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Abstract: Shallow coral reefs ensure a wide portfolio of ecosystem services, from fish provisioning 

to tourism, that support more than 500 million people worldwide. The protection and sustainable 

management of these pivotal ecosystems require fine-scale but large-extent mapping of their 3D 

composition. The sub-metre spaceborne imagery can neatly produce such an expected product us-

ing multispectral stereo-imagery. We built the first 3D land-sea coral reefscape mapping using the 

0.3 m superspectral WorldView-3 stereo-imagery. An array of 13 land use/land cover and sea 

use/sea cover habitats were classified using sea-, ground- and air-truth data. The satellite-derived 

topography and bathymetry reached vertical accuracies of 1.11 and 0.89 m, respectively. The value 

added of the eight mid-infrared (MIR) channels specific to the WorldView-3 was quantified using 

the classification overall accuracy (OA). With no topobathymetry, the best combination included 

the eight-band optical (visible + near-infrared) and the MIR8, which boosted the basic blue-green-

red OA by 9.58%. The classes that most benefited from this MIR information were the land use 

“roof” and land cover “soil” classes. The addition of the satellite-derived topobathymetry to the 

optical+MIR1 produced the best full combination, increasing the basic OA by 9.73%, and reinforcing 

the “roof” and “soil” distinction.  
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1. Introduction 

Tropical shallow hard coral reef ecosystems provide numerous and valuable services 

to local socio-economies, such as fish and seafood provisioning, coastal protection, or 

wealthy recreational activities [1]. These services have been estimated to support more 

than 500 million people worldwide [2]. Even though coral reefs cover only 0.1% of the 

oceans, they host 25% of all marine identified species [3]. However, anthropocenic 

changes, embodied by both sea level, sea temperature and sea acidification rises and also 

sedimentation related to watershed deforestation and land claiming, are strongly threat-

ening these pivotal ecosystems [4]. 

The protection and sustainable management of these ecosystems requires us to adopt 

an integrated view of the seamless land- and seascape at a high spatial resolution, ade-

quate to meet local stakeholders’ expectations [5]. Even if the global, thus coarse (>1 m 

pixel size), products are insightful for assessing coral reef trends, the very high spatial 

(i.e., <1 m pixel size) mapping of the land use land cover (LULC) and the sea use sea cover 

(SUSC) constitutes a fitting response to needs of local users, managers and decision-mak-

ers. Either passive or active, airborne imagery can successfully provide some spectro-spa-

tial combinations able to generate coastal topography and bathymetry using unmanned 
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airborne vehicles [6,7], and map sub-metre LULC and SUSC using hyper-/multi-spectral 

camera [8] or multi-spectral light detection and ranging (LiDAR) system [9]. However, the 

manned or unmanned airborne limitations, tied to the elevation-specific flight planning 

and the relatively small surveyed area, impede their utilization for regional mapping [10]. 

The sub-metre spaceborne imagery has emerged as a tool of interest given its capability 

to capture large extents with a very high spatial resolution, despite its purchase cost [11]. 

Around 2000, IKONOS (1999) and QuickBird-2 (2001) became the first satellite sensors 

collecting imagery at 1 m pixel size across regional scales. These civilian and commercial 

pioneers were followed by sub-metre United States WorldView-1, -2, -3, -4 (2007, 2009, 

2014, 2016), GeoEye-1 (2008), SkySat series (2013–2017), French Pleiades-1A and -1B (2011 

and 2012), Korean Kompsat-3 and -3A (2012 and 2015), United Kingdom TripleSat (2015), 

and Chinese Gaofen-2 (2014), Jilin-1 (2015), Superview-1 (2018) [12]. In addition to their 

spatial resolution capability inherent to the panchromatic band, most of these sensors ac-

quire four spectral bands: the visible (VIS) blue, green, red (BGR), and the optical near-

infrared (NIR). Three outliers thereupon appear: the panchromatic WorldView-1, the op-

tical 8-band WorldView-2, and the optical+mid-infrared (MIR) 16-band WorldView-3. The 

WorldView-2 improved the bathymetry mapping [5], the coral cover and health mapping 

[13,14], and the seamless LULC/SUSC mapping [11]. The WorldView-3 augmented the 

bathymetry [15], mineral [16], hydrocarbon [17], lithological [18], salt marsh [19], tropical 

forest [20], coral reef [8], and even urban plastic [21] mapping. 

Furthermore, the spaceborne sub-metre LULC mapping was significantly enhanced 

by the (tri-)stereo-acquisition of the same scene, offering the opportunity to produce seam-

less land-sea digital surface models (DSMs), using the photogrammetry for land and the 

ratio transform for sea [22]. Horizontal and vertical accuracies of the land DSM-derived 

stereo-Pleiades-1 have been quantified at 0.53 and 0.65 m, respectively [12]. The addition 

of the topographic band to the spectral information has been shown to significantly im-

prove spaceborne sub-metre LULC mapping [12]. Even if the novelty of the latter work 

relied on the sole use of a spaceborne stereo-imagery, the bathymetry and the SUSC map-

ping were not examined. An integration of the terrestrial and marine DSM into the space-

borne sub-metre spectral dataset was elsewhere useful in mapping the seamless coral reef-

scape in Japan using Google Earth imagery [23], but it was not derived from a sole space-

borne by-product. To our knowledge, a unique study has focused on the land-sea coral 

reefscape mapping using a sole spaceborne sub-metre stereo-imagery [24]. 

Despite the use of the WorldView-3 stereo-imagery to produce land-sea DSM, the 

authors had not previously investigated the added value of the 16-band superspectral da-

taset to map LULC and SUSC, simultaneously. In this paper, we innovatively propose to 

classify sub-metre LULC and SUSC of a coral reefscape using a sole spaceborne stereo-

imagery, from which the topographic, bathymetric and superspectral information are de-

rived. The scene studied was acquired over the complex coral reefscape of Moorea Island 

(French Polynesia, South Pacific) using a WorldView-3 stereo-imagery (Figure 1). The cho-

sen area exhibits representative eight LULC and five SUSC classes, and encompasses steep 

volcanic vegetated watersheds, flat rural coastal areas, and a reef-dominated lagoon. An 

set of five issues will be considered: (1) the added value of the Coastal and yellow bands 

to the basic BGR classification accuracy; (2) the added value of the Red Edge (RE), NIR1 

and NIR2 bands to the basic BGR classification accuracy; (3) the added value of the MIR 

bands to the basic BGR classification accuracy; (4) the influence of the topobathymetry 

(i.e., land-sea DSM) on the basic, visible, optical and optical+MIR datasets’ classification 

performance; and (5) all four previous questions considered at the class-level. 
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Figure 1. Natural-coloured WorldView-3 imagery (0.3 m × 0.3 m, 3017 × 5937 pixels) of the study 

area on Moorea Island (French Polynesia). (a) The red and green spheres represent 32 topographic 

and 35 bathymetric calibration/validation datasets; (b) the array of 105 multi-colour rectangles rep-

resents 78,000 pixels of 13 habitats, each one composed by 3000 calibration and 3000 validation pix-

els. 

2. Materials and Methods  

2.1. Study Site 

The study site is located on the north shore of Moorea Island (17°32′ S, 149°50′ W) in 

French Polynesia (Figure 1). Moorea is a 1.6 million-year-old volcanic island which at its 

highest point reaches 1207 m and extends over 187 km2, divided into 134 km2 and 53 km2 

of land and sea areas, respectively. While being in the vicinity of Tahiti, the capital of 

French Polynesia, Moorea, is considered as a life-size laboratory, given its large array of 

land-sea spatial patterns and multi-scale socio-ecological processes [25]. The spatial fea-

tures include rain and dry forests, volcanic and laterite soils, coconut and banana crops, 

urban infrastructures, coralligeneous sand, reef pavement, fringing and barrier reefs. The 

territory is changing rapidly due to the doubling of the local population in 40 years [26], 

the conversion of forest to pineapple crops and the urban growth. The lagoon hosts tradi-

tional fishing activities and is experiencing an increase in tourism activities. The test area, 

extending over 1.61 km2, is composed of a complex land-sea coral reefscape, selected to 

embrace all the previously mentioned components.  

2.2. Land-, Sea-, and Air-Truth Data 
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The topobathymetry extraction requires XYZ control points for both land and sea 

realms [24]. The topographic DSM was calibrated and validated by 20 and 12 ground con-

trol points (see red spheres in Figure 1a), surveyed in September 2018 with a Mobile Map-

per 120 provided with a 20 Hz Differential-GPS+GLONASS position output, ensuring a 

maintained 0.3 m accuracy. The sampling distribution was not optimal because it was 

constrained by the need to use a single pathway that ran along a crest surrounded by steep 

ravines. The bathymetric DSM was calibrated and validated by 20 and 15 sea control 

points, retrieved from the digitized French Navy chart (identified as 6657, based on a 1966-

to-1972 hydrographic campaign originally referenced to the lowest astronomical tide, see 

green spheres in Figure 1a). Despite the gap in timing between the waterborne soundings 

and the spaceborne acquisition, the absence of major local events in the seascape enabled 

the freely available hydrographic soundings to be used, for the sake of transferability. 

Both topographic and bathymetric control points were then horizontally referenced to the 

UTM 6 South projection into the WGS-84 datum, and vertically zeroed to the mean sea 

level.  

A suite of 13 habitats (Figure 1b) were inspected using geolocated handborne pho-

toquadrats for land classes and geolocated airborne for sea classes. Photoquadrats were 

taken with an Olympus Tough TG-4 provided with BGR bands (16 million pixels each), 

while aerial pictures were monitored using a DJI Mavic Pro Platinum collecting BGR 

bands (12 million pixels) at 35 m altitude (height above the mean sea level). A series of 90 

photoquadrats and 90 aerial photographs were orthorectified [8] to distinguish 10 classes, 

representative of an average land-sea coral reefscape (Table 1). Five land and five sea clas-

ses were each constituted of 30 and 30 seed pixels neighbourly and evenly grown to 3000 

calibration and 3000 validation pixels, respectively. The three remaining classes, namely 

forest, roof and shadow, were straightforwardly characterized by 3000 calibration and 

3000 validation pixels visually selected on the satellite imagery. 

Table 1. Description of the 13 land use/land cover and sea use/sea cover classes. 

Class Name Class Description  Class Colour 

Forest Wet arborescent stratum   
Wood Wet arbustive stratum   
Grass Wet herbaceous stratum   

Dry vegetation Wind and sun exposed forest, wood or grass    
Soil Bare volcanic or lateritic substratum   
Roof Wooden or metallic house covering   
Road Tarmac way    

Shadow Tree or house shading   
Backshore Emerged coral sand   
Foreshore Shallow coral sand   
Nearshore Mid coral sand   
Offshore Deep coral sand   

Coral reefs Scleractinian and coralline algae   

2.3. Spaceborne Dataset 

Launched on 13 August 2014, the commercial WorldView-3 spearheads the choice of 

sub-metre civilian satellite, given its hyperspatial and superspectral capabilities, namely 

one panchromatic band at 0.3 m, five VIS + three NIR bands at 1.2 m, and eight MIR bands 

at 3.7 m. The pansharpening technique can successfully produce 16 spectral bands at 0.3 

m spatial resolution ([27], Figure 2).  
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Figure 2. Lineplot of the superspectral (16 bands) WorldView-3 sensor’s sensitivity as a function of 

their wavelengths. 

Provided with a daily revisit, this sensor leverages a swath width of 13.1 km and 

length of 112 km. The WorldView-3 dataset used here is a stereo-imagery acquired on 18 

July 2018 at 20:35:38 UTC (Figure 3a, Table 2) and 20:36:39 UTC, respectively (Figure 3b, 

Table 2). 
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Figure 3. Natural-coloured WorldView-3 imageries of the study area, taken on 18 July 2018, over 

the north shore of Moorea Island (French Polynesia). (a) Imagery #1 taken with 26.4° off-nadir view-

ing angle; (b) Imagery #2 taken with 16.5° off-nadir viewing angle. 

Table 2. WorldView-3 specifications related to the stereo-imagery acquisition over the study site. 

Parameters Imagery #1 Imagery #2 

Date 12 July 2018 12 July 2018 

Time (UTC) 20:35:38 20:36:39 

Mean viewing angle   

In-track (in °) 23.6  -12.6 

Cross-track (in °) 12.2 10.8 

Off-nadir (in °) 26.4 16.5 

Satellite azimuth (in °) 34.3  148.6 

Satellite elevation (in °) 60.7 71.9 

Sun azimuth (in °) 29.9 29.7 

Sun elevation (in °) 45.0 45.1 

2.4. Spaceborne Topographic DSM 

The building of the satellite-based topographic DSM requires both panchromatic im-

ageries to be radiometrically converted from digital number to top-of-atmosphere radi-

ance, then to bottom-of-atmosphere reflectance values by considering the calibration fac-

tors (.IMD file), the atmosphere composition and sun irradiance (see [5] for details). The 

reflectance imageries were used to retrieve a 3D point cloud using a dense point matching 

algorithm [28]. The matching algorithm seeks for the pairwise pixels of two imageries by 

shortening the epipolar 2D to 1D, based on the rational polynomial coefficients (RPCs), 

then by reducing the length of the epipolar line with the global multi-resolution terrain 

elevation data 2010 dataset. The point cloud was then gridded at 0.3 m by converting the 

XY coordinates into the WGS84 datum, UTM zone 6S, and referencing in Z to the mean 

sea level (Figure 4). The topographic validation accuracy was estimated by the mean ab-

solute error (MAE) and the root mean square error (RMSE) between the modeled and 

observed values (N = 12). The MAE and RMSE attained 0.84 and 1.11 m, which corrobo-

rates the results from previous WorldView-3 works [24].  

2.5. Spaceborne Bathymetric DSM 

The creation of the satellite-based bathymetric DSM relies on the use of a single mul-

tispectral imagery that needs to be both radiometrically and geometrically corrected, as 

well as pansharpened. The imagery #2 was selected for this purpose since it displayed the 

lowest off-nadir viewing angle (Table 2). Following the radiometric correction (see 2.4), 

the VIS+NIR multispectral reflectance imagery was orthorectified using the RPCs and the 

20 ground control points, as well as the corresponding panchromatic reflectance imagery. 

Among seven sharpening methods, the Gram-Schmidt pansharpening procedure yielded 

the best visual results, and it was then implemented so as to produce a VIS+NIR dataset 

at 0.3 m pixel size (see [5] for details). The resulting sub-metre eight-band dataset was 

subjected to the radiative transfer model, called the ratio transform [29]. This standard 

bathymetric model makes use of the fact that light absorption by water varies with wave-

bands. It can thereafter determine the bathymetry (z), as follows: 

𝑧 = 𝑎1 (
𝑙𝑛[𝑅𝑤(λ𝑖) − 𝑅∞(λ𝑖)]

𝑙𝑛[𝑅𝑤(λ𝑗) − 𝑅∞(λ𝑗)]
) − 𝑎0 (1) 

where a0 is the intercept to match the mean sea level, a1 is the slope converting the relative 

to absolute bathymetry (20 calibration sea control points), Rw is the reflectance related to 
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the waveband λi, and R∞ is the reflectance over deep water. The MAE and RMSE bathy-

metric validation (N = 15) accuracy reached 0.74 and 0.89 m, echoing the findings from 

previous WorldView-3 studies [15,24]. 

 

Figure 4. (a) Natural-coloured orthorectified WorldView-3 imagery of the study area; (b) topobath-

ymetric digital surface model (in m) derived from the combination of a photogrammetry-based ste-

reo-panchromatic imagery for land and a ratio transform model for sea, both derived from the same 

WorldView-3 stereo-imagery. The colour scale on the right indicates the estimated height and depth 

below sea-level of different parts of the image. 

2.6. Habitat Classification 

The habitat mapping stemmed from the superspectral capabilities of the WorldView-

3 sensor. In addition to the pansharpened optical (VIS+NIR) reflectance, the eight-band 

MIR contribution to landscape (and not seascape given its water absorption) mapping was 

tested, which necessitated radiometric and geometric corrections purposed to the 

pansharpening enhancement (see [19] for WorldView-3 pansharpening). An output of 16 

spectral bands at 0.3 m was used as input predictors for a supervised classification based 

on the commonly used probabilistic maximum likelihood (ML) algorithm. This learner 

assumes that the statistics for each class in each spectral band are normally distributed, 

enabling the probability that a given pixel belongs to a specific class to be estimated. 

The 3000 calibration pixels per class were used to build the ML model, while the 3000 

validation pixels per class were intended for computing the confusion matrix (CM), from 

which the omission, commission misclassification (or error) and overall accuracy (OA) 

were drawn. These accuracy metrics were based only on the multi-colour rectangular re-

gions of interest (see Figure 1b), and not on the whole scene. The omission misclassifica-

tion corresponded to the rate at which sites were erroneously omitted from the correct 

class in the classified map, while the commission misclassification embodied the rate at 

which sites were correctly classified as ground-truth sites but were erroneously omitted 
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from the correct class in the classified map. The OA and CM were used to analyze gain 

patterns at the scene and the class scale, respectively. First, the VIS, NIR and MIR spectral 

contributions were assessed by, respectively, adding the Coastal and yellow, RE-NIR1-

NIR2, and MIR1-MIR2-MIR3-MIR4-MIR5-MIR6-MIR7-MIR8 bands, to the basic BGR 

combination. Second, the spatial contribution of the land-sea DSM was evaluated for the 

three spectral blendings. Third, the best predictions were further analyzed at the class 

level. 

3. Results 

Firstly, the contributions of the WorldView-3 spectral VIS, NIR and MIR were quan-

tified for the LULC-SUSC classification accuracy. Secondly, the WorldView-3 spatial topo-

bathymetric DSM was evaluated. Thirdly, the highest spectral and topobathymetric ef-

fects were assessed at the class scale.  

3.1. WorldView-3 Superspectral Land-Sea Habitat Mapping 

The classification performance of the BGR basic dataset provided a satisfactory OA 

of 89.15% (Figure 5a). On the one hand, the addition of the coastal and yellow predictors, 

yielding the VIS combination, increased the basic OA by 2.69% (Figure 5b). On the other 

hand, the addition of the RE, NIR1 and NIR2 to the VIS combination, so as to produce the 

optical dataset, augmented the basic OA by 8.79% (Figure 5c).  

 

Figure 5. Maximum likelihood classification maps of the land-sea coral reefscape using WorldView-3: (a) basic dataset 

(blue-green-red); (b) visible dataset (Coastal-blue-green-yellow-red); (c) optical dataset (Coastal-blue-green-yellow-red-

Red Edge-Near-InfraRed1-Near-InfraRed2). 

The addition of the eight MIR spectral bands, individually, to the optical dataset 

showed a high mean contribution of 9.52% (Figure 6). However, some subtle patterns 

could be highlighted: the MIR8, MIR7, MIR2, MIR5 contributed to a gain of the basic OA 

(9.58%, 9.57%, 9.53% and 9.51%, respectively); the MIR3, MIR4 and MIR6 contributed to 

the mean increase of 9.5%; and the MIR1 contributed to an enhancement of 9.47%. Given 

that the optical boosting to the basic OA was 8.79%, all MIR bands brought novel infor-

mation to discriminate LULC-SUSC. 
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Figure 6. Maximum likelihood classification maps of the land-sea coral reefscape using WorldView-3 optical dataset with: 

(a) Mid-InfraRed1 (MIR1); (b) MIR2; (c) MIR3; (d) MIR4; (e) MIR5; (f) MIR6; (g) MIR7; (h) MIR8. 

3.2. WorldView-3 Topobathymetry into Land-Sea Habitat Mapping 

The evaluation of the influence of the WorldView-3-derived topobathymetry fol-

lowed the same procedure as in 3.1. The addition of the DSM to the BGR basic dataset 

increased the OA by 2.74% (Figure 7a). The addition of the DSM to the VIS combination 

augmented the basic OA by 5.44% (Figure 7b). The addition of the DSM to the optical 

dataset enhanced the basic OA by 9.15% (Figure 7c). 
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Figure 7. Maximum likelihood classification maps of the land-sea coral reefscape using WorldView-3 topobathymetric 

digital surface model with: (a) basic dataset (blue-green-red); (b) visible dataset (Coastal-blue-green-yellow-red); (c) opti-

cal dataset (Coastal-blue-green-yellow-red-Red Edge-Near-InfraRed1-Near-InfraRed2). 

The addition of the DSM to the eight MIR spectral bands (individually added to the 

optical dataset) showed a high mean contribution of 9.55% (Figure 8), slightly better than 

the MIR bands with no DSM (Figure 6). Some variations still appeared: the MIR1, MIR8, 

and MIR7 contributed to the best gains of the basic OA (9.73%, 9.69%, and 9.60%, respec-

tively); the MIR5 and MIR6 contributed to the mean boost of 9.53% and 9.51%; and the 

MIR4, MIR2 and MIR3 contributed to the least increases of 9.47%, 9.45% and 9.42%. Since 

the DSM-added optical contribution to the basic OA was 9.15%, all MIR bands continued 

to provide insights for improving LULC-SUSC mapping. 
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Figure 8. Maximum likelihood classification maps of the land-sea coral reefscape using WorldView-3 topobathymetric 

digital surface model and optical dataset with: (a) Mid-InfraRed1 (MIR1); (b) MIR2; (c) MIR3; (d) MIR4; (e) MIR5; (f) MIR6; 

(g) MIR7; (h) MIR8. 

3.3. WorldView-3 Land-Sea Habitat Mapping at the Class Scale 

The best OA for the WorldView-3 multispectral and superspectral, deprived of and 

provided with the inner topobathymetry, were further studied at the class level by com-

paring their confusion matrices with that for the basic BGR (Figure 9).  

Concerning the multispectral level, the optical dataset strongly improved the dis-

crimination of the grass (27.7%) and wood (19.27%), as well as the road (15.93%). The coral 

reefs also benefited from a better differentiation (1.2%), partly due to the decline in omis-

sion misclassification with the offshore (−0.93%). The addition of the topobathymetric 

DSM confirmed the greater distinction between previous classes (grass, 27.5%; wood, 
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26.27%; and road, 19.27%), but also improved the ability to detect the roof (23.87%) and 

soil (8.53%) classes. The coral reefs’ separability was also heightened (1.87%) owing to the 

decrease in omission misclassification with the nearshore (−0.57%).  

Regarding the superspectral degree, the optical dataset enhanced with the MIR8 em-

powered to distinguish grass (27.6%), wood (25.53%), roof (22.87%), road (20.03%), and 

soil (14.6%) classes. The coral reefs were also better discerned (2.07%) given the reduction 

in omission misclassification with the nearshore (−0.93%). The integration of the DSM in-

formation to the optical+MIR1 dataset still upgraded the classification of the grass 

(27.33%), wood (27.1%), roof (24.5%), road (20.67%), and soil (12.97%). Nevertheless, the 

coral reefs’ classification remained rigorously constant (2.07%). 

 

Figure 9. Confusion matrices of the percent differences between the WorldView-3 basic blue-green-red classification val-

idation and the best results for multispectral and superspectral combinations, deprived of and provided with WorldView-

3 topobathymetric DSM. 

4. Discussion 

It is necessary to bear in mind that the mapping assessment was based on the sur-

veyed calibration/validation rectangles (see Figure 1b). The use of a reliable and detailed 

ground-truth image is important for providing a comprehensive estimation of the area, 

thus preventing misclassifications detected by visual discrepancies as seen for the roof 

class rectangles that were mapped into the sea.  

4.1. Land-Sea Coral Reefscape Mapping with a Multispectral WorldView-3 Stereo-Imagery 

Together with its predecessor the 2009 WorldView-2, the 2014 WorldView-3 remains 

the state-of-the-science sub-metre spaceborne optical sensor, leveraging two extra spectral 

bands in the VIS and two supplementary spectral bands in the NIR gamut, compared to 

all other sub-metre competitors (see Introduction). The use of the five-band VIS and eight-
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band optical data showed a greater classification performance of the land-sea coral reef-

scape than did the basic BGR, namely a gain of 2.69% and 8.79%. These results are in 

strong agreement with the WorldView-2 multispectral Moorea land-sea mapping project 

[11].  

Even if the satellite-based topography, on the one hand, and bathymetry, on the other 

hand, are commonly studied for sub-metre optical sensors [12,15], it is still innovative to 

create satellite-based merged topobathymetry: Pleiades-1 [25], WorldView-3 [24]. The 

RMSE validation accuracies of the photogrammetry-based topography and ratio-trans-

formed bathymetry of 1.11 m (R2 = 0.99, min = 20.26 m, max = 370.25 m, N = 12) and 0.89 

m (R2 = 0.73, min = −12.49 m, max = 0 m, N = 15), computed here, are also in concordance 

with the stereo-WorldView-3 multispectral Moorea land-sea mapping [24]. Even if the 

topographic accuracy was lower than the bathymetric one, an in-depth examination 

showed that the accuracy rapidly diminished with depth, with a break at -5 m. In contrast, 

the accuracy of the altitude estimation remains constant even for higher values around 

400 m. The bathymetry modeling could be ameliorated by using more soundings from a 

more recent survey, such as the topobathymetric LiDAR campaign locally operated in 

2015. Further investigation will assess the influence of various pansharpening methods 

on those relief accuracies. Like the current work, this previous research highlighted that 

the addition of the topobathymetric DSM augmented the classification accuracy derived 

from the WorldView-3 basic BGR (2.74%), VIS (5.44%), and optical (9.15%) datasets. It is 

worth emphasizing that the DSM contribution: 

 To the basic BGR neared the sole VIS performance (≈2.7%); 

 To the VIS prediction equaled 2.7%; 

 To the optical accuracy approximated 6.4%. 

4.2. Land-Sea Coral Reefscape Mapping with a Superspectral WorldView-3 Stereo-Imagery 

The greatest novelty of the WorldView-3 resides in the collection of the eight-band 

MIR spectral bands, doubling the spectral bands of the WorldView-2 and extending the 

spectrum to 2365 nm [27]. The individual contributions of the eight MIR bands all contrib-

uted to the gain in classification accuracy of the land-sea coral reefscape compared to the 

basic mapping performance, ranging from 9.47% (MIR1) to 9.58% (MIR8), through 9.57% 

(MIR7). These significant inputs corresponded to a boosting of the optical (VIS+NIR) pre-

diction, ranging from 0.68% to 0.79%.  

The topobathymetric DSM reinforced the classification accuracy derived from the 

WorldView-3 optical datasets provided with the eight MIR bands. The best performances 

were here ensured by the MIR1 (9.73%), then the MIR8 (9.69%), while the least gain was 

attributed to the MIR3 (9.42%). Referenced to the optical dataset, the DSM therefore ame-

liorated the classification of: 

 0.94% with MIR1; 

 0.90% with MIR8; 

 0.63% with MIR3. 

4.3. Land-Sea Coral Reefscape Mapping at the Class Scale 

As might be logically expected, the best multispectral combination relied on the full 

optical dataset, from Coastal to NIR2. Relatively to the BGR discrete prediction, the dis-

crimination between grass, wood and road classes were significantly refined. These find-

ings might easily be explained if the NIR enhancement can capture the higher reflectance 

of both the chlorophyll-laden and the tar/asphalt -made classes better than the VIS one 

[30]. 

The DSM fusion with the optical dataset strongly improved the roof and the soil de-

tection. This boosting was correlated with the decrease in misclassification with topo-

graphically lower road and topographically higher dry vegetation, respectively. The 

knowledge of the elevation component within the landscape therefore helped separate 
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human-made, on the one hand, and natural features, on the other hand, that are spectrally 

similar in the optical range [30].  

The best superspectral combination relied on the merge of the optical dataset with 

the MIR8 (2295–2365 nm). The positive effect at the class scale was tangible with grass, 

wood, roof, road and soil classes. Compared to the optical dataset, the roof and soil classes 

were better isolated. The roof outcome might stem from the MIR8 spectral fitting with the 

higher reflectance of the Polynesian roof made of oxidized-galvanized steel metal (0.34 

reflectance) than the optical one (0.19 reflectance) [30]. The soil gain might also be due to 

MIR8 matching more closely with the higher reflectance (0.44) than the optical one (0.28) 

(see “brown loam” in [28]). These explanations were also supported by the decline in both 

roof and soil misclassifications with road, that displays a low MIR8 reflectance of 0.08 [30]. 

The DSM influence showed a better OA with the combination of the optical dataset 

with the MIR1 (1195–1225 nm). This optimum simply reinforced its positive effect on the 

same previous classes, suggesting that the additional elevation information was relatively 

redundant to this coming from the MIR. 

Concerning the coral reefs, the successive integration of the optical bands and the 

DSM to the BGR dataset, slightly but consistently, strengthened their detection. The addi-

tion of the Coastal and yellow bands favoured the coral reefs’ separability among other 

benthic features given the refinement in spectral signatures [11]. The benthic terrain infor-

mation was also profitable due to the robustness of the depth proxy for delineating ben-

thos’ ecophysiological belts [23]. In view of the neat classification of the coral reefs along 

the lagoon width (Figures 5–8), further research should divide the coral reefs’ current class 

according to their landscape position (fringing, barrier and outer reefs), and their mor-

phology (encrusting, branching, massive, tabular, columnar, etc.). 

5. Conclusions 

The superspectral WorldView-3 providing 16 bands, from 400 to 2365 nm, pansharp-

ened at 0.3 m, was acquired in the form of stereo-imagery. Both topographic and bathy-

metric DSMs were built using a handful of ground and sea control points, enabling us to 

calibrate/validate the land-based photogrammetry and the sea-based radiative transfer 

model, provided with 1.11 and 0.89 m vertical accuracy, respectively. The best superspec-

tral combination for enhancing the land-sea mapping of 13 habitats relied on the merging 

of the optical dataset (VIS+NIR) and the MIR8, which enhanced the basic BGR classifica-

tion accuracy by 9.58%, thus reaching an OA of 98.73%. The classes that most benefited 

from this were the land use “roof” and land cover “soil” classes. The “coral reefs” con-

sisted of the sea class that was the most favoured. The addition of the satellite-derived 

topobathymetric DSM to the optical+MIR1 was the best full combination, increasing the 

basic BGR classification accuracy by 9.73%, thus reaching an OA of 98.88%. The discrimi-

nation of the “roof” and “soil” classes was also strengthened, but the “coral reefs” re-

mained constant. 
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