(γ∗ ⊂ C, u /∈ K, γ∗n−1 → u, u9 v) + P(γ∗ ⊂ C, u /∈ K, γ∗n−1 9 u, u→ γ∗n−1)

≤ P(γ∗ ⊂ C, u /∈ K, γ∗n−1 → u) + P(γ∗ ⊂ C, u /∈ K, γ∗n−1 9 u, u→ γ∗n−1).

Thus,

bn+1 ≤
∑
u∈V

∑
γ∗:x

n−→u

(du − 1)[P(γ∗ ⊂ C, u /∈ K, γn−1 → u)

+ P(γ∗ ⊂ C, u /∈ K, γn−1 9 u, u→ γn−1)].

It follows that

bn+1 ≤ (∂ − 1)fn +
∂ − 1

∂
bn.

This gives us exactly the matrix in (4). �

4.3. Gilbert spatial graph. In the Gilbert spatial graph, it is convenient
to introduce additional structure to the Poisson point process, so that we
consider an augmented state space. All the events of interest in the corrupted
compass model will be defined on this particular space.

In our proof we will make use of the Slivnyak-Mecke formula [16, Theorem
4.1] in the following form, where {(Xi, Ui, U

′
i)}i≥1 is a Poisson point process

on Rd × [0, 1]2 with intensity µ under the measure ν:

Eν

[∑
i≥1

f((Xi, Ui, U
′
i), {(Xj , Uj , U

′
j)}j≥1)

](5)

= µ

∫
Rd×[0,1]2

Eν
[
f((x, u, u′), {(Xi, Ui, U

′
i)}i≥1 ∪ {(x, u, u′)})

]
dxdudu′,

(6)
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where f : (Rd × [0, 1]2)× (Rd × [0, 1]2)LF → [0,∞) is a non-negative Borel-
measurable function and where (Rd × [0, 1]2)LF denotes the space of locally
finite subsets of Rd × [0, 1]2. Note that when viewed as a space of σ-finite
measures (assigning mass 1 to each point in the set) (Rd×[0, 1]2)LF equipped
with the metric [5, A.2.6.1] is a metric space.

Given a set of points H = (xi, ui, u
′
i)i∈I ∈ (Rd × [0, 1]2)LF we let H1 =

(xi)i∈I , and we say that xi and x` (with ` 6= i) are neighbours if and only if
|x`−xi| < 1. The vertex set H1 together with the edge set EH1 = {{xi, xj} ∈
H2

1 : 0 < |xi − xj | < 1} defines a graph. Let ni denote the number of
neighbours of xi. If u′i ≤ pni(α) then we declare xi to be corrupt and we
write xi → x` for every neighbour x` of xi. If u′i > pni(α) then we write
xi → x` if xi and x` are neighbours and (j − 1)/ni ≤ ui < j/ni where x`
is the jth neighbour of x when the neighbours of xi are enumerated from
closest to farthest (with some fixed but arbitrary tie-breaking rule in the
case of tied Euclidean distances).

Let H = {(Xi, Ui, U
′
i)}i≥1 be a Poisson point process on Rd × [0, 1]2 with

intensity µ, and let H1 = {Xi}i≥1. Let G = (H1, EH1) be the graph defined
as in the previous paragraph. Note that H1 ∼ Φ, so this graph is a Gilbert
spatial graph. The (Ui)i≥1, (U ′i)i≥1 are independent standard uniform ran-
dom variables that are independent of (Xj)j≥1. It follows that the system
of arrows (as introduced in the previous paragraph, but applied to H) is a
corrupted compass model on G with p{x} = pdx(α) for each x ∈ H1. Let C
denote the set of edges in this corrupted compass model.

To prove Proposition 3, we use a re-normalisation argument to prove
absence of percolation in this corrupted compass model for large α > 1.
To describe the normalisation, for z ∈ Zd and M > 2 we say that a cube
QM (z) = z + [−M/2,M/2]d is M -nice if

1. all connected clusters Cx starting from vertices x in QM (z) are con-
tained in Q1.5M (z), and

2. every vertex in Q2M (z) is uncorrupted.

The cube QM (z) is M -nasty if it is not M -nice. Note that whether QM (z)
is nice can be determined by {(Xi, Ui, U

′
i) ∈ H : Xi ∈ Q2(M+1)(z)}.

To prove Proposition 3, we show that nice cubes occur with high proba-
bility.

Fix L ∈ (0,∞) and let λ = (λx)x∈Rd be such that λv ≤ L for every v ∈ Rd.
As in Section 4.1, we write Pα,λ for the annealed/averaged measure.
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Lemma 9. It holds that

lim
M→∞

lim inf
α→∞

Pα,λ(QM (o) is M -nice) = 1.

Before establishing Lemma 9, we discuss how it can be used to complete
the proof of Proposition 3.

Proof of Proposition 3 – Gilbert spatial graph. Fix G and C, and
suppose that C contains an unbounded component. Then there is some
infinite self-avoiding path (yi)i∈Z+ in C such that |yi−yi+1| < 1 and |yi| → ∞
as i → ∞. For each yi we have that Cyi is unbounded and yi ∈ QM (Mzi)
for some zi ∈ Zd. Clearly zi → ∞ as i → ∞. Moreover, since M ≥ 1 and
|yi−yi+1| ≤ 1, we see that QM (Mzi)∩QM (Mzi+1) 6= ∅, i.e., ‖zi−zi+1‖∞ ≤
1, where we write ‖ · ‖∞ for the `∞-norm. Therefore for M ∈ N, the family
of M -nasty cubes of the form {QM (Mz) : z ∈ Zd} percolates in the sense
that there exists a sequence (zi)i≥1 in Zd such that |zi| → ∞ as i → ∞,
‖zi − zi+1‖∞ ≤ 1 for i ≥ 1 and QM (Mzi) is M -nasty for every i ≥ 1.

Next, assuming Lemma 9 we show thatM -nasty cubes cannot percolate as
above when α is large, by using the theory developed in [17]. Note that since
M > 2, the fact that niceness (or otherwise) of QM (z) can be determined
by {(Xi, Ui, U

′
i) ∈ H : Xi ∈ Q2(M+1)(z)} means that the niceness of the

cube QM (Mz) is independent of the niceness of the cubes {QM (Mz′) :
‖z−z′‖∞ > 2, z′ ∈ Zd}. In other words, the niceness of cubes is 2-dependent.
Now think of sites z ∈ Zd such that QM (Mz) is M -nice as carrying the label
1, whereas sites z ∈ Zd such that QM (Mz) is M -nasty carry the label 0.
In particular, an application of [17, Theorem 0.0] together with Lemma 9
shows that for M sufficiently large, for all α sufficiently large (depending
on M), the family of M -nasty cubes does not percolate [in the setting of
[17, Theorem 0.0] this is achieved by ensuring that the complement of the
1-labeled sites does not percolate]. Therefore, for all α sufficiently large,
Pα,λ-almost surely, all connected clusters C(G) are finite. In other words,
for ν-almost all G, we have that all connected clusters of C(G) are finite
PG,α,λV -almost surely. �

Proof of Lemma 9. Let ε > 0. We show that for all M sufficiently large

(7) lim inf
α→∞

Pα,λ(QM (o) is M -nice) > 1− ε.

Let

Ez(M) = {every vertex in H1 ∩Q2M (Mz) is uncorrupted}.
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Since H1 is almost surely finite and limα→∞ pd(α) = 0 we conclude that for
each z ∈ Zd, M ∈ N,

Pα,λ(Ez(M))→ 1, as α→∞.

Now, given a set of points H = (xi, ui, u
′
i)i∈I ∈ (Rd × [0, 1]2)LF, we define

for each x = xi0 ∈ H1 the forward cluster F ′x = F ′(xi0 ,ui0 ,u
′
i0
)(H) to be the

set containing x as well as every x′ ∈ H1 for which there exists n ∈ Z+

and xi1 , . . . , xin = x′ such that (for each r = 0, . . . , n − 1) xir , xir+1 are
neighbours and (j − 1)/nir ≤ uir < j/nir where xir+1 is the jth neighbour
of xir . In particular, the forward clusters F ′x here do not depend on the
quantities (u′i)i∈I at all. Let E′z(M) be the event that for every vertex x ∈
H1 ∩Q2M (Mz) the forward cluster F ′x consists of at most M/9 vertices.

It follows that if both Ez(M) and E′z(M) occur then for every vertex
x′ in QM (Mz), the connected cluster Cx′ is contained in Q1.5M (Mz), and
QM (Mz) is M -nice. Hence, using translation invariance of the Poisson point
process, and applying the Slivnyak-Mecke formula (5) with the function

f((x, u, u′), H) = 1{x ∈ Q2M (Mz)}1{#F ′(x,u,u′)(H ∪ {(x, u, u
′)}) > M/9},

we see that 1− Pα,λ(E′z(M)) is equal to

Pα,λ(#F ′(Xi,Ui,U ′i)
> M/9 for some Xi ∈ Q2M (Mz))

(8)

≤ Eα,λ

[ ∑
Xi∈Q2M (o)

1{#F ′(Xi,Ui,U ′i)
(H) > M/9}

](9)

= µ

∫
Q2M (o)

∫
[0,1]2

Pα,λ
(
#F ′(x,u,u′)(H ∪ {(x, u, u

′)}) > M/9
)

dudu′dx

(10)

= µ(2M)d
∫
[0,1]

Pα,λ
(
#F ′(o,u,1)(H ∪ {(o, u, 1)}) > M/9

)
du.

(11)

Writing F ∗u = F ′(o,u,1)(H∪{(o, u, 1)}), we will prove that there exist C, c > 0

(not depending on α, u) such that,

(12) Pα,λ(#F ∗u > M/9) ≤ Ce−c
√
M .
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From this it follows that

1− Pα,λ(E′z(M)) ≤ C ′Mde−c
√
M ,

hence we may choose M0 sufficiently large so that Pα,λ(E′z(M)) ≥ 1 − ε/2
for every M ≥M0. But for each M ≥M0, Pα,λ(Ez(M))→ 1 as α→∞ so

lim inf
α→∞

Pα,λ(QM (o) is M -nice) ≥ lim inf
α→∞

Pα,λ(Ez(M) ∩ E′z(M)) > 1− ε

as required.
Thus it remains to prove (12). Let Edeg

M denote the event that all vertices
in Q3M (o) have degree at most

√
M . Writing κd for the volume of the d-

dimensional unit Euclidean ball B1, another application of (5) gives that

1− Pα,λ(Edeg
M ) ≤ (3M)dµ

∑
k≥
√
M

Pα,λ(#(H ∩B1) = k)

≤ (3M)dµ
∑

k≥
√
M

e−µκd
(µκd)

k

k!
.

Hence, by the Stirling formula, 1−Pα,λ(Edeg
M ) decays exponentially in

√
M .

It therefore suffices to show that Pα,λ(Edeg
M ∩ {#F ∗u ≥ M/9}) decays expo-

nentially in
√
M . Conditioning on the spatial locations H1∩Q3M (o), at each

forward hop in F ∗u there is a chance of at least M−1/2 to backtrack. Hence,

Pα,λ(Edeg
M ∩ {#F ∗u > M/9}) = Eα,λ

[
1{Edeg

M }Pα,λ(#F ∗u > M/9|H1 ∩Q3M (o))
]

≤
(

1− 1√
M

)M/9
,

which decays at exponential speed in
√
M . �
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