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a b s t r a c t 

Motor, sensory and cognitive functions rely on dynamic reshaping of functional brain networks. Tracking these 

rapid changes is crucial to understand information processing in the brain, but challenging due to the great 

variety of dimensionality reduction methods used at the network-level and the limited evaluation studies. Us- 

ing Magnetoencephalography (MEG) combined with Source Separation (SS) methods, we present an integrated 

framework to track fast dynamics of electrophysiological brain networks. We evaluate nine SS methods applied to 

three independent MEG databases (N = 95) during motor and memory tasks. We report differences between these 

methods at the group and subject level. We seek to help researchers in choosing objectively the appropriate SS 

method when tracking fast reconfiguration of functional brain networks, due to its enormous benefits in cognitive 

and clinical neuroscience. 
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. Introduction 

Evolving evidence show that motor, sensory, emotional and cogni-

ive functions emerge from dynamic interactions between cortical and

ubcortical brain structures. Specific rhythms of neural networks allow

ynchronization and long-range communication between distant and

istributed brain areas. This phenomena was shown crucial during vi-

ual ( Bola and Sabel, 2015 ; Hassan et al., 2015 ; Mheich et al., 2018 ),

uditory ( Fontolan et al., 2014 ), sensorimotor ( Pomper et al., 2015 ;

ilkins and Yao, 2020 ) and cognitive ( Negrón-Oyarzo et al., 2018 ;

ouhinen et al., 2020 ) tasks. This brain communication is very tran-

ient and there is a dynamic reorganization of functional brain networks

uring behavioral tasks, even at sub-second time scale ( Vidaurre et al.,

018b ). Therefore, the analysis of whole-brain dynamic functional con-

ectivity (dFC) has become a burgeoning field of research in cognitive

euroscience ( Bassett and Sporns, 2017 ; Bullmore and Sporns, 2009 ;

raji et al., 2020 ; Kabbara et al., 2020 ). In this regard, Magneto/Electro-

ncephalography (MEG/EEG) provides a unique direct and noninva-

ive access to the electrophysiological activity of the whole brain, at

he millisecond scale. Benefiting from the excellent time resolution

f the MEG/EEG (~millisecond), current methods allow of estimat-

ng sub-second time-varying functional brain networks in the cortical

pace through sensor-level signals ( Hassan et al., 2014 ; Hassan and
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endling, 2018 ). The key challenge here is how to characterize and

uantify these rapidly changing networks. 

In this context, several frameworks have been used to explicitly

odel/capture dynamics over time such as Hidden Markov Model

HMM) ( Baker et al., 2014 ; Vidaurre et al., 2018a , 2018b , 2016 ), Au-

oregressive model (AR) ( Casorso et al., 2019 ) and General Linear Model

GLM) ( Friston, 1994 ). For example, HMM describes the brain activity

s a sequence of district states; each represents a unique pattern ob-

ained from an observation model, and a state time course indicating the

oints in time at which that state is active. Other approaches analyze the

ime varying signal using data-driven techniques, where ‘brain network

tates’ are derived directly from the data without a priori hypothesis

n the fitting model. These methods have showed promising results,

espite the fact that the selection of the used algorithm is largely em-

irical. These methods are based on two main steps: (1) sliding window

pproach, that forms a series of temporal networks, (2) a dimensionality

eduction or clustering approach including Kmeans ( Allen et al., 2014 ;

iric et al., 2017 ; Du et al., 2016 ; Fong et al., 2019 ; Liu and Duyn, 2013 ;

heich et al., 2015 ; O’Neill et al., 2015 ), component analysis such as

emporal Independent Component Analysis tICA ( O’Neill et al., 2017 ),

rincipal Component Analysis (PCA) ( Leonardi et al., 2013 ) and Non-

egative Matrix Factorization (NMF) ( Chai et al., 2017 ). Although the

onceptual difference between these methods (and within each family

f methods such as different ICA algorithms) is theoretically obvious (as
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hey are based on different assumptions), the studies that investigate the

ifferences between them remained very few. The existing comparative

tudies are mainly limited to confirming results of differences between

wo conditions ( Leonardi et al., 2013 ) or to prove that obtained results

re unaffected by the method’s choice ( Miller et al., 2016 ). However, a

hroughout quantitative and qualitative comparative study using both

imulation-based and data-driven approaches is still missing and there

s no clear consensus about the ‘best’ (if any) source separation or clus-

ering method to be used to adequately tracking dFC, which is the main

bjective of our study. 

Here, we evaluate the performance of nine dimensionality reduc-

ion methods used to track functional connectivity states at both group

nd individual levels. This was done using simulations and three in-

ependent MEG datasets (N = 95) recorded during motor and working

emory tasks (see Fig. 1 ). The dynamic brain networks were recon-

tructed using MEG source connectivity method combined with a slid-

ng window technique. The dimensionality reduction algorithms were

ompared in terms of their temporal and spatial accuracy. These meth-

ds include PCA, NMF, Kmeans and six various versions of ICA (Joint

pproximation Diagonalization of Eigen-Matrices (JADE), INFOMAX,

econd-Order Blind Identification (SOBI), fixed-point algorithm (Fas-

ICA), COM2 and Penalized Semi-Algebraic Unitary Deflation (P-SAUD).

he motivation behind using several ICA subtypes is that each one

as its own definition of statistical independence and several studies

howed conceptual differences between them ( Kachenoura et al., 2008 ;

ahonero-Alvarez and Calderon, 2017 ). We also analyzed the optimal

umber of subjects needed for each method to reveal significant results.

his study aims at providing a framework for researchers interested in

tudying reconfiguration of functional brain networks during cognitive

rocesses. 

. Materials and methods 

.1. Data 

.1.1. Dataset1: ‘self-paced button press task’ 

This dataset includes 15 healthy righthanded participants (9 male

nd 6 female, aged 25 ± 4 years (mean ± SD)). They were asked to press

 button with the index finger of their non-dominant hand, once every

0 seconds, and should not count the time between presses. More details

bout this dataset can be found in ( Kabbara et al., 2019 ; O’Neill et al.,

017 ). 

.1.2. Dataset2: ‘HCP left hand movement Task’ 

61 healthy participants (28male and 33 female, aged 22-35) com-

leted the MEG Motor task provided by the Human Connectome Project

HCP) (MEG-1 release) ( Van Essen et al., 2012 ). The correspond-

ng experimental protocol was adapted from Buckner and colleagues

 Buckner et al., 2011 ; Thomas Yeo et al., 2011 ). It was performed in

wo sessions of 14min each, with a small break between them. Each

ession consisted of 42 total blocks randomly distributed; 32 of them

ere partitioned into 16 hand movements blocks (8 right and 8 left),

nd 16-foot movements blocks (8 right and 8 left), and the remaining

0 blocks were interleaved resting/fixation blocks. Each motor effector

lock was preceded by a 3sec visual cue that prompts participants to

ither tap their left or right index and thumb fingers or squeeze their

eft or right toes. The block lasted for 12sec and consisted of 10 sequen-

ial movements, each initiated with 150ms pacing stimuli followed by

050ms black screen for task execution. Here, for simplicity, we were in-

erested in the trials related to the left hand moves only. MEG data was

ecorded at Saint Louis University at 508.6275Hz sampling frequency

nd co-registered with the available subject specific MRI. EMG activity

as also recorded from each limb. 
2 
.1.3. Dataset3: ‘sternberg working memory task’ 

19 healthy participants (10 male and 9 female, aged 25 ± 3 years

mean ± SD)) performed Sternberg task, in which two example visual

timuli, mainly abstract geometric shapes, were successively presented

n a screen; each for 0.6sec and separated by 1sec. Then, a maintenance

eriod of 7sec was left before the presentation of a third probe stimu-

us. Consequently, subjects were asked to press a button with their right

ndex finger only if the probe stimulus matched either of the two ex-

mple stimuli and an immediate feedback will be given to show their

esponse correctness. 30 trials were presented separated by 30sec of rest.

n both datasets 1 and 3, MEG data were recorded using a 275-channel

TF MEG system at 600Hz sampling frequency and co-registered with

ubject-specific MRI. Both datasets were approved by the University of

ottingham Medical School Research Ethics Committee ( O’Neill et al.,

017 ; Vidaurre et al., 2018a ). 

.2. Methodology 

.2.1. Preprocessing 

Both datasets 1 and 3 were received already preprocessed as de-

cribed in ( O’Neill et al., 2017 ). Briefly, bad segments produced by

uscles, eye or head movement were already visually inspected and

emoved. For dataset 2, we used the preprocessing pipeline offered

y the HCP consortium, which includes removing bad channels, seg-

ents and bad independent components from task data. Segments were

etrieved from the dataset 1 in the interval [-15; + 15sec] relative to

he button press onset, and from the dataset 3 in the interval of [-16;

 28sec] relative to stimulus presentation. In HCP analysis, we chose

ata epochs time-locked to EMG onset as we were concerned in explor-

ng brain networks involved during movement execution. Thus, trials

ere segmented in [-1.2; + 1.2sec] relative to EMG onset. Then, as func-

ional connectivity was proved to be frequency-dependent ( Baker et al.,

014 ; Hipp et al., 2012 ), each dataset was preprocessed in its appro-

riate frequency band actively involved in the corresponding cognitive

ask. While beta band [13-30Hz] was used for self-paced and HCP left

and motor task, working memory data was filtered in a broader band

4-30Hz] as it is has been shown to involve multiple frequency bands,

ccording to previous studies ( Brookes et al., 2012 ; O’Neill et al., 2017 ).

fter these preprocessing steps, an average of 34, 150 and 29 per subject

ere kept from dataset 1, 2 and 3, respectively. 

.2.2. Source reconstruction and functional connectivity 

In order to localize brain sources and reconstruct their activities, we

sed the Linearly Constrained Minimum Variance Beamforming (LCMV)

 ROBINSON, 1999 ) approach on parcellated cortex using AAL atlas

N = 78 regions of interests -ROIs- ( Gong et al., 2009 )) ( Hillebrand et al.,

016 ). This was done by registering each subject’s anatomical MRI to

n MNI template ( Smith et al., 2004 ) followed by an inverse registra-

ion to the anatomical subject space. Data covariance was computed

ithin the specific frequency band used and a time window spanning

he whole experiment ( Brookes et al., 2008 ) with a regularization pa-

ameter (5%) using Tikhonov method. The forward model was based

pon a dipole approximation ( Sarvas, 1987 ) and a multiple local sphere

ead model fitted to the subject-specific MRI scalp surface. Dipole ori-

ntation was determined using a non-linear search for optimum ‘sig-

al to noise ratio’ (SNR) ( Sekihara and Nagarajan, 2008 ). Following

his, we estimated the functional connectivity by computing the am-

litude envelope correlations (using Hilbert transformation) between

ll ROIs ( Brookes et al., 2012 ; Hipp et al., 2012 ). In order to avoid

purious estimates of functional connectivity, we performed leakage

orrection on the reconstructed sources signals. We used the multi-

ariate approach based on symmetric orthogonalisation proposed by

 Brookes et al., 2012 ; Colclough et al., 2015 ) for datasets 1 and 3, while

air-wise orthogonalization ( Brookes et al., 2016 ; Tewarie et al., 2019b )

as applied to dataset 2 due to the short time period of the task. 
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Fig. 1. Illustration of the investigation 

structure for each of the three task-related 

paradigms. A. The fundamental processing 

pipeline applied on each subject data from 

sensor-level (using non-invasive MEG tech- 

nique) to cortical-level (using beamforming 

as the inverse problem solution) to dynamic 

functional connectivity computation (S-dFC) 

(using the sliding window approach). B. Con- 

catenation of S-dFC of all subjects along time 

axis to form a group data referred to as G-dFC, 

C. Comparative analysis between nine different 

source separation (SS) methods (six variants of 

ICA, PCA, NMF and Kmeans) applied on both 

group-level (X group ) and subject-level (X subj ) 

data in order to derive k dominant task-related 

spatiotemporal components (the mixing ma- 

trices represent brain spatial maps while the 

extracted sources represent corresponding 

temporal weights fluctuations). 

2
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.2.3. Dynamic functional connectivity analysis (dFC) 

To estimate the dynamic functional brain networks, we adopted the

idely used approach of sliding windows for datasets1 and 3. To this

nd, a time window of length 6sec with 0.5sec was used for datasets

 and 3 as applied by ( O’Neill et al., 2017 ). Concerning the dataset 2

HCP dataset), the fast time scale of the task imposes a very small time

indow width that may be too noisy to extract meaningful informa-

ion ( Liuzzi et al., 2019 ). Thus, we avoided to apply the sliding window

pproach, and used instead the high temporal resolution version of am-

litude envelope correlation metric; the ‘Instanteneous Amplitude Cor-

elation’ (IAC) already validated in a recent work for the same dataset
3 
 Tewarie et al., 2019b ). As a result, we obtained, for each subject trial, a

dynamic functional connectivity (dFC)’ matrix of dimension [NxNxT],

here T refers to the number of windows for datasets 1 and 3, and num-

er of total time samples for dataset 2 (T = 49, 1221 and 75 for datasets

, 2 and 3 respectively). Next, due to symmetry, we unfolded this matrix

nto a 2-D [Nx(N − 1)/2 × T] matrix by removing the redundant connec-

ions in each time window. Then, the mean of each row of this matrix

s subtracted from the data. Finally, all subjects’ trials dFC were con-

atenated along the temporal dimension.We defined this matrix as a

Group dynamic functional connectivity matrix (G-dFC)’, denoted ‘X’.

ote that for dataset 2, we averaged connectivity matrices of all trials
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elative to each subject ( Zhu et al., 2020 ) due to memory limitation in

atlab regarding high dimensional data of the temporally concatenated

sample-by-sample’ dFC of all subject’s trials. 

.2.4. Task-related functional brain networks 

.2.4.1. Problem statement. The resultant G-dFC matrix representing

he time-varying features can be expressed as as a linear mixture of ele-

entary brain networks that fluctuate dynamically over time. Such issue

s the main concern of Source Separation (SS) approach aiming at recov-

ring ‘k’ hidden sources from a set of observations with minimal priori

nowledge about these sources. In this context, the SS problem can be

ormulated as follows: 

 = A × S (1)

here: 

• ‘X’ is the computed G-dFC matrix of dimension [qxm]: 

○ q = Nx(N − 1)/2 with N = 78, representing connectivities between

all ROIs. 

○ m = TxN tot with T is the number of time windows and N tot is the

total number of trials for all subjects. 
• ‘A’ is the mixing matrix of dimension [qxk] illustrating the con-

tribution weights of each individual connection to the components

sources, thus the spatial maps of brain networks (k < min(q,m)). 
• ‘S’ is the sources matrix of dimension [kxm] representing temporal

sources signatures of G-dFC, collapsed across all connections. 

Among existing SS algorithms, we chose nine popular/well-known

ethods: six different variants of temporal Independent Component

nalysis (tICA), Principal Component Analysis (PCA), Non-negative Ma-

rix Factorization (NMF) and Kmeans as a state-of-the-art clustering

ethod. They all transform the desired matrix factorization into spatial

aps and time series. However, they differ primarily in the constraints

mposed on decomposed components. Below, we will give a succinct

escription about these methods. 

.2.4.2. Independent component analysis: ‘temporal statistical indepen-

ence’. ICA tends to linearly transform multivariate observations into

 set of ‘statistically mutually independent’ latent variables under the

ypothesis that these variables are as ‘non-Gaussian’ as possible. In our

tudy, we examine temporal ICA (tICA) adopted by several previous

tudies ( O’Neill et al., 2017 ; Yaesoubi et al., 2015 ) in order to obtain

tates that fluctuate independently in time. In this context, decomposed

ignals ‘S’ consist of the ‘k’ source time courses and the associated mixing

atrix ‘A’ illustrates the contribution of temporally independent maps. 

There are several criteria to measure independence such as mini-

ization of mutual information and maximization of non-Gaussianity.

ence, different algorithms are proposed to perform ICA decomposition,

ach yielding to different ICA model with specific characteristics. Here,

e evaluate tICA using six different popular and prominent methods:

1) JADE, (2) InfoMax, (3) SOBI, (4) FastICA, (5) CoM2 and (6) PSAUD.

hese methods are chosen in such a way to cover various statistical inde-

endence definitions, statistical order and computational process tech-

iques. Briefly, InfoMax and FastICA are based on information theory,

hile all other selected methods optimize contrast functions based on

umulants of the data. Among them, SOBI uses only Second Order (SO)

umulants in contrast to others that exploit both SO and Fourth Order

FO) cumulants. In addition, FastICA and PSAUD use a deflation process

or decomposition while other ICA variants jointly separate sources. De-

ails about ICA subtypes used can be found in supplementary materials.

.2.4.3. Principal component analysis: ‘variance maximization’. PCA is a

asic linear technique widely used for data dimensionality reduction.

t involves a mathematical procedure that transforms a set of observa-

ions of possibly correlated variables into smaller number of orthogonal,

ence linearly uncorrelated variables called principal components or

eigenvectors. This procedure is defined in such a way that the variance
4 
r ‘eigenvalues’ of the data is maximized. Then, a fixed number ‘k’ of

igenvectors and their respective eigenvalues can be chosen to obtain a

onsistent representation of the data. Here, we apply the Singular Value

ecomposition (SVD) algorithm of PCA ( Golub and Reinsch, 1970 ) on

ur predefined input matrix ‘X’. Defining ‘A’ and ‘S’ matrices from SVD

utputs is more clarified in Supplementary Materials. 

.2.4.4. Non-negative matrix factorization: ‘positivity’. Nonnegative ma-

rix factorization (NMF) is an unsupervised machine-learning technique

 Lee and Seung, 1999 ) that imposes ‘non-negativity’ constraint on the

ecomposed factors when solving SS problem. When applied to G-dFC

ata ‘X’, NMF leads to parts-based representation that captures additive

ombination of basis subgraphs ‘A’ at each time window with tempo-

al coefficients ‘S’ eliminating negative signal variations. Among several

xisting NMF approaches, we selected Alternating Least Squares (ALS)

lgorithm that has previously shown good performance in fMRI context

 Ding et al., 2013 ) with 100 times replications. 

.2.4.5. Kmeans clustering: ‘sparsity’. Kmeans is one of the simplest un-

upervised learning algorithms that solve the SS problem through clus-

ering approach ( Lloyd, 1982 ). The algorithm works iteratively to assign

ach point to only one of the ‘k’ groups based on feature similarity. Math-

matical computation of Kmeans clusters is defined in Supplementary

aterials. In our framework, the sparse coding adopted by Kmeans re-

tricts a single time point to have a unique activated network state. The

omputed clusters ‘A’ represents the structure of common connectivity

atterns across subjects. For a given trial, each time window is assigned

ith the corresponding cluster index. Then, the matrix ‘S’ is calculated

s the frequency of reoccurrence of each cluster at each time window

cross all trials and subjects. Here, we adapted the same procedure of

means used by Allen et al. ( Allen et al., 2014 ): L1 (Manhattan) distance

s used, as it was suggested to be more effective than L2 (Euclidiean) dis-

ance for high-dimensional data ( Aggarwal et al., 2001 ). The algorithm

s replicated 100 times to increase chances of escaping local minima,

nd centroid positions were randomly initialized. Then, Kmeans returns

he solution with the lowest ‘SUMD’ (within-cluster Sums of points-to-

entroids Distances). 

.2.5. Comparative analysis 

.2.5.1. MEG group-level analysis. 

2.2.5.1.1. Selection of optimal number of components (NC opt ). In the

ontext of dimensionality reduction methods, the choice of the optimal

umber of components (NC opt ) to be extracted is still a challenging issue.

ere, we used the well-known approach: ‘Elbow criterion’ ( Allen et al.,

014 ) for Kmeans method (with maximum number of clusters = 10). For

ll other SS methods, we estimated NC opt based on the goodness of fit

pproach ( Timmerman and Kiers, 2000 ; Wang et al., 2018 ) previously

sed by many recent works ( Tewarie et al., 2019b ; Zhu et al., 2020 ).

e performed the ‘DIFFIT’ method that refers to the difference in data

tting with a range of input NC varied from 2 (for motor tasks) and 4

for working memory task) to 10 components, and selected the NC that

ives the largest DIFFIT value as the NC opt . Technical details about these

pproaches can be found in the Supplementary Materials. 

2.2.5.1.2. Selection of significant components. Among the NC opt ex-

racted components, identifying those that reflect genuine brain activity

elated to the task is critical. In this paper, we followed a testing pro-

edure adopted by ( O’Neill et al., 2017 ) and previously described in

 Hunt et al., 2012 ; Winkler et al., 2014 ) to determine significant com-

onents modulated by the tasks. The testing relies on the construction

f empirical null distribution based on a ‘sign flipping’ permutation ap-

roach. Therefore, a component was considered significant if, at any

ime point, the corresponding time signal, averaged over trials, fell out-

ide a threshold defined at 0.05 with corrections. For all datasets, 2-

ailed distribution was allowed, and Bonferroni corrections were applied

or multiple comparisons across the NCopt components and across tem-
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oral degree of freedom. More details about ‘sign-flipping’ approach and

hreshold values setting can be found in Supplementary Materials. 

.2.5.2. MEG subject-level analysis. Besides group-level analysis, it is

rucial to test the performance of each method when applied directly

n individual dFC. To this end, instead of concatenating trials from all

ubjects as in the final step of ‘G-dFC’ computation, we perform, for each

ubject, a dFC concatenation of all trials related only to this subject to

orm a subject specific dFC, denoted ‘S-dFC’. Then, all selected SS meth-

ds were applied on ‘S-dFC’ matrix to extract subject-specific spatial

nd temporal signatures (k = 10). In order to quantitatively evaluate and

ompare methods strength at subject-level context, we measure, for each

ethod, both spatial and temporal similarities between each extracted

-dFC component and significant G-dFC components. These parameters

re: 

(1) Average Distance (AD) for ‘spatial similarity’: 

𝐷 = 

∑
𝑠 𝑑 

(
𝑛 𝑠 , 𝑛 𝑔 

)
𝑁 𝑠 

𝑠 ∈
[
1 , 𝑁 𝑠 

]
; 𝑔 ∈

[
1 , 𝑁 𝐺 

]
(2)

here 𝑑( 𝑛 𝑠 , 𝑛 𝑔 ) is the Euclidian distance between the node 𝑛 𝑠 of S-dFC

etwork and the nearest node 𝑛 𝑔 from the significant G-dFC network. 𝑁 𝑠 

s the total number of nodes in S-dFC network, and 𝑁 𝐺 denotes the total

umber of nodes in G-dFC network. All networks were 70% thresholded.

ower values of AD indicate stronger spatial similarity between S-dFC

nd G-dFC networks. 

(2) Correlation Signals (CS) for ‘Temporal Similarity’: 

𝑆 ( 𝑇 𝑆, 𝑇 𝐺 ) = 

∑
𝑠 

∑
𝑔 ( 𝑇 𝑆 𝑠𝑔 − 𝑇 𝑆 )( 𝑇 𝐺 𝑠𝑔 − 𝑇 𝐺 ) √ (∑

𝑠 

∑
𝑔 ( 𝑇 𝑆 𝑠𝑔 − 𝑇 𝑆 ) 

2 )(∑
𝑠 

∑
𝑔 ( 𝑇 𝐺 𝑠𝑔 − 𝑇 𝐺 ) 

2 )

𝑠 ∈
[
1 , 𝐿 𝑠 

]
; 𝑔 ∈

[
1 , 𝐿 𝐺 

]
(3) 

here 𝑇 𝑆 is the temporal signal of each S-dFC component of length

 𝑠 and 𝑇 𝐺 represents temporal signals of G-dFC significant component

f length 𝐿 𝐺 . Higher values of CS reveal stronger temporal similarity

etween S-dFC and G-dFC signals. 

We perform this analysis on each subject among the 15 subjects of

he MEG dataset 1 (Motor task). Therefore, for each method, we counted

he number of subjects that show satisfactory results performance in the

ontext of S-dFC, based on the previously explained measures. Then, to

pproximate the number of subjects/trials needed for each SS method to

ive significant results, we follow the same procedure explained above,

ut instead of single subject S-dFC computation, we increased the num-

er of concatenated subjects in dFC computation from N subj = 2 to 14,

rogressively. In order to have generalized and reliable results, we con-

idered all possible combinations relative to each N subj ( 𝐶 

15 
𝑁 𝑠𝑢𝑏𝑗 

), where

ifferent sets of N subj subjects were selected among the 15 existing data

ubjects. 

. Results 

In the following, we present our evaluation study on real MEG

ata, however our methodology was also tested on simulated data.

hese results can be found in the supplementary material. Briefly, the

imulation-based analysis showed that all methods provide satisfactory

esults in terms of spatial and temporal similarity between reconstructed

nd simulated components with the best performance for NMF method

nd the worst for SOBI. All methods, except for FastICA, NMF and

means, provided consistent results. PSAUD and PCA were the fastest.

esults revealed that SOBI, NMF and Kmeans converge more slowly than

thers with the increased value of SNR. Reader can refer to supplemen-

ary material to see the detailed quantitative analysis on simulated data.

We firstly ran each algorithm at each value of NC and calculated the

orresponding DIFFIT values in order to select the optimal number of

omponents (NC opt ) relative to these SS methods. Results are shown in
5 
ig. 2 for the three empirical datasets. Hereinafter, we set NC to the

omputed NC opt value relative to each method and task. 

Results of different SS methods applied on empirical data are illus-

rated in Figs. 3–5 . In each Fig., we presented only the components that

emonstrated significant task modulation based on the applied null dis-

ribution approach (described in the methods section). The networks

ere thresholded only for visualization purpose (70% for dataset 1 and

, 85% for dataset 2). Corresponding dynamic reconfiguration of each

ignificant network were plotted together. The temporal fluctuations

epresent component time signals averaged over trials and subjects. 

.1. Self-paced button press task 

In this task, participants were asked to press a button with the index

f their non-dominant hand every 30 seconds. 

Based on literature findings (see table S1 in supplementary mate-

ials), we were interested in quantifying SS methods ability to extract

 sensorimotor network from significant components. To this end, we

efined a brain network with activated AAL regions in both motor cor-

ex (including precentral, paracentral, rolandic and supplementary mo-

or areas) and somatosensory cortex (including postcentral, parietal and

upramarginal areas) serving as a mask template for our network of in-

erest (sensorimotor network), illustrated in Fig. 7 . Then, we selected

ach significant network and computed the strength of each activated

ode in that significant network (defined as the sum of all edges weights

onnected to that node). The ratio of the strength of activated AAL nodes

hat belongs to sensorimotor mask is calculated relative to the strength

f all activated nodes in that significant network. In case the ratio is

reater than a certain threshold value, the network is considered as a

ensorimotor network denoted as ‘mot’ in the Fig. 3 . Otherwise, the net-

ork is denoted ‘Aux’ referring to auxiliary network. After many trials

threshold = 0.5, 0.6, 0.7), threshold value was set to 0.6 as it has shown

ore convenient results, when visually inspecting components classifi-

ation (false positive and false negative). The reader can refer to sup-

lementary materials (Fig. S8) for more details about the computation

f the ratio values for all components. 

Fig. 3 shows that all SS methods were able to extract at least one sig-

ificant ‘Mot’ network. All significant components extracted from the

ve ICA methods (JADE, InfoMax, FastICA, CoM2 and PSAUD), NMF

nd Kmeans methods were categorized as ‘Mot’ network due to the

trong participation of sensorimotor nodes in these networks (sensori-

otor strength ratio > 0.6) although some of them may involve addi-

ional few connections to other regions. On the other hand, SOBI and

CA methods showed ‘Aux’ networks (sensorimotor strength ratio < 0.6)

esides ‘Mot’ networks, with remarkable activations in frontal regions.

emporal variation was similar for almost all significant components

ver all methods showing a peak value at 0sec, the button press time,

ith slight differences in amplitude values, indicating signal intensities

elative to each component. Note that negative connectivity, referred to

s blue connections in spatial networks and negative temporal values in

emporal signals, represents desynchronization between brain regions.

herefore, all studied SS methods were able to extract at least one sig-

ificant component that highlight strong connections between sensory

nd motor regions modulated significantly by the task at the exact but-

on press instant (‘Mot’). 

.2. Left-hand movement task 

This task is also motor but different than the previous one. Here the

articipants were asked to rapidly and successively tap their left index

nd thumb fingers. Similarly to the previous task, the same sensorimotor

ask was applied to quantify resultant networks to discriminate ‘Mot’

rom ‘Aux’ networks. The reader can refer to supplementary materials

Fig. S9) for more details about the computation of the ratio values for

ll components. 
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Fig. 2. Optimal Number of Components (NC opt ) results. DIFFIT values are plotted against number of component ‘J’ for all ICA methods, PCA and NMF. The blue plot 

corresponds to the self-paced button press task, the orange plot for HCP left-hand movement task and the yellow one for Working Memory task. The optimal NC that 

gives the highest value of DIFIT relative to each task is marked by a small circle on the x-axis. Results of optimal NC relative to Kmeans using the elbow criterion is 

also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4 shows that not all SS methods were able to extract a sensori-

otor ‘Mot’ network. For example, none of the significant components

f SOBI, PSAUD and Kmeans has survived the threshold imposed for the

trength of activated sensorimotor nodes (Fig. S9) and are therefore con-

idered as ‘Aux’ networks as indicated in Fig. 4 . In these methods, ‘Aux’

etworks consist of either a visual network significantly modulated di-

ectly after the onset of movement in Kmeans and 0.35sec before onset

n SOBI and PSAUD, or a network (one in SOBI and PSAUD and six in

means) involving strong connections between almost all brain areas

odulated at 0.2sec before and after onset. It should be noted that al-

hough this network shows strong activation of the right precentral and

ostcentral nodes, it failed to be quantified as a sensorimotor network

ue to the high coverage of the brain. 

All remaining SS methods were able to extract one ‘Mot’ network

mong all significant components. The spatial representation of ‘mot’

etwork involves sensorimotor with some cingulate nodes from the left

ortex in JADE, right cortex in InfoMax and both left and right cor-

ices in other SS methods. These ‘Mot’ networks show significant drop

n connectivity around 0.2sec following the movement onset. Significant

ncreased modulation was also observed at -0.2sec in InfoMax, FastICA,

oM2, PCA and NMF methods. Exact times of components significance

re indicated with stars on Fig. 4 . From this Fig., we can see that ‘Aux’

etworks show various spatial patterns between SS methods (such as the

ntegration of areas from visual, motor-frontal, motor-visual, temporal

obes…). 

Regarding temporal evolution, the hand movement here are much

ore frequent than the previous task. Clearly, the fast neural activity

ue to the short time between successive button presses is expressed

s an oscillatory behaviour of brain network activity around the zero

ime button press, as showed also previously ( Vidaurre et al., 2018a ).
6 
his yields to the obtained temporal variation where the motor network

tate seems to have high connectivity before button press and begin to

ave a drop-in connectivity to reach its significant peak after ~0.2sec

referred to as a desynchronization in high frequencies ( Vidaurre et al.,

018a )). 

.3. Working memory task 

This task is much more complex comparing to the other two tasks.

ubjects here were asked to visualize and memorize two visual shapes

nd respond to a third probe stimulus by a button press (with their

ight index finger) in case of matching. The increased cognitive load

voked by the Sternberg task is expected to induce variations in a

reater number of significant brain networks including stimulus visu-

lisation (visual network), semantic processing and pattern recognition

semantic, language networks) and button press response (sensorimotor

etwork). 

In a similar context of previous tasks, four masks were defined here

elated to the most relevant working memory related networks found

n literature. These masks are also illustrated in Fig. 7 . The visual

ask consists of the activation of primary visual cortex (occipital ar-

as, cuneus, calcarine and lingual) and is denoted as ‘Vis’ in the Fig. 5 .

he semantic mask involves connections between bilateral temporal (in-

luding fusiform, heschl, parahippocampal) and parietal lobe (postcen-

ral, supramarginal, angular, precuneus). The language mask (denoted

Lang’) is defined as a left lateralised network with activation of nodes

rom temporal, frontal and parietal regions from the left cortex. The sen-

orimotor mask (‘Mot’) is previously defined in motor tasks. Detailed

atio values of the four masks for all components can be found in de-

ails in supplementary materials (Fig. S10). In this task, by applying
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Fig. 3. Self-paced motor task results. Spatial and temporal distribution of all significant components derived from all compared SS methods applied on G-dFC in 

the self-paced motor task (N = 15 subjects). All brain networks were thresholded for visualization; lines width indicates connectivity strength between regions. Red 

lines represent positive connectivity values while the blue ones represent negative values. Integrated AAL nodes are represented by spheres of different sizes that 

reveal connectivity weights (strength) between that region and the rest of brain. Corresponding temporal evolution is averaged across all trials and subjects. Time 

values on the x-axis represent the position of the sliding window’s center, relative to the button press at t = 0sec (as illustrated by a vertical line). A color code is 

attributed for each component in space and time. For each SS method, only significant components (p corrected < 0.05) that appear outside the ‘sign-flip’ based null 

distribution (as described in methods sections) are shown here. All NC opt extracted components with corresponding null distribution are shown in Supplementary 

Fig. S4 for an example of ICA-JADE method. Note that sensorimotor network is clearly activated at the button press instant in all SS methods. In this Fig., ‘Mot’ 

refers to sensorimotor network and ‘Aux’ refers to all others ‘non-sensorimotor’ networks. An interactive version of ICA-JADE results can be found on our github 

https://github.com/judytabbal/dynbrainSS.git using rotatable MATLAB figures. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

s  

p  

t  

t  

w

 

n  

m  

p  

F

 

s  

P  

n  

r  

p

 

s  

n  

m  
imultaneously four masks on the same network component, there is a

ossibility that the ratio strength of more than one mask survives the

hreshold (0.6). In this case, the network belongs to the mask that gives

he highest ratio strength value. In case of equality between two masks,

e consider that the network belongs to both masks. 

Fig. 5 illustrates the spatial distribution of all significant compo-

ents for all SS methods, and temporal variation for three of these

ethods (JADE, NMF and Kmeans) for visualisation clarity. The tem-

oral evolution of other SS methods can be found in Supplementary

ig. S7. 
7 
Starting from t = 0sec, two visual stimulus (shapes) were presented

uccessively, each for 0.6sec. During this period, all methods, except for

CA, were able to extract one or more significant ‘Vis’ network. We can

otice few additional connections from occipital to parietal or temporal

egions in this network. Time variation of this network shows significant

eak during the first two seconds period. 

Following stimulus presentation, subjects should retain the observed

hapes in working memory. During this period, known as the mainte-

ance phase, all methods, except Kmeans, show significant decreased

odulation at [4-6sec] of at least one ‘Sem’ network. The breakdown in

https://github.com/judytabbal/dynbrainSS.git
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Fig. 4. HCP left hand movements task results. Spatial and temporal distribution of all significant components derived from all compared SS methods applied on 

G-dFC in the left-hand motor task (N2 = 61subjects). All brain networks are thresholded for visualization. Time values on the x-axis represent the position of the 

sliding window’s center, relative to the button press at t = 0sec (as illustrated by a vertical line). A color code is also attributed for each component in space and time. 

For each SS method, only significant components (pcorrected < 0.05) that appear outside the null distribution are shown here. Exact times of significance relative to 

each component are indicated with stars., revealing an oscillatory temporal activation of motor component for all SS methods. All NC opt extracted components with 

corresponding null distribution are shown in Supplementary Fig. S5 for an example of ICA-JADE method. In this Fig., ‘Mot’ refers to sensorimotor network and ‘Aux’ 

refers to all others ‘non-sensorimotor’ networks. An interactive version of ICA-JADE results can be found on our github https://github.com/judytabbal/dynbrainSS.git 

using rotatable MATLAB Figs.. Reproducing these results is also possible/available using the MATLAB interface on github. 
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his network’s connectivity was previously demonstrated ( O’Neill et al.,

017 ). During the same period, we can notice a drop-in connectivity in

Sens’ network revealed only by NMF method. 

At [10-12sec] period, many networks seem to be significantly mod-

lated among all methods: (1) ‘Vis’ is re-activated at the probe stimulus

resentation in all methods except for PSAUD, (2) ‘Sens’ shows signifi-

ant increase with FastICA method. This network becomes most strongly

onnected around the time button press response, (3) ‘Lang’ is com-

only derived by JADE, InfoMax, and PCA, and exhibits an increased

onnectivity peaking during probe presentation. We can notice that this

etwork is also significantly decreased in CoM2, PSAUD and Kmeans

round 5sec. (4) Three methods (JADE, InfoMax and PCA) also showed

ignificant increased modulation of ‘Sem’ network. (5) A network that

elongs equally to both ‘Sem’ and ‘Sens’ masks (denoted as ‘Sem + Sens’
8 
etwork) is strongly activated during this period in CoM2 and PSAUD.

ote that these two masks have common brain regions mainly in parietal

obe responsible for sensory processing which is coherent with the task

volution. This ‘Sem + Sens’ network is also modulated in PCA method.

esides these components, few ‘Aux’ networks were also considered sig-

ificant as shown in Fig. 5 . 

In summary, the three SS methods (CoM2,PSAUD and PCA) suc-

eeded to derive all expected components with their appropriate tem-

oral significant modulation. JADE and InfoMax were able to ex-

ract visual, semantic and language but not the sensorimotor net-

ork. FastICA and NMF missed the language component. How-

ver, SOBI was unable to show both sensorimotor and language

etworks and Kmeans failed to extract semantic and sensorimotor

omponents. 

https://github.com/judytabbal/dynbrainSS.git
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Fig. 5. Sternberg working memory task results. Spatial and temporal distribution of all significant components derived from all compared SS methods applied on 

G-dFC in the working memory task (N 3 = 19subjects). All brain networks are thresholded for visualization. Time values on the x-axis represent the position of the 

sliding window’s center, relative to the first visual stimulus presentation at t = 0sec (as illustrated by a vertical line). The first two vertical lines illustrate the instant 

of successive visual examples presentation at t = 0s and 1.6sec and the third vertical line at t~9sec separates between the maintenance period that lasts for 7sec and 

the probe presentation followed by a possible button press and feedback. A color code is attributed for each component in space and time. For each SS method, 

only significant components (p corrected < 0.05) that appear outside the null distribution are shown here. Exact times of significance relative to each component are 

indicated with stars. Temporal variation of only JADE, NMF and Kmeans is illustrated, whereas the rest are shown in Supplementary Fig. S7. All NC opt extracted 

components with corresponding null distribution are shown in Supplementary Fig. S6 for an example of ICA-JADE method. Note that in this task, much larger variety 

of significant networks are extracted among SS methods, including visual, sensorimotor, language, semantic, and other networks at different temporal activation. In 

this Fig., ‘Vis’ refers to Visual network, ‘Sem’ to Semantic, ‘Sens’ to Sensorimotor, ‘Lang’ to Language and‘Aux’ to other networks. An interactive version of ICA-JADE 

results can be found on our github https://github.com/judytabbal/dynbrainSS.git using rotatable MATLAB figures. 
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Fig. 6. Typical example of the spatiotemporal reconfiguration of brain networks during working memory task using ICA-JADE. All significant networks extracted 

from JADE are collected and presented sequentially relative to each event and period time. The nomination and the exact temporal period of significant activation 

of each network is clearly indicated. Corresponding cognitive functions are also specified. In this figure, ‘Vis’ refers to Visual network, ‘Sem’ to Semantic, ‘Sens’ to 

Sensorimotor, ‘Lang’ to Language and ‘Aux’ to other networks. 
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For the three tasks, spatial and temporal distribution of the NC opt 

omponents derived from JADE method, with corresponding null dis-

ribution, can be found in Supplementary Figs. S3, S4, S5. For further

larity in visualisation and interpretation, we illustrated, in Fig. 6 , the

patiotemporal reconfiguration of the functional brain networks as ob-

ained by ICA-JADE. 

Furthermore, we discriminated different SS methods performance in

erms of the activation of relevant brain networks in each task. For ex-

mple, in motor tasks, we calculated the ‘Mot’ network occupancy per-

entage defined as the number of ‘Mot’ networks (quantitatively defined

y the mask as explained above) divided by the total number of signif-

cant components found in the corresponding SS method. Similarly, for

orking memory task, the occupancy percentage of visual, semantic,

anguage, sensorimotor and auxiliary networks were evaluated for each

ethod. Results are shown in Fig. 7 with the spatial representation of

he corresponding relevant brain regions. Therefore, Fig. 7 resumes the

verall performance of each SS method showing variability in the meth-

ds’ ability to directly extract the appropriate task-related components.

.4. Performance of each SS methods at subject-level 

Here our objective is to evaluate the performance of the methods

t the subject-level. We test i) the capacity of each method to extract

ignificant components related to the task: to do so, we computed the

orrelation between the components obtained by each method on each

ubject with the significant network obtained at the group level and

i) the number of subjects needed for each method to detect ‘expected’

etworks: here we tested the overall performance of each method by

ncreasing the number of subjects, going from 1 to 15 as we performed

ubject-level analysis on the self-paced data. Fig. 8. A summarizes the

ubject-level analysis scenario. For each method, we chose one of the

ignificant motor components derived from the decomposition of the
10 
roup-level (N = 15subjects), mostly the one showing little intervention

rom regions other than sensorimotor (‘Mot’) and having high temporal

oefficients amplitude (supposed to be the best for each method). This

omponent illustrates a ‘group’ motor network with temporal modula-

ion at the button press time. It will, eventually, serve as a ‘mas’ compo-

ent for subject-level analysis, as we are concerned in motor component

xtraction. 

For each SS method, NC = 10 components were derived from each

ubject data. Then, Average Distance (AD) and Correlation Signals (CS)

etween each of these components and the ‘group’ motor component rel-

tive to the SS method were computed in order to quantify the ability of

he method to extract, from a single subject, a task-related component in

pace (motor network) and time (temporal modulation at button press

ime) respectively. Following this, only one of these 10 components is

elected for results calculation. This selection is based on two conditions

riteria on AD and CS values. In the case where AD component is less

han a threshold (set as the average of AD values of all components for

ll subjects and SS methods), and CS is higher than 0.7 (chosen as a

rade-off between moderate and high correlation), then the component

s considered to be a motor component. By setting these thresholds, we

onsidered the existence of inter-subject differences, thus, allowing sub-

ects to have different but near spatial distribution of motor network.

herefore, if at least one of the extracted components pass these condi-

ions, corresponding AD and CS values are denoted and the number of

ubjects that give similar results to group-level is raised by 1. Otherwise,

e selected component 𝑖 as the nearest component to the group-level re-

ult, with a compromise between spatial and temporal similarities. 

A typical example is illustrated in Fig. 8. A showing that PCA decom-

osition was able to extract a motor component from subject 2 (com-

onent 5), whereas no motor component was derived from subject 14,

D and CS values of component 7 were denoted in this case. Spatial and
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Fig. 7. SS methods performance evaluation for real MEG tasks. For each task, brain regions involved in each relevant network are illustrated on the left side using 

the AAL atlas, while brain networks occupancy are shown on the right side. The occupancy percentage represents the presence percentage of these defined brain 

networks relative to all significant extracted components. For motor tasks, motor network (‘Mot’) was emphasized with auxiliary (‘Aux’) networks relative to all 

significant components, while visual (‘Vis’), semantic (‘Sem’), language (‘Lang’), sensorimotor (‘Sens’) and ‘Sem + Sens’ networks are highlighted in contrast to other 

auxiliary (‘Aux’) networks. Referring to these representations, capabilities of different SS methods in extracting relevant task-related components can be evaluated. 
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emporal distributions of selected subjects’ components in both cases

re shown in Fig. 8 . Results of the remaining components for these 2

ubjects’ examples are shown in Supplementary Fig. S11. 

As a result, two parameters were collected and represented in Fig. 8. B

nd 8. C respectively. Group-subject similarity percentage was calcu-

ated as the number of subjects that gives a motor component similar to

he group-level result relative to the total number of subjects (N = 15).

ig. 8. B illustrates this parameter for all SS methods. We can see that

ADE was able to extract a task-related component from 8 out of 15

ubjects (53.33%), InfoMax and PSAUD from 7 subjects (46.67%), SOBI

nd CoM2 from 6 (40%), FastICA from 5 (33%), PCA and NMF from

 (26.67%) and Kmeans from 3 (20%). The Fig. 8. C shows the distri-

utions of AD and CS values of selected components from each subject
 s  

11 
ver all SS methods. Methods with higher subject-group similarity per-

entage have lower median values of AD and higher median values of

S. In addition, we can notice from AD and CS median values that sim-

larity in space was much easier to be satisfied than temporal similarity

or most SS methods. Interquartile range values show the existence of

nter-subject variability results. However, some methods showed higher

nterquartile range of AD values (CoM2 and PCA), or CS values (JADE,

oM2 and NMF) relative to other methods. 

.5. The optimal number of subjects of each SS method 

Then, the same procedure was applied with increasing the number of

ubjects from one subject (single-subject) to 14 subjects. AD and CS are
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Fig. 8. Subject-level analysis and results relative to the self-paced motor experiment. A. description of subject component selection procedure based on Average 

Distance (AD) and Correlation Signals (CS) values between subject’s component and the group motor component, when SS methods are applied on S-dFC data. 

Group motor component is shown for PCA example. AD and CS values computed for all components are presented for two subjects. Based on AD and CS condition 

limits highlighted in each polar bar, success and failure in extracting motor component are both illustrated by subjects 2 and 14 respectively. Spatial and temporal 

distribution with corresponding AD and CS values for all components of both subjects 2 and 14 are illustrated in Supplementary Fig. S11. A small table on the right 

illustrates results of success and failure for all subjects in PCA. B. Results of the number of subjects that successfully extracted a motor component in each SS method 

relative to the total subject’s number, denoted Group-Subject Similarity, are shown. C. distributions of AD and CS values of all selected components for the 15 subjects 

are illustrated. D. Generalization study with increasing number of subjects and the corresponding results of Group-Subject similarity percentage (when considering 

all possible combinations). E. Grey shaded values (5,6,10 and 14) represent the critical number of subjects required for each SS method to have a 90% precision in 

extracting the task related component. 

12 
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omputed for all possible combinations. The number of possible com-

inations is calculated. For example, 7-subjects analysis requires 6435

ombinations, hence 6435 values of AD and CS. For each number of

ubjects, we calculated subject to group similarity as the ratio between

umber of combinations that succeeded in extracting a motor compo-

ent relative to the total number of possible combinations. Results are

llustrated in Fig. 8. E, F. As expected, the percentage similarity increases

ith increasing number of subjects for all SS methods. Fluctuations in

imilarity results are observed in some methods (as FastICA, NMF and

means) due to the non-consistency characteristic of these methods (as

reviously proved). Some methods required a smaller number of sub-

ects for data analysis to provide satisfactory results (motor component

t button press time in our case) than others. For example, the four ICA

ersions (JADE, InfoMax, SOBI and PSAUD) required 5 subjects in order

o attain a minimum similarity level of 90% between subject and group

evel results. CoM2 and PCA required 6 subjects, while much more sub-

ects were needed for others (10 subjects for FastICA and Kmeans and

4 for NMF) as showed in Fig. 8. E. Overall, ICA methods and specially

hose based on the high order statistics (such as JADE) outperform other

ethods in extracting networks at the subject-level. 

. Discussion 

In this study, we have evaluated the robustness of the most popu-

ar SS methods applied to extract the main brain networks fluctuating

uring time in order to help researchers make a rational choice (if any)

mong the multitude of available methods. Specifically, nine algorithms

ave been compared using simulated data (see supplementary materi-

ls) and three independent MEG datasets (N = 95) recorded during motor

nd memory tasks. The discrepancy in the datasets size and behavioral

asks performed allows testing SS methods performance on different

cenarios. As the evoked responses (analyzed here) last for hundreds

f milliseconds, we conducted our comparative analysis based on MEG

atasets to benefit from the excellent temporal resolution of this tech-

ique. However, the same pipeline study can be applied in task-related

MRI context. 

Overall, our results show variability between the evaluated SS meth-

ds and even between ICA subtypes. The performance of these methods

epends on the nature of the task (simple vs complex, slow vs fast time

cale tasks). In a simple and relatively slow time scale task (as self-paced

utton press task), all methods succeeded in tracking spatially and tem-

orally the dynamic brain activity. However, when it comes to much

aster task (HCP motor task) or more complex task (Working Memory),

ome methods (SOBI and Kmeans for instance) showed lower perfor-

ance in extracting relevant brain networks (as defined by our masks).

esults relative to each task will be discussed later in details. 

First, the quantitative comparison performed on simulated dynamic

etworks showed that all SS methods have successfully separated func-

ional networks based on their connectivity time courses. However, spa-

ial and temporal similarities in SOBI were significantly lower than other

S methods, especially for the fourth simulated state (P4) and the sec-

nd state (P2) as shown in Supplementary Fig. S3, which involves more

omplex spatiotemporal activity than other states. As expected, FastICA,

MF and Kmeans methods were proved inconsistent with multiple runs.

his is caused by the nature of these algorithms that is based on random

nput initialisations until solution convergence. The noise effect on the

esults obtained was also tested and showed an increased performance

or all methods with higher SNR value with slower convergence to the

ptimal accuracy for some methods (SOBI, NMF and Kmeans) relative

o others. Regarding computation time, CoM2, PCA and PSAUD were

he fastest whereas InfoMax and JADE were the slowest. Still, the ex-

cuted time of these algorithms is sensible to dataset’s features (size,

omplexity, type…). Other metrics such as the number of floating-point

perations (FLOPs) required for the algorithm completion could be also

ested. We also suggest for future studies to explore other data simula-

ion approaches that build the desired ground-truth brain states based
13 
n more realistic modeling (using Neural Mass for instance), however,

his may introduce the effect of other parameters in the comparison (for-

ard problem, inverse solution…). Besides simulation approach, some

tudies attempt to consider fMRI data as a ground truth to quantify

nd compare SS methods performance in the context of M/EEG stud-

es ( Colclough et al., 2016 ; J et al., 2020 ). 

The method’s performance were evaluated on three real MEG

atasets already published and tested by previous studies ( Casorso et al.,

019 ; O’Neill et al., 2017 ; Tewarie et al., 2019a ; Vidaurre et al., 2018a ;

hu et al., 2020 ). According to self-paced motor task, results showed

hat all SS methods have successfully extracted one or more significant

etwork that involve strong connectivity between sensorimotor regions

‘Mot’). For HCP data, a similar sensorimotor network was revealed

mong significant components in all SS methods except for SOBI, PSAUD

nd Kmeans. Integrated regions in this network mainly include nodes

rom central and parietal gyrus. The sensorimotor network is strongly

oherent with the task ( Melnik et al., 2017 ; Yousry, 1997 ) since it re-

uires both movement (through button press or hand movement) and

actile response (as the subject will feel the button or fingers tape). The

ffect of right-handedness of all participants of self-paced dataset is also

evealed by the presence stronger implication of sensorimotor nodes

rom the right cortex relative to the left one as revealed by the sphere

izes and connections in Fig. 3 . It is noteworthy to mention the existence

f a network that highlighted significant connections in the visual lobe

n JADE for self-paced button press task and most SS methods for HCP

ask. This network was previously noticed by Oneill et al. studying the

ame button press task ( O’Neill et al., 2017 ). This can be interpreted as a

ross modal synchronization between visual and sensorimotor cortex as

reviously studied ( Bauer et al., 2020 ). Regarding temporal evolution,

t is clear that all networks modulate significantly with the exact button

ress time for self-paced task. Differently, the temporal variation related

o HCP motor task takes an oscillatory shape, which was also reported

y other studies dealing with the same dataset ( Vidaurre et al., 2018a ;

hu et al., 2020 ). A possible reason for this activity was suggested by

 Vidaurre et al., 2018a ) considering a leakage effect of temporal activity

f previous button press into the next trial due to the fast successive tri-

ls. In both tasks, there exists auxiliary ‘Aux’ networks that significantly

odulated with the task but not directly related to the motor cortex ac-

ivity. The occupancy percentage of ‘Aux’ networks increases for all SS

ethods in HCP results mainly in CoM2 and Kmeans. The presence of

hese networks can be related either to the robustness/sensitivity of the

S method relative to spurious networks or to the reliability of the tech-

iques used for selection of optimal number of components (DIFFIT) or

ignificant components (null distribution) that will be further discussed

ater. 

In order to evaluate the spatial and temporal accuracy of SS meth-

ds at higher levels of complexity, we tested the methods on Sternberg

orking memory task. All SS methods detected visual network, which

s consistent with the presentation of visual stimuli at two different

imes. Regions in the primary visual lobe related to stimulus visualisa-

ion ( Grill-Spector et al., 1998 ) and lateral occipital cortex responsible

or object/shape recognition ( Corbetta et al., 1991 ; Grill-Spector et al.,

001 ; Kourtzi and Kanwisher, 2001 ) were present in these networks.

he button press response is reflected by sensorimotor connections con-

istently with previous working memory studies ( Metzak et al., 2011 ;

amashita et al., 2015 ) only by using CoM2, PSAUD and PCA methods.

n order to process and maintain observed stimuli as a way to memo-

ize them, a higher level of cognition is illustrated by a ‘semantic net-

ork’, which mainly encompasses bilateral parietal and temporal areas

ctivation in all SS methods, except for Kmeans. This is coherent with

revious studies that demonstrate the evident role of parietal cortex as

 workspace for sensory and perceptual processing in working mem-

ry framework ( Chai et al., 2018 ) through angular ( Frackowiak, 1992 ;

andenberghe et al., 1996 ), precuneus ( Cavanna and Trimble, 2006 ),

nd hippocampal ( Baddeley et al., 2011 ) areas. Bilateral inferior

emporal regions also play important role in semantic processing
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 Nestor et al., 2006 ; Vigneau et al., 2006 ). Fusiform gyri, strongly mod-

lated in our results, has also shown a particular concern in this con-

ext( Mion et al., 2010 ). The detection of the ‘language’ network by

ADE, InfoMax, CoM2, PSAUD, PCA and Kmeans methods, was compat-

ble with previous findings ( Brookes et al., 2011b ; O’Neill et al., 2017 ).

emporal and parietal lobes were remarkably activated by these meth-

ds, mainly the parahippocampal and supramarginal gyri respectively.

hese regions are critical in memory encoding and retrieval and seman-

ic cognition ( Axmacher et al., 2008 ; Caminiti et al., 2015 ; Demb et al.,

995 ; Derrfuss et al., 2004 ; Deschamps et al., 2014 ; Vigneau et al.,

006 ). In a similar (abstract shape based) working memory task, the

nterpretation of this network was related to a verbalisation naming

trategy employed by participants as a way to aid in memory encoding

 Caminiti et al., 2015 ; O’Neill et al., 2017 ). Therefore, this network’s

ctivation may be possible with the task as it modulates strongly with

he probe presentation and response time. 

It is important to point here that the resultant networks were de-

oted objectively in this study using a quantification approach. For

 better interpretation of the functional significance of results, we

uilt template brain masks, referring to the literature (see table S1

n supplementary materials), from AAL cortical regions. These masks

re used for seeding our networks of interest: ‘Mot’ in motor tasks,

Vis’/’Sem’/’Lang’/’Sens’ in working memory task. Networks were then

lassified based on their activated nodes strength relative to each mask.

n addition, the used masks have distinct spatial distribution, with some

hared regions mainly between ‘Sem’ and ‘Sens’ networks. However,

hen we aim to deeply investigate task-related sub-networks, the ‘mask’

echnique seems to have much more complexity related to the specificity

f the integrated brain regions and the precision of an accurate threshold

n order to appropriately classify networks results. 

Although we performed our study on cognitive tasks, it is a topic of

reat interest to apply this methodology pipeline on resting-state exper-

ments since many studies have shown the dynamic reconfiguration of

he brain during rest as well ( Kabbara et al., 2017 ; Liégeois et al., 2019 ).

Regarding methodological considerations, first, the optimal number

f components to be derived was still a challenging question for all SS

ethods rather than a direct limitation of our algorithms. In this study,

e applied two well-known algorithms (DIFFIT and elbow criterion) for

 range of number of components to automatically select the optimal

umber of components relative to each SS method. The evaluated range

f NC values was upper limited by 10 components in order to avoid

purious networks. Moreover, we tried to fix the number of components

o 10 for all SS methods in the self-paced motor task at the group-level,

s already set in a previous work ( O’Neill et al., 2017 ) that used FastICA

lgorithm and little difference was observed for the overall results. 

Second, we should point that not all these components are neces-

arily essential, especially in the case of simple tasks as motor tasks. To

his end, we followed the approach of the null distribution based on sign

ipping algorithm ( Hunt et al., 2012 ; O’Neill et al., 2017 ; Winkler et al.,

014 ; Zhu et al., 2020 ) to select only components whose temporal dy-

amics significantly modulate with the task. In this way, we ensure that

rain dynamics relative to the studied behavioural tasks can be summa-

ized and described by the retained components through an automatic

ay that allows us to objectively compare the SS methods performance.

n addition, the fact that this technique is a purely data-driven proce-

ure that does not require any prior hypothesis or conditions manip-

lation makes it likely adapted to the specific examined dataset. Two

oints regarding significant components selection are important to men-

ion here. First, in the applied null distribution, networks were defined

o be significant if they fell outside the null distribution in either posi-

ive or negative sides because they reflect trial-onset-locked that either

ncreases or decreases in connectivity across subjects (as amplitude en-

elope correlation was adopted). Second, it should be noted that com-

onents significance was evaluated relative to the specific task duration.

or example, temporal duration of the entire analysis for self-paced and

orking memory tasks can include dynamics that should be excluded
14 
rom the analysis. In this context, we limited our significance interpreta-

ion/assessment in the interval of [-2; + 2sec] and [-0.5; + 0.5sec] relative

o the button press instant in the case of self-paced and HCP motor tasks

espectively, and [-2; + 16sec] relative to the visual stimulus presentation

or memory task. In addition, few limitations are to be discussed when

ealing with this selection. First, it was not convenient to rely on this

echnique when the number of trials and subjects was either too small

r too big. A small number will not allow to build a reliable null distri-

ution while a huge one will have its computational cost regarding all

ossible subjects’ combinations for sign-flipping procedure, as already

xecuted in the HCP analysis. Moreover, there is no consensus about the

hresholds/margins that define well a limit level for component’s am-

litude. For instance, there exists networks whose temporal variation

eaks at the limit of null distribution envelope. These are considered to

e critical components that may be integrated in the task but consid-

red not to be following the automatic criteria of this null distribution.

uture works should therefore investigate more about this methodolog-

cal approach in the framework of cognitive tasks, in addition to resting

tate experiments. Also, it is crucial to seek more methods to use or

ombine with the applied technique in order to have more robust basis

or significant components selection. It is noteworthy to report that null

istribution-based technique was applied uniformly for all SS methods,

hus our main objective of comparison was built on a unified evaluation

ramework. 

Third, we used the same pipeline supported by the previous stud-

es dealing with the same dataset (cortical parcellation, source recon-

truction, functional connectivity metric and source leakage correction,

requency bands and sliding window settings) ( Kabbara et al., 2019 ;

’Neill et al., 2017 ). By applying already tested and validated method-

logical approaches, we avoid influencing factors on the comparison

erformed. However, we point out that other methodological solutions

ould be exploited by other researches using the same pipeline adopted

n this work. Regarding cortical parcellation, we chose AAL atlas based

n its successful use in previous MEG investigations ( O’Neill et al., 2017 ;

ewarie et al., 2016 ). This atlas also provides good basis for the or-

hogonalisation procedure adopted since its number of regions is suffi-

iently low (78 ROIs) and well separated ( Colclough et al., 2015 ). The

eamformer spatial filtering was selected as the inverse problem solu-

ion due to its demonstrated efficiency in the measurement of static

 Brookes et al., 2011a ) and dynamic ( Baker et al., 2014 ) functional

onnectivity. Functional connectivity between ROIs regions was esti-

ated through Amplitude Envelope Correlation (AEC). This technique

as been successful in elucidating electrophysiological networks of func-

ional connectivity ( Colclough et al., 2016 ). Other methods, such as

hase couplings can be considered as an alternative way to probe dif-

erent type of functional connectivity ( Lachaux et al., 1999 ). Sliding

indow settings (length and step) were selected carefully as a trade-off

etween temporal resolution and the accuracy of the derived adjacency

atrices (length = 6sec, step = 0.5sec for self-paced and working mem-

ry tasks) ( O’Neill et al., 2017 ). However, according to recent works

 Fraschini et al., 2016 ; Liuzzi et al., 2019 ), it can be seen that metrics (in-

luding amplitude envelope correlation) perform poorly for very short

tate durations when combined with the sliding window approach below

ew seconds, providing noisy results of low correlation with ground truth

n simulations. For this reason, we followed the work of ( Tewarie et al.,

019b ) to estimate dynamic functional connectivity by taking sample

y sample time series rather than windowed aggregated samples us-

ng the Instantaneous Amplitude Correlation (IAC). This high temporal

esolution measure of FC has shown great sensitivity to genuine fluc-

uations in functional connectivity applied in the same context of our

tudy. 

It would be interesting to test data-driven windows approach in this

ontext using the recurrence plots of the amplitude envelopes as in

 Tewarie et al., 2019b ) instead of averaging trials in dataset 2 to re-

uce heavy dFC matrices. It could be also tested against fixed sliding

indow approach as for datasets 1 and 3. 
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Concerning frequency bands, it was crucial to preprocess each

ataset in its appropriate bandwidth. For example, brain signals in self-

aced and HCP motor tasks were proved to be more active in the beta

and, while broader range of frequency bands are integrated in com-

lex cognitive tasks as working memory ( O’Neill et al., 2017 ; Zhu et al.,

020 ). 

. Conclusion 

Deciphering of dynamics of electrophysiological brain networks is

ne of the most important goals in neuroscience. In this paper, we eval-

ated and compared nine popular source separation (SS) methods to

dentify dominant networks of connections with corresponding tempo-

al dynamics at group-level as well as subject-level, using simulation

nd empirical MEG data (N = 95subjects) recorded during three different

asks: (1) simple button press task, (2) fast finger movement task (HCP)

nd (3) Sternberg working memory task. Results show close consistency

or all SS methods in successfully identifying a transient network of

onnections linking somatosensory and primary motor regions in the

elatively slow and simple button press task. Variability between these

ethods’ performance is revealed in rapid tasks of sub-second timescale

HCP motor task) and in a more complex task (Sternberg). The SOBI

nd Kmeans algorithms showed the weakest performance among tested

ethods. CoM2, PSAUD and PCA showed promising results in working

emory task, revealing the formation and dissolution of multiple net-

orks that relate to semantic processing, pattern recognition and lan-

uage as well as vision and movement. At the subject level analysis, ICA

ethods using high statistical order (JADE, InfoMax, CoM2 and PSAUD)

utperform other methods. Our main message is that researchers should

e aware to select the appropriate SS methods and other related param-

ters (epoch length, task complexity and dataset size) when analyzing

ynamics of behavioral tasks. 

ata availability 

Data supporting the findings of this study are available in the

ink ( https://github.com/judytabbal/dynbrainSS.git ). All HCP data are

vailable on https://www.humanconnectome.org/software/hcp-meg-

ipelines . The datasets 1 and 3 are available upon request. 

ode availability 

Codes supporting the findings of this study are available in the

ink ( https://github.com/judytabbal/dynbrainSS.git ). All analysis codes

ecessary to produce the results here were performed in MATLAB soft-

are, using FieldTrip Toolbox http://www.fieldtriptoolbox.org for data

egmentation, filtering and source reconstruction steps, EEGLAB tool-

ox for some SS methods as JADE, InfoMax and SOBI and other MAT-

AB implemented functions as detailed and provided in the previous

ink. A graphical user interface is made freely available allowing other

esearchers to test the methods on our (or their) simulated and real data.

redit author statement 

JT, AK, MH and PB contributed to the design and implementation

f the research, to the analysis of the results and to the writing of the

anuscript. MK and PB were involved in providing funding sources for

he study and supervised the work. All authors provided critical feed-

ack and helped shape the study. 

cknowledgement 

This work was financed by the Rennes University and the Institute

f Clinical Neuroscience of Rennes (project named EEGCog). The study

as also funded by the National Council for Scientific Research (CNRS)

n Lebanon. The authors would also like to thank the the Lebanese
15 
niversity, the Lebanese Association for Scientific Research (LASER)

nd Campus France, Programme Hubert Curien CEDRE (PROJECT No.

2257YA), for supporting this study. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi:10.1016/j.neuroimage.2021.117829 . 

eferences 

ggarwal, C.C., Hinneburg, A., Keim, D.A., 2001. On the surprising behavior of distance

metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (Eds.), Database

Theory — ICDT 2001, Lecture Notes in Computer Science. Springer, Berlin, Heidel-

berg, pp. 420–434. doi: 10.1007/3-540-44503-X_27 . 

llen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014. Track-

ing whole-brain connectivity dynamics in the resting state. Cereb Cortex 24, 663–676.

doi: 10.1093/cercor/bhs352 . 

xmacher, N., Schmitz, D.P., Wagner, T., Elger, C.E., Fell, J., 2008. Interactions between

medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual

working memory: a combined intracranial eeg and functional magnetic resonance

imaging study. J. Neurosci. 28, 7304–7312. doi: 10.1523/JNEUROSCI.1778-08.2008 .

addeley, A., Jarrold, C., Vargha-Khadem, F., 2011. Working memory and the hippocam-

pus. J. Cogn. Neurosci. 23, 3855–3861. doi: 10.1162/jocn_a_00066 . 

aker, A.P., Brookes, M.J., Rezek, I.A., Smith, S.M., Behrens, T., Probert Smith, P.J., Wool-

rich, M., 2014. Fast transient networks in spontaneous human brain activity. eLife 3,

e01867. doi: 10.7554/eLife.01867 . 

assett, D.S. , Sporns, O. , 2017. Network neuroscience. Nature Neurosci. 20, 353 . 

auer, A.-K.R., Debener, S., Nobre, A.C., 2020. Synchronisation of neural os-

cillations and cross-modal Influences. Trends Cognit. Sci. 24, 481–495.

doi: 10.1016/j.tics.2020.03.003 . 

ola, M. , Sabel, B.A. , 2015. Dynamic reorganization of brain functional networks during

cognition. Neuroimage 114, 398–413 . 

rookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R.,

Owen, J.P., Morris, P.G., Nagarajan, S.S., 2011a. Measuring functional connectivity

using MEG: methodology and comparison with fcMRI. Neuroimage 56, 1082–1104.

doi: 10.1016/j.neuroimage.2011.02.054 . 

rookes, M.J., Tewarie, P.K., Hunt, B.A.E., Robson, S.E., Gascoyne, L.E., Liddle, E.B., Lid-

dle, P.F., Morris, P.G., 2016. A multi-layer network approach to MEG connectivity

analysis. NeuroImage 132, 425–438. doi: 10.1016/j.neuroimage.2016.02.045 . 

rookes, M.J., Vrba, J., Robinson, S.E., Stevenson, C.M., Peters, A.M., Barnes, G.R., Hille-

brand, A., Morris, P.G., 2008. Optimising experimental design for MEG beamformer

imaging. NeuroImage 39, 1788–1802. doi: 10.1016/j.neuroimage.2007.09.050 . 

rookes, M.J., Wood, J.R., Stevenson, C.M., Zumer, J.M., White, T.P., Liddle, P.F.,

Morris, P.G., 2011b. Changes in brain network activity during working mem-

ory tasks: a magnetoencephalography study. Neuroimage 55, 1804–1815.

doi: 10.1016/j.neuroimage.2010.10.074 . 

rookes, M.J., Woolrich, M.W., Barnes, G.R., 2012. Measuring functional connectivity in

MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63,

910–920. doi: 10.1016/j.neuroimage.2012.03.048 . 

uckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., Yeo, B.T.T., 2011. The organiza-

tion of the human cerebellum estimated by intrinsic functional connectivity. J Neu-

rophysiol 106, 2322–2345. doi: 10.1152/jn.00339.2011 . 

ullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical anal-

ysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575 . 

aminiti, S.P., Siri, C., Guidi, L., Antonini, A., Perani, D., 2015. The neural correlates of

spatial and object working memory in elderly and Parkinson’s disease subjects. Behav.

Neurol. 2015, 1–10. doi: 10.1155/2015/123636 . 

asorso, J., Kong, X., Chi, W., Van De Ville, D., Yeo, B.T.T., Liégeois, R., 2019. Dy-

namic mode decomposition of resting-state and task fMRI. NeuroImage 194, 42–54.

doi: 10.1016/j.neuroimage.2019.03.019 . 

avanna, A.E., Trimble, M.R., 2006. The precuneus: a review of its functional anatomy

and behavioural correlates. Brain 129, 564–583. doi: 10.1093/brain/awl004 . 

hai, L.R., Khambhati, A.N., Ciric, R., Moore, T.M., Gur, R.C., Gur, R.E., Satterth-

waite, T.D., Bassett, D.S., 2017. Evolution of brain network dynamics in neurode-

velopment. Network Neurosci. 1, 14–30. doi: 10.1162/NETN_a_00001 . 

hai, W.J., Abd Hamid, A.I., Abdullah, J.M., 2018. Working memory from the psycho-

logical and neurosciences perspectives: a review. Front Psychol. 9. doi: 10.3389/fp-

syg.2018.00401 . 

iric, R., Nomi, J.S., Uddin, L.Q., Satpute, A.B., 2017. Contextual connectivity: a frame-

work for understanding the intrinsic dynamic architecture of large-scale functional

brain networks. Sci. Reports 7, 1–16. doi: 10.1038/s41598-017-06866-w . 

olclough, G.L., Brookes, M.J., Smith, S.M., Woolrich, M.W., 2015. A symmetric mul-

tivariate leakage correction for MEG connectomes. Neuroimage 117, 439–448.

doi: 10.1016/j.neuroimage.2015.03.071 . 

olclough, G.L., Woolrich, M.W., Tewarie, P.K., Brookes, M.J., Quinn, A.J., Smith, S.M.,

2016. How reliable are MEG resting-state connectivity metrics? Neuroimage 138,

284–293. doi: 10.1016/j.neuroimage.2016.05.070 . 

orbetta, M. , Miezin, F.M. , Dobmeyer, S. , Shulman, G.L. , Petersen, S.E. , 1991. Selective

and divided attention during visual discriminations of shape, color, and speed: func-

tional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 . 

emb, J.B., Desmond, J.E., Wagner, A.D., Vaidya, C.J., Glover, G.H., Gabrieli, J.D., 1995.

Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional

https://github.com/judytabbal/dynbrainSS.git
https://www.humanconnectome.org/software/hcp-meg-pipelines
https://github.com/judytabbal/dynbrainSS.git
http://www.fieldtriptoolbox.org
https://doi.org/10.1016/j.neuroimage.2021.117829
https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1523/JNEUROSCI.1778-08.2008
https://doi.org/10.1162/jocn_a_00066
https://doi.org/10.7554/eLife.01867
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0006
https://doi.org/10.1016/j.tics.2020.03.003
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0008
https://doi.org/10.1016/j.neuroimage.2011.02.054
https://doi.org/10.1016/j.neuroimage.2016.02.045
https://doi.org/10.1016/j.neuroimage.2007.09.050
https://doi.org/10.1016/j.neuroimage.2010.10.074
https://doi.org/10.1016/j.neuroimage.2012.03.048
https://doi.org/10.1152/jn.00339.2011
https://doi.org/10.1038/nrn2575
https://doi.org/10.1155/2015/123636
https://doi.org/10.1016/j.neuroimage.2019.03.019
https://doi.org/10.1093/brain/awl004
https://doi.org/10.1162/NETN_a_00001
https://doi.org/10.3389/fpsyg.2018.00401
https://doi.org/10.1038/s41598-017-06866-w
https://doi.org/10.1016/j.neuroimage.2015.03.071
https://doi.org/10.1016/j.neuroimage.2016.05.070
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0024


J. Tabbal, A. Kabbara, M. Khalil et al. NeuroImage 231 (2021) 117829 

 

D  

 

 

D  

 

D  

 

D  

 

F  

 

 

F  

 

F  

F  

 

F  

G  

G  

 

 

G  

 

G  

 

H  

H  

H  

 

H  

 

H  

 

H  

 

I  

 

J  

 

K  

K  

K  

K  

K  

L  

 

L  

L  

 

L  

 

L  

 

L  

 

 

L

M  

 

M  

 

 

M  

 

M  

 

M  

 

 

M  

 

 

N  

 

 

N  

 

O  

 

O  

 

 

P  

 

 

R  

R  

 

S  

S  

S  

 

S  

 

 

 

T  

 

 

T  

 

 

T  

 

T  

 

 

 

MRI study of task difficulty and process specificity. J. Neurosci. 15, 5870–5878.

doi: 10.1523/JNEUROSCI.15-09-05870.1995 . 

errfuss, J., Brass, M., Yves von Cramon, D., 2004. Cognitive control in the pos-

terior frontolateral cortex: evidence from common activations in task coordi-

nation, interference control, and working memory. NeuroImage 23, 604–612.

doi: 10.1016/j.neuroimage.2004.06.007 . 

eschamps, I., Baum, S.R., Gracco, V.L., 2014. On the role of the supramarginal gyrus in

phonological processing and verbal working memory: evidence from rTMS studies.

Neuropsychologia 53, 39–46. doi: 10.1016/j.neuropsychologia.2013.10.015 . 

ing, X., Lee, J.-H., Lee, S.-W., 2013. Performance evaluation of nonnegative matrix

factorization algorithms to estimate task-related neuronal activities from fMRI data.

Magn. Reson. Imaging 31, 466–476. doi: 10.1016/j.mri.2012.10.003 . 

u, Y., Pearlson, G.D., Yu, Q., He, H., Lin, D., Sui, J., Wu, L., Calhoun, V.D.,

2016. Interaction among subsystems within default mode network diminished in

schizophrenia patients: a dynamic connectivity approach. Schizophr. Res. 170, 55–

65. doi: 10.1016/j.schres.2015.11.021 . 

ong, A.H.C., Yoo, K., Rosenberg, M.D., Zhang, S., Li, C.-S.R., Scheinost, D., Consta-

ble, R.T., Chun, M.M., 2019. Dynamic functional connectivity during task perfor-

mance and rest predicts individual differences in attention across studies. NeuroImage

188, 14–25. doi: 10.1016/j.neuroimage.2018.11.057 . 

ontolan, L., Morillon, B., Liegeois-Chauvel, C., Giraud, A.-L., 2014. The contribution of

frequency-specific activity to hierarchical information processing in the human audi-

tory cortex. Nat. Commun. 5, 4694. doi: 10.1038/ncomms5694 . 

rackowiak, R. , 1992. The anatomy of phonological and semantic processing in normal

subjects. Brain 115, 1753–1768 version 1 - 2 Dec 2008. Brain 671–682 . 

raschini, M., Demuru, M., Crobe, A., Marrosu, F., Stam, C.J., Hillebrand, A., 2016. The

effect of epoch length on estimated EEG functional connectivity and brain network

organisation. J. Neural Eng. 13, 036015. doi: 10.1088/1741-2560/13/3/036015 . 

riston, K.J., 1994. Functional and effective connectivity in neuroimaging: A synthesis.

Human Brain Mapp. 2, 56–78. doi: 10.1002/hbm.460020107 . 

olub, G.H., Reinsch, C., 1970. Singular value decomposition and least squares solutions.

Numer. Math. 14, 403–420. doi: 10.1007/BF02163027 . 

ong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., Beaulieu, C., 2009. Map-

ping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion

tensor imaging tractography. Cerebral Cortex (New York, N.Y.: 1991) 19, 524–536.

doi: 10.1093/cercor/bhn102 . 

rill-Spector, K., Kourtzi, Z., Kanwisher, N., 2001. The lateral occipital com-

plex and its role in object recognition. Vision Res. 41, 1409–1422.

doi: 10.1016/S0042-6989(01)00073-6 . 

rill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y., Malach, R., 1998. Cue-invariant

activation in object-related areas of the human occipital lobe. Neuron 21, 191–202.

doi: 10.1016/S0896-6273(00)80526-7 . 

assan, M., Benquet, P., Biraben, A., Berrou, C., Dufor, O., Wendling, F., 2015. Dynamic

reorganization of functional brain networks during picture naming. Cortex 73, 276–

288. doi: 10.1016/j.cortex.2015.08.019 . 

assan, M. , Dufor, O. , Merlet, I. , Berrou, C. , Wendling, F. , 2014. EEG source connectivity

analysis: from dense array recordings to brain networks. PloS one 9, e105041 . 

assan, M., Wendling, F., 2018. Electroencephalography source connectivity: aiming for

high resolution of brain networks in time and space. IEEE Signal Process. Mag. 35,

81–96. doi: 10.1109/MSP.2017.2777518 . 

illebrand, A., Tewarie, P., van Dellen, E., Yu, M., Carbo, E.W.S., Douw, L., Gouw, A.A.,

van Straaten, E.C.W., Stam, C.J., 2016. Direction of information flow in large-scale

resting-state networks is frequency-dependent. Proc. Nat. Acad. Sci. USA 113, 3867–

3872. doi: 10.1073/pnas.1515657113 . 

ipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., Engel, A.K., 2012. Large-scale cortical

correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 15, 884–890.

doi: 10.1038/nn.3101 . 

unt, L.T., Kolling, N., Soltani, A., Woolrich, M.W., Rushworth, M.F.S., Behrens, T.E.J.,

2012. Mechanisms underlying cortical activity during value-guided choice. Nature

Neuroscience 15, 470–476. doi: 10.1038/nn.3017 . 

raji, A., Faghiri, A., Lewis, N., Fu, Z., Rachakonda, S., Calhoun, V., 2020. Tools of the

Trade: Estimating Time-Varying Connectivity Patterns from fMRI Data (preprint)

PsyArXiv doi: 10.31234/osf.io/mvqj4 . 

, R., H, A., M, F., F, W., M, H., 2020. Exploring the correlation between

M/EEG source-space and fMRI networks at rest. Brain Topogr. 33, 151–160.

doi: 10.1007/s10548-020-00753-w . 

abbara, A. , Falou, W.E. , Khalil, M. , Wendling, F. , Hassan, M. , 2017. The dynamic func-

tional core network of the human brain at rest. Scientific Reports 7, 2936 . 

abbara, A. , Khalil, M. , O’Neill, G. , Dujardin, K. , El Traboulsi, Y. , Wendling, F. , Hassan, M. ,

2019. Detecting modular brain states in rest and task. Network Neurosci. 1–24 . 

abbara, A. , Paban, V. , Hassan, M. , 2020. The Dynamic Modular Fingerprints of the Hu-

man Brain at Rest bioRxiv . 

achenoura, A., Albera, L., Senhadji, L., Comon, P., 2008. ICA: a potential tool for bci

systems. IEEE Signal Process. Mag. 25, 57–68. doi: 10.1109/MSP.2008.4408442 . 

ourtzi, Z., Kanwisher, N., 2001. Representation of perceived object shape by the human

lateral occipital complex. Science 293, 1506–1509. doi: 10.1126/science.1061133 . 

achaux, J.-P. , Rodriguez, E. , Martinerie, J. , Varela, F.J. , 1999. Measur-

ing phase synchrony in brain signals. Human Brain Mapp. 8, 194–208

https://doi.org/10.1002/(SICI)1097-0193(1999)8:4 < 194::AID-HBM4>3.0.CO;2-C . 

ee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix factor-

ization. Nature 401, 788–791. doi: 10.1038/44565 . 

eonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Schluep, M., Vuilleu-

mier, P., Van De Ville, D., 2013. Principal components of functional connectivity: a

new approach to study dynamic brain connectivity during rest. NeuroImage 83, 937–

950. doi: 10.1016/j.neuroimage.2013.07.019 . 
16 
iégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., Sabuncu, M.R., Yeo, B.T.T.,

2019. Resting brain dynamics at different timescales capture distinct aspects of human

behavior. Nature Commun. 10, 2317. doi: 10.1038/s41467-019-10317-7 . 

iu, X., Duyn, J.H., 2013. Time-varying functional network information extracted

from brief instances of spontaneous brain activity. PNAS 110, 4392–4397.

doi: 10.1073/pnas.1216856110 . 

iuzzi, L., Quinn, A.J., O’Neill, G.C., Woolrich, M.W., Brookes, M.J., Hillebrand, A.,

Tewarie, P., 2019. How sensitive are conventional MEG functional connectivity met-

rics with sliding windows to detect genuine fluctuations in dynamic functional con-

nectivity? Front. Neurosci. 13. doi: 10.3389/fnins.2019.00797 . 

loyd, S., 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory 28, 129–

137. doi: 10.1109/TIT.1982.1056489 . 

elnik, A., Hairston, W.D., Ferris, D.P., König, P., 2017. EEG correlates of sensorimotor

processing: independent components involved in sensory and motor processing. Sci.

R. 7, 4461. doi: 10.1038/s41598-017-04757-8 . 

etzak, P., Feredoes, E., Takane, Y., Wang, L., Weinstein, S., Cairo, T., Ngan, E.T.C.,

Woodward, T.S., 2011. Constrained principal component analysis reveals functionally

connected load-dependent networks involved in multiple stages of working memory.

Hum. Brain Mapp. 32, 856–871. doi: 10.1002/hbm.21072 . 

heich, A., Hassan, M., Khalil, M., Berrou, C., Wendling, F., 2015. A new algorithm for

spatiotemporal analysis of brain functional connectivity. J. Neurosci. Methods 242,

77–81. doi: 10.1016/j.jneumeth.2015.01.002 . 

heich, A., Hassan, M., Khalil, M., Gripon, V., Dufor, O., Wendling, F., 2018. SimiNet:

a novel method for quantifying brain network similarity. IEEE Trans. Pattern Anal.

Mach. Intell. 40, 2238–2249. doi: 10.1109/TPAMI.2017.2750160 . 

iller, R.L., Yaesoubi, M., Turner, J.A., Mathalon, D., Preda, A., Pearlson, G., Adali, T.,

Calhoun, V.D., 2016. Higher dimensional meta-state analysis reveals reduced rest-

ing fMRI connectivity dynamism in schizophrenia patients. PLOS ONE 11, e0149849.

doi: 10.1371/journal.pone.0149849 . 

ion, M., Patterson, K., Acosta-Cabronero, J., Pengas, G., Izquierdo-Garcia, D., Hong, Y.T.,

Fryer, T.D., Williams, G.B., Hodges, J.R., Nestor, P.J., 2010. What the left and

right anterior fusiform gyri tell us about semantic memory. Brain 133, 3256–3268.

doi: 10.1093/brain/awq272 . 

egrón-Oyarzo, I., Espinosa, N., Aguilar-Rivera, M., Fuenzalida, M., Aboitiz, F.,

Fuentealba, P., 2018. Coordinated prefrontal-hippocampal activity and navigation

strategy-related prefrontal firing during spatial memory formation. Proc. Natl. Acad.

Sci. U.S.A. 115, 7123–7128. doi: 10.1073/pnas.1720117115 . 

estor, P.J., Fryer, T.D., Hodges, J.R., 2006. Declarative memory impairments

in Alzheimer’s disease and semantic dementia. Neuroimage 30, 1010–1020.

doi: 10.1016/j.neuroimage.2005.10.008 . 

’Neill, G.C., Bauer, M., Woolrich, M.W., Morris, P.G., Barnes, G.R., Brookes, M.J.,

2015. Dynamic recruitment of resting state sub-networks. NeuroImage 115, 85–95.

doi: 10.1016/j.neuroimage.2015.04.030 . 

’Neill, G.C., Tewarie, P.K., Colclough, G.L., Gascoyne, L.E., Hunt, B.A.E., Mor-

ris, P.G., Woolrich, M.W., Brookes, M.J., 2017. Measurement of dynamic

task related functional networks using MEG. NeuroImage 146, 667–678.

doi: 10.1016/j.neuroimage.2016.08.061 . 

omper, U., Keil, J., Foxe, J.J., Senkowski, D., 2015. Intersensory selective attention and

temporal orienting operate in parallel and are instantiated in spatially distinct sensory

and motor cortices: human Intersensory and Temporal Attention. Hum. Brain Mapp.

36, 3246–3259. doi: 10.1002/hbm.22845 . 

obinson, S. , 1999. Functional neuroimaging by synthetic aperture magnetometry (SAM).

Recent Advances in Biomagnetism . 

ouhinen, S., Siebenhühner, F., Palva, J.M., Palva, S., 2020. Spectral and anatomical pat-

terns of large-scale synchronization predict human attentional capacity. Cereb. Cor-

tex. doi: 10.1093/cercor/bhaa110 . 

ahonero-Alvarez, G. , Calderon, H. , 2017. A comparison of SOBI, FastICA. JADE Infomax

Algorithms 6 . 

arvas, J., 1987. Basic mathematical and electromagnetic concepts of the biomagnetic

inverse problem. Phys. Med. Biol. 32, 11–22. doi: 10.1088/0031-9155/32/1/004 . 

ekihara, K., Nagarajan, S.S., 2008. Adaptive spatial filters for electromagnetic brain

imaging. Series in Biomedical Engineering. Springer-Verlag, Berlin Heidelberg

doi: 10.1007/978-3-540-79370-0 . 

mith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-

Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saun-

ders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004.

Advances in functional and structural MR image analysis and implementation as FSL.

NeuroImage 23 (Suppl 1), S208–S219. doi: 10.1016/j.neuroimage.2004.07.051 . 

ewarie, P., Bright, M.G., Hillebrand, A., Robson, S.E., Gascoyne, L.E., Morris, P.G.,

Meier, J., Van Mieghem, P., Brookes, M.J., 2016. Predicting haemodynamic networks

using electrophysiology: the role of non-linear and cross-frequency interactions. Neu-

roimage 130, 273–292. doi: 10.1016/j.neuroimage.2016.01.053 . 

ewarie, P., Hunt, B.A.E., O’Neill, G.C., Byrne, A., Aquino, K., Bauer, M., Mullinger, K.J.,

Coombes, S., Brookes, M.J., 2019a. Relationships between neuronal oscillatory

amplitude and dynamic functional connectivity. Cereb. Cortex 29, 2668–2681.

doi: 10.1093/cercor/bhy136 . 

ewarie, P., Liuzzi, L., O’Neill, G.C., Quinn, A.J., Griffa, A., Woolrich, M.W., Stam, C.J.,

Hillebrand, A., Brookes, M.J., 2019b. Tracking dynamic brain networks using high

temporal resolution MEG measures of functional connectivity. NeuroImage 200, 38–

50. doi: 10.1016/j.neuroimage.2019.06.006 . 

homas Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D.,

Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B.,

Liu, H., Buckner, R.L., 2011. The organization of the human cerebral cortex es-

timated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.

doi: 10.1152/jn.00338.2011 . 

https://doi.org/10.1523/JNEUROSCI.15-09-05870.1995
https://doi.org/10.1016/j.neuroimage.2004.06.007
https://doi.org/10.1016/j.neuropsychologia.2013.10.015
https://doi.org/10.1016/j.mri.2012.10.003
https://doi.org/10.1016/j.schres.2015.11.021
https://doi.org/10.1016/j.neuroimage.2018.11.057
https://doi.org/10.1038/ncomms5694
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0032
https://doi.org/10.1088/1741-2560/13/3/036015
https://doi.org/10.1002/hbm.460020107
https://doi.org/10.1007/BF02163027
https://doi.org/10.1093/cercor/bhn102
https://doi.org/10.1016/S0042-6989(01)00073-6
https://doi.org/10.1016/S0896-6273(00)80526-7
https://doi.org/10.1016/j.cortex.2015.08.019
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0040
https://doi.org/10.1109/MSP.2017.2777518
https://doi.org/10.1073/pnas.1515657113
https://doi.org/10.1038/nn.3101
https://doi.org/10.1038/nn.3017
https://doi.org/10.31234/osf.io/mvqj4
https://doi.org/10.1007/s10548-020-00753-w
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0049
https://doi.org/10.1109/MSP.2008.4408442
https://doi.org/10.1126/science.1061133
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0052
https://doi.org/10.1038/44565
https://doi.org/10.1016/j.neuroimage.2013.07.019
https://doi.org/10.1038/s41467-019-10317-7
https://doi.org/10.1073/pnas.1216856110
https://doi.org/10.3389/fnins.2019.00797
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1038/s41598-017-04757-8
https://doi.org/10.1002/hbm.21072
https://doi.org/10.1016/j.jneumeth.2015.01.002
https://doi.org/10.1109/TPAMI.2017.2750160
https://doi.org/10.1371/journal.pone.0149849
https://doi.org/10.1093/brain/awq272
https://doi.org/10.1073/pnas.1720117115
https://doi.org/10.1016/j.neuroimage.2005.10.008
https://doi.org/10.1016/j.neuroimage.2015.04.030
https://doi.org/10.1016/j.neuroimage.2016.08.061
https://doi.org/10.1002/hbm.22845
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0070
https://doi.org/10.1093/cercor/bhaa110
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00106-3/sbref0072
https://doi.org/10.1088/0031-9155/32/1/004
https://doi.org/10.1007/978-3-540-79370-0
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2016.01.053
https://doi.org/10.1093/cercor/bhy136
https://doi.org/10.1016/j.neuroimage.2019.06.006
https://doi.org/10.1152/jn.00338.2011


J. Tabbal, A. Kabbara, M. Khalil et al. NeuroImage 231 (2021) 117829 

T  

 

V  

 

 

 

 

 

V  

 

V  

 

 

V  

 

 

V  

 

V  

 

 

W  

W  

 

W  

 

Y  

 

 

Y  

 

Y  

Z  

 

immerman, M.E., Kiers, H.A., 2000. Three-mode principal components analysis: choosing

the numbers of components and sensitivity to local optima. Br. J. Math. Stat. Psychol.

53 (Pt 1), 1–16. doi: 10.1348/000711000159132 . 

an Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R.,

Chang, A., Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D.,

Glasser, M.F., Harel, N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G.,

Moeller, S., Oostenveld, R., Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M.,

Snyder, A.Z., Xu, J., Yacoub, E.WU-Minn HCP Consortium, 2012. The human

connectome project: a data acquisition perspective. Neuroimage 62, 2222–2231.

doi: 10.1016/j.neuroimage.2012.02.018 . 

andenberghe, R., Price, C., Wise, R., Josephs, O., Frackowiak, R.S.J., 1996. Functional

anatomy of a common semantic system for words and pictures. Nature 383, 254–256.

doi: 10.1038/383254a0 . 

idaurre, D., Abeysuriya, R., Becker, R., Quinn, A.J., Alfaro-Almagro, F., Smith, S.M.,

Woolrich, M.W., 2018a. Discovering dynamic brain networks from big data

in rest and task. NeuroImage, Brain Connect. Dynamics 180, 646–656.

doi: 10.1016/j.neuroimage.2017.06.077 . 

idaurre, D., Hunt, L.T., Quinn, A.J., Hunt, B.A.E., Brookes, M.J., Nobre, A.C.,

Woolrich, M.W., 2018b. Spontaneous cortical activity transiently organises

into frequency specific phase-coupling networks. Nature Commun. 9, 2987.

doi: 10.1038/s41467-018-05316-z . 

idaurre, D., Quinn, A.J., Baker, A.P., Dupret, D., Tejero-Cantero, A., Woolrich, M.W.,

2016. Spectrally resolved fast transient brain states in electrophysiological data. Neu-

roImage 126, 81–95. doi: 10.1016/j.neuroimage.2015.11.047 . 

igneau, M., Beaucousin, V., Hervé, P.Y., Duffau, H., Crivello, F., Houdé, O., Ma-

zoyer, B., Tzourio-Mazoyer, N., 2006. Meta-analyzing left hemisphere language ar-
17 
eas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432.

doi: 10.1016/j.neuroimage.2005.11.002 . 

ang, D., Zhu, Y., Ristaniemi, T., Cong, F., 2018. Extracting multi-mode ERP features

using fifth-order nonnegative tensor decomposition. J. Neurosci. Methods 308, 240–

247. doi: 10.1016/j.jneumeth.2018.07.020 . 

ilkins, K.B., Yao, J., 2020. Coordination of multiple joints increases bilateral

connectivity with ipsilateral sensorimotor cortices. Neuroimage 207, 116344.

doi: 10.1016/j.neuroimage.2019.116344 . 

inkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., 2014.

Permutation inference for the general linear model. Neuroimage 92, 381–397.

doi: 10.1016/j.neuroimage.2014.01.060 . 

aesoubi, M., Miller, R.L., Calhoun, V.D., 2015. Mutually temporally independent con-

nectivity patterns: A new framework to study the dynamics of brain connectivity at

rest with application to explain group difference based on gender. NeuroImage 107,

85–94. doi: 10.1016/j.neuroimage.2014.11.054 . 

amashita, M., Kawato, M., Imamizu, H., 2015. Predicting learning plateau of working

memory from whole-brain intrinsic network connectivity patterns. Sci. Rep. 5, 1–8.

doi: 10.1038/srep07622 . 

ousry, T., 1997. Localization of the motor hand area to a knob on the precentral gyrus.

A new landmark. Brain 120, 141–157. doi: 10.1093/brain/120.1.141 . 

hu, Y., Liu, J., Ye, C., Mathiak, K., Astikainen, P., Ristaniemi, T., Cong, F., 2020. Discov-

ering dynamic task-modulated functional networks with specific spectral modes using

MEG. NeuroImage 218, 116924. doi: 10.1016/j.neuroimage.2020.116924 . 

https://doi.org/10.1348/000711000159132
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1038/383254a0
https://doi.org/10.1016/j.neuroimage.2017.06.077
https://doi.org/10.1038/s41467-018-05316-z
https://doi.org/10.1016/j.neuroimage.2015.11.047
https://doi.org/10.1016/j.neuroimage.2005.11.002
https://doi.org/10.1016/j.jneumeth.2018.07.020
https://doi.org/10.1016/j.neuroimage.2019.116344
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1016/j.neuroimage.2014.11.054
https://doi.org/10.1038/srep07622
https://doi.org/10.1093/brain/120.1.141
https://doi.org/10.1016/j.neuroimage.2020.116924

	Dynamics of task-related electrophysiological networks: a benchmarking study
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.1.1 Dataset1: ‘self-paced button press task’
	2.1.2 Dataset2: ‘HCP left hand movement Task’
	2.1.3 Dataset3: ‘sternberg working memory task’

	2.2 Methodology
	2.2.1 Preprocessing
	2.2.2 Source reconstruction and functional connectivity
	2.2.3 Dynamic functional connectivity analysis (dFC)
	2.2.4 Task-related functional brain networks
	2.2.5 Comparative analysis


	3 Results
	3.1 Self-paced button press task
	3.2 Left-hand movement task
	3.3 Working memory task
	3.4 Performance of each SS methods at subject-level
	3.5 The optimal number of subjects of each SS method

	4 Discussion
	5 Conclusion
	Data availability
	Code availability
	Credit author statement
	Acknowledgement
	Supplementary materials
	References


