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INTRODUCTION

Walking is recognized as the most popular, convenient, and free form of everyday physical activity (PA) and is thus of particular interest for improving health outcomes (1). Assessing and promoting outdoor walking is of importance since performing walking bouts at a sufficient intensity and of sufficient duration to meet PA recommendations may be easier outdoors and more enjoyable for people (2,3). In addition to continuous walking, the total volume of ambulatory activity from day to day, regardless of the duration of the bouts of activity, is also of high importance to achieve health benefits (4,[START_REF]Physical Activity Guidelines Advisory Committee[END_REF]. Day-to-day human walking behaviors are intermittent by nature, as 76% and 69% of the total walking and stopping bouts, respectively, last less than 1 min [START_REF] Orendurff | How humans walk: Bout duration, steps per bout, and rest duration[END_REF]. Furthermore, outdoor walking sessions are of primary interest in frail and clinical populations for both walking capacity assessment and rehabilitation purposes (7-9) since access to a supervised exercise program is limited in some clinical populations (10). The walking activity of people with functional limitations is also intermittent, including walking bouts of different durations and intensities, depending on their walking ability (11). The same is true regarding their ambulatory activity from day to day (12,13). Therefore, regardless of the application, accurate monitors are needed to assess intermittent outdoor walking.

A full and accurate assessment of outdoor walking relies on a two-step approach: i) the identification of intermittent walking and stopping bouts that may be very short in duration and ii) the estimation of parameters related to intensity (e.g., walking speed or cadence) and volume (e.g., walking duration or distance or total steps) over identified walking bouts. There have been extensive studies throughout the years conducted on the use of pedometers, accelerometers, and global positioning system (GPS) monitors to assess walking (14-17). However, it is worth noting
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that a gap exists in the available studies regarding the accuracy of pedometers and accelerometers in providing a full assessment of short intermittent (outdoor) walking.

While extensive literature exists regarding the step count accuracy of pedometers during treadmill or natural walking [START_REF] Bassett | Step Counting: A Review of Measurement Considerations and Health-Related Applications[END_REF][START_REF] Grant | Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults[END_REF][START_REF] Toth | Video-Recorded Validation of Wearable Step Counters under Free-living Conditions[END_REF][START_REF] Toth | Effects of Brief Intermittent Walking Bouts on Step Count Accuracy of Wearable Devices[END_REF], their accuracy in detecting walking/stopping bouts of different durations during outdoor intermittent walking is largely unknown. Moreover, the validity of using walking cadence from pedometers to estimate the speed of ambulation has not been investigated, but there is increasing interest in the assessment of such a parameter as a proxy indicator of the associated metabolic equivalent of task (MET) levels [START_REF] Aguiar | Cadence-based Classification of Minimally Moderate Intensity during Overground Walking in 21-To 40-Year-Old Adults[END_REF].

Accelerometers are the most used activity monitors in PA research but have been mainly used to assess PA patterns (not specifically walking) throughout periods ≥1 min in adults [START_REF] Matthews | Influence of accelerometer calibration approach on MVPA estimates for adults[END_REF]. Using machine learning algorithms, studies have classified activities under free-living conditions in adults on the basis of an accelerometer (at the hip or wrist level) and reported accuracies in walking (or stepping) identification ranging from 75% to 83% using sequential analysis windows of 10 s to 60 s of continuous activity [START_REF] Sasaki | Performance of Activity Classification Algorithms in Free-living Older Adults[END_REF][START_REF] Ellis | Hip and Wrist Accelerometer[END_REF][START_REF] Pavey | Field evaluation of a random forest activity classifier for wrist-worn accelerometer data[END_REF]. Although this approach is relevant, such algorithms are sophisticated and require a high level of technical skills, and the classification accuracy remains highly dependent on the initial database used for learning in terms of both the subject and activity characteristics.

Finally, GPS monitors, with or without accelerometers, have been used to study outdoor walking (15,[START_REF] Hwang | Cross sectional association between spatially measured walking bouts and neighborhood walkability[END_REF], but only a few studies have focused on short intermittent walking (14,[START_REF] Noury-Desvaux | The accuracy of a simple, low-cost GPS data logger/receiver to study outdoor human walking in view of health and clinical studies[END_REF]. Furthermore, the effects of the environment obstruction level and the wearing location on the accuracy of GPS
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monitors for such purposes are unknown.

The aim of the present study was to determine and compare the accuracy of different types of activity monitors in assessing intermittent outdoor walking. We focused on outdoor walking sessions considering the importance of implementing and thus monitoring home-or communitybased walking programs for public health [START_REF] Gardner | Efficacy of Quantified Home-Based Exercise and Supervised Exercise in Patients With Intermittent Claudication A Randomized Controlled Trial[END_REF]9). For this purpose, we first developed and tested algorithms and prediction equations to assess the accuracy of GPS monitors, accelerometers, and pedometers in the estimation of intermittent outdoor walking during standardized and prescribed outdoor walking protocols in healthy participants (study 1). Herein, the analysis of walking activity relied on the detection of walking and stopping bouts and then quantifying walking bouts in terms of duration, speed, and distance. We aimed to implement an automated algorithm for bout detection that does not rely on the wearing location, recording epoch, or type of monitor used. Second, to study a real-world clinical application [START_REF] Gardner | Efficacy of Quantified Home-Based Exercise and Supervised Exercise in Patients With Intermittent Claudication A Randomized Controlled Trial[END_REF][START_REF] Faucheur | Measurement of walking distance and speed in patients with peripheral arterial disease: A novel method using a global positioning system[END_REF], we validated the accuracy of the activity monitors and the developed processing methodologies during outdoor walking sessions performed by a group of people walking intermittently due to functional limitations (study 2).

METHODS

Study overview

The data and results of the present work were obtained from two distinct studies. Each study was approved by a local institutional ethics committee, and in both studies, the participants provided informed consent after being informed of the experimental procedure. Study 1 ("Acti-GPS" project; local institutional ethics committee: CPP OUEST II, Angers, France; NCT01805219) was specifically designed to include strict experimental conditions and be performed in healthy
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subjects to determine and compare the accuracy of different activity monitors in i) detecting intermittent outdoor walking bouts, for which algorithms were developed and tested, and ii) estimating walking speed and distance, for which prediction equations were developed and tested. Study 2 ("CLASH" project; local institutional ethics committee: CPP OUEST V, Rennes, France; NCT02041169) was a real-world scenario in which we validated the developed processing methodologies in a group of participants who experienced walking limitations during an outdoor walking session due to peripheral artery disease (PAD). More specifically, for these participants, their walking activity is limited due to lower-limb symptoms that impair their walking ability and force them to stop to recover.

Study 1: Algorithm and equation development and testing

Participants. Twenty healthy subjects (23 ± 3 years, 71 ± 10 kg, 176 ± 8 cm, 22.7 ± 3.0 kg/m 2 ) were recruited. The inclusion criteria were as follows: being older than 18 years old; being affiliated with the social security system (according to French legislation); not presenting contraindications to the practice of physical activities; not being pregnant (women); and having read, understood, and signed the consent form.

Experimental procedure. For each participant, the experimental procedure consisted of an outdoor prescribed walking protocol (PWP). Ten participants (24 ± 4 years, 71 ± 9 kg, 177 ± 8 cm, 22.5 ± 2.0 kg/m 2 ) each performed a different PWP on an outdoor flat athletic track (Rennes, France, latitude = 48.048184, longitude = -1.737166) characterized by a low level of obstruction (LLO). The same PWPs were performed by the ten other participants (23 ± 3 years, 70 ± 12 kg, 176 ± 9 cm, 22.9 ± 3 kg/m 2 ) in a flat urban canyon (Angers, France, 47.468727, -0.541211)
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characterized by a high level of obstruction (HLO). Although there were 20 participants, we used only 10 different PWPs to compare the two environments, and each PWP was randomly assigned to one participant in each environment (LLO and HLO).

Each PWP was divided into two phases that were completed consecutively during the same session (Figure 1). The first phase of the PWP was used to develop (or improve) and test the accuracy of different algorithms in detecting intermittent walking and stopping bouts. This first phase was duration-based and relied on a stop-and-go pattern (14,27) during which the participants performed a sequence of walking and stopping bouts of fixed durations that were randomly selected from {3, 6, 12, 15, 20, 30, 40, 50} s (see document, Supplemental Digital Content 1, which details the design of the first phase of the PWP, http://links.lww.com/MSS/C238). The random sequence lasted between 10 and 15 min and was repeated twice by each participant: once at a "self-selected" walking pace and once again at a "slow" walking pace (Figure 1). The participants were equipped with an MP3 player that included instructions needed to alternate between bouts of walking and stopping, such as "start", "you will be stopping soon", "stop", and "you will finish soon".

The second phase of the PWP was used to develop and test the accuracy of the prediction equations for speeds and distances over the detected walking bouts. This phase was distancebased, and each participant repeated a sequence of ten walking bouts of fixed distances separated by stopping bouts of ~30 s. There were five predetermined walking distances of 25, 50, 75, 100, and 200 m, which were each repeated twice and randomly distributed within the sequence. The sequence was repeated by each participant at a "self-selected", "slow" and then "fast" pace
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(Figure 1). In this second phase, cones were placed every 25 m on the outdoor athletic track or the urban canyon. The actual distances were measured using an odometer. The participants were asked to walk and stop as instructed by the investigator who supervised the PWP. In the urban canyon, when the participants arrived at the cone at either end of the pathway, they were asked to turn around without stopping and continue walking in the opposite direction.

All the PWPs were supervised by an investigator who followed the protocol sequence using a stopwatch and recorded the time elapsed during each bout.

Instrumentation.

A total of 11 research-grade activity monitors were worn simultaneously by each participant during the PWPs, including seven GPS monitors, two accelerometers, and two pedometers. More specifically, one GlobalSat DG100 GPS receiver (GS, GlobalSat Technology Corp., Taiwan) that recorded data for 1-s epochs was worn in a shoulder pack with an external antenna fixed on the top of the shoulder strap at the level of the right scapula (GS 1s, scapula ). Three Qstarz BT-Q1000XT and three Qstarz BT-Q1000eX GPS receivers (QS, Qstarz International Co., Ltd., Taipei, Taiwan) that recorded data for 1-s and 0.1-s (10Hz) epochs, respectively, were worn (over the clothes) at the levels of the hip, wrist, and scapula (QS 1s, hip/wrist/scapula and QS 0.1s, hip/wrist/scapula ). The GPS receivers were initialized before all the experiments to ensure there was good reception of the satellites' signals. Two wGT3X+ accelerometers (AG, ActiGraph TM , LLC, firmware version: 2.2.1-2.4.0, Shalimar, FL, USA) were programmed for recording raw data at a recording rate of 30 Hz (0.033 s) and were worn at the levels of the hip (right or left) and wrist (right or left) (AG 0.033s, hip/wrist ). Finally, two StepWatch3 pedometers (SW, Orthocare Innovations, Washington, D.C.) were worn on each ankle; they recorded data for 3-s and 10-s
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epochs each (SW 3s/10s, ankle ) and were set to the default settings. SW monitors were available only for the experiments performed in the LLO environment. For each category of activity monitors, the wearing location was randomly selected.

Data extraction and preprocessing. After each experiment, the data were downloaded to a personal computer using the appropriate manufacturer's software for each activity monitor. The GS and QS data were downloaded using the Data Logger PC Utility (version 1.1, GlobalSat Technology Corp., Taiwan) and QTravel software (version 1.49, Qstarz International Co., Ltd., Taipei, Taiwan), respectively, and were automatically expressed in speed (km/h). The AG data were extracted using ActiLife 6 software (versions ≥6.5.3, ActiGraph TM , LLC Shalimar, FL, USA) in three forms, namely, the raw acceleration (G-Force) in 0.033 s epochs and the counts and the steps in 1 s epochs. The counts, computed from the raw acceleration, and the steps were obtained using two different methods: the normal filter (NF) and the low frequency extension filter (LFE). The raw acceleration and counts were then used to calculate the corresponding vector magnitude (VM), defined by √ , where , , and represent the raw acceleration or the counts provided from each axis. In this study, we resampled the AG 0.033s, hip/wrist VM raw acceleration and the QS 0.1s, hip/wrist/scapula speed to 1 s to remove unnecessary and noisy information. Herein, for the sake of simplicity, "AG 0.033s,* VM raw data" and "AG 1s,* VM counts" refer to the VM computed from the resampled raw acceleration and the counts/s for a given wearing location (*), respectively. The SW 3s/10s, ankle data were extracted using

StepWatch TM software (version 3. Hence, the first objective was to develop a new algorithm for the detection of walking and stopping bouts offline that can assess each of the following parameters obtained from the corresponding activity monitors: GPS speed (GS 1s, scapula , QS 0.1s, hip/wrist/scapula , and QS 1s, hip/wrist/scapula ), AG 0.033s, hip/wrist VM raw data, AG 1s, hip/wrist VM counts or steps (NF, LFE), SW 3s/10s, ankle steps. To develop and test the algorithm, only the first phase (duration-based phase) of the performed PWPs was considered. From the time series of a given parameter obtained for a given participant, the algorithm determined the best threshold that divided the time series between walking and stopping by constructing a histogram of the considered time series. Then, the threshold was determined as the first local minima of the generated distribution. Any value below this threshold was identified as a stopping event, and all other values were identified as walking events. We then gathered all consecutive events of stopping and walking in bouts of stopping and walking, respectively. Then, for further analysis, bouts were then characterized by their status (walking/stopping), their time of occurrence, and their durations. The proposed method is commonly used in image processing applications and is known as the watershed algorithm [START_REF] Serra | Image analysis and mathematical morphology[END_REF]. Figure 2 illustrates an example of the proposed algorithm applied to GPS speed.
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In the same context, we were also interested in enhancing our previously validated algorithm (14), which was specifically designed for GPS speed only. Hence, we proposed to improve and automate the original algorithm (see document, Supplemental Digital Content 2, which describes the previous algorithm and its optimization, http://links.lww.com/MSS/C239). We also tested the enhanced algorithm on each studied parameter obtained from the activity monitors in addition to the GPS receivers. The algorithms were developed and implemented in MATLAB® 2018b.

The second objective was to develop and test the accuracy of prediction equations in estimating the speeds and distances of each detected walking bout. To address this second objective, only the second phase (distance-based phase) of the PWPs was considered. The walking and stopping bouts were first detected using the developed watershed algorithm. Then, for the GPS receivers, the mean GPS speed and the GPS distance were calculated for each detected walking bout. The GPS distance was computed from the mean GPS speed and the corresponding bout duration. For AG, the mean AG 0.033s, hip/wrist VM raw data and AG 1s, hip/wrist VM counts (NF, LFE) were computed for each detected walking bout. The total VM was also computed from the VM raw data and VM counts (NF, LFE) by summing the VM values for each walking bout. For SW 3s/10s, ankle steps and AG 1s, hip/wrist steps (NF, LFE), the step cadence was computed for each walking bout from the sum of the recorded step counts and the corresponding bout duration and was then expressed in steps/min. The total number of steps was also computed for each walking bout from AG 1s, hip/wrist steps (NF, LFE) and SW 3s/10s, ankle steps. Thereafter, prediction equations were developed using linear mixed models (LMMs) to estimate the actual walking speed and distance from the corresponding parameters measured by each activity monitor for each walking bout: i) GPS mean speed, AG 0.033s, hip/wrist mean VM raw data, AG 1s, hip/wrist mean VM counts and step
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cadence (NF, LFE), and SW 3s/10s, ankle step cadence for speed estimation; ii) GPS distance, AG 0.033s, hip/wrist total VM raw data, AG 1s, hip/wrist total VM counts and total steps (NF, LFE), and SW 3s/10s, ankle total steps for distance estimation. The average actual speed during each walking bout was computed by dividing the actual distance of each bout by the elapsed time, as measured by the investigator using the stopwatch. The equations obtained for speed estimation from a given activity monitor were also used to indirectly estimate walking distance. For the GPSs, the equations were developed for each environment separately, as well as for the combined environments. For the AG, the equations were developed for the combined environments only.

The LMM approach was used to account for the dependence among repeated measurements obtained from the same subject [START_REF] Welk | Principles of Design and Analyses for the Calibration of Accelerometry-Based Activity Monitors[END_REF]. Let ̂ be the speed/distance estimation for the walking bout of subject . This estimation can be modeled from the studied parameter using the LMM as follows:

̂

where and are fixed effects coefficients related to the population's characteristics, and denote the individual subject's random intercept and slope deviation, respectively, and represents the random error. The models were fitted using the restricted maximum likelihood method [START_REF] Pinheiro | Mixed-Effects Models in S and S-PLUS[END_REF]. A leave-one-out cross-validation (LOOCV) approach was used to build and evaluate the LMMs. The modeling was performed using R software 2020 (R Foundation for Statistical Computing, Vienna, Austria, version R.4.0.0).

Statistical analysis.

First, for each monitor, the performance of the algorithms in detecting
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walking and stopping bouts was analyzed at the "bout-level" (14,27) using the detection rate, which was defined by the percentage of correctly detected bouts and was computed as follows:

A bout was considered correctly detected if it corresponded to the actual bout of the PWP and if its duration was within ±20% of the actual bout duration [START_REF] Noury-Desvaux | The accuracy of a simple, low-cost GPS data logger/receiver to study outdoor human walking in view of health and clinical studies[END_REF]. The detection rates were expressed with their 95% confidence intervals (95% CIs).

Furthermore, we used the McNemar or the Cochran Q statistical test to compare the bout detection rates across the various conditions studied, such as the monitor wearing locations, environments, and types of monitors. The McNemar test is a nonparametric statistical test appropriate for nominal dichotomous data and was used to compare the proportions of identified/misidentified bouts between two studied conditions. When more than two studied conditions were compared, the Cochran Q test was used [START_REF] Mccrum-Gardner | Which is the correct statistical test to use?[END_REF], and the Bonferroni correction method for multiple comparisons was used. P values <0.05 were considered statistically significant. Statistical analysis for bout detection was performed in MATLAB® 2018b.

Second, the performance of the LMM-based prediction equations was evaluated using R software 2020 by computing R 2 , the standard error of estimate (SEE), and Akaike information criteria (AIC) value. The AIC value reflects both the goodness of fit and the efficiency of a model for a given number of predictor variables. The lower the AIC value, the better the quality of the model is. For each model, the error in the estimation of speed and distance following the
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leave-one-out procedure was computed from the average root-mean-square error (RMSE).

Study 2: Validation in a clinical population

Participants. Twenty-three participants with PAD with exertional limb symptoms (60 ± 10 years, 78.9 ± 16.3 kg, 169 ± 8 cm, 27.4 ± 5.0 kg/m 2 ) were recruited from the Vascular Medicine Unit (University Hospital, Rennes, France) to participate in the "CLASH" project. All participants were diagnosed with PAD and were limited to walking during treadmill tests. For a detailed description of the inclusion and exclusion criteria of the "CLASH" protocol, please refer to [START_REF] Chaudru | Using wearable monitors to assess daily walking limitations induced by ischemic pain in peripheral artery disease[END_REF].

Experimental procedure. During the "CLASH" protocol, the participants with PAD were asked to perform an outdoor walking session at their self-selected walking pace for 45 -60 min, including bouts of stopping (recovery) due to lower-limb pain. In the "CLASH" protocol, the stopping durations performed by each participant were determined on the basis of a random sequence of the following stop durations, 0.5, 1.5, 2.5, 3.5, 4.5 min, and a self-selected duration determined by each participant (depending on symptom relief). The walking session was performed on the same outdoor athletic track (LLO) as for the healthy participants and supervised by an investigator who recorded the duration of each walking and stopping bout using a stopwatch.

Instrumentation and data extraction. Only a selection of the activity monitors tested in the first study was used in this clinical study. The participants with PAD wore one GS 1s, scapula , one AG 0.033s, hip , and one SW 10s, ankle . The GS and AG were configured as detailed in study 1. For the
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SW, the "walking speed" and "leg motion" settings were set according to the gait characteristics of the participants, as recommended by the manufacturer. For all monitors, the data were downloaded and preprocessed following the same procedure as detailed in study 1.

Data analysis.

The watershed algorithm developed in study 1 was applied to the parameters collected from the participants in study 2 to test the performance of the algorithm in detecting walking and stopping bout in a clinical application. In addition, once the watershed algorithm was applied, we aimed to test the use of additional filters of 2 s, 10 s and 15 s to remove bouts ≤2 s, <10 s, and <15 s. Such filters have been previously used (8,11,14)but never formally tested in participants with PAD. The 2 s-filter was initially proposed as an artifact management tool to remove very short walking and stopping bouts ( 14). The 10 s-and 15 s-filters were selected on the basis of the clinical rationale that walking-induced ischemia is unlikely to elicit maximal claudication pain (during walking) or to disappear (during stopping) for such short periods (11).

It is worth noting that only the 15 s filter was applied on SW data due to its recording epoch.

Thereafter, for each detected walking bout, the walking speed and distance were estimated from the LMM prediction equations developed in study 1.

Statistical analysis.

First, the walking and stopping bout detection performance was computed as previously defined to compare all the detected bouts with the actual walking and recovery (stopping) bouts, (i.e., the detection rate was defined as the percentage of correctly detected walking and stopping bouts). The detection rates when using additional filters of 2 s, 10 s, and 15 s were also computed. Second, to determine the performance of speed and distance estimation over each detected walking bout, the GS 1s, scapula speeds and distances were considered as the
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reference (actual) values. Then, the following error metrics were computed: the bias of estimation, the typical error of estimate (TEE), the coefficient of variation (CV), the mean percent error (MPE), and the mean absolute percent error (MAPE) [START_REF] Hopkins | Spreadsheets for Analysis of Validity and Reliability[END_REF][START_REF] Deshaw | Methods for Activity Monitor Validation Studies: An Example With the Fitbit Charge[END_REF]. TEE and CV are presented with their 95% CI, whereas MPE and MAPE are presented with their standard deviation.

RESULTS

For better readability, only a selection of the most significant findings is presented below (see Worksheets, Supplemental Digital Content 3, which details all the results of the study, http://links.lww.com/MSS/C240).

Study 1: Algorithm and equations development and testing

The participants performed a total of 768 walking and 768 stopping bouts during the first phase of the PWP. QS 1s, hip and AG 0.033s, hip recordings were each missing for one participant in the LLO environment. The mean ± standard deviation (range) of walking speed for GS 1s, scapula was 4.6 ± 0.7 km/h (1.6 -6.34 km/h) for the "self-selected" pace and 3.3 ± 0.7 km/h (1.1 -5.3 km/h) for the "slow" pace. During the second phase of the PWP, the participants performed a total of 600 walking and 600 stopping bouts. Two episodes of GPS signal loss over two different walking bouts, lasting 14 s and 34 s each, were noted for the GS 1s scapula receiver. Hence, these two walking bouts were excluded from the analysis. The mean ± standard deviation (range) of GS 1s, scapula walking speed was 4.9 ± 0.6 km/h (3.4 -6.5 km/h) for the "self-selected" pace, 3.9 ± 0.6 km/h (2.6 -5.5 km/h) for the "slow" pace, and 5.9 ± 0.7 km/h (4.4 -7.6 km/h) for the "fast" pace.
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bouts are presented in Table 1 and Figure 3. Table 1 shows that overall, both algorithms (the watershed and the enhanced algorithms) provided close detection rates across almost all the studied parameters. When considering all the results obtained from the watershed algorithm, regardless of the level of obstruction due to the environment, the highest detection rates for GPS measurements corresponded to GS 1s, scapula and QS obtained from QS 1s, wrist/scapula (P <0.001). Moreover, QS 0.1s, hip/wrist/scapula had the lowest detection rates across wearing locations among the GPS measurements (P <0.05). All AG 0.033s, hip and AG 1s, hip parameters (i.e., VM raw data, VM counts, and steps) had significantly better performance than did the AG 0.033s, wrist and AG 1s, wrist parameters (P <0.05), with a detection rate of 98.3% [97.5 -98.9] for AG 0.033s, hip VM raw data. There was no significant difference between AG 0.033s, hip VM raw data and AG 1s, hip VM counts (NF, LFE). The detection rate of SW 3s, ankle steps was 87.6% [85.1 -89.9], which was significantly higher than that of SW 10s, ankle steps, which was 21.8% [18.9 -24.8]. Although the detection rates obtained from SW 3s/10s, ankle steps were lower, the error in detecting the total actual duration of activity (141 min) and inactivity (141 min) was considerably lower when the watershed algorithm rather than the SW software was used (RMSE of activity/inactivity duration estimation: 0.98 min vs. 13.6 min for SW 3s, ankle steps, and 3.5 min vs. 12.4 min for SW 10s, ankle steps).

For inter-monitors comparisons, the detection rate was slightly but significantly higher for AG 0.033s, hip VM raw data and AG 1s, hip VM counts (NF) than for GS 1s, scapula speed and QS 1s,
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wrist/scapula speed (P <0.05). Furthermore, SW 3s/10s, ankle steps resulted in a significantly lower detection rate than did the GPS speeds (GS 1s, scapula and QS 0.1s/1s, hip/wrist/scapula ), AG 0.033s, hip/wrist VM raw data and AG 1s, hip/wrist VM counts (P <0.05).

Figure 3 shows the effects of both the duration of the bouts and the level of obstruction on the bout detection rate for a selection of monitors, wearing locations, and recording epochs.

Regardless of the monitor, wearing location, and recording epoch, the detection rate was the lowest for short bouts and then increased for longer bouts (Figure 3 of AG 0.033s, hip VM raw data (Figure 3).

Estimation of speed and distance. Table 2 presents a selection of the results for all monitors from LMM-based speed prediction equations and the LOOCV procedure. Estimation models with a higher R 2 and lower RMSE were obtained from GPS speeds in the LLO environment (see Worksheet Study1_LMMEquations, Supplemental Digital Content 3, which details all the results of the study. http://links.lww.com/MSS/C240). When the results obtained from both environments were considered, the model using AG 0.033s, hip VM raw data yielded a similar RMSE as those obtained from the GPS speeds. For the estimation of walking distance, the models using GPS distance demonstrated better prediction performance than did the models
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developed using AG 0.033s, hip/wrist VM raw data, AG 1s, hip/wrist VM counts, steps, and SW 3s/10s, ankle steps, as shown by the lower SEE and RMSE values, higher R 2 coefficients and better AIC.

Study 2: Validation in a clinical population

A total of 149 walking and 127 stopping bouts were performed by the PAD participants during the outdoor walking sessions. No data loss was noted. The mean ± SD (range) of GS 1s, scapula walking speed was 4.2 ± 0.5 km/h (3.3 -5.5 km/h). Table 3 presents the bout detection rate as well as the accuracy of speed and distance estimations when the 15 s filter was applied.

Bout detection. Walking and stopping bouts were detected with a detection rate of 100% when the 15 s filter was applied for GS 1s, scapula speed, AG 0.033s, hip VM raw data, and AG 1s, hip VM counts (NF, LFE). Lower detection rates were obtained from AG 1s, hip steps (NF) and SW 10s, ankle steps. When only the 2 s filter was applied (see Worksheets Study2_Boutdetection and Study2_Estimations, Supplemental Digital Content 3, which details all the results of the study, http://links.lww.com/MSS/C240), the detection rates of AG 1s, hip VM counts and steps (NF, LFE) decreased, while the detection rates for GS 1s, scapula speed and AG 0.033s, hip VM raw data remained high at 98.6% [96 -99] and 99.6% [98 -100], respectively. Additionally, the error in detecting the total actual duration of activity (605 min) and inactivity (309 min) was lower when the watershed algorithm rather than the SW software was used (RMSE of activity/inactivity duration estimation: 0.81 min vs 10.1 min).

Estimation of speed and distance. The MAPE obtained from the speed and distance estimations in the PAD participants are presented in Table 3 (see also Worksheet Study2_Estimations,
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Supplemental Digital Content 3, which details all the results of the study, http://links.lww.com/MSS/C240). The AG 0.033s, hip VM raw data presented the lowest MAPE in estimating the walking speed using the developed LMM equations. Consequently, it showed the best estimation of distance when both the LMM equations and the estimated speed were used.

DISCUSSION

The main findings of the present study can be summarized as follows:

a) Both of the algorithms tested were comparably accurate in intermittent walking bout detection.

b) High and comparable detection rates of outdoor walking and stopping bouts in the environment with LLO were obtained from the GPS speeds (GS 1s, scapula and QS 0.1s/1s, hip/wrist/scapula ) and accelerometer parameters AG 0.033s, hip VM raw data and AG 1s, hip VM counts; however, the detection rate decreased in the HLO environment for GPS speeds and became significantly lower than those obtained from AG 0.033s, hip VM raw data and AG 1s, hip VM counts.

c) In the LLO environment, the GPS speeds (GS 1s, scapula and QS 0.1s/1s, hip/wrist/scapula ) yielded better estimations of walking speed, whereas when both environments were considered, AG 0.033s, hip VM raw data was more accurate and robust.

d) The wearing location had a large and significant effect on monitor performance in bout detection and in the estimation of speed and distance; the GPS had the best performance at the wrist and scapula levels, and the AG device had the best performance at the hip level.
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e) The SW 3s/10s, ankle step parameter was less accurate in identifying walking bouts than were the GPS and AG monitors, although its accuracy was improved when the new proposed algorithm rather than the default SW software was used.

f) For the clinical application, the GPS and AG monitors provided the highest accuracy in assessing the intermittent walking activity of patients with functional limitations.

Subject-based, automated algorithm for the detection of walking and stopping bouts.

In contrast to all existing studies that focused on detecting longer walking sessions by applying standard thresholds for speed and/or accelerometer data, the new algorithm proposed in the present study is subject-based and is not affected by the type of monitor (parameter), wearing location, or recording epoch used. In previous studies, walking trips were defined as 3 -5 consecutive min of walking at speeds between 2 and 6-8 km/h over distances >30 m or accelerometer counts >500 counts/epoch (15,[START_REF] Hwang | Cross sectional association between spatially measured walking bouts and neighborhood walkability[END_REF][START_REF] Kang | Walking objectively measured: Classifying accelerometer data with GPS and travel diaries[END_REF]. These walking bouts were interspersed with stopping bouts of durations >3 min. However, these studies did not consider the fragmented nature of day-to-day walking behavior [START_REF] Orendurff | How humans walk: Bout duration, steps per bout, and rest duration[END_REF], which precludes the use of such methods for the precise assessment of intermittent outdoor walking, both in healthy and clinical populations. In this present study, our previous algorithm for bout detection was also improved and became fully automated (14). The watershed algorithm had generally comparable detection rates to those of the enhanced version of our previous algorithm, and it had lower computational complexity because it consisted of a one-step algorithm and did not require a learning phase or the optimization of parameters. Although the enhanced version of our previous algorithm presented
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high and promising detection rates, it was developed and tested on a limited dataset of healthy participants. A higher number of participants is required to carry out the learning procedure on different walking profiles and then to generalize the algorithm to the whole population. For the clinical application (study 2), 2 s, 10 s or 15 s filters were applied according to previous studies [START_REF] Faucheur | Measurement of walking distance and speed in patients with peripheral arterial disease: A novel method using a global positioning system[END_REF]11,14) to remove short walking displacement data that reflected patients recovering from the pain symptoms induced by ischemia during the previous walking bout. These short walking displacements were real (and detected) but had no clinical significance in the present context.

However, in another context, if one aims to estimate total ambulatory (outdoor) activity throughout one day, short bouts lasting <10 s or 15 s may be of interest when for instance, one is investigating activities around the house such as gardening or other chores. Thus, the 10 s or 15 s filter should not be applied in these contexts. According to the context, the processing methodology needs to be adjusted when data from activity monitors are analyzed. Furthermore, despite the high detection rates of the GPS and accelerometer monitors, the watershed algorithm had a lower detection rate when the SW 10s, ankle was used due to the shorter recording epoch. The criterion we used to determine whether a bout was correctly detected (±20% of actual duration) may also affect the bout detection rate. For instance, for the SW 10s, ankle , when criterion values of 10%, 20%, and 30% were tested, the bout detection rate varied accordingly to 90%, 95%, and 97%, respectively.

Accuracy of GPS speed in assessing intermittent outdoor walking.

GPS receivers have been primarily used to determine how the physical environment is associated with the PA behaviors of individuals [START_REF] Hwang | Cross sectional association between spatially measured walking bouts and neighborhood walkability[END_REF][START_REF] Troped | Prediction of activity mode with global positioning system and accelerometer data[END_REF]. The present study extends previous works that have used GPSs to assess outdoor walking activity bouts ≥1 min (15, [START_REF] Hwang | Cross sectional association between spatially measured walking bouts and neighborhood walkability[END_REF][START_REF] Kang | Walking objectively measured: Classifying accelerometer data with GPS and travel diaries[END_REF][START_REF] Brondeel | Using GPS, GIS, and Accelerometer Data to Predict Transportation Modes[END_REF]. Our results also
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extend previous studies (14,27) that addressed the validity of GPS receivers in assessing intermittent outdoor walking and show how performance is affected by the environment's obstruction level, the device wearing location, and recording epoch. The QS GPS monitor is a good alternative to the GS, which is considered accurate but no more marketed. QS is among the most commonly used GPS monitors by PA researchers for long-term real-life measurements [START_REF] Hwang | Cross sectional association between spatially measured walking bouts and neighborhood walkability[END_REF][START_REF] Brondeel | Using GPS, GIS, and Accelerometer Data to Predict Transportation Modes[END_REF] and is generally placed at the hip level along with an accelerometer. According to our results, the QS monitor provides a lower bout detection rate (~91%) at the hip level than at the wrist and scapula levels, which are uncommon locations for long-term QS measurements. This finding should be considered by users in future studies. Furthermore, although it has been shown

-mainly in sports studies -that high-frequency GPS monitors can enhance the accuracy of distance and speed estimation compared with low-frequency GPS monitors [START_REF] Hoppe | Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports[END_REF], our results

showed that they are less accurate in identifying walking bouts since the signals have high variability and need additional processing steps for undersampling. They also cannot be used in real-life scenarios in which data needs to be recorded for several days. The error of the speed and distance estimations obtained in our study were consistent with those reported in previous studies [START_REF] Noury-Desvaux | The accuracy of a simple, low-cost GPS data logger/receiver to study outdoor human walking in view of health and clinical studies[END_REF][START_REF] Schutz | Assessment of speed of human locomotion using a differential satellite global positioning system[END_REF] for LLO conditions. However, we provided the first data regarding the effects of the level of obstruction and wearing location on the accuracy of estimating walking speed and distance.

GPS monitors have been previously used in clinical populations, including participants with PAD, to assess outdoor walking capacity [START_REF] Faucheur | Measurement of walking distance and speed in patients with peripheral arterial disease: A novel method using a global positioning system[END_REF]11). The present study formally validated the algorithm for bout detection (8) during outdoor walking sessions, with a 100% detection rate.
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Accuracy of AG VM raw data and counts for assessing intermittent outdoor walking.

The AG is the most commonly used accelerometer in PA research and has been extensively studied [START_REF] Matthews | Influence of accelerometer calibration approach on MVPA estimates for adults[END_REF][START_REF] Barnett | Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer[END_REF][START_REF] Crouter | Estimating energy expenditure using accelerometers[END_REF]. However, the literature lacks validation studies for AG in the assessment of short intermittent walking, as proposed in the present study. The existing studies on walking assessment using AG have focused on the identification of walking bouts or the estimation of walking speed during long-duration walking periods (16,40,42), step count identification in intermittent walking [START_REF] Toth | Effects of Brief Intermittent Walking Bouts on Step Count Accuracy of Wearable Devices[END_REF], or the estimation of MET and energy expenditure at the minute level [START_REF] Matthews | Influence of accelerometer calibration approach on MVPA estimates for adults[END_REF][START_REF] Crouter | Estimating energy expenditure using accelerometers[END_REF]. Our study enables researchers to accurately assess intermittent walking using AG. We found a high bout detection rate and an acceptable accuracy for the estimation of walking speed, specifically when using AG 0.033s, hip VM raw data. This finding is consistent with those in previous studies that showed the highest step count accuracy of hip-located over wrist-located AG [START_REF] Toth | Effects of Brief Intermittent Walking Bouts on Step Count Accuracy of Wearable Devices[END_REF].

Furthermore, with AG 0.033s, hip VM raw data, the LMM outperformed the models included in previous studies in estimating walking speed (16,[START_REF] Nichols | Assessment of Physical Activity with the Computer Science and Applications, Inc., Accelerometer: Laboratory Versus A C C E P T E D Field Validation[END_REF]. Our results show an RMSE of approximately 0.4 km/h in the healthy population, a TEE of 0.3 [0.27 -0.34] and a MAPE of 9 ± 6.6% in the clinical population. Barnett et al. reported that the SEE for walking speed varies between 0.3 and 0.9 km/h in free-living 1 km walking trials assessed using uniaxial AG counts (16).

The present study shows that the AG provides accurate estimations of intermittent outdoor walking parameters in participants with PAD, including the accurate detection of walking and stopping bouts, and an acceptable error in estimating walking speed and distance (<10%). The
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results from this study show that AG 0.033s, hip VM raw data yields higher accuracy than does AG 1s, hip VM counts (NF, LFE).

Accuracy of steps for assessing intermittent outdoor walking.

The SW is considered the most accurate pedometer in estimating steps and has been validated in several contexts, both in healthy and clinical populations [START_REF] Toth | Effects of Brief Intermittent Walking Bouts on Step Count Accuracy of Wearable Devices[END_REF][START_REF] Fulk | Accuracy of 2 Activity Monitors in Detecting Steps in People With Stroke and Traumatic Brain Injury[END_REF]. In addition to the use of steps as a proxy of the walking volume (steps/day), the estimation of speed of ambulation is of interest for a more detailed assessment of walking pattern [START_REF] Aguiar | Cadence-based Classification of Minimally Moderate Intensity during Overground Walking in 21-To 40-Year-Old Adults[END_REF]. The speed of ambulation is determined by the combination of cadence (steps/min) and stride length. The use of a pedometer to estimate cadence is possible only with modern, advanced time-stamped pedometers that include a memory function. Furthermore, the way step accumulation is processed by the software according to the sampling epoch has a major impact on which parameter is truly being measured: step accumulation vs. step cadence [START_REF] Dall | Step accumulation per minute epoch is not the same as cadence for free-living adults[END_REF].

There are numerous studies on the step count accuracy of pedometers [START_REF] Bassett | Step Counting: A Review of Measurement Considerations and Health-Related Applications[END_REF][START_REF] Grant | Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults[END_REF][START_REF] Toth | Video-Recorded Validation of Wearable Step Counters under Free-living Conditions[END_REF][START_REF] Toth | Effects of Brief Intermittent Walking Bouts on Step Count Accuracy of Wearable Devices[END_REF], but there are very few studies that addressed their accuracy in the estimation of walking (activity)/stopping duration [START_REF] Knarr | Sampling frequency impacts measurement of walking activity after stroke[END_REF] and cadence [START_REF] Grant | Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults[END_REF][START_REF] Blamey | Changing the individual to promote health-enhancing physical activity: The difficulties of producing evidence and translating it into practice[END_REF], and to our knowledge, their accuracy in estimating walking speed from cadence is unknown. Our results show that the SW estimations of activity (walking)

and inactivity (stopping) durations using proprietary software are largely inaccurate during intermittent walking bouts. This is because the SW software analyzes the data on a minute basis;

an active minute is identified if at least one step occurs over the minute considered, and the intensity of ambulation is classified according to the total step count over the same epoch (i.e., one min). In this way, all inactivity durations less than 1 min are neglected by the software, and
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the activity duration is overestimated. Since the total step count (and not cadence) is computed on a minute basis, walking intensity can be inaccurately estimated.

The use of the watershed algorithm significantly improved bout detection with the SW steps, particularly for SW 3s, ankle steps, which has the best recording epoch that can be used but allows only 2.5 days of continuous recording. Considering that a recording epoch of 10 s is the shortest epoch that can be configured for a long recording duration spanning 8 days with this model of SW, our study clearly showed that SW 10s, ankle steps had a low accuracy for the identification of intermittent outdoor walking bouts and generally overestimated the walking durations by 27%.

The SW steps can better detect walking and stopping bouts of only durations >2 x the recording epoch, i.e., 6 s for SW 3s, ankle and 20 s for SW 10s, ankle (data not shown). AG 1s, hip steps (but not AG 1s, wrist steps) clearly outperformed SW 3s/10s, ankle steps since the steps count was processed over 1 s epoch. However, the detection rate remained lower than the highest performance obtained using GPS speed, AG 0.033s, hip VM raw data and AG 1s, hip VM counts. Since the AG has been shown to be consistently less accurate than the SW in counting steps [START_REF] Toth | Video-Recorded Validation of Wearable Step Counters under Free-living Conditions[END_REF][START_REF] Toth | Effects of Brief Intermittent Walking Bouts on Step Count Accuracy of Wearable Devices[END_REF], by capturing either fewer (NF) or more (LFE) steps than the SW, it can be argued that AG 1s, hip performs better than SW 3s/10s, ankle because it does not capture the same (and correct) number of steps. We advocate that this was not the main issue here. Indeed, AG 1s, hip steps (NF, LFE) outperformed SW 3s/10s, ankle steps in bout detection. Furthermore, when the number of steps captured was compared between AG 1s, hip (NF, LFE) and SW 3s, ankle during each walking bout performed in study 1, the difference was actually small in the steps count with an MPE and MAPE ≤5% for bout durations 
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http://links.lww.com/MSS/C241). Thus, AG performed better than SW in bout detection mainly due to the shorter recording epoch of the SW, which was particularly true for SW 10s, ankle .

Nevertheless, the RMSE of the estimation of walking speed was very similar between SW 3s, ankle steps and AG 1s, hip steps (NF, LFE), whereas it was higher for SW 10s, ankle (Table 2).

In the clinical population of PAD participants, all the walking and stopping bouts were ≥30 s, and the mean accuracy in bout detection reached 95% with SW 10s, ankle steps, with a low and acceptable mean overestimation of the walking duration at the session level by 3%. Conversely, we obtained a higher error (overestimation) in estimating walking speed, with a MAPE of 29%.

Again, AG 1s, hip steps showed higher accuracy in bout detection and lower errors (MAPE) in speed estimation, while the MAPE in the LMM distance estimations were similar between SW 10s, ankle steps and AG 1s, hip steps. Given the limitations of the SW software in processing the actual activity (walking) duration, the available studies that have proposed a characterization of daily walking pattern in PAD participants from a 7-day period using the SW 10s, ankle should be reinterpreted accordingly [START_REF] Gardner | Patterns of ambulatory activity in subjects with and without intermittent claudication[END_REF][START_REF] Stansfield | True cadence and step accumulation are not equivalent: The effect of intermittent claudication on free-living cadence[END_REF]. Furthermore, during home-based programs in PAD participants, Gardner et al. (7) used the SW "cadence" (which is in fact step accumulation) to estimate MET values over each walking session from a previously determined but unknown individual cadence-speed relationship. Therefore, if the SW software estimates of minute-level activity were used, it cannot be ruled out that the estimation of walking intensity was flawed.

What about the combinations?

Based on our results, the best combination for assessing intermittent outdoor walking would be QS 1s, hip speed and AG 0.033s, hip VM raw data, as used in PA studies for other purposes [START_REF] Hwang | Cross sectional association between spatially measured walking bouts and neighborhood walkability[END_REF][START_REF] Brondeel | Using GPS, GIS, and Accelerometer Data to Predict Transportation Modes[END_REF].
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QS 1s, hip speed provides a better estimation of speed than does AG 0.033s, hip VM raw data in environments with LLO. In environments with HLO, the AG 0.033s, hip VM raw data is preferred for both walking bout detection and speed estimation. Unless the location of the outdoor walking session is determined in advance and does not change, the use of a GPS is required to have contextual information and determine the level of obstruction of the environment. The environments where the outdoor walking sessions take place can also include a mixture of different levels of obstruction. As we previously observed during outdoor walking sessions of limited duration [START_REF] Faucheur | Measurement of walking distance and speed in patients with peripheral arterial disease: A novel method using a global positioning system[END_REF]11,14,[START_REF] Noury-Desvaux | The accuracy of a simple, low-cost GPS data logger/receiver to study outdoor human walking in view of health and clinical studies[END_REF][START_REF] Chaudru | Using wearable monitors to assess daily walking limitations induced by ischemic pain in peripheral artery disease[END_REF], GPS signal dropouts were also a rarity in the present study.

However, GPS signal dropouts cannot be totally ruled out, which could preclude the analysis of isolated bouts. The AG can complement or substitute GPS data in such situations. Finally, although energy expenditure was not addressed here, GPS monitors provide higher accuracy in estimating energy expenditure during walking with slopes than do accelerometers [START_REF] De Müllenheim | Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure[END_REF].

Unless the step count is the expected outcome measure, SW3 should be used with caution when assessing intermittent outdoor walking, specifically if clinical inference is intended (e.g., outdoor walking capacity estimation). SW3 is being replaced by its newest version (SW4), which gives access to the recording of step counting on a second basis and thus can more accurately assess intermittent outdoor walking. This new version is under study. Furthermore, activPAL™ was not used in the present study but may be an accurate monitor for the assessment of short intermittent outdoor walking in healthy and clinical populations (13,[START_REF] Grant | Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults[END_REF].

Limitations

This study has the following main limitations. First, the processing methodology was developed
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and tested for outdoor walking sessions. It cannot be directly applied to detect walking in actual real-world contexts that might include other physical activities. To assess walking activity among other physical activities, additional effort is required to generalize the algorithms to realworld contexts. Second, as previously explained, this study considered outdoor walking only, and our results cannot be extended to indoor contexts. However, the interest in studying indoor walking depends on the final application. For instance, in PAD participants, we previously reported that walking limitations induced by ischemic pain were more likely to occur outdoors [START_REF] Chaudru | Using wearable monitors to assess daily walking limitations induced by ischemic pain in peripheral artery disease[END_REF].

CONCLUSION

This paper proposed a new method to identify walking and stopping bouts and tested the efficiency of different activity monitors in detecting and estimating intermittent outdoor walking.

The results show that QS GPS speed and AG VM raw data can accurately detect walking and stopping bouts as well as estimate walking speed and distance during outdoor walking sessions. 
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As mentioned in the manuscript, we were interested to enhance our previous method (1,2) by optimizing the detection algorithm and testing it on the different studied parameters from the monitors that were employed in the experiments. The original detection algorithm of this method was the following:

1. The mean of the individual walking speed (IWS) and its standard deviation (SD) were computed from the first walking bout.

2. A low pass filter was applied to remove artifact having values >2*IWS.

3. A high pass filter was performed to replace all values < IWS -K*SD by 0. K being determined from the coefficient of variation of the IWS (𝐶𝑉 ) as follows

𝐾 = 5, 𝑖𝑓 𝐶𝑉 < 15% 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, with 𝐶𝑉 = × 100.

4. An artifact management was handled to remove short walking and stopping bouts that have duration < 2 * recording epoch (<4s for a recording frequency of 0.5 Hz).

This method was validated on GPS data in healthy participants (1,2) and then applied for the identification of walking and stopping bouts in participants with PAD during outdoor walking (3,4).

Nevertheless, it highly depends on the IWS and SD computed from the first walking bout, which might create inaccurate identification in case of high variability of walking speed. It also has fixed values of K, which were tested and validated previously for GPS data. Therefore, we proposed to enhance this method to test it on the parameters obtained from all the monitors, as b. The IWS was replaced by the mean of the outputs of the different monitors tested (GS 1s, scapula speed, QS 0.1s, hip/wrist/scapula speed, QS 1s, hip/wrist/scapula speed, AG 0.033s, hip/wrist VM raw data, AG 1s, hip/wrist VM counts and steps, and SW 3s/10s, ankle steps), and was computed along with its SD from all the identified walking bouts for a given subject to take into consideration all the paces performed over a given walking session and thus the measure variability.

2. The low pass filter was applied as in the initial algorithm. 
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The following table explains the content of each sheet in this Supplemental Digital Content

Sheet Name Content Study1_BoutsDetection

This sheet presents the bout detection rates (95% CI) of both algorithms, Taoum et al. watershed algorithm and Le Faucheur et al. enhanced algorithm, using all the tested monitors over each duration of walking and stopping events performed in spontaneous or/and slow paces in environment with LLO or/and HLO. Thresholds for walking events are also presented as mean (SD) [min -max] for each monitor using both processing methods. The CV med (%) and {k 1 , k 2 } values obtained in Le Faucheur et al. Enhanced algorithm for each studied parameter are also presented

Study1_GPSErrors

This sheet presents the error metrics of measuring walking speed of the GPS receivers over each distance of walking events performed in spontaneous, slow, and fast paces in environments with LLO or/and HLO. The error metrics are the root mean square error (RMSE), the mean percent error (MPE), the mean absolute percent error (MAPE), the typical error of estimate (TEE), and the coefficient of variation (CV). MPE and MAPE are represented with their standard deviation, whereas TEE and CV are represented with 95% CI.

Study1_LMMEquationss

This sheet presents the LMM predictive equations for speeds and distances for GPS receivers in environments with LLO or/and HLO, wGT3x accelerometer data in the combined environments, and SW pedometer data in LLO environment.

Study2_BoutsDetection

This sheet presents the detection rates (95% CI) of bout identification in the clinical population of PAD participants for all the monitors, when applying the filters of 2, 10, and 15 s.

Study2_Estimations

This sheet presents the accuracy of speed and distance estimation from the LMM predictive equations as well as the estimation of the distance from the estimated speed (distance = estimated speed * duration), when applying the filters of 2, 10, and 15 s. steps when the LFE is disabled. However, this difference is relatively low with MPE and MAPE ≤5% for bout durations >15 s.

Abbrevations
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Figure 1 .

 1 FIGURE CAPTIONS

Figure 2 .

 2 Figure 2. Example of the watershed algorithm applied for GPS speed (GS 1s, scapula )*. The left panel shows GS 1s, scapula speed data for the duration-based phase of the prescribed walking

Figure 3 . 1 .

 31 Figure 3. The detection rate versus bout durations for QS 1s, wrist speed, AG 0.033s, hip VM raw data, and SW 3s, ankle steps*. The left and right graphs correspond to the environments with low and

following 1 .

 1 Computing the mean and SD of parameters for walking bouts: watershed algorithm was first applied to preliminary discriminate walking and stopping bouts.

3 .𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 4 .

 34 The high pass filter was optimized. Instead of having fixed values of K, we have proposed to optimize these values (k1, k2) for each studied parameter using a leave one out cross validation (LOOCV) as follows: a. From the training set, the CV were computed over the walking bouts of each subject. Then, the 𝐶𝑉 was computed.b. The optimization of (k1, k2) was performed by minimizing the error rate of the algorithm on the training set using a grid search on k1, k2 = {1, 1.5, …, 7}.c. For a test subject, the 𝐶𝑉 was computed from the walking data of the subject.d. The high pass filter was then applied to replace all values < IWS -K*SD by 0, with 𝐾 = 𝑘 , 𝑖𝑓 𝐶𝑉 < 𝐶𝑉 𝑘 , The step of artifact management was omitted from this part of analysis due to the presence of very short duration events in the PWPs. assess daily walking limitations induced by ischemic pain in peripheral artery disease. Scand J Med Sci Sport. 2019;29(11):1813-26.

Figure S 1 .

 1 Abbrevations: LLO Low level of obstruction HLO High level of obstruction NF Normal filter for wGT3x+ accelerometer LFE Low filter extension for wGT3x+ accelerometer A C C E P T E D

  

  

  

  and see Worksheet Study1_Boutdetection, Supplemental Digital Content 3, which details all the results of the study,

http://links.lww.com/MSS/C240). QS 1s, wrist speed and AG 0.033s, hip VM raw data had similar detection rates (98% [96 -99] vs. 98% [97 -99], P >0.05) in LLO environment. The detection rate of QS 1s, wrist speed decreased in HLO environment compared with LLO (96% [94 -97] vs 98% [96 -99], P <0.05) and became lower (96% [94 -97] vs. 98% [97 -99], P <0.05) than that

Table 1 -

 1 Detection rates obtained with both developed algorithms for walking and stopping bouts according to the different activity monitors and when considering the combination of bothenvironments with low and high levels of obstruction.

				Bout detection rate % [95% CI]	
	Monitor Parameter a Wearing position GS Speed (1 s) Scapula 1536 Total bouts QS Speed (1 s) Hip 1460 Wrist 1536 Scapula 1536 Speed (0.1 s) Hip 1536 Wrist 1536 Scapula 1536 AG Raw data (0.033 s) Hip 1456 Wrist 1536 Count NF (1 s) Hip 1456 Wrist 1536 Steps NF (1 s) Hip 1456 Wrist 1536 Count LFE (1 Hip 1456 A C C E P T E D P values b Taoum et al. Watershed algorithm Le Faucheur et al. Enhanced algorithm 96.6 [95.5 -97.4] 97.6 [96.7 -98.3] 0.0025 91.3 [89.7 -92.7] 91.9 [90.3 -93.2] 0.352 96.7 [95.7 -97.5] 96.8 [95.7 -97.6] 0.808 96.4 [95.4 -97.3] 96.5 [95.4 -97.4] 0.842 90.2 [88.6 -91.7] 88.7 [87.1 -90.3] 0.018 93.4 [92.1 -94.6] 91.1 [89.5 -92.5] <0.001 93.9 [92.6 -95.1] 95.4 [94.3 -96.4] 0.005 98.3 [97.5 -98.9] 98.7 [98.0 -99.2] 0.201 95.4 [94.2 -96.4] 91.9 [90.5 -93.2] <0.001 98.2 [97.3 -98.8] 98.3 [97.5 -98.9] 91.8 [90.3 -93.1] 91.2 [89.7 -92.6] 0.216 94.6 [93.3 -95.7] 94.6 [93.3 -95.7] 88.3 [86.6 -89.9] 84.4 [82.5 -86.2] <0.001 98.4] 99.0 [98.4 -99.5] <0.001 97.7 [96.8 -1 0.655
	s)	Wrist	1536	92.6 [91.2 -93.9]	92.2 [90.7 -93.5]	0.307
	Steps LFE (1 s)	Hip Wrist	1456 1536	92.9 [91.4 -94.1] 78.8 [76.7 -	92.9 [91.4 -94.1] 78.8 [76.7 -80.9]	1 1

Table 2 -

 2 Speed prediction equations developed using Linear Mixed Models along with statistical parameters.

	Model a	Environment	Equation	R 2	AIC	SEE	RMSE	P values
	GS 1s, scapula speed	Combined	̂	0.86	158.61	0.4	0.4	<0.001
		LLO	̂	0.98	-274.08	0.2	0.2	<0.001
		HLO	̂	0.82	200.96	0.3	0.4	<0.001
	QS 1s, hip speed	Combined	̂	0.79	540.33	0.5	0.5	<0.001
		LLO	̂	0.97	-175.92	0.2	0.2	<0.001
		HLO	̂	0.59	388.96	0.5	0.6	<0.001
	QS 1s, wrist speed	Combined	̂	0.86	451.86	0.4	0.4	<0.001
		LLO	̂	0.98	-291.73	0.2	0.2	<0.001
		HLO	̂	0.63	377.30	0.5	0.5	<0.001
	QS 1s,scapula speed	Combined	̂	0.84	334.65	0.4	0.4	<0.001
		LLO	̂	0.99	-398.01	0.1	0.1	<0.001
		HLO	̂	0.65	340.56	0.5	0.5	<0.001
	AG 0.033s, hip VM raw data	Combined	̂	0.89	-139.99	0.3	0.4	<0.001
	AG 0.033s, wrist VM raw data	Combined	̂	0.72	629.13	0.6	0.6	<0.001
	AG 1s, hip VM counts (NF)	Combined	̂	0.79	293.30	0.5	0.6	<0.001
	AG 1s, wrist VM counts (NF)	Combined	̂	0.68	667.71	0.7	0.7	<0.001
	AG 1s, hip VM counts (LFE)	Combined	̂	0.79	294.23	0.5	0.6	<0.001
	AG							

1s, wrist VM counts (LFE)

  

	Combined	̂	0.68	660.07	0.7	0.7	<0.001
	AG						

1s, hip steps (NF)

  

	Combined	̂	0.70	605.28	0.6	0.6	<0.001
	AG						

1s, wrist steps (NF)

  The models are presented as the monitors type with the recording epoch and the wearing location as exponents, and the studied parameter.To form the prescribed walking protocols (PWPs), a random sequence alternating between walking and stopping bouts was generated from fixed bout durations of {3, 6, 12, 15, 20, 30, 40, 50} s, with each duration represented 24 times for each class of events (i.e., walk/stop). This resulted into a sequence of 384 (8 bouts durations x 24 x 2) walking and stopping bouts that was divided into 10 PWPs lasting each between 10 to 15 min.

	Supplemental Digital Content 1
	Combined Combined Combined Combined Combined steps). GS, GlobalSat DG100 GPS receiver; QS, Qstarz BT-Q1000XT GPS receiver; AG, ActiGraph wGT3X+ accelerometer; NF, normal filter; LFE, low frequency ̂ 0.01 1594.4 1.0 1.03 0.012 AG 1s, hip steps (LFE) ̂ 0.69 531.79 0.6 0.6 <0.001 AG 1s, wrist steps (LFE) ̂ 0.05 1548.27 1.0 1.0 SW 3s, ankle steps ̂ 0.68 348.97 0.6 0.7 <0.001 SW 10s, ankle steps ̂ 0.48 486.86 0.8 0.9 <0.001 In equations, ̂, extension filter; SW, StepWatch3 pedometer; LLO, low level of obstruction; HLO, high level of obstruction; Combined, low and high level of obstruction environments. A A represent the estimated speed and the studied parameter (GPS speed, AG 0.033s VM raw data, AG 1s VM counts, and cadence computed from C C <0.001 C E P T E D Parameters Detection rate [95% CI] MAPE (SD) Speed estimation from LMM MAPE (SD) Distance estimation from LMM MAPE (SD) Distance = Estimated speed * time GS 1s, scapula speed 100 [99 -100] Reference measure Reference measure Reference measure AG 1s, hip VM counts (NF) 100 [99 -100] 9.8 (7.3) 12.5 (8.5) 10 (7.4) AG 1s, hip VM counts (LFE) 100 [99 -100] 10.7 (8.1) 11.9 (7.4) 10.6 (8.2) AG 0.033s, hip VM raw data 100 [99 -100] 9 (6.6) 12.5 (7.9) 8.4 (6.3) AG 1s, hip steps (NF) 97.8 [95 -99] 19.7 (10.6) 17.4 (9.7) 18.3 (10.7) AG 1s, hip steps (LFE) 99.6 [98 -100] 18.3 (11.1) 18.8 (10.3) 18.3 (11.3) SW 10s, ankle steps 94.9 [92 -97] 28.8 (11.8) 16.7 (10.7) 31.7 (11.2) GS, GlobalSat DG100 GPS receiver; AG, ActiGraph wGT3X+ accelerometer; NF, normal filter; LFE, low frequency extension filter; SW, StepWatch3 pedometer. C E P T E D

a n, number of bouts; W, walking event; S, Stopping event; P, Protocol.
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